用于建立和执行动态资产工具的计算机实现方法和装置

(57) 摘要

房产中的资产回报，费用和风险在投资者和业主之间被动态地分成。在基于实施方式的多个计算系统中，持有房产被认为是联合风险投资，周期性的计算业主和投资者对该联合风险投资所作的出资，且调整剩余账户或付款以抵御该风险投资。剩余账户可存在于由多种债务和与资产有关的资产利息组成的常规资本结构之外。

<table>
<thead>
<tr>
<th>投资者的资产</th>
<th>房主的承诺资产</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>债务（第一抵押权，第二抵押权，HELDG）</td>
</tr>
</tbody>
</table>

= “优先块”
1. 一种用于仿真大规模自动数据组合的计算机实现的方法，包括以下步骤：
显示多个资产模型的表示信息，以提供资产类型和利益持有者的关于经济、房屋
和个人特征数据的资产仿真；
访问表示已选择资产模式和所述利益持有者的身份中的至少一个的输入；
更新或启动存储在所述计算机系统的存储媒介内的不依赖于模型的动态数据库，所述
数据库包括所述数据；从公共或私有的网络可接入数据库通过两个流访问所述数据，所述
两个流是直接可转移流和包括不规律数据的流；在周期性基础上并且当任何一个权益相关
者要求时，发生所述更新；
动态组织多个数据流，识别已获得数据中的不一致或不规律，其中，由计算单元执行数
据推算程序以解决和纠正所述不一致或不规律；
将所有存储在所述计算机系统的所述存储媒介内的具有不同格式的数据转变为单一
通用格式；
通过网络连接并且从其它计算机系统的输入和接收第三数据流，所述第三数据流包括与
合同承诺交易关联的所述选择的模型包含的初始化数据和仿真指令，其表示在第一利益持有
者的金额和第二利益持有者的金额之间特定的实时关系，其中所述第一利益持有者的金额
和所述第二利益持有者的金额分别与第一组织和第二组织关联，所述第一组织和所述第二
组织是所述合同承诺交易的各方；
从其它计算机系统的输入和接收表示所述合同承诺交易的持续时间的相关信息的数据、
以及表示潜在的不动产所有权益的所述历史的相关的信息的数据；
当所述选择的模式包括对所述利益持有者的中的所述一个的保险资产分配时；
基于来自另一个计算机系统的输入流，评估所述合同承诺交易的不动产中的所有权利
是否被售出，并且如果被售出，是否已经设置初始所有权利益，并且是否已经计算先前的
所有权利益；
当确定所述不动产中的所有权利益被售出时，基于所述确定，自动更新所述计算机系
统的所述存储媒介，如果在先前所有权利益，将数据合并至所述先前所有权利益；
评估所述初始化数据并产生交易数据流，所述交易数据流表示所述合同承诺交易的初
始和历史状态；
访问来自所述计算机系统的所述存储媒介的所述相关的数据，所述相关的数据包括从
任何所述公共或私有的网络可接入数据库或从其它计算机系统取回的新数据，并且在所述
更新或启动数据步骤中处理所述新数据；
访问与所述被选择的模型关联的仿真指令，并且因此计算所述相关的数据的被调整的
值；
识别所述利益持有者的净出资；
对所述不动产价值计算由所述利益持有者的保险资产百分比，
其中，所述百分比通过增加或减少在初始百分比来计算，当在其它计算机系统上启动
所述合同承诺交易时，所述初始百分比被指定；并且
其中所述增加和减少通过计算下述内容来确定：
在每个多个时间段的终止时的终止百分比，所述多个时间段包括初始时间段和终止时
间段；
并且，对于每个时段；
所述利益持有者的净资产利率除以对所述不动产的预期非融资型市场回报率，
在每个时段开始的时候，
在与作为不动产相同的持续时间内的投资无风险利率，以及
每个时间段的长度；

基于所述利益持有者的出资、所述利益持有者的所述债务责任和所述计算出的分配给
所述利益持有者中的每一个的保险资产百分比，电子计算被分配给由所述计算机系统管理的
所述第一利益持有者的账户和所述第二利益持有者的账户的所述不动产的所有权利利，所
述不动产的所有权利利与由所述计算机系统计算的不同类型的资产分配相一致；

基于所述输入的所述利益持有者的身份和所述内容的所述结果，通过资产类型显示所述
内容的被分配给所述第一利益持有者的账户和所述第二利益持有者的账户的所述不动产
的所有权利利；以及

重新显示多个资产模型的所述表示信息以允许选择新的仿真模型。

2. 一种包括至少一个硬件元件的计算机服务器，所述计算机服务器被编有指令，所述
指令用于使所述计算机服务器执行计算机网络资产服务建模方法，所述方法包括：

在资产服务模型编辑器中接收至少一个用户输入的检索标准，以定位关于计算机网络
资产服务的一个或多个资源的信息，所述信息包括合同特征、经济参数和账户信息，其中资
产服务模型编辑器包括图形用户界面(GUI)；

基于所述至少一个用户输入的检索标准，在多个数据库中检索信息，以产生用于管理
所述计算机网络资产服务的资产服务模型，所述数据库中的所述信息描述所述计算机网络
资产服务的资源；

使在所述资产服务模型编辑器中的所述资产服务模型的至少一部分能够操作；

使用用户在使用所述资产服务模型编辑器时能够选择不同的资产服务建模选项，包括仅
发布被选择的资产服务模型的结果的选项；

使用所述资产服务模型编辑器时，提供发布预览界面，包括查看将要发布的选项的选
项，所述选项包括所选择的资产服务模型的属性和值；

启动发布至少一部分所述用户选择资产服务建模选项的所述结果给所述计算机网络
资产服务的一个或多个利利益持有者；以及

提供发布信息历史界面，列出发布信息的历史，包括在所述历史中的所选择的发布信
息的的细节和错误信息。

3. 一种实时定、获得、分析和报告所需合同信息的方法，所述方法包括以下步骤：

将具体的合同数据作为源信息，通过至少一个硬件处理器将信息存储在存在于电子记
录服务器上的多个数据源中的至少一个位置；

通过所述至少一个硬件处理器接收询问形式的命令，所述命令要求关于所述合同数据
的信息；

通过所述至少一个硬件处理器，通过使用位于数据管理和存储系统(DMSS)的引用程序
管理和控制电子数据的所述存储，所述数据管理和存储系统(DMSS)具有应用处理器和资产
工具处理器；其中应用程序选择至少一个资产工具，并且使所述命令生效；

当接收到合适的请求时，通过所述至少一个硬件处理器发送所述询问至所述电子记录
服务器，并且使用具有至少一个资产工具的界面应用取回所述源信息，所述问询包括合适的编码以访问存储在所述多个数据源内的所述至少一个位置的源信息；

通过数据采集和转换系统(DCCS)中的问询处理器，将所述至少一个硬件处理器通过使用由所述DCCS中的应用界面建立的泛型界面连接至所述电子记录服务器；

使用在所述至少一个硬件处理器中的所述界面应用，从所述电子记录服务器实时连续监视和提取与所述合同相关的多个经济数据；

通过工具特征引擎，允许所述至少一个硬件处理器与所述DCCS通信；

通过在所述至少一个硬件处理器中的所述DCCS，传输来自所述电子记录服务器的所述源信息；

使用在所述至少一个硬件处理器中的所述DCCS，产生资产总量，包括处理与所述合同数据有关的所述多个经济数据以及数据缺失技术；

通过在所述至少一个硬件处理器中的所述工具特征引擎，分解所述资产总量以形成至少一个包含所述所需合同信息的事实表；以及

通过所述至少一个硬件处理器，使用所述事实表以实时的形式报告来自所述多个分布数据源中的所述位置的所述所需的信息。
用于建立和执行动态资产工具的计算机实现方法和装置

【0001】分案申请说明
【0002】本申请是PCT申请第PCT/US2010/021490号于2011年8月29日进入中国国家阶段得到的、申请号为201080009761.3、申请日为2010年1月20日、发明名称为“用于建立和执行动态资产工具的计算机实现方法和装置”的发明专利申请的分案申请。
【0003】相关申请的交叉参考
【0004】本申请要求的优先权为2010年1月18日提出申请的美国专利申请No.12/689,132和2009年1月20日提出申请的临时专利申请No.61/145,938，在此通过参考将其全部内容并入本文。

技术领域
【0005】本发明涉及用于建立和执行动态资产工具的计算机实现方法和装置。更特别的，本发明涉及用于建立和执行一种动态业主自用房产（DOOR）工具的计算机实现方法和装置，从而提供资产投资者新的方法以在业主自用房产中投资。

背景技术
【0006】关于业主自用房产的传统抵押贷款和大多数推荐的资产融资手段，在交易过程中，房主与投资者或债权人之间，会涉及基于“资本结构”的清算。在由第一抵押权人和房主资产组成的传统融资的情况下，第一抵押权人（通常是银行或证券池中的投资者）具有出售金额中高达本金余额的所有收益的优先权，而抵押人（通常是房主）获得超过本金余额部分的100%。
【0007】与第一抵押权相结合的典型简易资产融资工具将资产投资者的出资看作与优先权有关的第二抵押权，但与获得利息支付不同的是，资产投资者在卖房时获得房屋升值的分成。例如，假设以$200,000购买房屋，其中第一抵押权为$160,000，资产凭据为$20,000，且首付为$20,000。假设资产凭据具有25%的升值权。在忽略抵押贷款余额可以分期偿还的情况下，在卖房时，按照优先权递减顺序的分配性计划表为：第一抵押权人获得$160,000的本金余额，资产凭据持有者获得$20,000的首付，然后房主和资产凭据持有者在75/25的基础上对$200,000的余额分成。
【0008】这两种方法在本质上都是“静态的”：分配规则不是诸如房价路径或利率演变之类的经济条件的函数。分配规则呈分段线性且基于资本结构；在卖房时各方的回报是固定的、基于资本结构确定的百分比。

发明内容
【0009】本发明涉及一系列“DOOR工具”。DOOR表示“动态业主自用房产”。DOOR工具给资产投资者提供了在业主自用房产中投资的新方法。现有的资产工具在资产分配上通常是分段线性的，且是静态的，也就是说，它们不会基于经济状况或房屋的实际价值而改变。例如，假设以$200,000购买房屋，其中$140,000是第一抵押权，$40,000是资产投资者所作的投资，$
20,000是首付。典型的分配规则是在资产投资者和房主之间以50-50划分购买价格上的升值收益；同时对于所收到的$200,000以内的出售金额，首先支付第一抵押权（$140,000），然后是资产投资者（$40,000)，最后是房主（$20,000）。该方案是静态的，因为分配规则（如50-50划分升值收益）并不随经济变化或房屋价值而改变。而且分配规则是分段线性的。资产投资者在销售收入的特定范围内，获取稳定比例的收益。

【0010】DOOR工具允许在房主和资产投资者之间进行优选为非线性且动态的分配。在DOOR工具的优选实施方式中，对于不同的房屋价值范围，分配规则可以是线性分配表更全面，它可以是动态的，也就是说，规则本身可以随经济状况或最终的房产价值而变化。该方案允许分配规则解决分段线性静态分配中不可调和的许多问题。这些问题是包括：房主不明智的融资策略，例如实际上将很大一部分财产投资于与生活在某些相关的融资型资产中，结果当收入减少或发生失业时，房屋价值和总财产往往会同时急剧减少。不能很好地激励房主对房屋进行维护；投资者不能以纯粹和透明的方式在业主自用房屋上获取回报。在没有资产工具进行代价高昂的再融资的情况下，不能增加房屋贷款。对于创建或接受证券池中的新投资工具，不便于进行评价：以及当房屋价值下跌时出现，不能很好地激励策略性再融资资产工具的使用。

【0011】一种特定的DOOR变体，本文中称为ANZIE-DOOR，同时解决了所有上述问题。（注写“ANZIE-DOOR”是暂定名。商业应用可使用不同的缩写来指代该工具。临时专利申请No.61/145,938使用“ANZIE-DOOR”而不是“ANZIE-DOOR”）。该工具将房主的借款（第一抵押权，第二抵押权等）和房主的现金资产供款（首付，与抵押贷款相关的本金还款等）一起归入一个模块（“优先股”），并在低出售价的情况下，给资产投资者提供回报上的法律优先权。该模块为投资者的回报提供有效的杠杆作用，且在ANZIE-DOOR方案中，房主的信用体现在对优先股贷款的利息支付情况。房主的资产由两种类型组成。首先是“承销资产”，其包括房主的所有现金资产供款（首付，与抵押贷款相关的本金还款等）以及某些其他因素，诸如由于房主修缮而产生的房屋价值增量。其次，该工具还产生遵守非线性算法的“保险资产”。在任何特定的时刻，该算法指定一个百分比。在卖房时，不论房屋出售是盈余还是亏损，投资者都必须支付房主该百分比的出售总额，这与传统线性方式不同。例如，如果该百分比是10％，房屋以$100,000出售，且$120,000是第一抵押权到期，则即使在基于丧失赎回权的情况下，投资者也必须支付房主$10,000。以这种方式计算的回报就是房主的“保险资产”。该工具还创建了一种房主责任，按某些条件标准维护房屋。不这样做的话，就会为投资者产生一项权利，从而利用整修成本来减少保险资产和在买房时给予房主的其他回报（例如文中所讨论的“承销资产”）的金额。多数情况下，用于在ANZIE-DOOR中计算保险资产份额的百分比随时间而增加。增加率的设置是为了平衡资产投资者和房主的相对出资和收益（隐含的租金，与优先股“贷款”相关的利息支付，支付物业税等），以及反映当前的经济状况（例如非按揭和按揭利息率）和房屋价值。

【0012】（该介绍性论述假定房主的净出售一直为正。如果在同一时间内为负，则在该时间段内累积保险资产，这有利于投资者而不是房主。稍后，本文将在介绍ANZIE-DOOR和涉及保险资产的其他DOOR变体中，具体讨论这种可能的情况。）

【0013】利率的周期性变动，导致各方面要接受其资产随时发生更新和随经济变动的现实。因此，对于房主来说没有纯粹的经济激励来进行再融资，且易于以资产池为目的对工具
进行评价。

下面的表1显示了ANZIE-DOOR工具随时间运作的例子。该例假设以$200,000购买房屋，由$160,000第一还款和$40,000ANZIE-DOOR工具来提供资金。在表1中，各个值四舍五入至最接近的美圆数。可以有多种价格路径，且各路径的确切结果（保险资产的增加率和计算保险资产所使用的百分比的时间序列）是不同的。一个合适的价格路径的例子是：房屋价值年升值恒定为7%。该表的第二栏中的“比率因子”概括了房屋价值和各种经济变化对于比率的影响，第三栏中的用于计算保险资产的百分比按照该比率增加。较高的比率因子会导致该百分比较快地增加。该举例假设除了与年投资者提供杠杆作用的优先款“贷款”有关的隐含利息以外，房主出资要款的净支出为零。在该例中，比率因子随时间不断下降，因为房主提供给投资者的杠杆程度随时间下降。利用“贷款价值比”（LTV）来表达这种下降，其中“贷款”是优先款，该例子中一直处于$160,000，而“价值”等于房屋价值。该例子中，随着时间变化比率因子一般会下降这个事实是特定价格路径的结果。

房主的保险资产在任何时刻（表中的第六栏）都等于保险资产百分比（表中的第三栏）乘以该时刻的房屋价值（表中的第四栏）。虽然保险资产百分比随时间增加，但如果在一段时间内房屋价值的下降压过了百分比增加的影响，那么保险资产在该段时间期间就会下降，在该例子中保险资产一直增加是因房屋价值未发生下降。

随着房主为抵押贷款付款，承销资产累积。在卖房时，承销资产优先对工具投资者还款。第一抵押权余额和承销资产都是优先款的一部分，即为投资者提供杠杆作用的房主“贷款”。因此在该例子中，计算比率因子或计算投资者的回报都需要知道房主已经支付了多少第一抵押权。本金还款加上剩余本金总是等于$160,000，即优先款的大小。因此，为了计算比率因子，无论剩余多少抵押贷款本金，在形式上作为工具投资者的支撑杠杆的房主出资是不变的。此外，工具投资者可获得的出售金额等于零和房屋价值减$160,000所得金额中的最大值。在该例子中，房屋价值减$160,000总是大干零。因此，投资者的仓位（表中第七栏）等于房屋价值（表中第四栏）减去两项金额：$160,000（包括剩余抵押贷款本金和房主的累计本金支出的优先款）和房主的保险资产额（表中第六栏）。最后一段表示以年初投资者的仓位为基础投资者年回报百分比。

表1 ANZIE-DOOR工具随时间的运作

<p>| $200,000 初始值, $160,000 优先款, 和 $40,000 ANZIE-DOOR |
| 价格路径：恒定升值 7% |</p>
<table>
<thead>
<tr>
<th>年</th>
<th>比率因子</th>
<th>保险资产百分比</th>
<th>房屋价值</th>
<th>LTV (优先债)</th>
<th>房主保险资产</th>
<th>投资者仓位</th>
<th>投资者年回报率</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>0%</td>
<td>$200,000</td>
<td>80.00%</td>
<td>$5,884</td>
<td>$40,000</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.571</td>
<td>2.75%</td>
<td>$214,000</td>
<td>74.77%</td>
<td>$5,884</td>
<td>$48,116</td>
<td>20.29%</td>
</tr>
<tr>
<td>2</td>
<td>0.534</td>
<td>5.25%</td>
<td>$228,980</td>
<td>69.88%</td>
<td>$12,023</td>
<td>$56,957</td>
<td>18.37%</td>
</tr>
<tr>
<td>3</td>
<td>0.499</td>
<td>7.53%</td>
<td>$245,009</td>
<td>65.30%</td>
<td>$18,450</td>
<td>$66,559</td>
<td>16.86%</td>
</tr>
<tr>
<td>4</td>
<td>0.466</td>
<td>9.61%</td>
<td>$262,159</td>
<td>61.03%</td>
<td>$25,196</td>
<td>$76,963</td>
<td>15.63%</td>
</tr>
<tr>
<td>5</td>
<td>0.436</td>
<td>11.51%</td>
<td>$280,510</td>
<td>57.04%</td>
<td>$32,295</td>
<td>$88,215</td>
<td>14.62%</td>
</tr>
<tr>
<td>6</td>
<td>0.407</td>
<td>13.25%</td>
<td>$300,146</td>
<td>53.31%</td>
<td>$39,783</td>
<td>$100,363</td>
<td>13.77%</td>
</tr>
<tr>
<td>7</td>
<td>0.381</td>
<td>14.85%</td>
<td>$321,156</td>
<td>49.82%</td>
<td>$47,696</td>
<td>$113,460</td>
<td>13.05%</td>
</tr>
<tr>
<td>8</td>
<td>0.356</td>
<td>16.32%</td>
<td>$343,637</td>
<td>46.56%</td>
<td>$56,071</td>
<td>$127,566</td>
<td>12.43%</td>
</tr>
<tr>
<td>9</td>
<td>0.333</td>
<td>17.66%</td>
<td>$367,692</td>
<td>43.51%</td>
<td>$64,949</td>
<td>$142,743</td>
<td>11.90%</td>
</tr>
<tr>
<td>10</td>
<td>0.311</td>
<td>18.90%</td>
<td>$393,430</td>
<td>40.67%</td>
<td>$74,370</td>
<td>$159,060</td>
<td>11.43%</td>
</tr>
<tr>
<td>11</td>
<td>0.290</td>
<td>20.04%</td>
<td>$420,970</td>
<td>38.01%</td>
<td>$84,381</td>
<td>$176,590</td>
<td>11.02%</td>
</tr>
<tr>
<td>12</td>
<td>0.271</td>
<td>21.10%</td>
<td>$450,438</td>
<td>35.52%</td>
<td>$95,026</td>
<td>$195,412</td>
<td>10.66%</td>
</tr>
<tr>
<td>13</td>
<td>0.254</td>
<td>22.07%</td>
<td>$481,969</td>
<td>33.20%</td>
<td>$106,357</td>
<td>$215,612</td>
<td>10.34%</td>
</tr>
<tr>
<td>14</td>
<td>0.237</td>
<td>22.96%</td>
<td>$515,707</td>
<td>31.03%</td>
<td>$118,425</td>
<td>$237,282</td>
<td>10.05%</td>
</tr>
<tr>
<td>15</td>
<td>0.222</td>
<td>23.79%</td>
<td>$551,806</td>
<td>29.00%</td>
<td>$131,286</td>
<td>$260,520</td>
<td>9.79%</td>
</tr>
<tr>
<td>16</td>
<td>0.207</td>
<td>24.56%</td>
<td>$590,433</td>
<td>27.16%</td>
<td>$145,000</td>
<td>$285,433</td>
<td>9.56%</td>
</tr>
<tr>
<td>17</td>
<td>0.194</td>
<td>25.27%</td>
<td>$631,763</td>
<td>25.33%</td>
<td>$159,630</td>
<td>$312,133</td>
<td>9.35%</td>
</tr>
<tr>
<td>18</td>
<td>0.181</td>
<td>25.92%</td>
<td>$675,986</td>
<td>23.67%</td>
<td>$175,243</td>
<td>$340,743</td>
<td>9.17%</td>
</tr>
<tr>
<td>19</td>
<td>0.169</td>
<td>26.53%</td>
<td>$723,306</td>
<td>22.12%</td>
<td>$191,912</td>
<td>$371,394</td>
<td>9.00%</td>
</tr>
<tr>
<td>20</td>
<td>0.158</td>
<td>27.10%</td>
<td>$773,937</td>
<td>20.67%</td>
<td>$209,712</td>
<td>$404,225</td>
<td>8.84%</td>
</tr>
<tr>
<td>21</td>
<td>0.148</td>
<td>27.62%</td>
<td>$828,112</td>
<td>19.32%</td>
<td>$228,726</td>
<td>$439,387</td>
<td>8.70%</td>
</tr>
<tr>
<td>22</td>
<td>0.138</td>
<td>28.11%</td>
<td>$886,080</td>
<td>18.06%</td>
<td>$249,041</td>
<td>$477,040</td>
<td>8.57%</td>
</tr>
<tr>
<td>23</td>
<td>0.129</td>
<td>28.56%</td>
<td>$948,106</td>
<td>16.88%</td>
<td>$270,749</td>
<td>$517,357</td>
<td>8.45%</td>
</tr>
<tr>
<td>24</td>
<td>0.121</td>
<td>28.98%</td>
<td>$1,014,473</td>
<td>15.77%</td>
<td>$293,952</td>
<td>$560,521</td>
<td>8.34%</td>
</tr>
<tr>
<td>25</td>
<td>0.113</td>
<td>29.37%</td>
<td>$1,085,487</td>
<td>14.74%</td>
<td>$318,754</td>
<td>$606,732</td>
<td>8.24%</td>
</tr>
</tbody>
</table>
由于投资者向房主支付与房主的保险资产相等金额的责任与出售房屋的盈余或亏损无关，因此投资者在卖掉房时有净支出责任。为了更详细地阐释卖掉房时的情况，我们假设在购买和出售之间房主的保险资产百分比增加至10%，且房主已经支付了第一抵押权$160,000的本金$10,000，剩余余额$150,000。下面的表2表示在以四个不同售价卖掉房时各方所得到的现金流。（该表不以成本或投资额来构建，因此不表示亏损、收益或利润）。卖房时各方最终的总现金流为资本结构所支配的一方的支出加可能转让给该方的净保险资产之和。该现金流的最终情况表示：(i)房主的承诺资产，以及第一抵押权人的本金余额，在出售回报上优于投资者的资产；(ii)低售价导致房主的承诺资产有亏损风险；(iii)相反，假设在卖掉房时有一个具有偿付能力的投资者，即使在第一抵押权违约的情况中，房主总是会获得保险资产应付款；(iv)在卖掉房时，投资者需要使净支出尽量与保险资产的总额一样高。

总获利额

<table>
<thead>
<tr>
<th>售价</th>
<th>$300,000</th>
<th>$200,000</th>
<th>$155,000</th>
<th>$140,000</th>
</tr>
</thead>
</table>

资本结构的最终情况

(分配总获利额)

<table>
<thead>
<tr>
<th>第一抵押权人：</th>
<th>$150,000</th>
<th>$150,000</th>
<th>$150,000</th>
<th>$140,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>本金</td>
<td>$150,000</td>
<td>$150,000</td>
<td>$150,000</td>
<td>$140,000</td>
</tr>
<tr>
<td>(违约)</td>
<td>$10,000</td>
<td>$10,000</td>
<td>$5,000</td>
<td>$0</td>
</tr>
<tr>
<td>房主：</td>
<td>$10,000</td>
<td>$10,000</td>
<td>$5,000</td>
<td>$0</td>
</tr>
<tr>
<td>承诺资产</td>
<td>$140,000</td>
<td>$40,000</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>投资者：</td>
<td>$140,000</td>
<td>$40,000</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>剩余权益</td>
<td>$140,000</td>
<td>$40,000</td>
<td>$0</td>
<td>$0</td>
</tr>
</tbody>
</table>

保险资产转让

(保险资产百分比 = 10%)
这个例子阐明了ANZIE-DOOR工具的少量特征，也就是广义分类DOOR工具的一个变体。某些其他变体的工作方式颇有不同。

可以利用本领域已知的任用方式来实现评价和定义这些工具的算法和方法。例如，对于上述变体，利用本发明的实施方式，可以使用计算并更新百分比的算法，所述百分比决定卖房时保险资产应付款。

因此，本发明的实施方式为非线性动态房产工具提供一种通用方式，并包含不同于上述方式的其他变体。这些变体中的某一些可能包括其他机制。例如，在某些变体中，资产投资者具有的期权或责任是利用每段时间或某些规定情况下的特定金额支付房主的第一抵押权的全部本金。另一组变体允许房主针对保险资产借款，或通过减少保险资产并将其转移到具有抵押贷款和承诺资产的优先权的方式，将部分或全部保险资产转移为承诺资产。另一些变体允许在保险资产和承诺资产之间分配房主的初始首付，导致这种一种情况，即上述举例中所述的保险资产以正金额而不是零开始。对于本领域技术人员来说，通过阅读本文说明书，这些和其他变体将是显而易见的。

一些变体包括扩展，如DOOR工具与房屋的债务融资或其他利息相组合。例如，投资者或联营方会出借第一抵押权资金，并在房屋上进行资产投资。这一类扩展允许与DOOR工具的各个条款动态地调整抵押贷款期限或其他债务或资产期限的机制。例如，抵押贷款利率和抵押贷款的分期还款计划表可连同DOOR工具条款一起调整每个时段。对于本领域技术人员来说，通过阅读本文说明书，这些和其他扩展以及相关DOOR变体和机制将是显而易见的。

一些变体包括另一个特征：DOOR工具合同需要或允许在出售房屋或终止工具的其他事件前房主向投资者进行现金支付。这些支付可以是主动的，可以遵照预设计划表或可以不时地根据某些优先动态算法进行调整。这样的支付允许房主根据DOOR工具累积房产，即使此时投资者和房主预期房屋的主要要求是隐性或显性净租金而不是升值。（为了在本文中讨论，“净租金”是估算出的，或是实际租金减去诸如物业税和折旧之类的费用。在显性租金情况下，“净租金”是房东可以获得的金额。）在没有这些支出的情况下，房主保险资产的获利可能会很小或甚至是负的。

即使在与隐形或显性净租金相比预期升值很高的时候，将房主支出加到投资者身上会导致房主的保险资产增长更快且最终水平更高，这是可以创造理想买卖的合同特征。各种可能的支出方案易于并入动态调整算法，该算法最好是DOOR工具的一个元素。

在本发明的其他实施方式中，支付方案顺着其他方向进行，也就是从投资者到房
主。对于本领域技术人员来说，通过阅读本文说明书，这些DOOR变体和包括各方之间现金支付方案的其他方案将是显而易见的。

附图说明
[0032] 图1是显示按照本发明的Z资本结构的示意图；
[0033] 图2是显示按照本发明的ANZIE-DOOR方案的赢利情况的示意图；
[0034] 图3是显示按照本发明的ANZIE-DOOR方案的亏损情况的示意图；
[0035] 图4是显示按照本发明的净出资的示意图；
[0036] 图5是阐释实现ANZIE-DOOR的析机的流程图；
[0037] 图6是阐释实现SAVING-DOOR的析机的流程图；
[0038] 图7是显示与按照本发明的ANZIE'S SIDE DOOR方案相应的对投资者的固定追加支付的示意意图；
[0039] 图8是阐释实现ANZIE'S SIDE DOOR方案的析机的流程图，该ANZIE'S SIDE DOOR方案包含投资者的追加还款；
[0040] 图9是显示按照本发明的ANZIE'S SIDE DOOR方案的既定保险资产方案的示意意图；
[0041] 图10是阐释实现ANZIE'S SIDE DOOR方案的析机的流程图，这种ANZIE'S SIDE-DOOR样式包括既定保险资产方案；
[0042] 图11是阐释实现LAZIE-DOOR方案的析机的流程图；
[0043] 图12是阐释实现FIXED-DOOR方案的析机的流程图；
[0044] 图13是显示按照本发明的ANZIE'S NU DOOR的收益情况的示意图；
[0045] 图14是显示按照本发明的ANZIE'S NU DOOR的亏损情况的示意图；
[0046] 图15是阐释实现ANZIE'S NU DOOR的析机的流程图；
[0047] 图16是阐释实现ANZTRIE DOOR的析机的流程图；
[0048] 图17是显示按照本发明的一种保险资产年金型COZIE-DOOR方案的示意意图；
[0049] 图18是阐释实现保险资产年金型COZIE-DOOR的析机的流程图；
[0050] 图19是显示按照本发明的承诺资产年金型COZIE-DOOR方案的示意意图；
[0051] 图20是阐释实现承诺资产年金型COZIE-DOOR的析机的流程图；
[0052] 图21是阐释实现IS-A-DOOR的机器的流程图；和
[0053] 图22是典型的计算机系统1600型机器的示意意图，其中可执行用于促使该机器实现上述任一种DOOR方法的一组指令。

具体实施方式
[0054] 资产类型及“Z资本结构”
[0055] “保险资产”和“Z资本结构”是某些DOOR工具的特征。这些特征的重点在于房主在房屋中可能拥有的两类资产之间的区别。首先，存在“承诺资产”。该名字来源于这样一个事实，即在绝大多数应用中，该资产由房主在房屋上进行的现金投资产生；首付，抵押贷款本金支出，由现金融资产的改进所引起的增值等。在常规的抵押融资房屋中，这类资产仅仅是一种类型。它位于资本结构债务层的顶端，容易最先受到亏损。
在“基于资本结构的零资产”（简称为“Z资本结构”）中，承诺资产优先于DOOR工具投资者的资产。同时，Z资本结构规定房屋的任何升值流向资产投资者，而不是房主。房主的承诺资产位于更受保护的位置，类似于优先条款的第二抵押权，且如图1中所示，图中较低的要素更优先，房主的承诺资产加所有抵押贷款债务组成了投资者的资产产生杠杆作用的“优先股”。

投资者在Z资本结构中是“剩余价值索赔者”，获取支付所有债务和承诺资产之后剩余的所有价值。承诺资产不参与房屋升值的分成并因此类似于次级债务。就好像房主根本没有资产一样。这就是术语“基于资本结构的零资产”。但是，术语“承诺资产”使用起来很方便，这是因为在许多应用中，房主在房屋上的“投资”很重要。它也容易遭受亏损风险并与投资者在许多推广的资产融资工具中付出的“资产”相对应。（为了阐释在这些推荐工具中“资产凭证”的状况，假设以$200,000购买房屋，其中第一抵押权$160,000，资产凭证$20,000，首付$20,000。假设资产凭证有25%的升值权，忽略抵押贷款本金余额可能的升值，在卖房时按优先顺序的支出线性计划表为：第一抵押权人收取$160,000本金余额，资产凭证持有者收取投资的$20,000，房主收回其$20,000首付，然后房主和资产凭证持有者在75%/25%的基础上分享$200,000的溢价。）

在本文所讨论的许多变体中，房主不参与任何房屋升值，但具有第二种资产，即“保险资产”。承诺资产适合房屋所有权的三个资本结构：承诺资产类似于第二抵押权。但保险资产不是。相反，保险资产是一方即通常为投资者所作的合同承诺，而往往在卖房时支付另一方一定百分比的房屋价值。（将支出责任归于投资者的一种方案仅在大多数房主更愿意承担收款人而不是出资人的意义上是有“典型性”的。）为了避免“典型性”且希望允许或要求房主成为出资人。下面的讨论包括非典型性情况和相应的DOOR实现方式。为了便于论述，在此讨论前本文的大部分内容仅假设投资者是出资人的“典型性”情况。）

即使最终方案超出了投资者在房屋上的资产，在投资者需要在卖房时向房主支付既定百分比的房屋价值时，保险资产是“受保险”的。在该情况下，投资者必须在卖房时面对更多的钱，且其金额非常接近保单支出额，这减轻了较差的市场情况对房主的影响。值得强调的是，保险资产不以特定资本结构层的百分比为基础。资本结构是互不相关的。如果房屋最终在卖房时价值低于第一抵押权的本金余额，那么在常规的资本结构意义上来说没有资产，但投资者仍然必须向房主支付既定百分比的房屋价值。

拥有保险资产这桩事并不意味着房主完全隔离于市场力量之外。如果保险资产是价值的10%，那么如果在房屋上没有收益而不是亏损的话，卖房时获取的金额较高。该方案的作用是为房主产生房屋的非杠杆股权。这就将房主推到了“市场中的”位置，而不考虑房价是高是低。纵使杠杆仓位出现适度的价格下降也不能将房主搞垮，如果价格大跌的话房主拥有一定比例的利益。因此，无论目的是给房主一个资本市场的市场地位，还是不受杠杆作用中的内在风险，保险资产方案具有潜在价值。该方案将这些风险转移给投资者。

本文的讨论通过给“DOOR”增加合适的前缀来识别DOOR工具的子类。因此“Z-DOOR”工具是DOOR变体，其中存在刚才描述的Z资本结构。

为使Z-DOOR方案更具体，我们来假设一个例子。个人用$200,000购买一个房子，其中没有首付，而是以$160,000第一抵押权和$40,000 Z-DOOR工具来为这笔交易筹措资金。首先，该个人没有承诺资产，但随着时间变化该个人对抵押贷款的本金还款总计$10,000，
这就将本金余额从$160,000减至$150,000。这些本金支出创造了$10,000的承诺资产。由承诺资产加抵押贷款债务组成的优先权块维持相同的大小，即$160,000。该支用仅仅是将优先权的组成向承诺资产方向移动并远离债务。假设保证资产百分比在卖房时是10%。表3阐释了多种不同销售情况的分成规则。（表3与表2相同，但为使读者方便而复制于此。）

<table>
<thead>
<tr>
<th>总获利额</th>
<th>售价</th>
<th>$300,000</th>
<th>$200,000</th>
<th>$155,000</th>
<th>$140,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>资本结构的最终情况</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(分配总获利额)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>第一抵押权人：</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>本金</td>
<td></td>
<td>$150,000</td>
<td>$150,000</td>
<td>$150,000</td>
<td>$140,000</td>
</tr>
<tr>
<td>(违约)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>房主：</td>
<td></td>
<td>$10,000</td>
<td>$10,000</td>
<td>$5,000</td>
<td>$0</td>
</tr>
<tr>
<td>承诺资产</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>投资者：</td>
<td></td>
<td>$140,000</td>
<td>$40,000</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>剩余权益</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>保险资产转让</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(保险资产百分比 = 10%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>房主：</td>
<td></td>
<td>$30,000</td>
<td>$20,000</td>
<td>$15,500</td>
<td>$14,000</td>
</tr>
<tr>
<td>投资者：</td>
<td></td>
<td>-$30,000</td>
<td>-$20,000</td>
<td>-$15,500</td>
<td>-$14,000</td>
</tr>
<tr>
<td>卖房时现金流的最终情况</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(资本结构收益 + 保险资产转让)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>房主：</td>
<td></td>
<td>$40,000</td>
<td>$30,000</td>
<td>$20,500</td>
<td>$14,000</td>
</tr>
<tr>
<td>投资者：</td>
<td></td>
<td>$110,000</td>
<td>$20,000</td>
<td>-$15,500</td>
<td>-$14,000</td>
</tr>
</tbody>
</table>

在售价为$155,000或更少的两种情况中“保险”方面是十分清楚的。在这两种情况中，投资者作为剩余价值索赔者在卖房时什么也没赚到，连原始投资的回报额都没有。但投资者最终向房主进行支付，这保证了房主的回报。

优先块贷款状况

优先块的职是房主向投资者的“贷款”。上述举例假设该贷款是非追索性的。对于卖房时的房屋价值小于优先块“本金”的程度而言，房主或为部分或整个代表房主的优先块提供资金的抵押权人受到相关亏损。投资者没有责任弥补亏损。

在一些DOOR变体中，部分或整个优先块贷款呈追索性的方案是十分有用的。字母“TR”表示整个优先块贷款呈追索性的方案——“完全追索性”。在该方案中，投资者给房主
和为优先块的任意部分提供资金的抵押权人提供完成“抵押担保”的金额。该例子中Z资本结构的最终情况与上一节相比非常不一样，如下表4所示。

表4. 四种销售情况——完全追索性优先块贷款

<table>
<thead>
<tr>
<th>总获利额</th>
<th>售价</th>
<th>$300,000</th>
<th>$200,000</th>
<th>$155,000</th>
<th>$140,000</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>资本结构的最终情况</th>
<th>(分配总获利额)</th>
</tr>
</thead>
<tbody>
<tr>
<td>第一抵押权人:</td>
<td>$150,000</td>
</tr>
<tr>
<td>本金</td>
<td>$10,000</td>
</tr>
<tr>
<td>房主:</td>
<td>$140,000</td>
</tr>
<tr>
<td>承诺资产</td>
<td></td>
</tr>
<tr>
<td>投资者:</td>
<td></td>
</tr>
<tr>
<td>剩余权益</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>保险资产转让</th>
</tr>
</thead>
<tbody>
<tr>
<td>(保险资产百分比 = 10%)</td>
</tr>
<tr>
<td>房主:</td>
</tr>
<tr>
<td>投资者:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>卖房时现金流的最终情况</th>
<th>(资本结构收益 + 保险资产转让)</th>
</tr>
</thead>
<tbody>
<tr>
<td>房主:</td>
<td>$40,000</td>
</tr>
<tr>
<td>投资者:</td>
<td>$110,000</td>
</tr>
</tbody>
</table>

正如下文所讨论的某些DOOR变体所示，在非追索性和完全追索性这两种极端之间存在着许多有用的可能性。为了避免工具名中过多的字母标签，假设非追索性的情况是未用字母或缩写词表示的缺省情况。

调整，周期&嵌入式期权

DOOR工具允许数量的动态调整，例如保险资产，承诺资产，以及房主和投资者之间的周期性转让支付。对涉及动态调整的特定DOOR变体进行定义需要详细说明确定属性，数量和调整定时的算法。动态调整不同于静态计划表。然而非动态的DOOR工具可包含特定参数中的预定变化。例如，最初，一个工具可包括详细说明保险资产百分比如何随时间变化的计划表。这类静态计划表不受诸如利率或内在的房价之类随机变量变量的影响。动态调整本身可包括计划表中的变化。例如，变化可以是有利于房主的保险资产年增值，但获利率
是基于年初的经济条件年年调整的。

每种动态调整包括改变工具条件以反映新的条件。存在一个初始“调整”对象——工具被创建的工具条件。在静态工具的情况中，这些初始条件详细说明了工具参数中的所有预期变化。值得注意的是，静态工具限制了周期性动态工具序列，其中调整周期变得越来越长。DOO工具一般在出售房屋时终止。当周期足够长时，进行调整的概率变得高于零。小，那么这不是可能房屋不可避免地将在调整进行前被售出。因而实际上，工具条件是在其创建时一次性设置的。

为何进行周期性动态调整是有益的？虽然有各种原因，但首先值得介绍的原因是：动态调整可以消除多种不同期或将其值减少至可忽略不计的水平。这么做的作用是使工具评价更为简单，减少了与专著性执行期权有关的道德风险问题，消除了在投资者与房主具有非修性信赖的关系利益冲突，并能开放的融资池维持下去。

当存在期权时，工具的实际价值会趋向于偏离其真实价值。现在考虑常规的第一抵押权贷款。这种抵押贷款包括一套嵌入式期权，最显著的是，房主的违约期权和房主的预选还款权。这些期权使得在抵押权人控制下评估抵押变得复杂。如果抵押人支付了本金余额从而消除抵押贷款的话，抵押贷款的真实价值就是抵押权人可获得的本金。如果抵押人先付款的话这种价值仅在到期前获得实现。如果利率上升得足够高，对于房主来说存在再融资的动机，即执行期权从而对现存抵押贷款先还再借款并用新的期权来进行代替。在该情况下，对于抵押权人来说，仍然有效的现有抵押贷款比本金应付款值更高。也就是说，抵押权人以高于市场的利率获得剩余本金余额的利息支出。因此，预期利息和预定本金支出的现值会超过剩余的本金余额。

由于其他原因也会产生预期还款。房主的境况好起来后可能会移居到另一个城市。在这种情况下的预期还款会导至房主的财务恶化。新房的抵押贷款利率会比旧房的高，因为利率已经上升了。预期还款是一种复杂的现象。房主的预期还款行为是不理想的，甚至会使其更复杂。因此房主在这种情况下的抵押贷款时没有再融资。在违约期权方面，也就是房主选择停止支付抵押贷款，情况也一样，结果是房屋交给了抵押权人。预期还款和违约期权的权存在以及与这些期权相关的房主行为的复杂性使得抵押贷款评价很困难。如果房主表现为“理性的”，即违约以及正好在符合其经济利益时进行还款，违约以及预期付款的模式在任何经济环境中是可预见的。虽然评价可能不简单，但会是很直接的。由于房主表现得不理性，即评价模型必须依赖于其行为模式以预计未来的违约和预期还款倾向。但并不能保证特定的行为模式将会在将来不同的经济条件下仍会持续，这产生了额外的复杂性和不确定性。

评价困难将会减少开放式融资池——一种一开始被创建后，新的投资者会加入融资池的方案——的维持能力。确定任意新投资者的比例分成需要对融资池中现有资产进行评价。如果评价是不能实行的、不确定的或代价非常高昂的，要运行一个开放式融资池就会
很难。相反，需要一系列的投资担保人，每一位担保人分别分担特定时间段上所完成的投资。

【0081】包括静态DOOR变体的静态资产工具通常还包括合适的嵌入式期权。现在考虑典型的资产工具。一个人筹资$200,000购买房子，其中第一抵押权$160,000，资产工具$40,000，没有首付。假设在签订资产工具合同的条件下，工具投资者获得规定的分成，即房屋价值中50%的升值。假设房屋价值跌到仅有$160,000。此时资产工具的真实价值，也就是投资者在卖房时可获得的金额，接近于$0。但是，如果在不长的将来把房主存款在零售之外，则从投资者的立场上来看该工具具有重大的期权价值。投资者首先会获得$160,000基础之上的全部$40,000的价格增值，并获得超出$200,000的全部升值收益的50%。房主有强烈的动机去出售房屋并购买附近的一幢等价的房屋，从而抵消投资者的期权。实际上，房主拥有一种“战略出售期权”，如果投资者的期权价值（假设近期没有出售）超过真实价值足量的剩余价值，那么这种“战略出售期权”是值得一用的。战略出售期权类似于抵押贷款中的违约期权，但不存在类似于抵押人的“违约”触发事件，从而中止偿还必要的利息和本金支出。出售房屋不会违反合同条款从而使资产凭据，资产投资者获得凭据中各条款规定的金额。（因此，与抵押贷款中违约的情况相反，对于房主来说没有信贷评级影响。）

【0082】通常，资产工具中的条款妨碍了房主通过再融资获得战略出售结果的能力。例如，偿还凭据所必需的支出应为凭据的真实价值与最初投资额之间的最大值。在上述例子中，房主必须支付$40,000来偿还该凭据。

【0083】与抵押贷款中的先还款和违约期权一样，通过执行战略出售期权而产生的潜在回报改变着对诸如搬到西部等城市及鼓励进行纯粹的策略性行为之类的事件的分析计算。

【0084】当投资者与房主之间具有信托或其他信任关系时，战略出售期权会产生利益冲突。一个例子就是抚恤金担保人，抚恤金担保人利用资产凭据为由该担保人管理其抚恤金的员工的房屋筹措资金。当真实价值大大低于投资者的期权价值时，像受托人这样的抚恤金担保人会建议房主偿还资产凭据，但像投资者这样的抚恤金担保人会承担这种行为产生的亏损。

【0085】总的来说，降低嵌入式期权至可忽略金额或将其全部消除是有一些好处的。这么做做法简单化方法，使开放式融资池能维持下去，消除策略性执行期权带来的道德风险问题，并在投资者与获得投资资金的房主之间具有其他非金融性关系时缓和任何相关利益冲突。

【0086】周期性动态调整是如何在该任务中发挥作用的？现在考虑理想环境下传统抵押的情况，该情况包括与条款决定一致的完全贷款和完全竞争。在这些假设下，起初抵押的真实价值必然等于其对于各方的实际价值。真实价值是初始本金余额，也就是贷款额。在一开始，违约和先还款权是有价值的，但抵押条款为借款方作出了补偿从而将期权提供给房主。通常，抵押贷款利率会因这些期权而较高，而诸如时间点之类的其他特征也会计算进补偿中，随着利率和房价的变化，这种平衡迅速被打破，真实价值偏离实际价值。

【0087】该情况同样适用于包括静态DOOR变体的静态资产工具。在市场交易中，真实价值和实际价值起先应当相等，但这个等式不会持续。解决该问题的一种方式是在工具条款中作出调整从而重建等式。在每一轮调整之后，实际价值和真实价值再次趋向于偏离。但是，通过进行适当频率的周期性调整，可以使实际价值总是保持接近于真实价值。总的来说，周期性动态调整通过使实际价值等于真实价值重建了“市场交易”，这种调整是降低或减少嵌
入式期权价值的一种方式。如果房主通过执行一项嵌入式期权终止该工具，那么房主不能获得比在当前市场行情下重复交易所需金额更多的价值。

[0088] 需要注意的是，并不是所有投资者都会对工具的真实价值或实际价值达成协议。特别是，不同的纳税将会导致不同的价格。对于特定工具来说，一些投资者是“下边际的”。他们会愿意为该工具支付更多的市场价格，因为他们享受着设定价格的“边际”投资者未享受到的税收收益。本文谈及实际价值和真实价值相等，是在税前基础上说的。包含利率的税前价格受税收的影响，因为他们反映了边际投资者的税务情况。是否存在将纳税作为动态调整处理的一部分纳入考虑之内的需要，这个问题将在本文稍后的纳税部分进行讨论。

[0089] 中立性和净出资平衡

[0090] 如果实际价值总是等于真实价值的话，DOOR工具是“连续且严格中性的”。这种非常纯粹的中性形式不是实际对象。即使调整处理一直持续下去，不给真实价值留下偏离实际价值的时间空隙，但处理所需的数据既不是连续的，也不是没有错误的。存在不可避免的近似值因素。因此，本文稍微有点宽泛地使用术语“中性”和“中立性”，暗示近似于连续和严格的中立性。近似的精确度是不确定的，但取决于DOOR工具及其应用的细节。

[0091] “净出资平衡”是中立性的必要且充分条件，并且在中性DOOR工具的应用和定义中是一个关键概念。如果工具的各条款反映出现实和被认为是联合投机者的DOOR投资者的相对出资，则存在净出资平衡。达到这种平衡的一个方式是调整资产价值的速率，且下文所讨论的若干DOOR变为该资产负债账户用作剩余平衡。在这些体系中，通常房主向不考虑资产负债的投机者进行净正出资。对房主有利的资产价值余额补偿了该净资产。出资的基本利率随着时间与经济条件和房屋价值一起持续变动。动态工具结合了周期性调整，周期性调整通过在资产负债账户中产生相应变化来反应这些变动。

[0092] 如果调整处理足够准确和足够频繁，那么该工具会持续反映“市场交易”。如果不够，那么房主或投资者会得到净利润，且工具的实际价值偏离真实价值。如果立刻终止的话，投资者会愿意投入更多，或者不愿意投入等于该工具可产出金额的投资。在这个意义上，净出资平衡是中性的必要条件。它也是充分条件。如果各方正在进行市场交易，那么终止工具并重写条款同时保留交易形式对任何一方来说都没有好处。新的交易与旧交易一样，且“再融资”的交易费用被浪费了。一方或双方会希望改变交易形式，从一种DOOR样式变换到另一种。但是如果所有选择都是中性的，那么各方仅仅会从一种市场交易交换到另一种。可能会有过多的消费者或生产者在这样做，但任何一方都不能通过取消老大市场的交易或通过保留更好的交易来获得利润。现有的交易就是“在市场中”的，因为相关的嵌入式期权是没有价值的。

[0093] 实现净出资平衡需要计算房主和联营企业的投资者的各种费用和利润。与尝试解析所有相关出资要素相反的是，需要考虑的事项被限制在用以年为时间单位的即时流动利率所表示的少量主要要素内。这些利率对应于单复合即期利率，其中时间以年为单位。如果$y(t)$是时间t上的单复合合，那么$y(t)\Delta t$表示在无穷小时间段Δt年内的数额增加。如果投资者面对的是税后的无劳小定倍借贷率i，那么利用连续再借贷，恒定利率$y(t) = y$在一年中的增加值在年终产生$\frac{y}{e^t - 1}$的额外价值额。为了便于本文讨论，在房主和投资者层面都忽略所得税。
四个要素足以抓住关键特征并产生程式化但内容丰富的模型
r:总租金。由于房子是业主自用的,该“租金”是隐含或“假定”的,代表了房屋对居住者的消费价值。

m:抵押贷款利息。

d:以美元为单位的物理折旧。假设房主或投资者一直支出该金额从而将该建筑物维持在购入时的相同物理条件。

p:物业税

通过不将这些要素写为时间函数来抑制利率中可能出现的时间变化。这四个利率描述了常规的投资者持有的出租型房屋情况的主要特征。忽略业主自用的隐含租金的可能性,这与直接租金的情况不同,投资者的即时总现金流量为: f=n-m-d-p。

随时间变化的若干变量t起着重要作用。有些是随机的而有些是确定性的或由房主、投资者或双方控制的。

H(t):房屋的市场价格。

M(t):抵押贷款本金余额。(为了简便起见,只考虑了只有一种抵押贷款的情况,忽略了第二抵押权、房屋信贷资产线等的可能性。)

M(t):抵押价值。(由于嵌入式预先还款和违约期权的价值,一般M(t)≠M(t)。假设没有对抵押权人的多点或一次性补偿且忽略签订抵押条款时与初始时之间的任何价值偏差的前提下,应该是M(t)≠M(t)的情况。也就是说,抵押人(房主)的预先还款和违约期权的价值不会被支付给抵押权人的较高利率足抵消。)

I_p(t):保险资产百分比。

I(t):有利于房主的保险资产增加额。I(t)=I_p(t)H(t)。

C(t):承保资产的“本金”额。该金额类似于第二抵押权的本金应付款。除非出售价非常高,否则在卖房时不会获得。)

C_C(t):承保资产的价值。C_C(t)=C(t)。在卖房t_s时,如果M(t)<H(t)<[M(t)+C(t)],那么C_C(t)=[H(t)-M(t)]<C(t)。如果H(t)>M(t),那么C_C(t)=0。

P(t):优先股的金额。注意即使H(t)<M(t)+C(t),P(t)=M(t)+C(t)。因此,P(t)是房主向投资者提供的杠杆“本金”额。

L_p(t):优先股的“贷款价值比”。L_p(t)=P(t)/H(t)。

E(t):投资者在房主的资产上的真实价值。E(t)=H(t)-P(t)。

三种流动利率在定义某些DOOR变体的过程中起着重要的作用。这些流动利率描述了房主和投资者之间的实际或假定资金流。

i_p(t):除卖房时以外,在优先股是不具有违约或预先还款权的抵押贷款情况下,时间t_s上的可用抵押贷款利率。这种抵押具有不确定的期限,只能在房屋出售或某些其他特定事件时终止。此时对于投资者来说是非追索性的。i_p(t)取决于诸如H(t)、P(t)和L_p(t)之类的因素。

ir(t):贷款的无风险利率,也就是无违约风险利率,该贷款的随机还款时间等于房屋作为生产性资产的预期寿命,假设当前的建筑物维持在功能完全的状态,也就是说,业主出钱进行了抵押折旧所需的维修。

x(t):管理DOOR工具的合同所规定或允许的房主向投资者的转移支付。如果投资
者向房主付款的话X为负。支付金额不对应于诸如租金或利息之类的常规市场限定额。相反，这些转移支付是用于调整DOOR工具条款的手段，从而完成投资者和房主之间需要进行的交易。

【0115】 诸如H(t)之类的变量是随机的。在无穷小时间段dt期间，利用随机微分等式的标准术语来表示这些变量及确定性变量中的变化，例如房屋价值中的即时变化“dW”。

【0116】 在掌握所有这些方量后，如何实现中立性？有许多方式可以做到，而下文描述了多个不同的方案，每一个都是一种DOOR变体或样式的定义要素。

【0117】 然而，有三个共同的方面：

【0118】 首先，评估方的相对出资情况是很重要的。出资情况确切为何取决于工具条款。例如，假设房主负所有抵押贷款。然后房主以承诺资产的方式和作为抵押人通过借款来直接支出包括优先块p的资金。因为流动利率i_p描述了投资者根据杠杆作用获得的利润，因此它是非常有用的。投资者不能对优先块违约或预先还款。因此，i_p是降低了的假定抵押贷款利率，从而考虑到了没有违约或预先还款期权的情况。（房主具有与抵押借款相关的这两种期权，但该借款是房主如何为优先块筹资的一个方面。优先块本身为投资者提供杠杆作用。）

【0119】 其次，如果在出资中存在平衡，那么通过抵押合同补偿来实现中立性。在下文的某些变体中，最关键的是抵消工具是保险资产百分比。当房主转出或转进的房屋价值是该方案的一个所需方面时，该工具很有用。但将其他账户用作剩余平衡要素的方案有时更优越。例如，将房主和投资者之间的约定转移支付作为剩余平衡是产生具有理想特征的DOOR变体的强有力方式。

【0120】 第三，在没有动态调整的情况下，中立性不能持久。随着房屋的价值和经济参数变动，原始的抵押合同补偿不再能实现中立性。虽然在某些变体中，如果没有调整或如果调整不频繁，该工具工作得最好，但在许多情况下中立性是有益的。

【0121】 关于中立性是如何实现的更详细说明稍后在第一变体（ANZIE-DOOR）的讨论中说明。名称中的字母"N"表示其用意是使工具呈中立性。在定义和讨论ANZIE-DOOR之前，有必要说明构成本文中的某些例子的基础的限定条款和数值推算的性质。

【0122】 维护协定

【0123】 DOOR工具方案为多方创造了资产类所有权分成。因此，有必要详细说明维护费用和建筑物物理折旧贬值的约定分成规则。这两个项是密切相关的，因为维护直接抵消折旧。

【0124】 下文所讨论的变体将维护责任加于房主。在这种条件下，不正确地履行该责任的话，就会在卖房时从房主的保险资产和承诺资产中扣除相应的金额。假设给房屋上油漆花费$1,000，且维护合同要求房主周期性地这么做。如果房主没有这么做，那么在卖房时，就要从属于房主的保险资产中扣除契约中规定的$1,000。

【0125】 如果不进行合同涵盖的条款所规定的房屋维护，这种维护责任就会产生一分钱换一分钱的产出。假设涉及范围相当全面，该特征缓解了常规的抵押贷款和大部分资产投资方案中一些非常容易引发的问题，如果抵押的房屋跌价从而只有非常少或没有资产剩下，那么业主无论如何都会降低维护房屋的动力。任何维护费用都可能有利于抵押权人，而不是房主。当这种情况进行到房主已决定对抵押贷款违约的时候，维护房屋的动力降为零。这么做所产生的违约是与丧失赎回权有关的价值发生巨大下降的重要原因。典型的景象（有
时是真实的）包括抢劫、如剥掉铜管，以及故意破坏，而房主不再照看和采取保护措施。

[0126]在资产价值的例子中，该情况通常更糟糕。当房屋价值达到第一抵押权余额的水平时，也存在同样的动机问题，甚至有更普遍的问题。资产价值通常涉及升值分成规则，也就是房主和使用者划分房屋的增加值。在这样的规则下，房主在卖房时获得的利润少于维护房屋的花费。房主因为消费原因维护房屋，例如保持房屋粉刷美观以在整洁的房屋中享受生活。但作为出售方案，存在削减维护费用的动机。

[0127]即使存在抵押贷款，将房主增加实际保险资产的方案与相当全面的维护责任结合在一起，就组成了动机问题。即使房主对抵押贷款违约且房屋在卖房时最终“缩水”，也就是说，价值低于抵押贷款本金应付款，保险资产仍为房主产生相当多的权益。在不维护房屋时该权益会因一分钱换一分货而受到损失，因此房主具有正确的经济激励。只要每花费一元能产生至少一元的利润，房主就会希望花钱进行维护。房主当然希望避免传统投资方案中向下的螺旋形物理损坏情况。该物理损坏通常发生于丧失赎回权阶段之前。新的情景是，有武装的房主赶走潜在的抢劫犯或破坏者。因此，目标是在契约结束时，在卖房时交付处于良好状态中的房屋以最大化应有的保险资产权益。

[0128]维护责任方案不是自动生效的。必须定义该责任的性质，且在卖房时存在争议的可能性。在清楚和全面之间要取得平衡。即使包括诸如上油漆和装管道之类的详细列表也基本上是不完整的。另一方面，合同规定的维护责任现在以若干不同形式存在。出租合同通常将责任加予承租人以维护房屋，且基于安全要求要支付保证金作为担保。有非常多的“房屋保管”保险合同。这些合同通常涉及许多主要的房屋要素，例如电力和管道。房主支付保险费，而保险公司支付合同所规定的维护具体房屋要素所需的费用。显然，维护责任方案在商业上是可行的。还要值得注意的是，常规的房主责任包含某些维护和修理，特别是某些意外造成的必要工作。正如抵押中经常做的那样，维护责任方案可包括强制保险。强制保险可组合甚至扩展房屋担保保险单和常规的房主保险单中通常可用的覆盖范围。

[0129]维护责任方案必然不完整的事实意味着对于许多DOOR变体而言，折旧分为两部分。一部分涉及维护责任或相关保险涉及的条款。这部分通常为房主的责任。剩下的是第二部分。在包括整个子类的Z-DOOR工具的许多DOOR变体中，投资者是剩余价值索赔者，并承受房主的责任未弥补的折旧亏损。这个现实意味着DOOR工具通常需要对“折旧流程”，也就是上文定义的d的出色解析。起码d可以被拆分为两个组成部分，d和d，即分别作为房主和投资者负债的折旧流程。为了简便起见，在补充说明下文的DOOR变体的多个举例中忽略了该分析。

[0130]数值模拟

[0131]本所提出的多个实例，都是从程式化、启发性的视角考察DOOR变体。

[0132]建模时的一个主要选择是详细说明房屋的定价过程。本文的例子假定房价H遵循几何布朗运动，具有不变的漂移量α和不变的波动率σ；

\[dh = \alpha dt + \sigma dZ. \]

[0133]该定价过程特别简单，产生的仿真易于理解。

[0134]作为用于模拟的“基准模型”，所用的几何布朗运动中σ = .09和α = .07+σ^2/2 = 7.405%。α的这个值产生的结果是大约正好为7%的几何平均回报，在用随机产出与7%固定回报的情况相比时，这是一个有用的特点。固定回报的产出大致对应于随机方案中的平
均回报。

[0136] 这些值还包含“现实主义”因素。1976至2008年间多个不同的大城市统计区域（“MSA”）的联邦住房投资代理（“FHIP”）的房价指标的年升值算术平均值集中在3%到9%的范围内。因此7.4%这个数字是中等偏低的，也就是说，比诸如亚特兰大、芝加哥或圣路易斯之类的MSA要高不少，但略低于诸如波士顿、洛杉矶、纽约或旧金山之类的MSA。（直到最近，FHFA指标才被认为是联邦住房事业监督办公室（“OFHEO”）的指标。在2008年下半年，

FHFA成为Fannie Mae和Freddie Mac的管理委员并吸收了OFHEO。）

[0137] FHFA MSA年回报的标准偏差是分布在3%到11%的范围内。由于1976年到2008年间每个MSA的房价不是完全相关的，因此这些基于指标的标准偏差低于相应的MSA中的各个

房屋的平均标准偏差。因此，不能说基准模型中所用的年变化率9%在处于3%到11%范围

上部的基础上代表了中等偏低的波动率。但，改变率9%这个数字产生了为我们所用的有

趣的例子。特别是，利用该波动率和每个例子中的12,000次模拟，会产生利率久期内一组相当

广的最终价格。由于需要对某些例子进行互相比较，因而每个例子中的随机处理种子都

是相同的，结果每个例子都以12,000个价格路径中的同一个模拟样本为基础。

[0138] 最小值和最大值区间，包括了大部分历史结果。因此，基准模型所产生的例子，为

多种DOOR工具提供了一个结果可能范围的直观理解。

[0139] 模型的运行还有另一非常重要的假设。即房价不遵循几何布朗运动。尤其是，房价

收益时间序列是自相关的，且展现出随机波动。但是，对于本文讨论而言，利用价格生成过

程就足够了，该价格生成过程中产生各个阶段内适当结果范围内的结果。此外，几何布朗运动

特别易于理解，从而给出了易于解释的例子。

[0140] 为了完整定义基准模型，需要对两种最终要素要进行详细说明。第一，如下所述，

DOOR工具的结果可能是该工具的预期期限的函数。基准模型假定具有10年平均长度的泊松

过程，该泊松过程与生成房价的几何布朗运动是相互独立的。下文会详细说明该处理。10年

的平均长度对应于7年的中等长度，即代表房屋所有权持续期和所有权“长期”投资持续期

的现实度的值。

[0141] 需要详细说明的第二个要素由两个关键性利率组成。其中一个为较长时期的无风

险利率，另一个是中期无风险利率和风险溢价之和。基准模型假定所有相关的无风险利率

在以.05年计算的时间和期限跨度内不变。也就是说，在这些例子这段时间内，无风险利率

保持一个扁平的期限结构。鉴于目标是创建清楚而简洁的例子，一种更实际的模型可包括

随时间可变的、随机的期限结构，但假定的扁平、恒定的期限结构仍然适用。

[0142] ANZIE-DOOR

[0143] 上文已经说明了ANZIE-DOOR的许多特征。在缩写“ANZIE”中，“N”代表维持中立性

的目标，“Z”代表应用Z资本结构，而“IE”代表存在保险资产。“N”代表年度动态调整。虽然可

能需要更频繁的调整以保持工具接近中性，但年度调整仍然使例子易于理解。

[0144] 图2为展示了本发明的ANZIE-DOOR方案的赢利情况的示意截图；图3为展示了

按照本发明的ANZIE-DOOR方案的亏损情况的示意截图；图4为展示了按照本发明的净出资

分析的示意截图。

[0145] 尚未描述的主要要素是动态引擎的运行，也就是进行年度调整的算法。正如之前

所讨论的，有许多调整并达到中立性的方式。不同的方式产生了适用于不同目的的工具。因
此，通过描述ANZIE-DOOR设计的初衷，开始本发明在方面的讨论。

常规目标

ANZIE-DOOR具有许多可能的应用，但其特别适用于：(i)职工住房；(ii)总收入不多但收入尚可的业主，包括大多数美国业主，以及一些收入不多、财富较少的家庭和个人；和(iii)具有较高收入的年轻员工，他们刚开始增加财富。职工住房涉及教师、消防员和警察之类的工人，他们在所在的社区或远处需要面对相对于其收入而言高昂的居住费用，但对于在其工作地点生活的这些人来说有公共补贴。

许多美国业主将其大部分财富投入其房屋并背负了大量抵押债务。此外，当地房价趋向于与当地经济条件相关联。当地经济萧条时，收入下降和失业通常与房产的下降一致。在基本投资之道中曾花过一点时间的任何人都会认识到这种投资策略差不多是最糟糕的情况了。房主将其大部分或所有财富绑在高度融资的单一资产中，而该资产的负产出与房屋的人力资本产出相关联。这种策略完全缺乏多样化，而与对就业或收入风险进行保险相反，这种策略放大了风险。

ANZIE-DOOR通过允许房主投入少量钱或几乎不投入钱到房子上来应对这种情况。房主通过保险资产增值来增加所有权权益。现金储蓄可用于在股票、债券和其他工具中投资，以根据房主的经济条件创造智慧资产。不断增加的保险资产分量允许房主在数年之后在住房市场中稳脚跟。该分量为一定百分比的房屋价值。一旦它达到15-20个百分点，房主大概能够在需要的情况下将常规资金用于下一套房屋。此外，因为保险资产以百分比为单位，因此它避免了住房市场和房价失控的影响。在之前的情况下，房主持有与房价上升到多高无关的非常稳定的比例的利益，由此房主能“从中获利”。而在不利方面，即使在常规的、基于资本结构的资产为零且房子价值最终低于抵押余额的情况下，房主仍承担很大的责任。

除了作为一种明智的融资工具以外，ANZIE-DOOR还继承了由中性性产生的所有优秀特性：(i)不存在战略出卖或违约的动机；(ii)当投资者与房主存在信托或其他联系时不存在利益冲突；(iii)因为价值等于实际价值，所以评价变得简单；(iv)作为(iii)的结果，容易创造开放式融资池。对房主来说ANZIE-DOOR包括一种相当全面的约定性维护责任。因为保险资产通常快速增加，且资产工具或变体能设计为保证其快速增加，因此即使在房屋中未达到常规的(基于资本结构的)资本仓位时，房主仍有很强的一分钱换一分货的动力来维护房屋。

资本结构加上优先股贷款，这给投资者留下的就是房市中非常危险的仓位，也就是现有制度加于房主身上的相同风险。这种危险的位置是一种非常有价值的选择性工具。多年以来，经济学家和投资专家已经了解业主自用型房产是有回报的资产种类，这类资产与机构投资者可用的主要投资类型(股票、债券、商业房地产和租型房地产)相对无关。问题是，在数量上没有给出足够的用于业主自用房产的可交易工具，来大规模地提供一种多样性的工具。ANZIE-DOOR和一些相关的DOOR变体对于那些需要在特定区域、城市或邻近地区中下手的投资者来说是有力的工具。很容易在所需地点共用DOOR工具从而成功投资。

动态引擎——实现时间上的中立性

在动态方式中实现中立性需要在每个时段中存在投资者与房主之间的出资和收益平衡，这种平衡取决于DOOR工具的细节。这个部分中的讨论关注的是利用ANZIE-DOOR实
现的特定平衡，但该讨论也作为对周期性使DOOR工具回到中性的“动态引擎”的一般性介绍。该动态引擎是令DOOR工具非常灵活的一个特征。该工具的许多方面是周期性可变的，但无论性质如何变化，动态引擎都会作出调整以重建房主和投资者之间的“市场交易”。

【0154】出资平衡

【0155】ANZIE-DOOR要求房主：(i)为资本结构的“优先块”部分提供资金；(ii)在维护合同要求的程度上弥补折旧费用；和(iii)支付财产税。为了简便起见，假设维护合同足以承担所有折旧费用。房主获得住户的租金份额。定义“净租金”是那方的，流动变量等于总租金减去折旧和财产税。

【0156】n：净租金。n=r-d-p。

【0157】净租金是被折旧和财产税负债所抵消后的房主的占有利润。在纯粹租买的情况，净租金等于投资者/房主获得的金额，相当于考虑诸如抵押利息之类的融资费用之前的出租现金流。房子的全部代价等于净租金加升值。这两个要素都是随机的。让v(t)等于净租金的预期年增长率(大致等于(净租金)/(价格)的比)，并使a(t)等于时间t时的预期年增长率，那么此时的预期年总回报率为：

【0158】ρ(t)=v(t)+a(t) (1)

【0159】该预期回报率包括市场支配的风险溢价。

【0160】在调整点时点t0之后的一年内，房主和投资者之间的出资和收益平衡是什么情况？房主获得净租金利润但也对优先块提供了资金。假设H(t0)>P(t0)，也就是说，房主价值大于优先块的金额，投资者作为剩余价值索赔者获得了所有升值同时也承担交易亏损的风险。保险资产账户位于边界线上，代表在卖房时房主应得的房屋价值比例，为对以往累计净出资的补偿。

【0161】在ANZIE-DOOR中，保险资产的增值率是实现中立性的平衡因素，中立性要求在DOOR工具工作期间每个参与者的真实价值等于其真实价值。如果该等式对于投资者成立，则房主也必然对于房主成立。(如本文所示，在税前基础上实现中立性。)

【0162】因此只要关注投资者就足够了。对于投资者来说存在两种真实价值要素：保险资产账户下的投资者负债；以及作为基于资本结构的回报的剩余价值索赔者的投资者的资产，可以将考虑因素缩小到投资者剩余权益的预期回报上，而将保险资产账户放在一边。与该账户有关的投资者亏损正好等于在卖房时该负债的数额：房屋价值的具体百分比。保险资产账户因此位于卖房线的左边。在任何事件中保险资产账户在概念上都应在那个位置上，因为它代表了对以往的应付净出资的补偿。对于中立性而言，重要的时保险资产的预期增值弥补了与房屋本身相关的相对出资中的预计失衡。

【0163】在不考虑房价因素下投资者在资产中的真实价值为E(t0)=H(t0)-P(t0)。对于E(t0)而言，在不考虑保险资产账户中的当前平衡的前提下，使DOOR工具的真实价值与投资者相等，剩下的条款必然产生E(t0)的预期回报，该预期回报等于市场要求的预期回报。E(t0)就是融资资本仓位的。该仓位之下是房主提供给贷款方的“优先块贷款”，其中时间t0上的本金余额等于P(t0)。优先块贷款的杠杆率是多少呢？由于抵押权人（本文中为房主）而非法抵押人（本文中为贷款者）决定贷款何时终止之外，该贷款非常类似于抵押贷款。当房主出售房屋或还清DOOR工具时终止贷款，投资者不具有预先还款期权。该贷款对于投资者来说是非追索性的，因为即使房主价值降到P(t0)之下，投资者也不必支出任何收支差额，但投
投资者只有部分违约期权。投资者不能选择停止向房主支付该贷款有关的“利息”或“本金”，因为这些支出是由DOOR工具以一种“追索性”的方式有效地委托管理的。存在违约期权的意义是，投资者没有责任去偿还卖房时剩余的优先级的贷款余额。优先级贷款的还款时间类似于不具有预付款或违约期权的抵押贷款的还款时间。因此，可用的利率为文所定义的

\[r_p(t_a) \]

作为一个大致近似值，可以认为，除了卖房时的权利值外，该利率等于剥离其原先还本付息的30年期固定利率抵押贷款的固定利率。如果Lp(t_a)适中，例如0.8或更少，那么市场利率（可能为适度近似值）为10年期国债的利率。如果Lp(t_a)较大，例如1.0或接近于1.0，那么市场利率（可能为适度近似值）为10年期国债的利率。如果Lp(t_a)较大，例如1.0或接近于1.0，那么需要额外费用来反映高利率给抵押权人（房主）增加的风险，从而在卖房时评价非追索性抵押。下文全面讨论了所用的利率是多少这个问题。

\[\text{假定杠杆率等于表示总房屋价值的一部分的} P(t_a), \text{那么} E(t_a) \text{要求的回报率为：} \]

\[\rho_p(t_a) = v(t_a) + \alpha(t_a) - i_p(t_a) L_p(t_a) \] \hspace{1cm} (2)

\[\text{房主出资} i_p(t_a) L_p(t_a), \text{但净租金} v(t_a) \text{流向房主而不是投资者。因此，房主的净出资为：} \]

\[\gamma_p(t_a) = i_p(t_a) L_p(t_a) - v(t_a) \] \hspace{1cm} (3)

\[\text{代表} \rho(t_a) = v(t_a) + \alpha(t_a) \text{中的比例} \pi_n(t_a) \text{的量，也就是房屋的预期非融资型市场回报率：} \]

\[\pi_n(t_a) = \frac{\gamma_p(t_a)}{\rho(t_a)} = \frac{i_p(t_a) L_p(t_a) - v(t_a)}{v(t_a) + \alpha(t_a)} \] \hspace{1cm} (4)

\[\text{通过在卖房时以风险调整的方式将该比例为} \pi_n(t_a) \text{的房屋回报转换为房主应得的房屋价值中的风险资产部分的增加值，控制房地产资产的积累算法将调整时间} t_a \text{之后的一段时间内比例为} \pi_n(t_a) \text{的房屋回报分配给房主。下面将描述这种算法。由于} \pi_n \text{为风险资产百分比的变化率的关键驱动因素，因此它被称为“比率因子”。} \]

\[\text{积累算法} \]

\[\text{可以有多种不同的积累方法，每种都定义了一种不同的DOOR变体。ANZIE-DOOR中的目标是为房主积累风险资产，使风险资产等于副账户中代表房主对该风险投资的净出资的累积结果的房屋价值百分比。如上所述，该方案的一个方面包括保险。优先级“贷款”所提供的杠杆作用影响了投资者的回报，但不影响房主的风险资本价值。如果最终销售结果在一定程度，则投资者基于风险资产担保向支付支付的金额大于投资者从房屋融资仓位中获得的金额。} \]

\[\text{同时，房主未完全与房屋价值的波动隔离关系。因为保险资产账户支付特定比例的房屋价值，而不是特定数额的，因此这些波动会影响到房主。如果目标是不论住房市场的走势都要使房主能从楼市中获益，那么对于房屋价值的这种依赖性是完全恰当的。例如，如果保险资产百分比增加到20%，在拥有与常规最低首付额相等的资产以保证“合格的贷款”的程度上，房主实际上能从中获益。在拥有未要求实际首付的房屋所有权若干年之后，ANZIE-DOOR使其成为可能。这保证了房主能从楼市中获益，而不需要房主参与到将大部分或所有其资源投入单一融资型投资的金融笑话中。} \]

\[\text{对于ANZIE-DOOR中的积累方案来说，有两个关键的方面。} \]

\[\text{首先，ANZIE-DOOR中的目标是将纯粹的住房价值风险留给投资者处理。因此，用于增加属于房主的保险资产的回报率为有风险的房屋回报的确定性等价值（等于房租增加的} \]
值)，而非风险回报本身。因此，这个关键的回报率为 ir(t)，也就是说在房屋作为资产的同一段（非常长）时间内的投资无风险利率。长期法将比例为 r的无风险回报分配给房主，因为比率因子 r代表了房主基于其净出资的总回报分成。

第二，ANZIE-DOOR的目标是通过保险资产账户将房屋分成交付给房主，与此一致的是，本算法将每段时间内的总回报分成转换为享有时的所有权的总百比。

第三，积累方案应具有中立性。房主不应该有机会去过早地终止DOOR工具从而获取（清算）保险资产。房主的终止工具的假定期权或投资者终止工具的假定期权不应有任何价值。否则，DOOR工具就会受评价难题的困扰，并且有更多与房主终止或延迟终止工具的能力有关的意外费用。

通过调整 r和 ir(t)以保持这些参数与当前市价价值一致，ANZIE-DOOR积累方案接近中性。正如名称中的“A”所示，该工具要求年年调整比率因子 r。有一种方法可以对 ir(t)进行相同处理，也就是与 r一起每年对其进行调整。但是，如果 ir(t)以市场价格为基础，那么通过更频繁地对其调整（例如在每个交易日结束时），要实现更大的增值是很容易且相对来说无须成本的。那么一般而言，为了在ANZIE-DOOR中增加保险资产，在创建工具时的时间 t0上对 r和 ir(t)进行初始设定，且随后在时间序列 t1, t2, ..., ts上改变它们或其中之一，其中ts为终止时间。方便的是定义每个时段的长度 s1 = t1 - t0 - 1，其中 \(\sum_{i=1}^{g} t_i = t_s - t_0 \)，也就是说工具的还款时间。如果工具因出售房屋而终止，该还款时间等于房屋所有权的寿命，如果因诸如再融资之类的其他事件而终止，则还款时间缩短。

ANZIE-DOOR中终止时间 t_s时的保险资产百分比为:

\[
I_p(t_s) = 100 \times \frac{1 - \sum_{i=t_0}^{g} \frac{r(t)}{r(t)}}{1 - \sum_{i=t_0}^{g} \frac{r(t)}{r(t)}}
\]

（5）

现在考虑 r为正的情况，也就是说在房主连续进行净出资。此时，I_p初始为0并随时间流逝向100％增加，但永远不会超过100％。增加率随 r或 ir(t)值的增加而增加。如果房主的净出资为总回报中的更大比例 r，或者如果回报的确定性等值 ir更高，那么保险资产增值越快。

等式（5）的应用产生了具有前两个方面的积累方案。通过将适当的房屋价值分成分配给房主，该方案补偿房主对风险投资所作的净出资。通过将回报的确定性等值用于计算分成，本方案确保房主而非投资者不遭受房屋融资仓促中的固有风险。因此，无论住房市场的方向或变动是怎样的，房主都倾向于获得保险资产百分比的稳定增值。

有许多积累算法可以实现DOOR工具的中立性。算法的取舍取决于房主和投资者希望怎样在他们之间分摊风险以及取决于他们觉得理想的工具，该工具是由一方补偿另一方的净出资的一种方式。ANZIE-DOOR将保险资产用作平衡各方出资的“剩余账户”，通过等式（5）计算得到保险资产。本文将后所考虑的其他变体分摊风险的方式与ANZIE-DOOR不同，且其中的一些变体使用不同的剩余账户。

为了将ANZIE-DOOR放于多个不同备选方案中，值得对定义工具的特定算法中固有的风险分摊的性质作更深层次的关注。通过考虑明显不相干的作用，该算法的一种特别清楚的解释可以解决资本收益税中的“变现问题”。大多数税收制度在向资本收益征税或允许对资本亏损的税之前，需要“变现”事件，例如出售。这种变现需求产生了两个问题：“锁定”和“策略性止损”。投资者通过延迟出售具有累积收益的资产(“锁定”)和提前出售具有累积
亏损的资产（“策略性止损”）来获益。延迟出售反而推迟对收益征税会为投资者产生货币的时间价值。如果投资者能从本来已经发生在延迟的这段时间内支付给政府的钱中赚取利息，由于投资者即使相信这些资产在税前只赚了低市场利率的回报，但因一直保留有收益的资产，因此“锁定”就发生了。投资者只是在税前回报中的预期亏损严重到足以抵消延期带来的好处时进行出售。另一方面，如果亏损可被用于抵消变现的收益或其他收入，那么将亏损变现通常会减少纳税负担。通过立即重新买入已售资产或通过买入产生相同业务特征的替代资产，纳税人能够“对冲”亏损，而不需要作任何业务上的改变。如果重新买入的资产分额或替代分额值定了，那么就有对应于变现亏损的抵消累积收益。但纳税人只能通过延迟出售资产来延迟对该收益纳税。[现代免税代码通常具有使这种“对冲出售”无效的规定，但这些规定的作用有限，且因为对确实出于购买或出售的目的而非减少纳税的投资者有冲击，而具有附带成本。]如果通过早期止损而产生的价值超过进行必要交易所需的交易费用，那么就值得进行“策略性止损”。

【0185】在资本收益税情景和中性DOOR工具的运行之间存在相似之处。资本收益情景中亏损和收益的税率与收益比率因子w，该比率因子为DOOR工具要求的房屋回报“税率为收益税对作为风险投资的净收益者的房产进行补偿。直到出售或终止，才产生与DOOR工具有关的保险资产支出，这是因为直到发生出售或其他变现事件才产生与资产有关的税。如果投资者期望获得以往的应计保险资产的令人满意且能适应风险的复利，而不是拿出钱来进行投资，那么就向DOOR工具提供“锁定”。如果是相反的情况，那么投资者在财务上完全有动力去终止DOOR工具。后一种行为类似于策略性止损。资本收益税和中性的DOOR情景之间的相似性是使提议的资本收益税方案有关联的原因。虽然这些方案不直接适用于DOOR情形，但仍然认为它们清楚显示了ANZIE-DOOR积累算法的特性。

【0186】资本收益税设计中的一个方案是，通过在一定频率周期基础上，出于计算目的的计算纳税人的资产的亏损和收益。来强制推行“盯市”税制。在该系统中，纳税人不能推迟改变收益和亏损，因为他不能取得收益和亏损是自动实现的。在每次对市场询问之后，就不存在税款损失或收益了，且处于减税目的（或持有）资产的期值没有价值。

$$T_s = r_t (1 - r_s) T_s + r A_s A_s$$

【0188】其中A_s为价值为A_s的资产在时间t_s上的随机回报率，r为无风险回报率，τ为税率。等式右侧的第一项代表现有余额的利息收入，而第二项代表当前收益或亏损的征税结果。当在时间t_s出售资产时，纳税人向政府支付T_s。
说明书

[0190] 如果资产价格路径、以往的利率和以往的税率都已知的话，Vickrey方案就能开始工作。在此情况下，可以基于以往的数据计算？当资产价格路径未知但资产持有时间、以往的利率和以往的税率已知时，上述的Auerbach基于以往的数据创立了一种消除策略性交易和锁定的税。对于在资产持有期间恒定即时无风险利率等于r_f且恒定税率等于τ的扁平的期间结构这样的简化解情况而言，在时间t_0时购买的资产在时间t_s上变现时的应纳税额为：

\[T_s = (1 - \varepsilon - \tau r_f) A_s \] \hspace{1cm} (6)

[0192] 该税额等同于持续对资产的收益按税率τ征税，该资产从时间t_0到时间t_s都按无风险利率增值，最终价值达到了A_s。在这种假想的价格路径条件下，时间t_0时资产价值已经为：

\[A_0 = e^{-\tau r_f} A_s \]

[0193] 保险资产账户类似于Vickrey方案中的纳税账户。保险资产账户在卖房时对房主以往对风险投资的净支出进行补偿。这些出资是已知的，且可以将其与利息一起累计入“调节账户”，然后在卖房时向房东支付该账户中的数额。相反，正如根据等式(5)所显而易见的是，ANZIE-DOOR使用类似Auerbach方法的方案：保险资产账户被显示为房屋价值的增加比例。在等式(6)所描述的简化征税情景中，该比例等于(1 - ε - τ r_f)，即从0开始并以逆指数方式增加到1的一个分量。如上所述，ANZIE-DOOR的一个目标是，确保及时进行分期还款并对房屋进行必要维护的勤奋房主若干年后仍能从楼中获益。为了这个目标，提供了这样一种方案，其中房主随着时间积累起更高比例的房屋价值。不论价格暴涨或暴跌，房主已经确保了一定比例的房屋价值能从中获益。Vickrey方案中的纳税账户不具有这个特性。如果房价暴涨，那么即使房东勤奋了很多年，该账户最终只会成为房屋价值中微不足道的部分。如果在部分或整个资产持有时间内涵的资产贬值，那么该账户也可能最终为负。

[0194] 利用确定性等价值型Vickrey方法，Auerbach方案使Vickrey方案的结果相对于资产价格路径平顺，这种类型的方法有效地将相关的无风险回报率转换为风险资产的产出。ANZIE-DOOR使用类似的方案来实现期望的结果：(i)对风险投资进行净支出的房主获得保险资产比例中随时间平稳且温和的增长；和(ii)较大的资产回报风险被转移给投资者。

[0195] 值得一提的是，Auerbach方案就是确定性等价值型Vickrey方法。其核心是将资产的随机回报分解为无风险回报r_f加溢价回报ξ：

\[\tilde{\alpha} = r_f + \xi \]

[0196] Gordon(参见R.H.Gordon的Taxation of Corporate Capital Income: Tax Revenue versus Tax Distortions，《Quarterly Journal of Economics》，vol.100, pp.1–27(1985年2月))观察到对超出无风险回报的资本的溢价回报征税不会影响到正在征税的投资的价值。在遵循Auerbach方案的情况下，可以通过确定性等价值计算V(*)来表达这个事实。该算符将有风险的市场价格回报转换为等价的无风险回报。因此，V(\tilde{\alpha}) = r_f，且V(\varepsilon) = 0。思考该算符的一种直观方式是假设存在一种无风险债券，可能是理想的美国通胀保值债券，并注意到这种投资是风险投资的备选方案。例如，某人可以在无风险债券中投资预定金额并赚取回报r_f，或在风险债券中投资同样多的金额并赚取回报\tilde{\alpha}。回报差额\xi = \tilde{\alpha} - r_f就是溢价回报。在达到平衡时，该溢价回报的确定性等价值必然为0。预期溢价回
报 $E(\tilde{e})$ 必然正好补偿增加的风险。

Auerbach细心地注意到，预期溢价回报为零是错误的。其等于边际投资者所要求的风险溢价，以承担随机回报中的风险。除非该风险在经济中是完全分散的，否则就是 $E(\tilde{e}) \neq 0$ 的情况。第 170 页的 Auerbach 命题 1 显示的是他称为“资产持有期中性”——也就是其确定性等价值与保持周期或以往的资产价格走势图无关——的税收制度的必要和充分条件是：

$$V(t_s) = r_T(1-t_s)T_T + \nu_T A_T$$ (7)

Auerbach 注意到这种情况就是确定性等价值型 Vickrey 纳税方案，其中应纳税额账户根据下式变化：

$$t_s = r_T(1-t_s)T_T + \nu_T A_T$$

如前文所述，在 Vickrey 方法中，纳税账户 t_s 因两个因素增加：(i) 现存余额上增加的利息；和(ii) 资产价值的当前波动中产生的应纳税额变化。该等式的确定性等价值样式的这关系式转换为确定性等价值的变化。就好像资产赚到了无风险回报率一样，利息累计入现存余额且应纳税额增加。类似的是，在 ANZIE-DOOR 方案中，税被在应用“税率” 的基础上增加，税率为对主补偿了净出资从而在房子上“获利”，假设税率按合适的无风险利率增加价值。

ANZIE-DOOR 的另一个目标是使任何提前或延迟的终止期权毫无价值。等式(5) 类似于 Auerbach 方案，其取消了任何通过推迟出售来延迟获利。或通过战略性止损使损失提早发生的基于纳税的动机。看来似乎该特性会继续存在，从而消除任何通过提前或推迟终止 DOOR 工具来获利的机会。这种直观感受是错误的。在纳税交易情形和住房融资情形之间有两个重要的区别。第一，在纳税交易情形中，纳税人面临着政府确立的任何税率。第二，纳税人不能为纳税账户选择合适的税率制度。

在住宅融资的例子中，房主选择使用特定的 DOOR 工具来对房子融资，并且具有通过出售或其他方式再融资或终止该工具的期权。因此，房主未与对房子融资的现有 DOOR 工具中内含的特定比率因子或利率制度绑定在一起。现在考虑比率因子。如果 DOOR 工具以特定比率因子开始，而不是变化条件，以能够得到更有利的比率因子，那么房主就会有再融资的动机。在相反的情况下，出售房屋和终止 DOOR 工具有额外费用：房主必须放弃在市场中可获得的生意更有利的生意。纳税人不能选择可用税率，但是房主能通过再融资改变 DOOR 比率因子。类似地，当市场利率向着使原来的工具条款朝不利于房主的机会变化时，房主不能再融资，从而为工具改变可用利率。

中性的 DOOR 工具十分频繁地调整比率因子和可用利率，从而在任何方向上避免期权价值。这与在经济模型中 Auerbach 方案相反，其中该机制不需要任何中间的调整。实际上，如果设计为在难以或不能进行这样的调整时起作用，因为出售前的观测价值是代价高昂的或不可接受的。

利率问题

有两种非常关键的利率影响着 ANZIE-DOOR 的工作。利率 i 衡量的是房主因给投资者提供杠杆作用的优先级筹资而发生的出资。正如从等式(4) 中可显而易见的是，这个利率
的水平直接影响比率因子。这反映了可能与DOOR工具交易的预期“短期”还款方式，并与长期抵押贷款利率相似。调整后的比率因子可以消除贷款前的违约和预先还款期权。预先还款的可能性产生了30年期和远超于长期的15年期抵押贷款的平均还款时间。观察到的与这些工具有关的平均还款时间可能类似于DOOR工具的预期还款时间。在DOOR中，投资者在通过出售或其他方式终止工具之前没有预付款或违约期权。如果DOOR工具是中性的，那么房主也是否可以使用该工具的融资动机。工具的还款时间取决于所有权的时间长度或引导房主喜欢另一种金融方案的环境。在抵押贷款的还款期中，类似的因素起着重大的作用。

[0208] 第二种非常关键的因子为，其将有风险的房屋回报转换为确定性值等价值利率。该利率通常反映这个事实的长期利率，即顶层的家庭很可能会将生产资产保存至遥远的未来。

[0209] 在这几种情况中，在创建DOOR工具时确定一个比率会导致潜在的选择激励行为。如果比率增加，那么房主就希望对DOOR工具进行融资以获得保险资产的更快增长。房主能够保留任何现存的低利率抵押贷款。DOOR工具作为一部分或整个优先权提供资金的抵押中脱离出来。如果比率下降，就要出售房屋并采取手段放弃市场更有利的市场。房主愿意将资金留在本地并能通过对优先权获得更高的利益。该优先权具有反映新的低比率的贷款。

[0210] 有两种常规方式来反映相关的期权价值和行为失常无效。首先，可以周期性地随比率因子一起调整和。第二，可以更频繁地调整这些比率。如果它们是市场利率的函数，那就很容易在每个交易日结束时调整比率。

[0211] 为和的比率不同。利率是住宅的确定性等价回报，也就是与房主的资产持有时间或DOOR工具的还款期无关的资产。利率反映了其债务者的借款补偿给房主，补偿的金额等于优先权。房主可通过从DOOR工具进行融资或出售房屋来终止这种贷款，并能通过利用市场贷款对优先权以期获利。如果控制和的可变利率条款不完全是补偿性的，那么DOOR工具就不是市场交易，其实际价值不等于其真实价值，且存在套利的可能性。

[0212] 首先讨论更简单的的情况。如上所述，对于一般的业主自用型房产而言，为非常长期投资的确定性等价利率。假设大于或等于25年的零票面利率的几乎平坦的期限结构为25年期美国国库券国定利率。该利率为时间凸起，反映了预期的实际利率和通货膨胀。为了实现中立性，必须一直等于实际确定性等价率。（Auerbach框架中的这一点是易于理解的。）等价（7）必须适用于每个时间点。假设时间上的即时确定性等价率的评（s），同时等式（6）中描述的纳税方案中用到的即时利率为 。（s）。那么与时间相关并提供评价算符的差分方程（6）结果为：

\[V(T_s) = i_c(s)T_s + i_r(s)\tau(A_k - T_s) \]

[0213] 除非 \(i_c(s) = i_r(s) \)，否则等式（7）中的条件不成立。

[0214] 如果一直等于实际的确定性等价率，那就会没问题。假设比率因子是正确的，那么保险资产百分比就会按正确的速率增长。不存在套利机会或有价值的嵌入式期权。如果近似比率足够接近，那么距离中立性的相关偏差就很小，且任何嵌入式期权只具有非常低的价值，使得诸如对再融资或流动资金决定的冲击之类的任何经济影响都可以忽略。

[0215] 的情况就更复杂了。除非房屋价值等于优先权，否则利率的这种变形不等于房屋回报的波动率。相反，是房主和投资者之间的隐含贷款的虚变量变动利率，隐含贷款等
说明书

于优先块。因此，房主（“出借方”）控制DOOR工具和隐含贷款的还款时间。投资者（“借方”）对于还款时间没有发言权而只是参与其中。此外，存在着一种信息不对称。房主可以知道拥有所有权的时间可能是短暂的，这意味着DOOR工具和相关的隐含贷款可能只有很短的还款时间，但投资者一般不知道可以影响工具的还款时间的方主的想法。

[0217] 为了简化讨论，假设房主利用承诺资产为整个优先块提供资金。也就是说，不存在抵消贷款。这一步在概念上是合理的，因为与优先块有关的融资决定与隐含贷款是明显不同的。抵押融资涉及房主和第三方贷款方之间的协定。但不直接涉及投资者。相反，隐含贷款是房主和投资者之间的DOOR工具条款中的一部分。（一些次级现象包括抵押融资，抵押融资是DOOR中立性计算中的要素，下文单独讨论了这些次级现象。）

[0218] 撤开保险资产帐户不谈，投资者掌握房屋的杠杆资本价值。隐含贷款是“非追究性”的。如果房屋价值跌到优先块的金额以下，那么损失就会落在房主身上。投资者直到房屋被出售都没有权利平仓，且必须支付贷款“利息”直至出售。

[0219] 假设各方知道预期的出售日期。那么投资者的仓位会是两部分之和：具有敲定价格等于P(优先块大小)的欧式看涨期权，加上按可得无风险利率支付优先块利息直至出售的责任。（回想一下P是优先块上的“本金应付款”，而不是该优先块的内在或实际价值。例如，P=80,000，它表示房主优先具有标本800,000销售收益。当前的房屋价值以及优先块的真实价值少于800,000都没有关系。）

[0220] 用于欧式期权的买卖权平价关系式

[0221] \[c = H + p - Pe^{-T} - R \]

[0222] 其中c为具有敲定价格P的买入值，p为具有相同敲定价格的卖出值，H为房屋的现值，i为无风险利率（假设跨期限不变——扁平的期限结构），R为期权还款期内净租金的现值，T为到期时间。看涨等同于拥有房屋（不是积累净租金）、认沽、通过零息票债券借款进而产生i，i在期权到期时增加到等于敲定价格P。在出售日付清利息的债务条款具有的现值为：

[0223] \[P \int_0^T \text{int} ds = (1 - e^{-iT})P \]

[0224] 投资者的总仓位等于：

[0225] \[c = (1-e^{-iT})P - H + p - R \]

[0226] 在ANZIE-DOOR中，i必须因提供认沽以及货币的时间价值而补偿房主。该情况类似于抵押贷款在发行时的情况，其中利率不仅反映了货币的时间价值，还因为抵押人（房主）所享受的先定还款和违约期权而补偿抵押权人。

[0227] 在每一年中，投资者从房主那里有效地“租用”看跌期权。市场租用条款为：

[0228] \[r_p = i_p + \delta_p \]

[0229] 其中\(\delta_p \)等于用看跌期权初始值的百分比所表示的这一年内预期的看跌期权“折旧”率。时间t的该预期折旧率等于\(1 - \frac{[P(i_p(t+1))]}{P(t)} \)。如果一年中看跌的预期值高于现值，那么预期折旧为负。如果房屋的预期回报率实际上不小于无风险利率，那么这种情况是很容易发生的。

[0230] 同时考虑货币的时间价值和提供认沽，中立性要求：

[0231] \[i_p = i_p + i_p + \delta_p \]

[0232] 且我们有：
表面看，i等于未风险利率加上P的份额所表示的看跌期权费用。出租费用项代表未风险利率的溢价，该溢价由于在非追索性基础上提供杠杆作用而补偿业主。

显然，即使假设看跌期权P容易计算的，等式(8)也是大幅简化后的结果。投资者不知道房主何时出售。虽然房主在这方面有更多信息，这房主仍然是不确定的。这种情况类似于抵押市场，其中存在信息方面的不可确定性和不对称性。抵押权人必须在评估可能的抵押还款基础上提供抵押条件。与违约和预先还款期权使评估复杂化的抵押情况不同，ANZIE-DOOR剥离出期权要素。但与房主何时终止DOOR工具相关的不确定性仍然存在。

该不确定性关系重大。现在考虑简化模型，其中用于定价欧式期权的最基本Black-Scholes模型背后的假设应用了：具有不随时间变化的无风险利率的扁平的期限结构，遵守几何布朗运动并具有不随时间变化的漂移率和波动率的标的资产（房屋），以及没有现金流回报（在此，净值=0）。因此，通过简便的随机差分方程式来描述房价动态：

\[dH = \alpha H \, dt + \sigma H \, dZ \]

其中H为房价，\alpha为恒定的漂移率，\sigma为恒定的波动率，dZ为基本的布朗运动。

在该模型中加入简单的问题：欧式期权的执行时机（DOOR工具的终止时机）是随机的，并由每年的强度\lambda不的泊松过程来指定。该过程暗示了不变的终止率，伴随的结果是无论自初始算起已经过了多少年，DOOR工具的预期还款时间保持不变。本领域技术人员可以预料到，预期还款时间会在某个点开始下降。虽然这不是现实，但假设一个泊松过程是有利的，因为这使得更容易理解和想象某个现象。

假设泊松过程中的创新点与表征房价动态的几何布朗运动过程中的创新点无关。（这种假设使得例更加简单和清楚，但不是现实。房价走势图影响所有权寿的寿命是可能的。）

假设基准模型中的假定还应了：即无风险利率与每年5%相对应；房主即时预期年增值率等于每年7%几何平均回报；和房价即时波动（标准偏差）等于每年9%。最后假设当前的房屋价值为100且P=120。

为了显示在这种情况下保险资产积累得有多快，需要举一个例子，其中优先权大于房价。假设净租金为零，下文中表5的最后一栏计算出比率因子。除了当预期的工具还款时间1/\lambda很长时，比率因子都很高，超过了1。（1/\lambda为直到终止工具的预期长度。直到终止的中间时间大约只要0.7。这些关系只对具有恒定强度\lambda的泊松过程适用，用于举例而假设这种情况。）

优先权“缩水”的情况造成了很高的看跌价值和很高的i_P值，当工具的预期还款时间很短时范围可达无风险利率的几倍。还款时间对i_P和比率因子有很大影响。随着预期还款时间增加，这两者急剧下降，但仍保持高位。急剧下降的原因是清楚的：随着预期还款时间增加，在工具因房屋价值终止前房子更有可能升值到足以弥补优先权。如果发生这样的情况，那么看跌期权到期期得毫无价值。

表5. 预期还款时间的影响
推算优先块利率&比率因子

\[H = 100, \ P = 120, \ \sigma = .09, \ \alpha = .07, \ i = .05 \]

假设净租金=0%每年，计算比率因子

<table>
<thead>
<tr>
<th>1/λ</th>
<th>当前看跌价值</th>
<th>预期看跌价值</th>
<th>E(变化)</th>
<th>(i_p)</th>
<th>比率因子</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15.3067</td>
<td>10.4357</td>
<td>4.8709</td>
<td>0.0956</td>
<td>1.6389</td>
</tr>
<tr>
<td>2</td>
<td>12.5396</td>
<td>8.6519</td>
<td>3.8877</td>
<td>0.0863</td>
<td>1.4792</td>
</tr>
<tr>
<td>3</td>
<td>10.6807</td>
<td>7.4245</td>
<td>3.2562</td>
<td>0.0803</td>
<td>1.3760</td>
</tr>
<tr>
<td>4</td>
<td>9.3258</td>
<td>6.5156</td>
<td>2.8102</td>
<td>0.0760</td>
<td>1.3029</td>
</tr>
<tr>
<td>5</td>
<td>8.2870</td>
<td>5.8112</td>
<td>2.4758</td>
<td>0.0728</td>
<td>1.2478</td>
</tr>
<tr>
<td>6</td>
<td>7.4621</td>
<td>5.2474</td>
<td>2.2147</td>
<td>0.0703</td>
<td>1.2048</td>
</tr>
<tr>
<td>7</td>
<td>6.7899</td>
<td>4.7852</td>
<td>2.0047</td>
<td>0.0683</td>
<td>1.1701</td>
</tr>
<tr>
<td>8</td>
<td>6.2307</td>
<td>4.3989</td>
<td>1.8318</td>
<td>0.0666</td>
<td>1.1415</td>
</tr>
<tr>
<td>9</td>
<td>5.7578</td>
<td>4.0710</td>
<td>1.6868</td>
<td>0.0652</td>
<td>1.1175</td>
</tr>
<tr>
<td>10</td>
<td>5.3525</td>
<td>3.7891</td>
<td>1.5634</td>
<td>0.0640</td>
<td>1.0970</td>
</tr>
<tr>
<td>12</td>
<td>4.6932</td>
<td>3.3289</td>
<td>1.3643</td>
<td>0.0621</td>
<td>1.0640</td>
</tr>
<tr>
<td>15</td>
<td>3.9629</td>
<td>2.8168</td>
<td>1.1461</td>
<td>0.0600</td>
<td>1.0278</td>
</tr>
<tr>
<td>20</td>
<td>3.1484</td>
<td>2.2428</td>
<td>0.9055</td>
<td>0.0576</td>
<td>0.9877</td>
</tr>
<tr>
<td>50</td>
<td>1.4120</td>
<td>1.0104</td>
<td>0.4015</td>
<td>0.0527</td>
<td>0.9036</td>
</tr>
<tr>
<td>100</td>
<td>0.7361</td>
<td>0.5276</td>
<td>0.2085</td>
<td>0.0508</td>
<td>0.8713</td>
</tr>
</tbody>
</table>

实际的应用需要更多现实要素。期限结构不是扁平的。利率是随机的。房价不遵守几何布朗运动等。虽然在具有足够精确度的现实情形中计算\(i_p\)不是件小事，但任务仍清楚地得以描述。

房主具有与工具可能存在的时间相关的优质信息，这个事实保留了下来。房主可以通过实时对优先块融资来从该信息中获利。例如，假设房主知道持有房屋的时间会变短。房主能利用抵押来对优先块融资，该抵押的利率可调整且在贷款的前几年中只产生非常低的利息费用。同时，房主可以享受反应较长预期还款时间的高水平的\(i_p\)。

因为两个原因，这种可能性不是问题。首先，在所有投资者面对相同的信息不对称的情形中，它不会产生融资动机去对DOOR工具本身再融资。任何再融资工具的期限不会与其他工具的期限不同。第二，现存的期权要素完全在抵押贷款方，也就是说，房主和抵押权人之间的交易。假设进行足够频繁的动态调整以接近中立性，则与DOOR工具有关的期权要
素就不重要了。工具的价值非常接近于其真实价值。

【0250】抵押违约的可能性不会产生DOOR工具的次级问题。DOOR工具合同必须应对违约与信用挂钩的情况，也就是说，不论房屋价值是否高于抵押贷款的本金应付款，抵押人由于失业或其他损失收入的事件而不能偿还抵押贷款。例如，合同给予投资者权利去偿还部分或所有抵押贷款，以避免丧失赎回权造成的损失和终止DOOR工具。这种可能性在下文所讨论的变体ANZIE'S NU DOOR中是隐性的。同样重要的是要考虑违约，违约不是由信用问题激发产生，而是由房屋“缩水”——也就是说值低于抵押贷款的本金应付款——激发产生。如果抵押贷款是非追索性的，那么房主有动机去进行策略性违约。ANZIE'S NU DOOR完全消除了这种可能性，但对于ANZIE-DOOR而言，它使得中立性计算更复杂。计算过程必须考虑DOOR工具因为银行收房并拍卖而终止的可能性。当然，利用合同条款可以对付这种情况。ANZIE'S NU DOOR提供了完整的合约型解决方案。

【0251】调整频率

【0252】即使诸如i_t之类确定比率因子r_t的参数估计是准确的，但周期性调整而不是持续调整为以后很重要的嵌入式期权留下了口子。如果现存工具上的比率因子与用于新工具的比率因子相比不太有利的话，房主在两次调整之间就有动机去对工具再融资。该情况发生时房屋价值和经济变化以这样一种方式变化：当前比率因子低估了房主的净投资。如果当前比率因子低估了净投资，那么在反方向中就存在嵌入式期权。DOOR工具的价值低于其掌握在投资者手中的真实价值，且房主有人为的动机将资金留在楼市中以至于获得远比市场有利的DOOR收益。

【0253】在持续且准确的调整下不会发生这样的情况，但是调整不是免费的。调整包括对近期出售业务一般没有好处的其他任务，例如评估房屋。

【0254】然而，在假定现有技术及其费用的条件下，在大多数情况中可以非常频繁地评估并调整比率因子，再融资很少会因期内波动而获利。对于许多房屋而言，每季、每月或甚至每天进行评估和比率因子调整都是可行的。最困难的因素是在没有近期出售业务的情况下对房屋价值。AVM(自动估值模型)方法用于估计房屋价值。对于很多房屋而言很准确，其涉及计算方法而不是评估性的或其他劳动密集型的方法。许多经济变化是很容易获得的，其形式是政府、研究所或私营部门分析公司发布的每日市场价格或每月数据。

【0255】因此，代替ANZIE-DOOR的是，我们可以有QUANZIE-DOOR, MONZIE-DOOR,或DANZIE-DOOR，它们是分别具有每季、每月和每日调整的同样的工具。

【0256】由于调整是代价高昂的，因此最优的方案可能不是实现技术上可行的最短调整周期，也就是具有连续调整的工具“CANZIE-DOOR”的某种近似体。（“CA”代表“连续调整”。）这种近似体是可能的，并且在某些情况中甚至可具有一定的精确度。某些数据是周期性的且只能每月或每季获得。即使是诸如债券和掉期交易之类为调整计算中的利率形成基础的积极交易型工具，也会每时每刻进行交易，或在市场关闭的时间内进行交易。需要各种推演和数据缺失技术来使CANZIE-DOOR近似体尽可能准确。

【0257】尝试发展这种近似体不是重点。纵使交易费用或真实价值偏差在经济上来看很大，但如果调整周期足够短，就足以确保那些期内波动不会产生潜在的再融资收益。考虑每月调整的制度，也就是考虑的变体MONZIE-DOOR。MONZIE-DOOR建立实际上不花钱的每月自动再融资。
一个月中进行的再融资只获得了几天或几周中具有稍微更有利的比率因子的短暂收益。因此，这种收益消失于下一次月调整时。只要居高线在这一点向前移动，那么无论是由于是否再融资，交易都是一样的。因期内波动而产生的真实价值偏离在不进行再融资的条件下具有相似的短暂性。

真实价值短暂偏离在经济上的重大程度是不同的，这取决于焦点集中于哪一方——房主或投资者。只有房主有权利去提早终止DOOR工具。房主提早终止的费用取决于环境。如果目的是通过将资金留在同一间房子或一新的等价的房子中来进行“再融资”，那么相关事件就是实际的再融资业务或“抛售”。抛售是代价高昂的。出售房屋和买入等价的房屋两者都涉及费用。费用为房屋价值的若干百分点，类似当前抵押贷款再融资的再融资业务也是代价高昂的。这些抵押贷款再融资中的过户费通常占去了房屋价值的少许百分点。但是，DOOR方案的吸引力之一是便宜地进行再融资的可能性。存在仅花费数百美元就能在线地改变工具中的条款的潜在可能。如果在线再融资可能性包括一个形式上与旧工具相同的新工具，那么纵使只有非常少的收益，利用经济条件中的短暂变化期内再融资也可能是值得的。

利用附加费或限制对基本相同的工具进行再融资的能力是可以控制这种可能性的，但会具有不理想的影响。当工具中的条款与任何事件中的经济条件匹配时，限制可能会推迟调整直到下一个周期调整时间。房主的其他选择是更昂贵的再融资方案或抛售。一些房主可能具有与利用期内波动无关的再融资动机，从而转移到一个类似但不相同的DOOR工具上。本方案将“再融资税”加到这些房主身上，从而阻碍扩大交易的福利。

另一方面，彻底不能监控这种情况会使调整计算更复杂。嵌入式期权重起作用，而调整计算必须将其考虑在内。非常频繁的调整可能是最佳方案，因为其避免了所有这些问题。

在嵌入式期权情景中，交易费用变得很大。如果再融资费用非常高，则房主通过策略性再融资或出售来执行期权的危险会突然消失。在等式的投资者一侧，在不涉及“再融资”的房主行为方面，情况完全不同。例如，如果问题是对诸如搬出另一个城市之类的房主行为或投资者方的微小影响，以及为了诸如运行开放式融资池之类的目的而进行的准确估算，那么偏离真实价值所产生的费用为偏差大小的连续函数，而不是在限幅水平上从零迅速攀升的函数，从而在再融资费用时触发执行期权。在这些情况下，通过频繁调整产生的潜在收益更加模糊，这是因为没办法而产生的影响更难被观察或估计。

假设相当精确的、基于计算机的房屋评估是切实可行的，那么每天的调整必然很简单且非常合理。每天的调整应当消除与偏离真实价值有关的、因两次调整中间的短暂时间间隔而产生的任何问题。当然，调整处理本身的精确度仍然是一个与频率无关的注意事项。

用于实现ANZIE-DOOR的分析机

图5是描述实现ANZIE-DOOR的分析机的流程图。其他图（图6, 8, 10, 11, 12, 15, 16, 18, 20和21）是描述用于其他DOOR变体的分析机的类似流程图。本节内容会详细讨论图5，但它用于重点讨论图5中的许多要素，这些要素对于后续附图来说是通用的。

在流程图中的物理和箭头方面，所有这些附图都遵守相同的习惯。圆柱形物体表示动态储存数据的设备以及存储在该设备中的现有数据。这些设备可包括具有专用硬盘驱动器的服务器，存储永久值数据的光学媒介，以及能够用于维护与DOOR工具的调整处理相关
大量的扩展数据集的其他组件。六边形物体（规则和不规则六边形）表示主要的计算处理。这些处理不必发生于单个计算设备中。某些处理在本质上是机械性的，并能通过固定的软件或硬件编码逻辑来实现。其他处理包括学习，从而存在或不存在人工干涉的条件下使软件或逻辑单元动态演变。粗体的长方形或正方形框表示混合计算处理以及相关信息。箭头表示数据流。如果箭头是实线，则对应的数据流就是每当对DOOR工具进行动态调整时处理的必要部分。虚线箭头表示数据流可以包含或不包含在特定调整中。非粗体的长方形或正方形框表示从圆柱到六边形中输出的信息。这种框架通常“定义”沿箭头流动的信息。其解释清楚了箭头所表示的内容流。

[0267] 图5展示了为ANZIE-DOOR计算单次调整或计算初始运算值（“初始调整”）。通过从附图4的末尾计算到左上片的组合过程步骤，可以最准确地完成直到该附图。ANZIE-DOOR的剩余价值账户为保险资产。在工具初始化以及对其进行调整的每个时间点上，需要确定当前的保险资产百分比以及在下一个时间段内保险资产百分比会改变多少。因此，通过图5右侧的“保险资产百分比”六边形来表示图5中的最终计算。该六边形实现上述的等式（5），也就是表示任意给定时间点上的保险资产百分比以及保险资产百分比在此时和下一动态调整之间会怎样演变的公演。所有的箭头最后都指向该框。

[0268] 通过等式（5）可清楚地看出，保险资产百分比计算的必要输入是长期确定性等价率i和和比化因子n的值以及当前的值。将以往的值和顺序地提供给多次调整之间的每个时间点直到现有值。在从当前调整开始，并延续至下一次调整或终止工具这两者中较早发生的时间内使用当前的值。相应地，一个箭头指向图5右侧的第一个百分比六边形。首先，从标有“长期调整性等价率”计算六边形中出来一个箭头。该计算的输出为下一时间点的长期确定性等价率。第二，从标有“比化因子”计算六边形中出来一个箭头。该计算的输出为下一时间点的百分比因子。第三，从标有“DOOR工具特征”的数据圆柱中出来一个箭头。该圆柱包含两类数据：（i）DOOR工具本身的合同说明；（ii）对工具的任何历史记录进行编码的多个不同分量。ANZIE-DOOR工具的合同说明包括保险资产余额价值账户和等式（5）为计算保险资产百分比的方法。存储在圆柱中的工具的以往历史记录除许多其他项目外还包括对工具进行初始化和调整的日期以及按日期顺序描述的每个时间段内可用的长期确定性等价率和比率因子。

[0269] DOOR工具特征圆柱是控制分析机的指令库和将当前结果与之前发生的事件联系起来的文件历史记录。理论上可以具有两种箭头，一种是从DOOR工具特征圆柱指向整个机器图样的大箭头，一种是从计算保险资产百分比的六边形和一些其他计算的六边形反指向圆柱的一系列箭头。前一种箭头表示分析机本身的属性及其许多细节方面是由DOOR工具合同指定的。第二组箭头表示当前调整期间的多个计算值成为DOOR工具特征圆柱中保存的工具历史记录的一部分。所有这些箭头都被省略以便附图简单和清楚。仅有的发向DOOR工具特征圆柱或从中发出的箭头是表示与即将进行的特定调整相关的敏感性方向数据或指令输入的箭头。事实是通过调整得到的输出将成为工具的关键历史记录的一部分，或者工具的合同说明指示分析机的某些具体单元和属性，这样的事实显然会得到充分的考虑，从而流程图中不需要箭头或其他指示。

[0270] “比率因子”六边形表示比率因子计算。在本文对ANZIE-DOOR的简化说明性演化中，比率因子计算实现等式（4）。输入为优先指数按算利率i。
（等于优先块金额除以房屋价值），预期房屋升值率（a）和自住金积累速度（v）。自住金金额本身
在若干要素之后推算租金，预期折旧，财产税和其他费用。为了达到具有说明性而非全面
性这个目的，图5只显示了主要的要素，忽略了诸如“其他费用”等的直接属性之类方面的。
在图5中，有两个箭头指向计算比率因子的六边形。一个是从六个计算六边形的灰色阴影块
发出的灰色阴影大箭头，六个计算六边形为：房屋价值，预期升值，建筑物的预期折旧，财产
税+费用，推算租金和优先块推算利率。这些都输入到刚才提及的比率因子计算。还有从
DOOR工具特征圆柱发出的第三个箭头，该箭头表示数据和移动的转移。DOOR工具的合同说明
详细说明了比率因子是如何计算的，也就是类似于等式（4）或其等效的情况。DOOR工具特
征圆柱还包括对于计算而言十分关键的数据，特别是，优先块的大小是必要信息。圆柱包括
诸如房租的现金出资，抵押贷款之类的记录确定和确定优先块大小的其他要素。

【0271】长期不确定性等价率六边形表示计算下一时间段内可用的长期确定性等价率（ir）。
如上所述，ir为长期投资的不确定性等价率。计算该比率通常涉及利率模型的期限结构和包
括当前和以往利率值，多个宏观经济变化的当前和以往值及其他指标或变量的当前和以往
值的数据。从一般经济数据，住房经济数据和住房具体数据圆柱中产生这些数据。假设对建
筑物折旧进行连续复利，由于ir结合了作为生产资料的房屋预计寿命（或潜在寿命的预计
时间分布），所以住房具体数据也是切题的。对于许多房屋而言，寿命可能非常长——可能是几
百年。但是，可以想象这样一种情况，其中寿命是固定的，已知的并且很短的，例如一定
年数的租赁地产，几年以后所有建筑物将被拆除并且这块土地会变成自然保护区的一部分。
正如许多计算六边形的情况那样，关于如何计算想要得到的分量还存在着方法论上的
不确定性。计算步骤可结合模型不确定性，或者DOOR合同可具体说明合适的方法论。

【0272】房屋价值六边形的数据输入包括一般经济数据，住房经济数据，住房具体数据和
可能的交易数据——由图5中的四个独立的圆柱表示。交易数据包括同时购买或出售
交易的房屋的买入或售价，其中分析机产生初始值，更新值或最终值。在该情况下，房屋价
值通常容易计算，某些直接调整之后的出售或购买价格。但是许多情况下，任务是要在未
从同时发生的出售或购买交易中获利的情况下计算资产负债百分比计划表。因此，从交易
数据圆柱指向房屋价值六边形的箭头是虚的，这表示它并不总是投入使用。

【0273】当不发生同时发生的交易业务时，房屋价值的计算可以是非常复杂的。相关的住
房经济数据除其他数据项以外，还包括国内消费交易中的历史售价和属性特征，以及与房屋
价值有关的多个本地性，区域性以及国内指标。相关的住房具体数据除其他数据项以外，还
包括以往交易中特定财产的售价，以及以往和当前属性特征的详细说明。一般经济数据也
是有价值的，例如，诸如一般通胀率，当地失业率，当地人口指标（包括当地人口净化变化）
以及当地收入水平。有多种方法论可以用于从包括自动评价模型的当前情形的这些数据中
直接计算房屋价值，且可以将该数据以及具有其他主观数据的相关方法论补充在评估数据
的属性中，主观数据通常只在出售或购买交易时才能采集到。

【0274】预期升值六边形实现的是从可用的一般经济数据，住房经济数据和住房具体数据
中计算出房屋的预期升值率。相关的住房经济数据包括对应于区域性或国内住房指标的期
货价格。这种期货市场早已存在于美国，而且处于进一步发展和宏心经营的过程中。但是在绝
大多数情况下，直接从期货价格中提取出合适的预期升值率是不可能的。该速率的一种令人
满意的计算方式需要额外进行建模以及统计评估，这两者通常都是很复杂的。

36
建筑物预期折旧六边形包括比房屋价值或预期升值更简单的计算。住房建筑的折旧和维护是大家熟知的，而对折旧进行预测和估计是国民经济核算、企业会计和多级税务法和规定中的一项。然而，预期折旧的计算不需要实质性建模和统计评估。建模和评估不仅在为相关建筑生成通常合适的折旧率时是必要的，而且在对特定时间点的位置和属性的要素进行审查时也是必要的。暴露于存在高温变化的环境中的海边建筑与沙洲区域中的建筑相比其有不同的折旧和维护特点，沙洲区域中的建筑的特点是温度变化范围小和温热的气候条件。

计算财产税+费用的六边形更多地利用直接相关的数据分量，并且通常产生确定的或差不多确定的值。在许多情况下，一定时间段内合理的财产税或财产税率是州法律或行政规定中的一项内容。“费用”包括规定为DOOR合同下的房主责任的各种项目。例如，合同可对财产的特定意外伤害保险的覆盖范围作出要求。在该情况下，财产税+费用六边形包括计算上一定时期内合理的覆盖率。假设覆盖率是标准的，这就可以进行报价。该计算仅仅包括从报价中弄清市场利率。对于市场利率而言，可能存留未值不确定性，但其通常差不多是确定的。DOOR合同中作为房主责任的其他费用可能并不是那样确定。尽管如此，财产税+费用六边形大致包括直接跟在可用的住房经济数据和住房具体数据之后的分量。

推算租金六边形代表复杂度一般类似于房屋价值计算的计算。单个家庭的租金数据是稀疏的，利息的性质并不是被租用的自身。于租金相关的数据有很多，这种数据与确定单个家庭的租金变量是有关联的，但并不直接相关。因此，有必要从统计数据中估计出推算租金。房屋价值的估值得本身是一种输入数据，且输入房屋价值的估值得计算模型中的同种类型数据与推算租金估值得相关。存在可选的模型和方法论，这在估计房屋价值的条件中的类似方面上产生了不确定性。

优先级推算利率六边形执行上述等式(8)中举例论述并概括的利率(i_1)计算方法。该计算方法的一部分是估计一个利率i_1，该利率代表等式(8)中无风险的货币时间价值。通过假设利率的平价期限结构，对等式中的讨论简化了问题。这种简化消除了必须考虑基准“货款”的还款时间——也就是等于工具剩余还款时间的时间——这个问题。实际的计算方法通常不能依赖于这种简化，因为期限结构通常表现为弯曲得很厉害。对i_1的适用值的说明需要从模型中获得的无风险的期限结构以及在工具的还款时间估计值或时间部分上的数据。在掌握了i_1后，计算i_1所必需的另两个要素通过等式(8)也很明显：代表优先级货款的非资源属性的看跌期权价值，该看跌期权在下一时间段内的预期贬值，以及优先级的大小。将优先级的大小从DOOR工具特征圆柱输入到优先级推算利率六边形，如同该圆柱发出的箭头所表示的那样。另外两个分量是从非追求性看跌期权估值得六边形输入的。最后，还有一个虚箭头是从房主数据圆柱输入到优先级推算利率六边形的。该虚箭头是根据DOOR工具的剩余还款时间长度是从计算优先级推算利率开始的这个事实所推导出来的。诸如年龄和收入之类的数据特征通常会改变该长度的估计值及其时间分布，并且可被用于优先级推算利率计算方法中。

房主特征也可以影响灰色区域中的一些计算，但不会影响优先级推算利率的计算。例如，具有特定特征的房主往往会更有效地维护房屋或进行较小的改动从而增加房屋价值而不会导致在DOOR方案中记账。这些特点会反映房屋价值、预期升值、预期折旧并间接影响财产税+费用。在这些可能性方面，从房主数据圆柱发出的虚箭头被忽略，以保持指标简洁。
更普遍的是，图5中部堆叠的8个计算输出中的某些被或可能被输入到其他计算中。例如，房屋价值被输入计算优先的推算利润的单元中，并可影响诸如资产税之类的某些其他计算。由于相同的原因：简洁性，这些影响的虚或实箭头被忽略。大多数有关的实际或潜在数据流在任何情况下都是显而易见的。

[0280] 非线性看跌期权看跌六边形在六个计算分量的灰色阴影块外部，这些计算分量直接被输入比率因子计算单元中。非线性看跌期权的价格和预期折旧不被直接用于该计算中。相反，正如从非线性看跌期权看跌六边形指向优先的推算利润六边形的箭头所表示的那样，被输入优先的推算利润计算中。如上所述，非线性看跌期权的价格取决于工具的剩余还款时间长度的时间分布。因此，诸如年龄之类的房主特征是潜在相关的，并且相应地，有一个箭头从房主数据圆柱指向非线性看跌期权看跌六边形。优先块的大小对于看跌期权而言是关键的，因此实箭头会从DOOR工具特征圆柱指向非线性看跌期权看跌六边形。计算非线性看跌期权估计值需要建模和统计分析。例如，对房屋价格的随机过程会影响看跌期权价值，并且利用以往的数据，该过程一定可以被模拟和详细化。这种计算是很值的，并且涉及分析多种方法论和对不确定性建模。

[0281] 图5左侧堆叠的5个数据圆柱代表动态数据采集。一般经济数据除了其他数据项外还包括多个利率和宏观经济因素时间序列。这些时间序列是周期性更新的。一些数据项包括每天的数据。虽然数据采集的工作量很大，但其大部分仍是定义明确和有序的。许多数据项可以分从公开或商业数据源中轻易获得。

[0282] 住房经济数据是完全不同的东西。虽然数据采集包括某些标准的，可公开获得的数据，例如可公开获得的区域性或国内住房价格指标，但还包括全国各地的个人房屋交易特征数据。这种交易特征数据是不规律的。对于某些房屋而言可以在某些时间点上对其特征（例如厨房台面这样的内部装饰）进行非常广泛的评估，而对另一些房屋而言只可以在某些时间点上进行初步评估。可以按可变的完整程度和详细程度来上报交易。与建筑物的折旧相关的数据包括一些非常详细的信息，但主要受时间和地理差异的影响。数据的不均衡性面临两个挑战。第一，在不规则条件下组织数据采集非常关键——这是数据圆柱“内”的一项任务。分析机中的多个计算单元必须能够同时评估和使用不同的数据单元。第二个挑战存在于数据圆柱之外：计算步骤必须在不规则条件下进行。完成这个挑战需要数据推算程序和其他方法论以应对丢失数据和不均衡数据。

[0283] 住房具体数据圆柱包括财产交易历史以及各种以往及当属属性特征。该数据超过住房经济数据圆柱中可用的数据。该圆柱包括从公共和商业数据源中获得的数据，但不包括创建和维护DOOR工具的处理中生成的数据。这些处理从诸如财产评估和房屋报告之类的数据库中生成其他数据。

[0284] 交易数据圆柱代表进行初始化处理的交易中产生数据。只有在购买或出售房屋且该分析机设置初始化时该圆柱才有意义。初始值用于详细说明资产的百分比的发展变化或确定该百分比的最终值。在出售或购买完成后，叠加数据圆柱中产生数据被传送至住房经济数据和住房具体数据圆柱。

[0285] 房主数据圆柱包括与DOOR工具的还款时间相关的信息。该信息的范围可能很宽。诸如年龄、健康状态和收入之类的个人特征是相关的。此外，DOOR工具的还款时间会受到抵押贷款的状态的影响。因此，房主的特征和历史是相关的。
[0286] 所有圆柱中的数据都是动态的。圆柱中诸如融资时间序列之类的现有数据被持续更新。此外，新的数据也是可以获得的。例如，新的折旧信息包括新的数据集，并且在住房经济数据圆柱中不会有现有的副本。新的房价期货市场会出现。分析机包括由图5左侧的粗体矩形所代表的数据更新处理组件。该处理包括完整范围的数据更新，也就是说从现有可用数据序列的定期增加值到全新数据单元的增加值的范围。这种更新需要进行某些计算，因为新数据必须要被转换为与圆柱中的数据结构相一致的格式。

[0287] ANZIE-DOOR的分析机的许多特性由图5表示，这些特性在系统不同于ANZIE-DOOR的主体的分析机的后续附图中再次出现。基于本文图5的扩展性讨论来考虑这些后续附图。本文通过明确地对图5的详细声明，从而避免重复解释已展示过的特征。

[0288] 数值例证

[0289] 为了说明ANZIE-DOOR中保险资产的增加，考虑一个例子。假设在整个适用的时间段内净租金为零，预期升值为7%每年，且\(i_e = i_t = 0.05 \)。（利率\(i_t = 0.05\)按年计算。）相反，等式（5）需要i的即时形式\(\ln(1+i_e) \)比率因子简化为：

\[
\pi_k(t_0) = \frac{a_k(t_0) + \frac{a_k(t_0)}{a(t_0)}}{a(t_0)} = \frac{a_k(t_0)}{a(t_0)}
\]

[0290] 将净租金设为零，这保证了比率因子为正。唯一变量为Lr, 也就是隐性优先级贷款的“贷款对价值”比（“LTV”）。因为优先级的大小保持不变，因此随着房屋升值，Lr和比率因子减小，这减慢了保险资产的增加。这个例子并不完全是想象出来的，它可以被认为是某些房产市场中的“正常”条件的高度程式化，比如加利福尼亚州的旧金山海湾地区，在具有可忽略不计的或甚至是负的净租金的条件下在很长的时间内保持很强的升值。

[0291] 假设房主以$200,000购买房屋，其中ANZIE-DOOR工具提供了$40,000的资金。优先级为$160,000，这代表80%的初始“LTV”。考虑一个感性的价格路径：房屋每年准确地按预期年升值率7%升值。表6显示了保险资产随着房主和投资者年年产出增长的模式。倒数第二栏表示投资者的总体仓位的真实价值，而最后一栏显示了在适用的一年中在该仓位中的增值百分比。

[0293] 表6. ANZIE-DOOR——一个价格路径举例
<table>
<thead>
<tr>
<th>年</th>
<th>比率因子</th>
<th>保险资产百分比</th>
<th>房屋价值</th>
<th>LTV (优先资产)</th>
<th>房主保险仓位</th>
<th>投资者仓位</th>
<th>投资者年回报%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>0%</td>
<td>$200,000</td>
<td>80.00%</td>
<td>$40,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.571</td>
<td>2.75%</td>
<td>$214,000</td>
<td>74.77%</td>
<td>$5,884</td>
<td>$48,116</td>
<td>20.29%</td>
</tr>
<tr>
<td>2</td>
<td>0.534</td>
<td>5.25%</td>
<td>$228,980</td>
<td>69.88%</td>
<td>$12,023</td>
<td>$56,957</td>
<td>18.37%</td>
</tr>
<tr>
<td>3</td>
<td>0.499</td>
<td>7.53%</td>
<td>$245,009</td>
<td>65.30%</td>
<td>$18,450</td>
<td>$66,559</td>
<td>16.86%</td>
</tr>
<tr>
<td>4</td>
<td>0.466</td>
<td>9.61%</td>
<td>$262,159</td>
<td>61.03%</td>
<td>$25,196</td>
<td>$76,963</td>
<td>15.63%</td>
</tr>
<tr>
<td>5</td>
<td>0.436</td>
<td>11.51%</td>
<td>$280,510</td>
<td>57.04%</td>
<td>$32,295</td>
<td>$88,215</td>
<td>14.62%</td>
</tr>
<tr>
<td>6</td>
<td>0.407</td>
<td>13.25%</td>
<td>$300,146</td>
<td>53.31%</td>
<td>$39,783</td>
<td>$100,363</td>
<td>13.77%</td>
</tr>
<tr>
<td>7</td>
<td>0.381</td>
<td>14.85%</td>
<td>$321,156</td>
<td>49.82%</td>
<td>$47,696</td>
<td>$113,460</td>
<td>13.05%</td>
</tr>
<tr>
<td>8</td>
<td>0.356</td>
<td>16.32%</td>
<td>$343,637</td>
<td>46.56%</td>
<td>$56,071</td>
<td>$127,566</td>
<td>12.43%</td>
</tr>
<tr>
<td>9</td>
<td>0.333</td>
<td>17.66%</td>
<td>$367,692</td>
<td>43.51%</td>
<td>$64,949</td>
<td>$142,743</td>
<td>11.90%</td>
</tr>
<tr>
<td>10</td>
<td>0.311</td>
<td>18.90%</td>
<td>$393,430</td>
<td>40.67%</td>
<td>$74,370</td>
<td>$159,060</td>
<td>11.43%</td>
</tr>
<tr>
<td>11</td>
<td>0.290</td>
<td>20.04%</td>
<td>$420,970</td>
<td>38.01%</td>
<td>$84,381</td>
<td>$176,590</td>
<td>11.02%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.271</td>
<td>21.10%</td>
<td>$450,438</td>
<td>35.52%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0.254</td>
<td>22.07%</td>
<td>$481,969</td>
<td>33.20%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0.237</td>
<td>22.96%</td>
<td>$515,707</td>
<td>31.03%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0.222</td>
<td>23.79%</td>
<td>$551,806</td>
<td>29.00%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>0.207</td>
<td>24.56%</td>
<td>$590,433</td>
<td>27.10%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>0.194</td>
<td>25.27%</td>
<td>$631,763</td>
<td>25.33%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>0.181</td>
<td>25.92%</td>
<td>$675,986</td>
<td>23.67%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>0.169</td>
<td>26.53%</td>
<td>$723,306</td>
<td>22.12%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0.158</td>
<td>27.10%</td>
<td>$773,937</td>
<td>20.67%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>0.148</td>
<td>27.62%</td>
<td>$828,112</td>
<td>19.32%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>0.138</td>
<td>28.11%</td>
<td>$886,080</td>
<td>18.06%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>0.129</td>
<td>28.56%</td>
<td>$948,106</td>
<td>16.88%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>0.121</td>
<td>28.98%</td>
<td>$1,014,473</td>
<td>15.77%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>0.113</td>
<td>29.37%</td>
<td>$1,085,487</td>
<td>14.74%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>0.105</td>
<td>29.73%</td>
<td>$1,161,471</td>
<td>13.78%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>0.098</td>
<td>30.06%</td>
<td>$1,242,774</td>
<td>12.87%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>0.092</td>
<td>30.38%</td>
<td>$1,329,768</td>
<td>12.03%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>0.086</td>
<td>30.67%</td>
<td>$1,422,851</td>
<td>11.25%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>0.080</td>
<td>30.94%</td>
<td>$1,522,451</td>
<td>10.51%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[0295] 房主若干年后累积起大量保险资产股权。即使房主在非分期还款的基础上借了整个优先券的金额，房主也会稳稳地从中获益。这种结果展示了ANZIE-DOOR对于普通房主的潜在作用，没有必要再将一个人的绝大部分或所有财富投入其房屋中以从中获益。其他的途径会怎样呢？如果房屋急剧升值，那么保险资产百分比会缓慢增加。房主会继续在大多数情况下中“从中获益”吗？为了解决这个问题，考虑到使用上述基金模型的例子及随机版表：房屋价格遵守几何布朗运动，具有7%恒定预期年几何回报率和9个百分点的标准偏差，工具的预期持续期为十年，有相关的无风险利率在期限和事件跨度上保持0.05，继续假设年租金保持为零。

[0297] 表7显示了由12,000个单独样本组成的每年的保险资产百分比范围。该表显示了平均值、标准偏差、最小值、最大值和1%，10%、90%、99%的情况。为了产生额外的视角，假设起始值为1，最后两栏表示12,000次仿真中每年的最小和最大房屋价值。（该表标记为“非追索性实例”，因为ANZIE-DOOR中的优先券“贷款”为非追索性的。稍后将讨论使用相同基准模型的追索性实例的仿真。）
年终保险资产百分比 & 房屋价值极值

净租金 = 0% 每年; 预期升值 = 7% 每年

<table>
<thead>
<tr>
<th>年</th>
<th>平均值</th>
<th>标准差</th>
<th>最小值</th>
<th>1%</th>
<th>10%</th>
<th>90%</th>
<th>99%</th>
<th>最大值</th>
<th>最小价值</th>
<th>最大价值</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.75</td>
<td>0.00</td>
<td>2.75</td>
<td>2.75</td>
<td>2.75</td>
<td>2.75</td>
<td>2.75</td>
<td>2.75</td>
<td>0.73</td>
<td>1.47</td>
</tr>
<tr>
<td>2</td>
<td>5.27</td>
<td>0.22</td>
<td>4.58</td>
<td>4.84</td>
<td>5.01</td>
<td>5.55</td>
<td>5.88</td>
<td>6.98</td>
<td>0.69</td>
<td>1.71</td>
</tr>
<tr>
<td>3</td>
<td>7.57</td>
<td>0.46</td>
<td>6.22</td>
<td>6.66</td>
<td>7.02</td>
<td>8.16</td>
<td>8.83</td>
<td>11.48</td>
<td>0.61</td>
<td>2.10</td>
</tr>
<tr>
<td>4</td>
<td>9.67</td>
<td>0.72</td>
<td>7.62</td>
<td>8.25</td>
<td>8.81</td>
<td>10.60</td>
<td>11.63</td>
<td>16.15</td>
<td>0.66</td>
<td>2.41</td>
</tr>
<tr>
<td>5</td>
<td>11.60</td>
<td>0.99</td>
<td>8.73</td>
<td>9.65</td>
<td>10.42</td>
<td>12.87</td>
<td>14.27</td>
<td>20.66</td>
<td>0.68</td>
<td>2.91</td>
</tr>
<tr>
<td>6</td>
<td>13.37</td>
<td>1.26</td>
<td>9.76</td>
<td>10.90</td>
<td>11.86</td>
<td>15.01</td>
<td>16.74</td>
<td>23.54</td>
<td>0.63</td>
<td>3.47</td>
</tr>
<tr>
<td>7</td>
<td>15.00</td>
<td>1.53</td>
<td>10.64</td>
<td>11.96</td>
<td>13.17</td>
<td>16.97</td>
<td>19.16</td>
<td>26.07</td>
<td>0.65</td>
<td>3.84</td>
</tr>
<tr>
<td>8</td>
<td>16.50</td>
<td>1.79</td>
<td>11.32</td>
<td>12.96</td>
<td>14.35</td>
<td>18.79</td>
<td>21.40</td>
<td>28.63</td>
<td>0.61</td>
<td>4.38</td>
</tr>
<tr>
<td>9</td>
<td>17.88</td>
<td>2.04</td>
<td>11.97</td>
<td>13.85</td>
<td>15.42</td>
<td>20.49</td>
<td>23.53</td>
<td>32.60</td>
<td>0.61</td>
<td>5.12</td>
</tr>
<tr>
<td>10</td>
<td>19.15</td>
<td>2.29</td>
<td>12.58</td>
<td>14.66</td>
<td>16.40</td>
<td>22.08</td>
<td>25.48</td>
<td>36.84</td>
<td>0.68</td>
<td>4.77</td>
</tr>
<tr>
<td>11</td>
<td>20.32</td>
<td>2.52</td>
<td>13.13</td>
<td>15.38</td>
<td>17.31</td>
<td>23.58</td>
<td>27.41</td>
<td>39.85</td>
<td>0.60</td>
<td>5.35</td>
</tr>
<tr>
<td>12</td>
<td>21.40</td>
<td>2.74</td>
<td>13.68</td>
<td>16.07</td>
<td>18.13</td>
<td>24.94</td>
<td>29.12</td>
<td>41.87</td>
<td>0.62</td>
<td>6.03</td>
</tr>
<tr>
<td>13</td>
<td>22.41</td>
<td>2.95</td>
<td>14.23</td>
<td>16.67</td>
<td>18.88</td>
<td>26.22</td>
<td>30.79</td>
<td>43.56</td>
<td>0.71</td>
<td>6.43</td>
</tr>
<tr>
<td>14</td>
<td>23.33</td>
<td>3.15</td>
<td>14.70</td>
<td>17.25</td>
<td>19.57</td>
<td>27.41</td>
<td>32.17</td>
<td>45.33</td>
<td>0.74</td>
<td>7.70</td>
</tr>
<tr>
<td>15</td>
<td>24.19</td>
<td>3.35</td>
<td>15.17</td>
<td>17.78</td>
<td>20.19</td>
<td>28.49</td>
<td>33.52</td>
<td>46.83</td>
<td>0.72</td>
<td>8.67</td>
</tr>
<tr>
<td>16</td>
<td>24.99</td>
<td>3.53</td>
<td>15.60</td>
<td>18.28</td>
<td>20.77</td>
<td>29.54</td>
<td>34.78</td>
<td>48.43</td>
<td>0.76</td>
<td>9.56</td>
</tr>
<tr>
<td>17</td>
<td>25.73</td>
<td>3.70</td>
<td>15.91</td>
<td>18.70</td>
<td>21.30</td>
<td>30.51</td>
<td>35.91</td>
<td>49.89</td>
<td>0.83</td>
<td>11.72</td>
</tr>
<tr>
<td>18</td>
<td>26.41</td>
<td>3.86</td>
<td>16.16</td>
<td>19.10</td>
<td>21.79</td>
<td>31.40</td>
<td>37.02</td>
<td>51.38</td>
<td>0.79</td>
<td>11.47</td>
</tr>
<tr>
<td>19</td>
<td>27.05</td>
<td>4.02</td>
<td>16.36</td>
<td>19.46</td>
<td>22.24</td>
<td>32.24</td>
<td>38.08</td>
<td>52.91</td>
<td>0.77</td>
<td>11.85</td>
</tr>
<tr>
<td>20</td>
<td>27.64</td>
<td>4.16</td>
<td>16.57</td>
<td>19.80</td>
<td>22.65</td>
<td>33.03</td>
<td>39.04</td>
<td>54.31</td>
<td>0.87</td>
<td>14.24</td>
</tr>
<tr>
<td>21</td>
<td>28.18</td>
<td>4.30</td>
<td>16.77</td>
<td>20.10</td>
<td>23.03</td>
<td>33.74</td>
<td>39.92</td>
<td>55.58</td>
<td>0.87</td>
<td>15.12</td>
</tr>
<tr>
<td>22</td>
<td>28.69</td>
<td>4.43</td>
<td>16.95</td>
<td>20.40</td>
<td>23.37</td>
<td>34.44</td>
<td>40.79</td>
<td>57.00</td>
<td>0.88</td>
<td>17.33</td>
</tr>
<tr>
<td>23</td>
<td>29.17</td>
<td>4.55</td>
<td>17.11</td>
<td>20.67</td>
<td>23.70</td>
<td>35.08</td>
<td>41.70</td>
<td>58.35</td>
<td>0.94</td>
<td>19.88</td>
</tr>
</tbody>
</table>
说明书

<table>
<thead>
<tr>
<th>24</th>
<th>29.61</th>
<th>4.67</th>
<th>17.27</th>
<th>20.91</th>
<th>24.02</th>
<th>35.70</th>
<th>42.57</th>
<th>59.50</th>
<th>0.91</th>
<th>24.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>30.02</td>
<td>4.78</td>
<td>17.42</td>
<td>21.13</td>
<td>24.33</td>
<td>36.25</td>
<td>43.35</td>
<td>60.72</td>
<td>0.91</td>
<td>27.49</td>
</tr>
<tr>
<td>26</td>
<td>30.41</td>
<td>4.88</td>
<td>17.58</td>
<td>21.37</td>
<td>24.59</td>
<td>36.76</td>
<td>44.07</td>
<td>61.91</td>
<td>0.81</td>
<td>31.27</td>
</tr>
<tr>
<td>27</td>
<td>30.76</td>
<td>4.98</td>
<td>17.73</td>
<td>21.58</td>
<td>24.82</td>
<td>37.28</td>
<td>44.85</td>
<td>63.23</td>
<td>0.84</td>
<td>37.38</td>
</tr>
<tr>
<td>28</td>
<td>31.10</td>
<td>5.07</td>
<td>17.88</td>
<td>21.76</td>
<td>25.07</td>
<td>37.76</td>
<td>45.46</td>
<td>64.45</td>
<td>0.93</td>
<td>40.68</td>
</tr>
<tr>
<td>29</td>
<td>31.41</td>
<td>5.16</td>
<td>18.01</td>
<td>21.89</td>
<td>25.28</td>
<td>38.16</td>
<td>46.05</td>
<td>65.50</td>
<td>1.03</td>
<td>43.26</td>
</tr>
<tr>
<td>30</td>
<td>31.70</td>
<td>5.24</td>
<td>18.15</td>
<td>22.05</td>
<td>25.47</td>
<td>38.58</td>
<td>46.56</td>
<td>66.42</td>
<td>1.00</td>
<td>43.25</td>
</tr>
</tbody>
</table>

【00301】从表中的数字中可明显看出高度鲁棒性。(12,000条价格路径中)每年的最小结果往往约为平均值的三分之二,平均值本身接近于7%固定升值价格路径的值。1%时的结果接近于平均结果的四分之三。分数“三分之二”和“四分之三”对于十年来说是比较高准确地。这些分数在一定程度上在前几年较大在后几年较小。
【00302】因此，在最差的情况下(包括非常高水平的加价)，房主实际上仍然能 “从中获益”。
【00303】这种仿真是启发性的而非定义性的，房价不遵守几何布朗运动。逐个时间段内房价的变化往往表现为正序列相关和随机波动度。这些显著的特点往往会加剧仿真的起伏，也就是使仿真结果在时间上延长并使其变得剧烈。然而，值得注意的是，仿真中对应于低保险资产百分比值的高低值结果与可比的真实世界情形中的绝大多数极端情况相比一样极端或更极端。例如，仿真的平均值增加率和房价变化显著低于旧金山海湾区在1976-2008年间的实际值。但该地区和该时间段内最大涨幅片段落在仿真区间内。来考虑圣何塞，旧金山，奥克兰MSA的一年，七年，十年和二十年中的所有情况，累计增加值绝不会接近仿真中的最大值。对于为了增加长度的四个时间段而言，绝大部分极值增加片段落在仿真中的大约99%的位置，低于99%但高于95%的位置，大约95%的位置和高于75%一点的位置。从涨价表现于正序列相关和随机波动这个情况下看，这种模式是合理的。本领域技术人员可以预见会有比几何布朗运动更剧烈的短期和中期价格变化，但长期价格变化的区别较小。
【00304】仿真中更深层次的问题是，我们已将净租金固定于零，且使形及的保持不变。这些假设很严格。总租金变动相当大，且拥有一个房屋的一个好处是对冲租金风险。房主支付房屋的购买金额，然后在拥有所有权的期间内不再受租金水平变动影响。Sinaii&Souleles(参文T.Sinaii和N.Souleles的Owner-occupied Housing as a Hedge Against Rent Risk,《Quarterly Journal of Economics》,vol.120,pp.763-89(2005年5月))提出了这种观点并且提供了租金波动方面的大量经验性证据。
【00305】此外，假设净租金为零(或负)，这确保了比率因子为正且房主的保险资本增加，这与其他方式不同。但在某些几何区域中净租金往往一直为正，并且即使在平均值常常为零的或负的某些区域中的某些时间段内也为正。如果净租金变动且表现为正值，就不能保证利润因子总是为正。利率和预期房屋升值也会变动。房价变化的序列相关意味着存在较低和较高预期涨价的时间段。
【00306】经济原则意味着净租金、预期房价上升和利率之间的关系也是这样的情况。虽然
这些原则看起来不是要完全解释真实世界中的楼市现象，但它们提供了设计DOOR工具方面有用的指导。在配备了ANZIE-DOOR成为基本实例后，下节中所进行的大部分讨论中注重于说明这些原则以及讨论与DOOR工具设计相关的某些见解。

[0307] 最后，不论本讨论中仿真的限制性特性是什么，它们都与下文所考虑的某些DOOR变体有关，特别是LAZIE-DOOR和COZIE-DOOR。这些变体的例子具有与仿真的某些限制非常一致的特征。

[0308] 一种经济观点

[0311] 将用户费用模型最初应用于业主自用型住房是为了研究纳税对房价以及住房市场平衡的影响。在本文的这个部分讨论了纳税在计算ANZIE-DOOR和相关变体的比率因子中的作用。

[0312] 一种简单的用户费用模型及其含义

[0313] 现在考虑一种简单的连续时间住宅模型：所有的变量都是时间t的函数，但本讨论内容省去了自变量t。除非其对于清楚来说是必要的，例如，当假设某些分量不随时间变化而另一些分量并不如此。房屋价值为$V = L + S$，其中L为土地价值而S为建筑物价值。如上文所阐明的那样定义以下瞬时年增加率：

[0314] r:总租金

[0315] d:折旧

[0316] p:财产税。
说明书

[0317] 假设这些比率覆盖了所有推算的或实际的现金流。对于业主自用型建筑而言，r为推算的现金流，等于“推算租金”。当业主出售房屋出租时，r为实际的现金流。“净租金”的瞬时年增加率为n=r-d-p。也就是说，假设业主每年支出d以维护建筑处于相同的条件，出租房屋的业主变卖了平均平摊到每年中的n美元。

[0318] 假设不存在通胀、有风险的中性经济和不随时间变化的无风险瞬时利率i。因此，利率的期限结构是平放且不随时间变化，并且具有年利率e^{-1}。

[0319] 如果缺少土地和不断增加的人口促使净租金按每年不变的瞬时速率g从时间零时的值g开始增加，那么时间t时的房屋价值为：

\[H(t) = \int_0^t ne^{-is} e^{s(t+s)} ds = e^{st} i = e^{st} H(0) \]

[0320] 房屋价值同净租金以瞬时速率g不断增加。如果物理折旧按恒定瞬时速率δ发生，且业主每年支出d=\((1-e^{-δ}) \)来维护房屋处于其原始状态，那么S和d维持不变。对于按恒定速率g不断增加的H而言，I必须首先以大于g的速率增加，然后速率渐渐降低到g。这种情况是假想的，但在此目的的创建简单的直观实例。

[0321] 如果v为净租金的瞬时速率，a为房屋升值的瞬时速率，且n为合适的风险溢价，那么在忽略税的前前提下，瞬时用户费用关系式为：

\[v + a = i + g \tag{9} \]

[0322] 等式(9)描述了理性参与者经济的平衡。如果“泡沫”或其他偏离经济基准的情况存在，那么该模型并不是市场结果的完整描述，相反为评价房价是否偏离基本价值提供了一个基准。例如，(之前的)Himmelberg等人基于用户费用计算出推算的价格对租金比，然后将其与多个美国城市中的市场价格对租金比进行比较，以确定房价在多个方面上是否主要受基本规律的驱动。在接下来的讨论中，我们以假设用户费用模型是适用的为出发点。该方案在DOOR工具设计中产生了不错的观点，即使其只是接近于现实。

[0323] 对于我们刚才考虑过的不断增值的永久所有权情形而言，n=0，这是因为经济为风险中性的，且a=g。因此，v=i-g，且v>0是必要的，从而避免房屋价值成为无穷大。(i-g>0是必要的相关假设条件，以从诸如等式(9)之类的逐段时间费用公式中导出当前的价值公式，例如本文的这个部分的开头处所陈述的公式。)

[0324] 比率因子表现为特别简单的形式：

\[n_t = \frac{i}{v + a} = \frac{i}{v + a} - (1 - L_p) \]

[0325] 为使比率因子为正：(i)增加速率必须很大；(ii)优先工与房屋价值相比必须非常大。由于L_p在房屋价值以速率g增加时下降，g和i保持不变，因此很明显比率因子最终变成了负的。因此，如果目标是保证房主的保险资产持续以相当大的速率累积，那么ANZIE-DOOR是不适用的。相反，保险资产百分比最终停止增加并且开始下降。保险资产百分比可以变成负的。然后保险资产累积起来，这有利于投资者而不是房主。下文所提供的多种方式的ANZIE’S SID，DOOR、LAZIE-DOOR和FIZED-DOOR在保留ANZIE-DOOR的某些或所有其他必要特征的同时解决了这些问题。

[0326] 前面的讨论中的多个例外具有一个特征：在有利于房主的前提下谁拥有什么百分比随时间持续且大幅地增加且与房价路径无关。将净租金设为零是这种结果背后的另一个驱动因素。比率因子变为：

45
说明书

0330 \[x_n = \frac{b_n}{n} \]

0331 在a>0的环境中比率因子总为正。

0332 零净租金或甚至负净租金的情况是不常见的。在某些“昂贵”的住房市场中，这样的情况会在很长的时间内出现并持续存在。这样的市场的特征在于高价格-租金比。一个潜在的原因时，由于投机狂热使房价偏离经济学路线，使价格和升值率很高。出租房屋的投资者和获得推算租金的房主都愿意承受零或负净租金从而赶上人为升值波形。但是，在较短时间内所保持的零或负净租金的情况也容易成为市场基本面的结果。如果市场参与者期望租金有增长的 增长，那么现有的净租金可能是负的或零。现在考虑净租金在当前t时刻处于水平n并且一直保持该水平直到之后的时间T。此时，净租金增加至新的更水平n+\Delta，并一直维持在该水平。此时，时间t的房价为:

0333 \[H(t) = n \int_0^T e^{-t(s-t)} ds + e^{-t(T-t)} \frac{n+\Delta}{t} \]

0334 如果n=0, 那么在逻辑上未排除H的任何值。特别是，如果\Delta 很大的话，H很高。在美国，在已经或将要在某些时间段内经历零净租金、很低的净租金或负净租金制度的地区中，这个故事是不大可信的。这些制度往往出现在那些由于地理或规则的原因导致新房的未来潜力有限的城市或地区，而不出现在其商业或生活方式吸引人们在此生活的城市或地区。

0335 对于市场参与者而言合理的是要在人口增长的条件下预计这些地区中将来的溢价租金。

0336 如果某人愿意假设真实的市场行情满足等式(9)中的用户费用关系式，则该用户费用关系式表示可用的重要的经验性捷径。只要知道v,a,i和n中的任意三个就可以，第四个是多余的。如果存在一种可用的可靠资产定价模型，那就可以相对直接地估计i和n。另一方面，总租金(以及净租金)和预期房价上升都可能更不切实际。

0337 纳税

0338 业主自用型房屋的用户费用关系式最初被应用于研究纳税对房价和住房市场平衡的影响。该应用中的用户费用等式包含表达了诸如扣除财产税和抵押贷款利率之类特征的其他项(参见J. Poterba和T. Sinai的Tax Expenditures for Owner-Occupied Housing: Deductions for Property Taxes and Mortgage Interest and the Exclusion of Imputed Rental Income,《American Economic Review》, vol.98:2, pp.84-89(2008年5月))。

0339 ANZIE-DOOR的比率因子计算和相关变量具有很强的用户费用特点，虽然用户费用关系式并不要求应用这些计算和变量。一个重要的问题是，比率因子计算中的支出要素是否应被调整从而将纳税考虑在内。例如，房主能够扣除财产税但不能扣除折旧。另一种方式是：在税前还是税后的基础上衡量各方的净支出?答案并不完全清晰，但如果对各方纳税的处理方式维持类似于现有备选方案条件下的处理方式，那么使用税前折旧就足够了。

0340 情况显然是非常复杂的。比率因子的根本作用在于产生一种状况：DOOR工具在任何时候都在模仿市场交易。不同纳税人之间的税后分量是不同的，这是因为纳税人面对的是不同的税率和对其他特征的不同处理方式，例如对于扣款的某些限制。如果没有完美地增加税收，那么市场价格就只能被调整为用来为一种类型的纳税人产生零净现值交易，也
就是没有经济利润。这种类型就是正在讨论的资产的“边际投资者”。其他类型是超边际性的，且其中的一些能够获得资产价格中未资本化的纳税奖励。

[0342] 无论DOOR工具的特定税务处理方式如何，一些投资者或房主都会是超边际的。重要的是DOOR工具本身是否允许住房交易的基本组成的新的纳税可能性。如果允许，那就存在税务机关从而使用或不使用这些工具。如果税务处理方式与备选方案相比为投资者和房主创造了净联合收益，那么就会存在使用工具的税务动机。如果会损害联合收益，那么就会存在不使用工具的动机。

[0343] 另一个问题是如何在多种边际利润中存在税务动机。许多金融方案允许个人或家庭生活在房屋中。两种常规的安排是从投资者型业主处租房或利用混合型债务和融资来买下房屋。这两种安排产生不同的纳税情况。投资者型业主主要为租金交税，为出售收益交税，能够在卖房时扣除损失，并且能够扣除房产税、抵押贷款利息和折旧。拥有房屋的业主不用为推算租金交税，不能扣除折旧，能够在特定条件下扣除抵押贷款利息和折税，能够避免出售收益超过特定限度，但不能在卖房时扣除损失。DOOR方案中的非金融性所有权和控制方面几乎与业主自用型的情况相同。例如，房屋所有人决定何时出售和购买房屋并且负责维护，因此将业主自用型房屋考虑成基准情况是合理的。

[0344] 在给出基准后，就很容易详细说明一种税务处理方式，这种税务处理方式不给或几乎不给各方税务动机从而从备选方案中选择DOOR方案。达到以上目的的最简单的方式是以上文中首先为ANZIE-DOOR所提出的分歧为出发点。该工具由常规的“真实”部分加独立的“抽象概念”的私下交易组成。私下交易的关注点是资产价格的增加。常规部分涉及资本结构、财产税、折旧和抵押贷款利息（若优先块为债务融资型）。房主至少在ANZIE-DOOR中要支付财产税和抵押贷款利息。在没有DOOR工具的情况下允许房主在适用于房屋自住者的税务规定的情况下扣除这些费用是有道理的。类似地，有些税务规定禁止扣除折旧，所以房主不能扣除这部分。在ANZIE-DOOR中，房主的资本收益不可能属于常规部分，但资本损益属于常规部分。承诺资产不能超过房主的出资（等于基础），但如果房屋价值跌至优先块金额之下，那么可以减少或彻底取消承诺资产。同样，与不具有DOOR工具的情况并列的是，恰当的处理方式可以防止任何损失，但需要告知的是，会涉及私下交易。

[0345] 私下交易非常类似于预先还款的长期合同，其中预先还款随时间而发生。房主的净出借积累起保险资产的增加，且在出售房屋时通过投资者向房主支付等于房屋价值增长百分比的金额来结算合同。如果获得的金钱数额超出总计出借，那么房主就盈利了。在此情况下，投资者有相应的损失。将这些看成是资本收益和损失是合理的。

[0346] 现在要附带说明的是，在常规的所有权的情况下，I.R.C. §21规定房主的资本收益不能超过一定限度，但房主不能扣除资本损失。将这种规定转变为Z资本结构情形的一种方式是将房主在保险资产方面的盈利或亏损与承诺资产方面的盈利或亏损组合，然后用常
规的处理方式限制总计盈亏或亏损，防止损失并禁止盈亏超过适当限度。在ANZIE-DOOR情况下的保险资产和承诺资产代替常规方案中房主的资产的基础上，这种处理方式是合理的。

【0347】 一些DOOR变体涉及常规的资本结构。下文所讨论的COZIE-DOOR就是一个例子。保险资产帐户的增值税有利于投资者。因此，本文中的替代性讨论不适用，房主所用的明显的税务处理方式将常规的规定应用于交易的常规部分，但将私下交易当作是产生资本收益或损失的抽象的非住房融资业务。常规部分产生的结果与常规房屋所有权条件下产生的结果非常匹配，包括121扣除的金额。

【0348】如果税务机关以刚才描述的方式来对待ANZIE-DOOR工具，那么房主就处于非常类似于常规所有权的处境：抵押贷款利息和财产税在特定限制条件下可扣除，折旧不可扣除，资本损失不可扣除，121规定的扣除适用于资本收益。

【0349】投资者又如何呢？投资者所需物质概念房屋中的融资仓位和私下交易中抽象概念上的空头。如果投资者支付抵押贷款利息、财产税和折旧费用，那么这些就都是可扣除的。相反，在ANZIE-DOOR中，房主进行付款，因此，对于投资者而言没有合适的扣除或基本调整。在私下交易中，投资者获得抽象层面上房屋中的不断增加的空头。空头的进账是房主对投资者的周期性净出资。有代表性的是，获得空头不会产生等于进账额的即时收入，但相反会发生在卖家产生结果，也就是在卖家时支付的结束空头的金额少于总计进账额这个意义上的资本收益。

【0350】还存在各方对ANZIE-DOOR工具的其他可能的税务处理方式。潜在税务处理方式的全面讨论会很冗长而且很专业，并且超出了本文的范围。关键点是，存在使各方在备选方案中处于类似的纳税处境的税务处理方式，而且不会或几乎不会损害比率因子计算中的税前分量。

【0351】应用于多种DOOR工具的真实税务处理方式很有可能会影响工具的市场周期。如果是这样，那就要适当地调整分析机的运作：对于所有不涉及补贴的DOOR工具而言，周期必须是使该方案在初始时是市场交易，而对中性DOOR工具而言，每次调整必须重新建立方案使其成为符合真实价值的市场交易。

【0352】本文稍后所要讨论的变体包括ANZIE-DOOR中未出现的特征，且本文讨论了对应于这些特征之中某些特征的可能的税务处理方式。通过这些讨论和这一节中的内容，对于本领域技术人员而言，多种税务处理方式对不同DOOR变体的调整机制的影响是显而易见的。

【0353】DOOR的灵活性

【0354】DOOR的调整处理使其具有高度灵活性。ANZIE-DOOR具有一组特定的合同条款，例如房主支付财产税，并且该工具调整保险资产额以实现中立性。DOOR机制允许几乎任意模式的固定合同条款，且中性调整可涉及除保险资产帐户以外的其他特征。还有可能的是，在具有特定目的时放宽中立性，从而使合同条款灵活，甚至能够在运作时在中性DOOR工具之间进行切换。

【0355】合同条款

【0356】固定的合同条款在许多方面可能与ANZIE-DOOR不同。例如，一种变形要求投资者支付财产税，同时详细说明一个房主对于投资者的固定的每季还款计划。目的是使房主的财产税率不会改变，从而将风险转移给投资者。
合同本身允许某些特征方面的灵活性。例如，合同允许房主在任意时间对投资者进行额外的自愿的还款。在ANZIE-DOOR型方案中，这些还款导致下一时段内或还款后的某个微小时间增量内保险资产的增加速度出现补偿性增加。没有必要将信贷还款延迟到下一次计划好的调整。还款本身产生一次调整并且开始一个新的周期。

变体是无穷的。房主对投资者的还款可能是周期性的、偶然的、是诸如利率之类变量或参考的函数，或可以包括房屋价值的市场行情进行触发。还款可以是部分或完全自愿的。还款可以顺着其他方向，例如从投资者到房主。在ANZIE-DOOR型方案中，这表示较慢的保险资产增值，但房主会从现金流中获利。在赎回或房屋市值“套现”的情况下，这样的方案可能是有用的。

调整机制可轻易地适应更多根本性转变，也就是等同于利用新的不同的工具进行再融资。例如，可以选择任意时间在ANZIE-DOOR的常规样式和投资者支付财产税的上述样式之间转换。

不论合同本身被改变还是各方在合同规定条件内在运作中改变交易，DOOR的中立性机制可以轻易地适应这些变化。所有涉及的这些都是具体算法的调整，也就是作为可用软件程序中的一个变化而被轻易加入的调整。可以很容易地想象通过简单的在线处理步骤即刻执行改变且几乎没有费用。

中性DOOR工具的灵活性允许目前不灵活的许多任务得以轻易完成且费用很低。例如，房屋净值信用贷款（"HELOC"）目前需要独立的正式贷款。如果房屋升值很多，而信用贷款额的向上调整并不是自动的。这就需要房主再融资。同样，允许房主产生HELOC型贷款以作为实际上免费的期权的特征是与许多DOOR变体一致的。此外，信用贷款额随房屋价值和市场行情实时变化。现在来考虑ANZIE-DOOR的结构，如果必要的话房主最多可借到优先块的全部金额。在没有现金出资的情况下，房主扩展优先块的方式有两种：(i) 通过承担更多的抵押贷款；(ii) 通过将贷款资产转变为承诺资产。这两种途径在DOOR中都很简单。合同可允许贷款资产转变为承诺资产，可能以最低水平的保险资产为准，例如10个百分点，以确保房主维持房屋的物业保持不变。这种转变增加了房主的借贷容量，这是因为他通过增加承诺资产增加了优先块的大小。虽然贷款资产下降了，但贷款资产的增值率提高了，这反映了现在更大的优先块。作为调整程序的一部分，在指定为可用于改变优先块的保险资产金额的任意时刻，都可以进行“报价”。当然，DOOR合同也包括不用于优先块的借贷限制。这些限制可以是预先规定的或可以随房屋价值和其他市场参数实时波动。结合这种借贷能力，这实际上要求将房主信贷情况方面的数据考虑或用于更新相应DOOR工具的分析处理的一部分。这些数据一般仅在房主同意时才能获得。

第一种途径是否轻松取决于第三方所涉及的程度。如果投资者同时也是抵押贷款的放贷方，那么扩大贷款就是“内部”调整。这可能涉及某些收放成本，但交易费用与通过第三方放贷方进行的常规再融资备选方案相比可能相当低。与成为抵押贷款放贷方的第三方相比，ANZIE-DOOR投资者具有其他潜在的优势。如果投资者同时也是抵押权人，那么ANZIE-DOOR合同内抵押权人产生外部的实际利益。在不涉及不在化的情况下，各方可能会放弃合并收益或要面对更高的谈判成本。但是，DOOR投资者可能不会是一个非常高效的抵押贷款放贷方。本节其他部分所讨论的其他DOOR变体包括完全避免外部性问题的特征。

中性机制
[0364] ANZIE-DOOR通过保险资产账户——也就是独立于房屋的资本结构收益的附带方案来实现中性。该账户随时间累计净出资，将净出资转换为房屋的抽象性对冲空头和多头。随着时间变化，由于房屋价值在改变，诸如利率之类的经济参数在波动，净出资平衡也在变化。保险资产账户吸收了这种波动，表现为平衡房主和投资者之间的交易的剩余价值。

[0365] 有多种备选方案可平衡交易。已经提及的一种方案是在"对账账户"中将净出资额的现金值与利息一起累计，然后在卖房时支付该账户。该方案具有"强制储蓄"方面的特点。房主只是在出售房屋时承诺在可取存的附属账户中累积资金——产生"SAVING-DOOR"变体。在未能维护房屋时该账户会遭受损失。一种更简单的方案是通过现金还款来结算每个时段内的净出资额。

[0366] 图6为说明实现SAVING-DOOR的分海析的流程图。图6与ANZIE-DOOR的相应流程图图5相比有3点不同。第一，计算的目的是调整对账（储蓄）账户的增值率而不是保险资产百分比。因此，在右侧最后的目标六边形为对账（储蓄）账户而不是保险资产百分比。该账户按长期确定性等价率来赚取利息，且该比率可以被重置或初始化，因此从计算该比率的六边形发出的箭头表示将新的比率输入账户计算。第二，与计算用于保险资产增值中的比率因子不同的是，SAVING-DOOR在对账（储蓄）账户中的增加额是房主的净出资额。计算净出资中所讨论的因素与计算比率因子的相同（除了预期折旧外）。因此，图6中的房主净出资六边形代替了图5中的比率因子六边形。第三，预期折旧被直接考虑进房主净出资计算中，而只是通过其对优先股推算利率的影响来间接地进行考虑。因此，图6中的预期折旧六边形不包括在直接对房主净出资计算产生影响的各种因素的灰色阴影堆叠中。相反，它与该堆叠分离并具有一个箭头指向优先股推算利率六边形。

[0367] 还有许多其他的潜在变体。例如，与增加保险资产不同的是，该方案可将净出资记入承诺资产。在该情况下，优先股以投资者的资产为代价进行扩展，且房主的预期净出资增加，从而加速累积更多的承诺资产。

[0368] 选择哪个方案取决于DOOR变体的目标。ANZIE-DOOR方案将全部净出资分摊到保险资产账户中，目的是最大化地增加"安全的"资产并且产生很强的维护动力。该方案对于职工住房和财富较少的房主而言是理想的，并且可以认为对"典型的"美国业主也是理想的。

[0369] 即使要保留这些目的，仍然可以想象有多种变体是适合的。保险资产方案不具有保险方面的特点，当按照或低于优先股的水平出售房屋时会有一点肉痛。在该情况中，不管投资者是否已经失去全部投资以及在卖房时没有任何现金回报，都要准备好支付房主一定百分比的房屋价值。ANZIE-DOOR中保险资产百分比的增加不受合同的限制，且该百分比能达到100％。这种开放无限制性可能会使投资失去吸引力。一种潜在的纠正方法是使保险资产百分比增加到一定限度，假设是20％，然后以其他方式进行进一步净出资调整：现金还款，增加承诺资产，对账户等。这种方案允许房主实现赚取大量资产的目标，因此能"从房屋市场中获益"而不论房价水平，但同时限制了投资者的保险责任。

[0370] 将保险资产账户用作净出资的剩余价值储蓄的另一个缺点是，出资的波动性使保险资产的累积速率为不确定性。对于许多房主而言，保险资产方案的一大吸引之处是卖房时可以带走稳定比例的房屋价值分成的前景以及随之产生的"从中获益"的保证而不论价格情况怎样。随机性地累积保险资产百分比至少在一定程度上与这些目标不一致。一种备选方案是规定保险资产的固定累积计划表，然后使净出资的随机剩余价值要素通过诸如现金还
款之类的其他方式来表明其本身是承诺资产，等等。结果就是保持了DOOR工具的中立性，同时使保险资产百分比的预期计划表变得确定。

[0371] 如上所述，中性机制意味着更普遍型的灵活性。没有必要预先承诺特定的中性DOOR工具。在运作中在中性工具之间切换是易于通用的，并且是下文所讨论的IS-A-DOOR变体的核心。

[0372] 放宽的中性

[0373] 中性DOOR工具具有极大的能量和范围，但有些情况中需要放宽中立性。有若干方式可以偏离严格的中性。第一，工具可以是中性的，但包括不频繁的调整。在该方案中，由于最近没有进行调整，因此随着经济条件发生改变，工具的运作会大幅偏离中性。极端形式就是预定计划表所定义的静态DOOR工具，该计划表规定了工具的所有预期特性，例如保险资产按事前中性的方式增长的路径。 (“事前”中性表示工具的实际价值等于其初始时的真实价值。) 这种形式非常有用。在确定性和嵌入式期权的费用之间取得了平衡。静态DOOR工具在诸如保险资产的增加额之类的方面产生了不确定性，但嵌入式期权价值往往会增加。如果DOOR工具中的条款变得不如市场有利，那么房主有能力进行再融资，如果DOOR工具中的条款变得比市场更有利，那么房主有能力继续将资金留在房屋中。

[0374] 偏离中性的另一种方式是保留调整机制但不要求严格的利润和亏损平衡。例如工具以美元金额或房屋价值百分比的形式将补贴并入比率因子计算中。该方案对于在职工住房的情况中是有价值的，其中补贴能够为生活在其工作地的个人提供经济支持能力。

[0375] 包括不频繁调整或补贴的DOOR变体是“半中性”DOOR工具的举例。中性的一些特征仍然存在，但不是完整和纯粹的中性。也可以想象有用的“非中性”DOOR工具。一个例子是具有非事前中性计划表的静态DOOR工具。下文的讨论提供了半中性和非中性DOOR工具的一些例子。

[0376] 多个变体

[0377] 即使仅限于考虑中性DOOR工具，很明显仍存在一组令人难以想象的可用DOOR变体。在大多数情况中，合理的是首先对投资者和房主分类并为每种类型指定目标。这些目标暗示着许多特点。组合必要的特点就产生了有用的DOOR变体。本文并不试图罗列所有可能性或深层次探究特定应用领域。本文旨在提供足够的变体以大致说明本发明的DOOR工具的范围和灵活性。

[0378] 在下文中，焦点在于多个变体。ANZIE’S SIDE DOOR是ANZIE-DOOR的一种扩展。其可用于许多环境中，包括低增值环境和为了累积特定房屋资产的情况。ANZIE’S NU DOOR解决了与“缩水”的房子以及策略性违约有关的问题，当房价跌至抵押贷款本金余额以下时策略性违约就会出现。ANZ TRIEDOOR和多种部分资源型DOOR工具将优先权风险从房主转移到投资者。COZIE-DOOR变体实现了房主将房屋资产变现的目标。IS-A-DOOR允许房主在DOOR变体之间连续地转换。LAZIE-DOOR和FIXED-DOOR是半中性或非中性变体的举例。

[0379] ANZIE’S SIDE DOOR

[0380] ANZIE’S SIDE DOOR通过增加房主和投资者之间的支付款项来 (“旁支付”) 扩展ANZIE-DOOR。这些支付改变了净出资平衡并且因此促使保险资产以更快或更慢的速率增加。旁支付的说明和指示取决于激励特定应用的目标。本文考虑了两种应用：(i) 在房价低速增长的时间或地区内实现ANZIE-DOOR的目标; 和(ii) 保险资产的目标。
请注意的很重要的一点是，劳动支付通常不具有类似于“租金”或“利息”这样的传统类型的难懂且快速的解释。相反，该支出代表一种刻意的尝试，以改变保险资产中所包含的“私下交易”。用来理解“劳动支付”的一种相关方式是，劳动支付仅仅是“私下交易”的一个方面。

该支付完全在私下交易中进行，这个事实具有税收影响。上述讨论提出了私下交易应被看作预先还款的长期贷款或更简单地看作房主和投资者分别持有的对冲多头和空头。在该制度下，劳动支付总为为更多多头房主的购买量，并且被算入基本影响中。在交易的另一方面，该支付是重复进行的其他卖空的收益，具有基本影响。没有现有的扣除或收入项。

满足低增值的地区和时间段

住房市场在对不同地理区域和时间段上是不同的。在一些地区，额外的、位置便利的土地对于居住用建筑而言是容易获得的。在这些地区中房价增长往往受限。与作为总体回报的一个因素的增值相比，隐性或显性租金看似很多。在其他地区，房价一直在升高且升高了了很多，例如，长期持续超出一般性物价通胀，房屋价值达到了净租金一直为零或负值的程度。这些地区通常缺乏某种自然或政府导向，例如通过制限制。举例可以包括许多欧洲城市，以及诸如旧金山、洛杉矶或纽约之类的美国海岸城市。即便这些地区有时有段持平或下降的房价。

与许多资产价格不同的是，房价变化往往是连续相关的，也就是说，下跌之后往往是进一步下跌。

租金密集型地区和一段时间内价格维持下降这两者给基于资产的住房工具提出了挑战。在租金密集型情况中，房主的净出资可能很小，或者甚至可能是投资者作出净出资。ANZIE-DOOR的结果是非常缓慢甚至是负的保险资产增值。我们的目的是提供一种工具允许典型的房主累积大量"安全"资产，但这种结果破坏了这个目的。

在一段时间内维持价格下跌这种情况甚至更糟糕。常规的基于资产的工具仅依赖于投资者回报的增值，该工具可能不可行。房主通过在该令人失望的价格时段内用基于升值的工具来进行融资，然后当市场开始恢复时进行再融资，就能够利用这段持续的价格下跌，最好的结果是在工具的持续期内享受免息贷款。如果房主进行战略出售，也就是在价格跌落足够多的时间点上套取资产凭据，从而排除房主中一部分或全部的投资者资产，那么投资者会损失“本金”。

ANZIE-DOOR避免了许多这样的问题，但向房主提供保险资产的持续升值这个目的在一些情况中是无法实现的。在ANZIE-DOOR中，租金密集型地区和一段时间内维持价格下跌所引起的潜在问题的原因是，只有在价格升高的情况下投资者才能获得利润。增加房主对投资者的临时或持续周期性旁支付是非常容易的。结果就产生了ANZIE’S SIDE DOOR样式。图7是显示按照本发明的ANZIE’S SIDE DOOR方案中对投资者的固定追加支出的示意框图。

在租金密集型市场中，该旁支付可能是永久性的，这导致房主应付出很大的净出资并导致保险资产有力地增长。如果保险资产有限制或目标，那么该工具会在达到目标或限度后规定减少旁支付。

连续几个月或几年保持价格下跌的这种可能性需要更大幅的灵活性和复杂性。
DOOR合同中的一种解决方案需要房主作出临时的旁支付。该支付的多少取决于当前适用的保险资产百分比，该百分比反映了附带帐户中保险资产的金额。还取决于当前房屋现值与优先权的关系。如果保险资产足够多，那么合同会允许保险资产百分比减少至底线，这就推迟或减少了旁支付。避免旁支付或减少旁支付可能是房主所需的一个特点，当前房屋价值的下降与地区性或全国性不景气有关时尤其如此。如果房屋价值相对于优先权足够低，那么房主就要付出很大的净出资，这样就不需要旁支付了。

[0391] 当价格下跌彻底抹去投资者的资产时，也就是房屋价值低于优先权时，会出现明确属于这种类型的情况。在这种情况下，投资者仓位的真实价值和实际价值为零。因为投资者在房子中的利息相当于具有正值的价外期权，房主必然付出净出资并且累积保险资产。如上所述，出资为看涨期权提供资金。保险资产的增加抵消了看涨期权的价值，这产生了投资者的零净值。该情况中的典型结果是，保险资产以很快的速率改变为房主积累，从而不需要旁支付。无论持续的降价是否预示着进一步降低的可能性很高，当投资者具有大量资产时，旁支付的需求变得强烈。

[0392] 数值举例：”出租比自用”

[0393] 上文连同ANZIE-DOOR一起介绍了一个例子，该例子以表7作为结束，并以高升值、低租金“基准”情况为基础，其中房价以7%每年的预期速率增长且净租金一直维持于零。对于美国的高房价地区而言，该例子是某些情况的十分粗略的程式化样式。

[0394] 现在考虑改变该基准模型，把总预期年回报（预期净租金+预期升值）一直维持在7%，但将混合比例大幅推向租金：净租金保持为3%每年且预期升值为4%每年。这种变化使比率因子的分母保持不变但减少分子3个百分点。保险资产增加得更快了。保持模型中的所有其他假定和参数不变，ANZIE-DOOR中的结果如下表8所示。

[0395] 表8. 举例——高租金样式，非追索性情况 (ANZIE-DOOR)
年终保险资产百分比 & 房屋价值极值

净租金 = 3%每年；预期升值 = 4%每年

<table>
<thead>
<tr>
<th>年</th>
<th>平均值</th>
<th>标准偏差</th>
<th>最小值</th>
<th>1%</th>
<th>10%</th>
<th>90%</th>
<th>99%</th>
<th>最大值</th>
<th>最小价格</th>
<th>最大价格</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.71</td>
<td>0.00</td>
<td>0.71</td>
<td>0.71</td>
<td>0.71</td>
<td>0.71</td>
<td>0.71</td>
<td>0.71</td>
<td>0.70</td>
<td>1.44</td>
</tr>
<tr>
<td>2</td>
<td>1.32</td>
<td>0.25</td>
<td>0.56</td>
<td>0.84</td>
<td>1.02</td>
<td>1.64</td>
<td>2.06</td>
<td>3.50</td>
<td>0.65</td>
<td>1.63</td>
</tr>
<tr>
<td>3</td>
<td>1.84</td>
<td>0.56</td>
<td>0.29</td>
<td>0.78</td>
<td>1.19</td>
<td>2.54</td>
<td>3.50</td>
<td>6.98</td>
<td>0.55</td>
<td>1.95</td>
</tr>
<tr>
<td>4</td>
<td>2.27</td>
<td>0.91</td>
<td>-0.19</td>
<td>0.55</td>
<td>1.21</td>
<td>3.41</td>
<td>4.96</td>
<td>10.68</td>
<td>0.58</td>
<td>2.18</td>
</tr>
<tr>
<td>5</td>
<td>2.61</td>
<td>1.30</td>
<td>-0.95</td>
<td>0.17</td>
<td>1.11</td>
<td>4.22</td>
<td>6.49</td>
<td>14.88</td>
<td>0.58</td>
<td>2.57</td>
</tr>
<tr>
<td>6</td>
<td>2.86</td>
<td>1.73</td>
<td>-1.77</td>
<td>-0.35</td>
<td>0.87</td>
<td>5.00</td>
<td>8.02</td>
<td>17.59</td>
<td>0.52</td>
<td>2.99</td>
</tr>
<tr>
<td>7</td>
<td>3.04</td>
<td>2.17</td>
<td>-2.77</td>
<td>-1.03</td>
<td>0.54</td>
<td>5.70</td>
<td>9.60</td>
<td>19.93</td>
<td>0.52</td>
<td>3.22</td>
</tr>
<tr>
<td>8</td>
<td>3.13</td>
<td>2.63</td>
<td>-3.99</td>
<td>-1.76</td>
<td>0.11</td>
<td>6.32</td>
<td>11.30</td>
<td>22.76</td>
<td>0.47</td>
<td>3.57</td>
</tr>
<tr>
<td>9</td>
<td>3.15</td>
<td>3.10</td>
<td>-5.22</td>
<td>-2.59</td>
<td>-0.42</td>
<td>6.90</td>
<td>12.90</td>
<td>27.88</td>
<td>0.46</td>
<td>4.08</td>
</tr>
<tr>
<td>10</td>
<td>3.09</td>
<td>3.59</td>
<td>-6.52</td>
<td>-3.55</td>
<td>-1.00</td>
<td>7.47</td>
<td>14.47</td>
<td>32.97</td>
<td>0.50</td>
<td>3.67</td>
</tr>
<tr>
<td>11</td>
<td>2.96</td>
<td>4.08</td>
<td>-7.88</td>
<td>-4.52</td>
<td>-1.68</td>
<td>7.93</td>
<td>16.20</td>
<td>36.94</td>
<td>0.42</td>
<td>4.01</td>
</tr>
<tr>
<td>12</td>
<td>2.76</td>
<td>4.57</td>
<td>-9.21</td>
<td>-5.65</td>
<td>-2.43</td>
<td>8.32</td>
<td>17.49</td>
<td>39.79</td>
<td>0.42</td>
<td>4.40</td>
</tr>
<tr>
<td>13</td>
<td>2.49</td>
<td>5.06</td>
<td>-10.55</td>
<td>-6.76</td>
<td>-3.28</td>
<td>8.70</td>
<td>18.45</td>
<td>41.88</td>
<td>0.47</td>
<td>4.56</td>
</tr>
<tr>
<td>14</td>
<td>2.16</td>
<td>5.56</td>
<td>-12.00</td>
<td>-7.95</td>
<td>-4.20</td>
<td>8.92</td>
<td>19.50</td>
<td>44.50</td>
<td>0.48</td>
<td>5.33</td>
</tr>
<tr>
<td>15</td>
<td>1.76</td>
<td>6.06</td>
<td>-13.54</td>
<td>-9.21</td>
<td>-5.19</td>
<td>9.15</td>
<td>20.39</td>
<td>46.48</td>
<td>0.45</td>
<td>5.84</td>
</tr>
<tr>
<td>16</td>
<td>1.30</td>
<td>6.57</td>
<td>-15.25</td>
<td>-10.57</td>
<td>-6.24</td>
<td>9.33</td>
<td>21.39</td>
<td>49.00</td>
<td>0.46</td>
<td>6.26</td>
</tr>
<tr>
<td>17</td>
<td>0.78</td>
<td>7.08</td>
<td>-17.01</td>
<td>-11.97</td>
<td>-7.33</td>
<td>9.44</td>
<td>22.35</td>
<td>51.35</td>
<td>0.49</td>
<td>7.48</td>
</tr>
<tr>
<td>18</td>
<td>0.20</td>
<td>7.59</td>
<td>-18.95</td>
<td>-13.50</td>
<td>-8.55</td>
<td>9.51</td>
<td>23.38</td>
<td>53.78</td>
<td>0.45</td>
<td>7.10</td>
</tr>
<tr>
<td>19</td>
<td>-0.45</td>
<td>8.10</td>
<td>-20.97</td>
<td>-15.04</td>
<td>-9.77</td>
<td>9.49</td>
<td>23.99</td>
<td>56.57</td>
<td>0.43</td>
<td>7.13</td>
</tr>
<tr>
<td>20</td>
<td>-1.15</td>
<td>8.61</td>
<td>-23.02</td>
<td>-16.66</td>
<td>-11.09</td>
<td>9.48</td>
<td>24.81</td>
<td>59.10</td>
<td>0.47</td>
<td>8.35</td>
</tr>
</tbody>
</table>
[0397]

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>-1.91</td>
<td>9.13</td>
<td>-25.12</td>
<td>-18.35</td>
<td>-12.47</td>
<td>9.38</td>
<td>25.49</td>
</tr>
<tr>
<td>22</td>
<td>-2.72</td>
<td>9.65</td>
<td>-27.26</td>
<td>-20.01</td>
<td>-13.92</td>
<td>9.25</td>
<td>26.25</td>
</tr>
<tr>
<td>23</td>
<td>-3.60</td>
<td>10.16</td>
<td>-29.49</td>
<td>-21.88</td>
<td>-15.38</td>
<td>9.05</td>
<td>26.86</td>
</tr>
<tr>
<td>24</td>
<td>-4.53</td>
<td>10.68</td>
<td>-31.76</td>
<td>-23.74</td>
<td>-16.94</td>
<td>8.85</td>
<td>27.52</td>
</tr>
<tr>
<td>25</td>
<td>-5.51</td>
<td>11.21</td>
<td>-34.07</td>
<td>-25.68</td>
<td>-18.54</td>
<td>8.57</td>
<td>28.08</td>
</tr>
<tr>
<td>26</td>
<td>-6.55</td>
<td>11.73</td>
<td>-36.38</td>
<td>-27.81</td>
<td>-20.20</td>
<td>8.25</td>
<td>28.62</td>
</tr>
<tr>
<td>27</td>
<td>-7.64</td>
<td>12.27</td>
<td>-38.73</td>
<td>-29.84</td>
<td>-21.94</td>
<td>7.95</td>
<td>29.42</td>
</tr>
<tr>
<td>28</td>
<td>-8.79</td>
<td>12.81</td>
<td>-41.14</td>
<td>-31.96</td>
<td>-23.72</td>
<td>7.53</td>
<td>29.76</td>
</tr>
<tr>
<td>29</td>
<td>-9.99</td>
<td>13.35</td>
<td>-43.62</td>
<td>-34.26</td>
<td>-25.51</td>
<td>7.05</td>
<td>29.71</td>
</tr>
<tr>
<td>30</td>
<td>-11.24</td>
<td>13.90</td>
<td>-46.10</td>
<td>-36.62</td>
<td>-27.45</td>
<td>6.58</td>
<td>29.72</td>
</tr>
</tbody>
</table>

[0398] 显然，对于大多数房主而言，该结果未实现通过增加大量保险资产而在若干年后使他们“从中获益”的目标。所有价格路径上的平均保险资产百分比从未超过3.15%，在第19年变成负，然后在第30年急剧下降，达到了-11.24%。只有导致保险资产增值的非常极端的情况(大约第99个百分点或再往上代表保险资产的增加，对应于很低或负的涨价)是令人满意的。在这个新例子中，房价的波动性没有被调低，而是与表7中的高预期升值一样保持不变。如果较低的波动性伴随着较低的预期升值，那么表8中的极端结果甚至比该表所表示的情况更加不切实际。

[0399] 为了更容易地制定ANZIE’S SIDE DOOR样式，其中房主对投资者每年进行付款以解决这个问题。假设该工具要求房主每年向投资者支付全部3%的净租金。此时比率因子恢复到与7%升值0%净租金的情况相同的值，支付给投资者的3%还款被加入等式(4)中的比率因子的分子中，从而正好抵消净租金中产生的负3%的那项。分母，也就是房屋的总预期回报，不会因增加了房主对投资者的每年的转移支付而改变。因此，结果与表7中一样，且房主在所有价格路径上都获得保险资产的大量增值。

[0400] 除居住者一开始就作为业主之外，这种情况类似于“出租比自用”方案。居住者支付“全部租金”(折旧+财产税+净租金)并且还负担抵押贷款的还款。这些抵押贷款还款是净出资并导致保险资产的快速增值。

[0401] 图8是说明实现ANZIE’S SIDE DOOR方案的分析机的流程图，该ANZIE’S SIDE DOOR方案包括房主对投资者的计划性还款，除从DOOR工具特征圆柱指向比率因子六边形的箭头的新增流程之外，该流程图与图5相同。新增的流程包括标有“还款计划表”的非线性矩形，这表示合同条款在房主身上强加了对投资者的某种还款计划表。这些还款被纳入比率因子的计算中。从DOOR工具特征圆柱指向比率因子六边形的其他直线箭头包括ANZIE-DOOR中早已出现过的数据和说明：优先股的大小和用于计算比率因子的公式。创建这条两个箭头的流程所强调的方面是将ANZIE-DOOR转变为的ANZIE’S SIDE DOOR方案的还款计划表。

[0402] 保险资产目标
ANZIE’S SIDE DOOR的另一种应用所对应的情况是房主更喜欢保险资产增值计划表的可预测性。ANZIE’S SIDE DOOR的一种样式实现了这个结果，它需要房主和投资者之间按可实现理想增值模式的方向和金额进行随机还款。图9是显示既定保险资产方案的示例性框图，该既定保险资产方案将随机还款用于按本发明的ANZIE’S SIDE DOOR方案。

图10是说明分析机的流程图，该分析机通过将随机还款用作余数平衡机制来实现包括既定保险资产方案的ANZIE’S SIDE DOOR样式。它与图5中所示的ANZIE-DOOR分析机有三点不同。第一，机器运行的最终结果是明确了在下一时段中房主和投资者之间的还款资金流，该还款资金流平衡了各方的净出资，从而允许房主的既定保险资产增值。因此，图10最右端的最后一个六边形代表计算必要的还款资金流而不是图5的ANZIE-DOOR中的保险资产百分比的变化。用于该计算的一个关键输入是比率因子的值，比率因子值促使保险资产的变化与ANZIE’S SIDE DOOR的可用既定保险资产方案中规定的固定计划表一致。在掌握该输入后，计算方法利用诸如等式(4)之类的比率因子关系式继续进行，对比率因子关系式进行转化以确定所需的还款资金流。

第二，比率因子的计算需要长期的确定性等价率，保险资产增值计划表，以往的利率值和诸如等式(5)之类的关系式。指向比率因子六边形的箭头表示所需的输入。

第三，有两个独立的箭头流程从DOOR工具特征圆柱指向比率因子六边形。一个是与图5相同的直线箭头，表示与ANZIE-DOOR中类似的信息流：计算比率因子所需的数学关系式中的以往数据和合同说明。另一个箭头流程包括标有“保险资产增值计划表”的非粗体框，该流程从DOOR工具特征圆柱开始，表示该计划表是合同规定的。这个箭头流程强调了比率因子的计算需要DOOR合同中的保险资产增值计划表。

为使ANZIE’S SIDE DOOR的既定保险资产方案更具体，我们来考虑一个例子。假设房主希望保险资产在10年后增值20个百分点并且将百分比保持在该水平。施加这种类型的计划表会产生随机还款，随机还款在最初的10年中总是从房主流向投资者但后来的流向相反。因此，在达到既定的保险资产百分比后，房主享有收益资金流。

在预期升值很高的情况下，房主可能希望在头几年的还款较重，以避免直至第10年仍必须支付极高的还款。回想具有零净租金和固定利率的等式(4)，由于优先级所代表的“贷款对价值”比的下降，因此比率因子的分子总是随着房子升值而下降。因此，如果不前紧后松，那么房主对投资者的还款数额很可能在十年间急剧增加。

但房主不必前紧后松。任何期望的模式都是可能的，并且可以插入动态要素。例如，房主可连续调整今后的还款或达到目标所需的时间长度以对还款设置上线和底线。DOOR工具的灵活性甚至允许更宽的可能性。例如，在保险资产达到某个最低水平后，DOOR合同可允许房主在每个时段开始时选择还款数额。不同的还款数额模式最终产生不同的保险资产数额。“困难目标”样式不是仅有的可能性。

数值举例：保险资产目标

为了进行对比，较为方便的是使用高升值低租金基准模型，该模型产生上文表7中的ANZIE-DOOR结果：房价以7%每年的预期速率增加并遵守几何布朗运动，且净租金保持不变为零。现在来考虑“困难目标”的例子：保险资产百分比在10年后增至20个百分点并在此后保持在该水平。这需要在最初的十年间有大约0.4463的平均比率因子，而之后的比率因子为零。按照代表房屋价值升值的价格路径接近中线，房主在头十年里对投资者进行额外
的支付，而此后从投资者那里获得付款。

[0412] 假设房主在头十年中要求相当稳定的支出。因为房价上升的趋势很明显，所以与
每年大约0.4463的必要平均值相比，房主希望起初具有较高的既定比率因子而最终（第
十年）具有较低的既定比率因子。保持比率因子的平均值不变并利用年度因子1/(1.075)创建
指数下降的模式，可以获得很好的结果。下面的表9显示了初始房屋价值百分比所表示的所
需还款分布：

[0413] 表9. 举例——具有困难的保险资产目标的ANZIE’S SIDE DOOR
目标：10年后20个百分点的保险资产

优先级 = 80% 初始房价价值

租金 = 0% 每年；预期升值 = 7% 每年

<table>
<thead>
<tr>
<th>年</th>
<th>所需还款为 a%初始房价价值</th>
<th>房屋价值</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>平均值</td>
<td>标准差</td>
</tr>
<tr>
<td>1</td>
<td>0.23</td>
<td>0.00</td>
</tr>
<tr>
<td>2</td>
<td>0.22</td>
<td>0.36</td>
</tr>
<tr>
<td>3</td>
<td>0.21</td>
<td>0.51</td>
</tr>
<tr>
<td>4</td>
<td>0.21</td>
<td>0.62</td>
</tr>
<tr>
<td>5</td>
<td>0.21</td>
<td>0.71</td>
</tr>
<tr>
<td>6</td>
<td>0.20</td>
<td>0.80</td>
</tr>
<tr>
<td>7</td>
<td>0.20</td>
<td>0.88</td>
</tr>
<tr>
<td>8</td>
<td>0.20</td>
<td>0.95</td>
</tr>
<tr>
<td>9</td>
<td>0.19</td>
<td>1.02</td>
</tr>
<tr>
<td>10</td>
<td>0.19</td>
<td>1.07</td>
</tr>
<tr>
<td>11</td>
<td>-4.00</td>
<td>0.02</td>
</tr>
<tr>
<td>12</td>
<td>-4.00</td>
<td>0.02</td>
</tr>
<tr>
<td>13</td>
<td>-4.00</td>
<td>0.02</td>
</tr>
<tr>
<td>14</td>
<td>-4.00</td>
<td>0.01</td>
</tr>
<tr>
<td>15</td>
<td>-4.00</td>
<td>0.01</td>
</tr>
<tr>
<td>16</td>
<td>-4.00</td>
<td>0.01</td>
</tr>
<tr>
<td>17</td>
<td>-4.00</td>
<td>0.00</td>
</tr>
<tr>
<td>18</td>
<td>-4.00</td>
<td>0.00</td>
</tr>
<tr>
<td>19</td>
<td>-4.00</td>
<td>0.00</td>
</tr>
<tr>
<td>20</td>
<td>-4.00</td>
<td>0.00</td>
</tr>
<tr>
<td>21</td>
<td>-4.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>
说明

22	-4.00	0.00	-4.04	-4.00	-4.00	-4.00	-4.00	0.88	17.33
23	-4.00	0.00	-4.03	-4.00	-4.00	-4.00	-4.00	0.94	19.88
24	-4.00	0.00	-4.01	-4.00	-4.00	-4.00	-4.00	0.91	24.01
25	-4.00	0.00	-4.02	-4.00	-4.00	-4.00	-4.00	0.91	27.49
26	-4.00	0.00	-4.02	-4.00	-4.00	-4.00	-4.00	0.81	31.27
27	-4.00	0.00	-4.12	-4.00	-4.00	-4.00	-4.00	0.84	37.38
28	-4.00	0.00	-4.06	-4.00	-4.00	-4.00	-4.00	0.93	40.68
29	-4.00	0.00	-4.01	-4.00	-4.00	-4.00	-4.00	1.03	43.26
30	-4.00	0.00	-4.00	-4.00	-4.00	-4.00	-4.00	1.00	43.25

[0415] 平均值的计算结果非常令人满意。对于头十年而言，平均年还款序列都大约为初始房价价值百分比的2/10。在十年后，平均值的计算结果是房主在产生极低收益的价格路径上获得连续的年付款，年付款等于初始房价价值的4%或稍多。这种模式的原因很简单，除了具有极低收益的价格路径之外，用于计算比率因子的利率ir保持5%不变。结果是，由于优先级具有不变的金额大小（初始房价价值的80%），所以房主的出金额是平稳的。由于净租金总为零，因此房主的净出金额保持初始房价价值的4%不变。在开始第11年时，投资者只需要每年向房主支付这个数额的现金。

[0417] 十年后，房主通过保险资产账户持有房屋中20%的仓位。整个模式具有明确的“寿命周期”式样。个人通过前几年的储蓄（通过额外支出）增加财富，然后在以后的年份获得年金。

[0418] 所需的最大还款额看似非常高。10年间总计大约为初始房价价值的40%。当然，没有任何价格路径可以囊括每年的最大还款额。当升息收益最大时，还款额也最大。虽然还款额很高，保险资产账户的价值也很高。例如，十年后的最大房价价值结果大约为初始房价的4.77倍。此时保险资产价值百分比为20。因此，该账户的价值大约等于初始房价价值的95%。如果能接受较高的还款，那么将其计入“未结”也很简单。存在许多可能性。房主可以选择减少特定还款，或者所有还款可以是自愿的，从而产生“自制”累积方案。随着时间的推移，给房主提供与任何还款和多种还款模式的结果有关的信息是很容易的。

[0419] 非中性和半中性DOOR工具

[0420] 为什么要放宽中性？

[0421] 通过调整处理达到中性是具有许多吸引人的特点的。通过使期权基本上或实际上没有价值，可以消除嵌入式期权所起的作用以及随后产生的道德风险和估值难题。通过自动补偿调整可以产生惊人的灵活性，自动补偿调整允许中性DOOR工具的条款被连续改变且代价极低。

[0422] 但中性及相关的调整处理同样产生了并不总是需要的特质。最重要的是，必然存在某些“多余的”要素来承受调整的冲击。对于ANZIE-DOOR而言，该要素就是保险资产。它以
不同的速率增减，速率取决于调整处理对经济结果产生的影响。房主可能需要更可预测的保险资产增值，但为了实现这个目标并且仍保持中性，就需要一些“多余的”其他要素。例如在ANZIE’S SIDE DOOR的一个样式中，保险资产增值模式是固定，但房主每年要进行随机追加或还款中性。

[0423] 更一般而言，调整处理使房主要面对大量不同的风险。该处理抵消了租金、折旧、财产税、优先块中所包含的利率、优先块相对房屋价值的大小以及预期升值率。这些因素中的许多要素是随机的。特别是，租金、利率、房屋价值和预期升值可能会大幅度波动。由于在多重因素中随机进行的改变，房主直接面对这些波动。例如，假设租金、所有物折旧、财产税、利率和预期升值中的一次性永久增加和意外增加不变。据推测，由于房价使净租金的未来值资本化，因此房价上升。可变率等式(4)中ANZIE-DOOR的比率因子：

\[\pi_n = \frac{\omega}{\omega + \alpha} \]

[0425] 房价上升会降低Le，同时租金的上涨会阻碍房屋价值单位净租金v的降低。最终比率因子下降。如果这种变化足够大，那么比率因子就会变成负的，且保险资产累积得更慢或者甚至会逐渐减少。

[0426] 正如(上文)Sinai和Souleles所中肯指出的，购买一幢房屋降低了房主的租金风险，且在某些情况下几乎会消除房屋的风险。与支付随时间变化的租金不同的是，房主一次性付清购买了房屋。可变租金只在卖房时对房主产生影响(因为房屋价值资本化了租金的未来值)，但销售可能是在遥远的未来，因此该影响被大大折扣。Sinai和Souleles使用与公寓租金有关的数据，以显示出该租金风险是很大的。

[0427] ANZIE-DOOR取消了对抗租金波动的防护。这些波动通过调整处理影响着保险资产的增值且因此使房主要面对出租价格风险。如果调整处理足够频繁，例如每天，那么房主就要比承租人面对更多的出租价格风险。承租人至少在租赁期内可以锁定租金。

[0428] 这类问题是产生本文所讨论的中性和非中性变体的诱因。但还有其他诱因。其中之一已在上文中讨论过了，就是希望为某些房主提供补贴。通过不严格符合中立性就可以使这种希望变得清楚明白，从而基于房主的净出资给房主带来比预期更多的利润或信誉。

[0429] 有许多可用的DOOR变体放弃或偏离了中性。下面的讨论的焦点在于两种说明性的变体。LAEZIE-DOOR通常是半中性的：调整处理仍然进行，产生趋向于中性的倾向性，但某些要素(租金、折旧、预期升值等)是固定的且不会为了反映其实际价值而波动。FIXED-DOOR是预先设置条款的DOOR工具，且没有调整。FIXED-DOOR样式可以是半中性或非中性的。

[0430] LAEZIE-DOOR

[0431] 如果目标是帮助房主对抗租金波动，那么一种简单的方案就是通过固定比率因子等式中的净租金来改变ANZIE-DOOR。如果净租金是静态的，那么中性方案会将其设置为平均值。如果租金是独立的、恒等分布的(“1D”)且静态的，那么在该方案中调整处理在事前意义上是导致中性的。(由于保险资产百分比在未来的预期大小会因Jensen不等式而变化，因此一般无法获得完全的中性。调整机制将诸如净租金之类要素转换为非线性形式的保险资产百分比。)

[0432] 如果平均净租金的走势是例如以固定速率真正地或象征性地增长，那么净租金在未来的所有时段上都可被设为预期平均值，这产生了一个固定的计划表。由于预期房屋升
值除了其他因素外还反映了租金的预期增长，所以通过利用反映租金的预期真实增长率的调整来固定预期升值或允许预期升值等于一般性价格波动，可以补充比定利率因子等式中的净利息的方案。

[0433] 这些方案是LAZIE-DOOR的举例："有限中性、年度调整、Z资本结构、资产负债DOOR工具。"LAZIE-DOOR中的"lazy"的由来是：调整方没有特别地对比率因子计算中某些要素的实际情况的进行观察，相反将固定值用于这些要素。

[0434] LAZIE-DOOR允许某些具有很好针对性的补贴方案。例如，如果在平均净租金为正范围内将净租金设为零，那么房主就能得到补贴，也就是说，"免净租金地"生活在屋子里。这种方案在职工住房和其他情形中具有一定的概念性吸引力，但可能会提供过少或过多的补贴。既然如此，调整方可以将净租金替换为其他水平的净租金或随时间变化但计划表固定值的净租金。

[0435] 上文的表7说明了基准模型中ANZIE-DOOR的运作。基准模型假设净租金为零且预期升值保持7%年费率不变。该例子与净租金和预期升值波动但调整方将其分别固定为0%房屋价值和每年7%的环境中的LAZIE-DOOR完全对应。如果这些数字包括补贴要素，并且还代表存在于补贴要素时典型房主的良好收益，那么在职工住房情形中结果很不错。房主在所有价格路径场景中都能大量增加保险资产。

[0436] 有许多可用的LAZIE-DOOR样式。调整方可以考虑多个参数（租金、折旧、财产税、利率、波动、预期升值、真实租金等）保持不变或应用固定的预定计划表。这种灵活性允许适应不同情况，无论这些情况是否包括职工住房。

[0437] 当参数保持不变时，房主在DOOR工具的持续期内不会受该参数波动的影响。这使得房主在卖房时或DOOR工具以其他方式被终止时，参数的波动会重新出现。例如，假设LAZIE-DOOR工具包括固定的净租金。卖房时的房价反映了实际的净租金水平，因此，房主根据净租金的变化程度获得对应于给定保险资产百分比的较低或较高的美元收益。

[0438] 使一个或多个参数保持不变意味着缺乏中立性，且嵌入式期权恢复其重要性。例如，如果净租金是固定的且实际净租金在固定值之上波动，那么房主将获得差价并具有人为的动机继续将资金留在房子中，因为DOOR工具比市场更有利。但使用LAZIE-DOOR样式仍然是值得的。借贷方赞成一个或多个参数中的波动风险转移给投资者，或者LAZIE-DOOR是实现补贴的不错工具。组合某些模式的补贴和除险补贴，这对于许多职工住房的情形而言是很理想的，其中房主主要面对房屋费用，该房屋费用与收入相比似乎很大并且具有极大风险。

[0439] LAZIE-DOOR通常是"半中性的"。调整处理仍然存在但其某些方面已经被冻结了。这些方面不反映促成中立性的实际价值。但其他方面会反映。结果就是存在某些中立性倾向，但并非完全、纯粹的中立性。

[0440] 图11是说明用于LAZIE-DOOR方案的分析机的流程图，其中预期升值、预期折旧、财产税和推算租金是固定的。"（"固定的"包括参数变化但根据确定的计划表变化的情况，以及在工具的持续期内将参数设定为一个值的情况。）在每次调整的时间点上，未固定的比率因子输入只有房屋价值和优先级推算利率，除了为比率因子指定而不是估计或观测四个输入之外，下幅图与ANZIE-DOOR的图5相同。因此这四个输入（正如四个堆叠着的灰色阴影非粗体矩形——是确定的而不是计算得到的）是从DOOR工具特征圆柱而不是从数据圆柱中产
说明书中

生，随后被馈送入比率因子计算。

除了固定值或固定计划表之外，还存在其他方式来避免对诸如租金或房屋价值之
的参数进行严格的估算。一种可能就是利用地区性或全国性租金或房价指数来调整初始
租金或价格水平。这些指标显示了价格或租金的总的变化，并能被用于增加或减少初
始时观测到的租金或价格值。该方案就是“lazy”，因为供货商能勉强接受易于计算但相
准确的租金估计值或房屋价值水平。所讨论的资产的租金或房价变化通常至少在某种程度
上与总变化不同。另一方面，不论ANZIE-DOOR中所分析的是否有成熟的，相应的租赁和房屋价
值估计值仍然是近似值。使用基于指标的方案进行调整可被认为是只使用了一个大致近似
但仍在ANZIE-DOOR本身范围内的值。本领域技术人员是否将名称ANZIE-DOOR或LAZIE-DOOR
与特定方案相联系，这并不重要。有趣的是，使用某些大致近似方案来实现ANZIE-DOOR，这
会产生类似于某些LAZIE-DOOR式样的DOOR工具。

FIXED-DOOR

FIXED-DOOR是静态的DOOR工具。所有条款都不以诸如利率或房屋价值之类参数的
未来值为条件。保险资产或其他账户的变动是预定的。这些账户可随时间变化，但仅与预先
确定的计划表一致。

就出售时工具的市场价值等于投资者所预付的金额而言，FIXED-DOOR工具
是“初始中性的”。在那时，工具的市场价值等于其真实价值。如果不考虑市场参数的话，
这个等号当然几乎就不成立了，即使工具条款依照固定的计划表演变。因为FIXED-DOOR
是静态的，所以调整参数以概率1偏离实际的未来值。因此，市场价值几乎可以肯定会偏离
真实值。

可以进行向中性靠拢的另一个步骤，可以建立年度调整的计划表或反映房价、利
率和其他参数在初始时间的预期结果的其他特征的计划表。如果预期结果一直呈现为与实
际结果相同，那么该工具在今后的一段时间内就一直是中性的。当然，这种美好的结果只
是一种难以相信的巧合。虽然如此，但以这种“投影性中性”方式设置该工具往往会在将来产
生更接近实际中性的状态。

使用参数的预期未来结果只是使未来结果靠近中性的一种方式。一种更缜密的方
案是选择固定的保险资产计划表，该计划表基于中性的某些数值测量结果最小化总偏差标
准（例如，均方误差或平均绝对值偏差）。简言之，存在一大批以实现中性的多种不同方式出
现的“公认为中性”的保险资产增值计划表。

图12是说明用于FIXED-DOOR方案的分析机的流程图，该分析机产生公认为中性的
保险资产增值计划表。该分析机只在一个时间点上工作：初始时。因此，与图5所示的ANZIE-
DOOR的分析机相反，图10左手侧的粗体框读取“初始时的数据”。不会对数据进行更新处理。
相反，该分析机使用初始时可用的数据来产生公认为中性的保险资产增值计划表。这个过
程表现为，灰色阴影堆叠的计算参数馈送入DOOR工具特征圆柱。该圆柱中所包含的指令指
定了用于确定公认为中性的保险资产增值计划表的方法。随后将该方法与从计算参数中得
出的相关信息馈送入由标有“保险资产增值计划表”及六边形所代表的计算模块，其中计划
表是一次性地确定的。因为与DOOR工具特征圆柱相关的一些箭头形成一个环，因此有必要
说明信息流的顺序。用对图中的箭头编号来表示顺序。首先图中的步骤“1”是，优先块上的
数据及从DOOR工具特征圆柱流向非追索性看跌期权价值和优先块推算利率计算模块（图中
的六边形）的指令流，这些模块的输出是（与灰色阴影堆叠中的其他参数一起）输入回DOOR工具特征圆柱的当前和计划中的优先块推算利率，这是图中的步骤“2”。最后图中的步骤“3”是，这些输入与用于计算所需的公认为中性的保险资产增值计划表的指令组合，并转送入计算该计划表的模块。

[0448] 在某些情况下，需要发售不具有中性要素的FIXED-DOOR工具。这些“非中性”工具在职工住房或适合有补贴的其他环境中是非常正常的。例如，FIXED-DOOR工具可涉及预先确定的保险资产增值计划表，该计划表对房主而言是事前有利的。起初，这种工具对于假定投资者的市场价值低于提供给房主的金额，这反映了补贴。该工具还会在工具持有期的不同时段内以大于或小于预期业余的速率增加保险资产，从而使保险资产计划表适应个人的喜好或需求。

[0449] ANZIE’S NU DOOR

[0450] “缩水的”房屋

[0451] 在起于2007年的房地产危机期间内，房屋“缩水”问题已经是特别明显了。一旦房屋价值接近或下降到低于抵押贷款融资的本金应付款，则问题就会产生并会有引发真实经济损失的危险。首先，对于许多具有非追索性抵押贷款的房主而言，即使房主具有充足的收入从而继续对抵押贷款供款，但如果融资性上考虑违约也变成是可取的了。违约及后续的卖空或丧失赎回权会有严重的交易损失。第二，房主对维护房屋甚至保护它免遭抢劫的动力下降或消失，这使得情况变得更糟。任何这样的努力都使放贷方受益，而不是房主。最后，如果有房屋被银行收回，特别是如果这些房子是缺少维护的，那么附近房屋的价值也会受到不利影响。这种效果导致进一步的房价下降并且能产生更多丧失赎回权的情况以及邻近地区的大幅度贬值。

[0452] 着重要强调的一点是，这种情况涉及实实在在的经济损失，而不仅仅是财产从一个业主转移到另一个业主。交易费用、维修故障以及邻近地区的外部效应都会产生价值净损失。

[0453] 下面的讨论提供了一种防止“缩水”情况发生的DOOR变体。该变体由ANZIE-DOOR衍生而来的，但更易于给大多数DOOR变体加入防止房屋价值低于抵押贷款余额的特征。本文快要结束时的讨论描述了与相关的“保全”问题有关的DOOR方案，以应对房屋早已“缩水”且快要丧失赎回权的情况。

[0454] 保持不缩水——不再有房产危机

[0455] ANZIE’S NU DOOR通过要求投资者在房产的贷款价值比超出既定百分比（例如85%）时为房主的抵押贷款支付首付，完全消除了房屋“缩水”的问题。其他方面ANZIE’S NU DOOR与ANZIE-DOOR相同。（增加的字母“SNU”表示“从此再不缩水”。）

[0456] 当投资者支付房主的抵押贷款时，构成ANZIE-DOOR的基础的分析引擎确保这是一桩“市场交易”。投资者会得到两项好处：

[0457] (1) 优先权变小而投资者的资产扩大了首付的数额。

[0458] (2) 因为优先权变小了，所以给房主的保险资产的增速变慢。

[0459] 这两项好处从风险调整后的现值来看等于首付所需的现金额。

[0460] 图13是显示按照本发明的ANZIE’S NU DOOR方案的盈利情况的示意图；且图14为显示按照本发明的ANZIE’S NU DOOR方案的亏损情况的示意图。
在整个方案的环境因素中，考虑最多的是首付事件中的税务处理方式。正常来说，非纳税人的方偿还债务会导致债务收入的履行。但是，在此有一个关键的不同之处，首付不会给房主带来好处。相反它为投资者产生了与付款人等额的额外资产，并且还减缓了保险资产的增值速度。这样做的意义仅在于，在投资者关于常规交易部分的基础上增加了还本，以及在房主关于优先款的利息上减去还款额。应该没有其他的纳税结果。

值得注意的是，即使在除去首付之后，优先款与购房款相比也必须很大。抵押贷款是优先款的一部分。当基于这些贷款的贷款价值比很高时，只留下资产的很小一部分。即使该资产都是投资者的资产，也就是说，房主的承诺资产等于零，房主给投资者提供了可观的杠杆效应，且因此，保险资产快速增值。确实，增值速率低于没有首付特征的情况，但房主通过减少利息费用和降低贷款余额的方式获得了确切的经济补偿。在与引起高贷款价值比情况的房价下降有关的不利经济环境中，与较低的抵押贷款还款额相比，现金流是相当受欢迎的。

图15是说明实现ANZIE’s NU DOOR的分析机的现金流示意图。除了增加了一组与抵押贷款首付有关的步骤之外，该分析机类似于图5中所示的分析ANZIE-DOOR的分析机。因为该首付减少了优先款的大小且由于优先款的大小影响着其他参数的计算，因此该分析机必须在进行其他计算之前计算抵押贷款的首付。图15包括标有“优先款上的抵押贷款首付”的新六边形，其代表首付的计算。为了解决箭头循环中固有的歧义，某些箭头被编了号，从而表示信息流的顺序。抵押贷款首付的计算需要房屋现值（步骤“1”），利用数据圆柱中的信息和DOOR工具特征圆柱中信息（步骤“2”）的优先款预付款状态，可以估计得出该房屋现值。还需要与抵押贷款本身有关的信息（从“抵押贷款”六边形发出的虚线）。在两个步骤中获得这些信息后，进入付款的计算（“优先款上的抵押贷款的首付”六边形）。计算结果被传回（步骤“3”）DOOR工具特征圆柱，从而形成优先款更新信息的基础。其他步骤与ANZIE-DOOR中的步骤相一致。优先款更新信息是计算优先款推算利率的输入数据（步骤“4”）。该利率连同灰色阴影框中的其他参数，都作为计算比率因子的输入数据（步骤“5”）。步骤“5”还包括从DOOR工具特征圆柱输入比率因子计算的数据，且还有从该圆柱输入到保险资产百分比计算的数据（步骤“6”）。

如果ANZIE’s NU DOOR被广泛使用，那么包含赎回权丧失风险的传统房产危机就会消失。对于抵押贷款放贷方而言也存在很强的正外部性。贷款总是支持资本缓冲作用的保护。不存在任何策略性违约，只有“信用违约”，其中收入下降或其他不利环境减弱了房主支撑抵押贷款的能力。

在信用违约的情况下，ANZIE-DOOR和ANZIE’s NU DOOR两者实际上都产生了与目前不同的谈判环境，这对房主、抵押权人和投资者产生了较高的联合经济收益。目前，在抵押贷款到期未付之后，抵押权人和抵押权人会出现争执。在快要丧失赎回权时，房主获得免费的居住权，但同时房主一下子失去维护房屋的动力。一幅经典的图画是，房主更换为未登记的电话号码并且不再理睬债权人，这是缺乏合作动力的典型举例。合作失败以及房主维护房屋的不利动机导致了实实在在的经济损失。

在ANZIE-DOOR和ANZIE’s NU DOOR中，情况十分不同。房主通常拥有大量的保险资产并从尽可能高的售价中获利。如果由于困难的经济环境导致房主的流动资产受约束，那么尽可能彻底地快速赚取这些利益的动力就会很强。房主和抵押权人的动力是均等的，且
即使房主不打电话，也会接听抵押权人的电话。

[0467] 在ANZIE-DOOR中存在着一个与抵押贷款相关的问题，但在ANZIE’s NDU OR中不存在。在ANZIE-DOOR和ANZIE’S NDU OR中，维护合同和保险资产方案会对抵押权人产生涉及潜在联合收益的正外部性。在许多情况中，当即将丧失赎回权时，房主拥有大量保险资产。因此，房主有很强的动力去维护并保护房屋直至银行收回房屋并结束拍卖。否则，在一分钱换一分货的基础上，房主在结算时的保险资产回报会降低。最终结果是，将要进入丧失赎回权处理的房屋的物理状况恶化大大减少，并由此为抵押权人产生了存款。假设在一个竞争性的抵押贷款市场中，这些可能会产生的存款的部分或全部由房主获得，其形式是较低的抵押贷款费用（利率、点数，等），还可能是借更多贷款的能力。但是这不只是一个零和游戏。至少部分存款，甚至可能是很大一部分存款，通常代表着联合收益。在许多情况下，花费少量资金在合适的时间维护房屋避免了将来花费更多的钱进行修理，也就是典型的"屋顶漏水"现象。（及早用便宜的补丁阻止漏水常常可以防止出现需要进行昂贵的补救的水患。）

[0468] 问题是，ANZIE-DOOR合同处于房主和投资者之间，而不是房主和抵押权人之间。在面对丧失赎回权的情况时，投资者没有动机通过坚定维护动机来将提升房价的条款包括在内。这件事恰恰相反。如果在银行收回房屋并拍卖之前房屋状况严重恶化，投资者更有利。投资者在资本结构方面已经没有任何多余资产可以损失，而较低的售价会降低投资者对房主的保险资产担保。简而言之，降低赎回费用的ANZIE-DOOR条款为抵押权人产生正外部性，该正外部性可能会被房主部分或全部获得，但往往对投资者有利。如果DOOR工具投资者就是抵押权人，那么这种外部性被内在化。如果不是，那么从合同上来讲就存在解决该外部性的推动力。第三方抵押权人很在意DOOR工具的条款，并且可能会制定某些要求作为对合适的抵押期限的条款或作为批准贷款的条件。创建并执行这些合同条款明显会涉及费用，而如果外部性被内在化的话，费用是不存在的。另一方面，第三方放贷方在抵押融资方面的专业知识与投资者相比可能非常多，因此，无论对外部性时固有的额外费用是多少，结果是对房主而言更经济的抵押贷款。

[0469] 在ANZIE’S NDU OR中，不存在外部性问题，投资者有责任支付抵押贷款以维持最大LTV，且因此希望避免以下噩梦般的场景：维护房屋的动力消失，接着是物理状况恶化导致房屋价值骤然下降。在房价的下行路径上，投资者最终提供100%的抵押担保覆盖范围，完全且提前补偿了抵押权人的任何潜在损失。例如，假设初始房屋价值为$200,000，抵押贷款本金余额为$90,000且合同规定最大LTV为90%。如果房屋价值跌至$50,000，投资者不得不支付$45,000给抵押权人从而将LTV提升到90%。但$45,000的支出还为投资者产生了$5,000的资产。净转让为$40,000，正好等于抵押的损失，也就是初始本金余额（$90,000）减房屋价值（$50,000）。简而言之，在因不理想的维护造成的损失方面，投资者和抵押权人的立场相同。不存在外部性。

[0470] ANZIE’S NDU OR是“追索性”的吗？

[0471] ANZIE’S NDU OR涉及“追索性”的方面。就房主通过抵押贷款向优先看提供资金而言，投资者可能要负责所有损失。但是，该工具与传统的追索责任不同，在传统的追索责任中，赔偿损失的责任只在存在违约事件或贷款终止时出现。投资者必须在违约成为真实可能性之前支付抵押贷款，就此而言，ANZIE’S NDU OR是优先看人。该特征意味着在某些情况下，风险尚未出现违约，首付也是存在的。
说明 书

在 ANZIE’S NU DOOR 到目前为止的规定与传统的追索责任之间可能存在另一个不同之处。在 ANZIE’S NU DOOR 中的提前付款与房主承担的任意抵押担保绑定。但是, 房主选择抵押融资的金额并且可持有部分优先块作为承诺资产。如果 ANZIE’S NU DOOR 工具不限制抵押贷款额，那么当房屋价值有跌至低于优先块“本金”额的危险时，房主就有动机做出策略性的行为。在此情况下中，房主希望“撤出”承诺资产，将其转换为抵押担保。这种举动将承诺资产方面的亏损风险转移给了投资者。整个优先块是融资性的，如果房屋价值下降到一定程度，投资者必须对其付款。

如果所有的房主表现地很有策略性且抵押融资的费用很低，那么在 ANZIE’S NU DOOR 中优先块是完全追索性的，具有另一个提前付款特征。对于任何抵押权人或房主而言不存在亏损的可能性。因此，投资者不愿意按高于相同还款期内贷款无风险率的利率支付优先块的推算利息。如果只有一部分房主的行为是策略性的，则情况更麻烦。工具条款必须对策略性行为的概率定价，一些房主在最佳时机撤出承诺资产，由此进行到底，这些房主获得了令人满意的条款，但牺牲了那些未能通过撤资保护其承诺资产的房主。有一种嵌入式期权是在获于批准前勤奋的房主希望执行的。解决该问题的一种方式是，除了抵押贷款首付特征之外，该工具还具有明显的追索性。这样的话，撤出承诺资产就不会获得好处了。确保房主在任意事件中后收承诺资产并且同时赚取适当的“市场”水平的回报。

如果所有的房主表现地很有策略性，那么如果撤资包含大量交易费用就会导致投资效率低下。与承担“道德风险”费用且最终实际上同样呈追索性的优先块责任的结果不同的是，首先使整个优先块呈明显追索性是合理的，这就是下文描述为 ANZIE’S NU TRIE DOOR 的方案。

要着重注意的一点是，ANZIE’S NU TRIE DOOR 中提前偿还贷款的特点增加了房屋价值，即使该工具同样将整个优先块看作追索责任。当房主没有流动资金来支付贷款时，还清贷款可以减少房主的维持费用从而实现该结果。要记住的很重要的一点是，房屋价值的下降趋势与房主的不利的融资环境有关。当地经济的衰退往往会影响收入、就业保障和房价。还清贷款的特点还为抵押权人提供了保障。当售房或其他事件触发该特征时，它消除了任何关于 DOOR 工具投资者是否会在未来的某个时间点上通过补偿抵押权人的抵押贷款差额来执行追索特征的疑虑。这种增加的保障可被转变为较低的抵押贷款利率或房主优先块的更大份额提供资金的能力。

即使没有提前偿还贷款的义务，使优先块责任呈追索性，这仍可能是一种很有意思的特征。下文的讨论连同部分追索性 DOOR 变体一起仔细研究了这种可能性。还详细讨论了与 ANZIE’S NU DOOR 有关的道德风险问题。

追求性和部分追索性的 DOOR 工具

除了 ANZIE’S NU DOOR 以外，目前为止所考虑的所有变体在优先块方面是非追索性的，因此，双算利率 p 包括溢价，该溢价在非追索性基础上对房主借给投资者的优先块“本金”进行补偿。如上所述，当房屋价值跌至低于优先块本金额时，该溢价猛增。结果就是有利于房主的更快的保险资产增值。同时，房主直接承担承诺资产部分上或追索性抵押贷款所涵盖的部 分上的优先块本金的亏损风险，并且为第三方利用非追索性抵押贷款融资的任意部分上的抵押贷款违约期权支付了额外费用。并不是所有房主都喜欢这种风险与回报之间的特殊平衡。因此，部分或完全追索性的 DOOR 变体有存在的余地。
ANZ TRIE DOOR——完全追索性的变体

除优先块贷款是完全追索性的以外，ANZ TRIE DOOR与ANZIE-DOOR相同。（优先块的“完全追索性”特性导致将字母“TR”加入ANZIE-DOOR的名称中。推荐的发音为：“Ann’s Tree Door”）。该变体适用于厌恶风险的房主，他们惧怕由于不利的住房市场情况而失去部分或全部优先块。投资者对任何承诺资产的回报提供保证，且实际上为房主贷出的贷款提供由优先块担保的100％的抵押担保。这种保证意味着优先块“本金”上的推算利率ir不包括任何在非追索性基础上对房主的借款进行补偿的费用。结果是，当房价很低时保险资产增值更慢。下面的表10显示了与之相应的基准模型的结果。

表10. 举例——基准模型，追索性情况（ANZ TRIE DOOR）

<table>
<thead>
<tr>
<th>年终保险资产百分比</th>
<th>房屋价值极值</th>
</tr>
</thead>
<tbody>
<tr>
<td>净租金 = 0%每年；预期升值 = 7%每年</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>保险资产百分比</th>
<th>在12,000次仿真中的分布</th>
<th>房屋价值</th>
</tr>
</thead>
<tbody>
<tr>
<td>年</td>
<td>平均</td>
<td>标准</td>
</tr>
</tbody>
</table>

67
<table>
<thead>
<tr>
<th>值</th>
<th>偏差</th>
<th>值</th>
<th>值</th>
<th>值</th>
<th>值</th>
<th>值</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.75</td>
<td>0.00</td>
<td>2.75</td>
<td>2.75</td>
<td>2.75</td>
<td>2.75</td>
</tr>
<tr>
<td>2</td>
<td>5.26</td>
<td>0.21</td>
<td>4.58</td>
<td>4.84</td>
<td>5.00</td>
<td>5.54</td>
</tr>
<tr>
<td>3</td>
<td>7.56</td>
<td>0.45</td>
<td>6.22</td>
<td>6.66</td>
<td>7.02</td>
<td>8.14</td>
</tr>
<tr>
<td>4</td>
<td>9.66</td>
<td>0.70</td>
<td>7.62</td>
<td>8.25</td>
<td>8.81</td>
<td>10.58</td>
</tr>
<tr>
<td>5</td>
<td>11.59</td>
<td>0.96</td>
<td>8.73</td>
<td>9.64</td>
<td>10.42</td>
<td>12.85</td>
</tr>
<tr>
<td>7</td>
<td>14.99</td>
<td>1.50</td>
<td>10.64</td>
<td>11.96</td>
<td>13.16</td>
<td>16.95</td>
</tr>
<tr>
<td>8</td>
<td>16.48</td>
<td>1.76</td>
<td>11.32</td>
<td>12.95</td>
<td>14.34</td>
<td>18.77</td>
</tr>
<tr>
<td>9</td>
<td>17.86</td>
<td>2.01</td>
<td>11.97</td>
<td>13.85</td>
<td>15.41</td>
<td>20.47</td>
</tr>
<tr>
<td>10</td>
<td>19.13</td>
<td>2.26</td>
<td>12.57</td>
<td>14.66</td>
<td>16.39</td>
<td>22.06</td>
</tr>
<tr>
<td>11</td>
<td>20.31</td>
<td>2.49</td>
<td>13.12</td>
<td>15.38</td>
<td>17.31</td>
<td>23.57</td>
</tr>
<tr>
<td>12</td>
<td>21.39</td>
<td>2.71</td>
<td>13.68</td>
<td>16.06</td>
<td>18.13</td>
<td>24.92</td>
</tr>
<tr>
<td>14</td>
<td>23.32</td>
<td>3.12</td>
<td>14.70</td>
<td>17.24</td>
<td>19.57</td>
<td>27.38</td>
</tr>
<tr>
<td>15</td>
<td>24.18</td>
<td>3.32</td>
<td>15.17</td>
<td>17.78</td>
<td>20.19</td>
<td>28.47</td>
</tr>
<tr>
<td>16</td>
<td>24.97</td>
<td>3.50</td>
<td>15.60</td>
<td>18.28</td>
<td>20.76</td>
<td>29.52</td>
</tr>
<tr>
<td>17</td>
<td>25.71</td>
<td>3.67</td>
<td>15.91</td>
<td>18.70</td>
<td>21.30</td>
<td>30.49</td>
</tr>
<tr>
<td>18</td>
<td>26.40</td>
<td>3.84</td>
<td>16.15</td>
<td>19.10</td>
<td>21.79</td>
<td>31.39</td>
</tr>
<tr>
<td>19</td>
<td>27.03</td>
<td>3.99</td>
<td>16.36</td>
<td>19.46</td>
<td>22.24</td>
<td>32.23</td>
</tr>
<tr>
<td>20</td>
<td>27.62</td>
<td>4.14</td>
<td>16.57</td>
<td>19.79</td>
<td>22.65</td>
<td>33.01</td>
</tr>
<tr>
<td>21</td>
<td>28.17</td>
<td>4.28</td>
<td>16.76</td>
<td>20.10</td>
<td>23.02</td>
<td>33.73</td>
</tr>
<tr>
<td>22</td>
<td>28.68</td>
<td>4.41</td>
<td>16.95</td>
<td>20.39</td>
<td>23.37</td>
<td>34.43</td>
</tr>
<tr>
<td>23</td>
<td>29.16</td>
<td>4.53</td>
<td>17.11</td>
<td>20.67</td>
<td>23.70</td>
<td>35.06</td>
</tr>
<tr>
<td>24</td>
<td>29.60</td>
<td>4.65</td>
<td>17.26</td>
<td>20.91</td>
<td>24.02</td>
<td>35.68</td>
</tr>
<tr>
<td>25</td>
<td>30.01</td>
<td>4.76</td>
<td>17.42</td>
<td>21.13</td>
<td>24.33</td>
<td>36.23</td>
</tr>
<tr>
<td>26</td>
<td>30.39</td>
<td>4.86</td>
<td>17.58</td>
<td>21.36</td>
<td>24.59</td>
<td>36.73</td>
</tr>
<tr>
<td>27</td>
<td>30.75</td>
<td>4.96</td>
<td>17.73</td>
<td>21.57</td>
<td>24.82</td>
<td>37.26</td>
</tr>
<tr>
<td>28</td>
<td>31.09</td>
<td>5.05</td>
<td>17.87</td>
<td>21.76</td>
<td>25.07</td>
<td>37.75</td>
</tr>
</tbody>
</table>
将这些结果与上表7相比，很明显非追索性融资产生较高的保险资产百分比以及收益很低的价格路径。在10年，非追索性情况中的12,000条价格路径上的最大保险资产百分比大约高5个点，而在30年，差距大约为3个点。在99%时保险资产收益的结果稍微高一点，但在百分点或平均收益较低时几乎没有或没有区别。结果类型主要取决于房价波动度的假设值。较高的波动度在所有百分点上产生较大的影响。例如，本文未报告的一次仿真使用时的波动度等于11%而不是9%，该仿真导致99%的计算结果中的保险资产百分比增加了大约1个百分点。

图16是说明实现ANZ TRIE DOOR的分析机的流程图。除了优先级推算利率的计算方式不同以外，该分析机与图5中所示的ANZIE-DOOR的分析机相同。在ANZ TRIE DOOR中，不存在计算与非追索性看跌期权相关的分量的步骤，且图5中明显存在的相关六边形在图16中未出现。在ANZ TRIE DOOR中优先级贷款是追索性的。结果是，优先级推算利率不包括以贷款的非追索性为基础的溢价，且没有必要对相关的看跌期权估值。

ANZ TRIE DOOR对于不承担风险的房主而言是非常强有力的选择。假设投资者有偿付能力，则房主不可能损失资金。首付或抵押贷款的分期还款形式的承诺资金是完全受保护的，任何抵押贷款完全由投资者担保。该特征能产生相当多的“信用增强”，因为投资者的信用状况支撑着借贷。结果应该是抵押贷款利率非常令人满意。

追索性方案必须规定，当房屋最终的价值低于优先级本金时，投资者的还款是支付给房主还是抵押权人。例如，假设$200,000优先级本金由$20,000承诺资金和$180,000抵押贷款余额组成。如果房屋售价为$160,000，投资者会进行：(i)支付房主$40,000; 还是(ii)支付抵押权人$20,000并支付房主$20,000? 在后一种情况下，存在典型的抵押担保权。在前一种情况下，房主可带走$20,000并给抵押权人留下$20,000损失。看起来似乎明显的抵押担保权是两个方案中更有用的那个。在危险资产方案中，房主早已享有低售价情形中的有效保护。通常，不需要提供更多的钱来还款。因此，在该讨论中假设合同方案就是抵押担保权。

房主可以获得很强的信用增强优惠的原因是投资者的承诺资金支撑着100%的优先级。产生大量价值的合同承诺不那么极端了，而是因为具有限制性和可靠地对投资者更有吸引力了。下面描述了“部分追索性”方案的一些举例。

在这么做之前，值得注意的是，完全追索性的变体是对ANZIE’S NU DOOR的讨论中所引入的顺序上提前的首付特征的补充。也就是说，一种引人关注的变体是“ANZIE’S NU TRIE DOOR”。投资者为任意承诺资产和提前的抵押贷款首付提供保证，以保持优先级LTV不超过某个最大值。该变体完全消除了ANZIE’S NU DOOR中的道德风险问题。房主没有理由将承诺资产转为抵押贷款以避免损失承诺资产。投资者已经对承诺资产提供担保了。

部分追索性变体

有许多可能性可用于产生有用的“部分追索性”变体。一个方案是使优先级贷款有追索性，但只对一定贷款额有效。例如，考虑优先级为$200,000的情况。投资者只在亏损头一笔$20,000时保证处于追索性状态。如果房屋最终售价为$180,000或更低，则投资者向房
主或抵押权人支付$20,000的损失。在该方案中，房主可至多累积$20,000承诺资产而没有
亏损风险。同时，投资者的责任是有限的，房主和投资者一起从金额低于$180,000的抵押贷款
上的房主的违约期权中获益。如果违约期权的价格对于各方而言合理的话，则该方案是
切合实际的。

[0493] 在决定该方案的形式时，一种很有帮助的做法是将房主和投资者当作与抵押权人
相对的联合投机者。如果投资者与抵押权人相比愿意以较低的价格提供违约期权，那么各
方就能同意一种完全追索性的DOOR工具，房主和投资者可以分享这么做所带来的“好处”。
在一些情况中，投资者比抵押权人具有更多的与房主或房子有关的信息，这些信息使投资
者能够以较低价格提供违约期权。

[0494] 另一种可能性是，投资者提供明确的抵押担保，但不对承诺资产提供任何保证。这
种方案可以有许多样式。在一种全面的抵押担保方案中，投资者100％支持任意和所有抵押
贷款。定价可以是动态的，这取决于构成中性DOOR工具的基础的动态分析机。在每次开始进
行正式调整时，下一时段中提供抵押担保的市场价值对于投资者而言是净出资计算中的一
种信誉，信誉可以减缓或房主有利的保险资产增值或其他平衡剩余价值。只要抵押贷款变
得与分期还款计划表不同，例如，房主在该时段之初贷了更多款或预先还了部分或所有现
存抵押贷款，就进行过渡性调整。全面的抵押担保方案在投资者看来具有非常好的平衡特
点。如果房屋价值下降或低于优先项本金，那么保险资产或其他剩余账户急剧增值，这有利
于房主。对投资者有利的抵押担保“信用”缓和了这种趋势，减缓了增值速率。中性DOOR工
具的普遍情况是，投资者因其承担的抵押担保责任而获得基于市场的补偿。

[0495] 这种具有全面的抵押担保特点的模式相当于不具有提前还清贷款特点的ANZIE’S
NU DOOR。担保涵盖了房主在卖房时的违约，但并没有义务在出售前为抵押贷款的首付。为
担保利息“定价”的调整机制随着抵押贷款余额的变化而调整，并使ANZIE’S NU DOOR合理
化。增加贷款会给投资者带来额外的“抵押担保”补偿。但是，调整处理不能消除潜在的道德
风险问题。还有一个信息不对称问题。如果房主知道在不久的将来可能会有一次搬家，且房
屋现值仅仅稍高于优先项的本金，那么房主就会用有增加抵押贷款来承诺资产套现。正如表5中的计算结果所示，房屋所有权的较短预期持有时间对投资者而言会转变为较
大的抵押担保“额外费用”。但是，除了套现事件本身外，投资者没有理由怀疑持有时间可能
很短。这些情况要求有约定好的反应，例如限制或延迟向套现部分提供担保。如上所述，
ANZ’S NUTRIE DOOR将完全追索性工具与提前还款组合，从而提供一个完整的解决方案，消
除了道德风险并避免了任何相关的合约费用或谈判费用。

[0496] 避免这种道德风险问题的另一种方式是，消除追索性责任和抵押贷款与优先项中
的承诺资产的混合体之间的联系。例如，假设$200,000优先项本金。投资者仅在房屋价值
下降到低于$160,000的范围内为$60,000的损失提供“保证”。售价低于$160,000会触发对
房主或抵押权人的还款，对哪一方还款取决于哪一方为低于$160,000的这块部分提供资
金。投资者的这种责任只取决于售价，而不再是抵押贷款和承诺资产的混合体。由于房主有能
力改变抵押贷款和承诺资产的混合体，因此不存在道德风险问题。

[0497] 还有许多其他可能性。例如，只要房主开始新的贷款，合同就可能要求投资者用溢
价提供抵押担保，溢价归因于投资者的净出资计算。因为投资者可以选择卖出价，所以投资
者能在环境显示这么做很明智的时候通过将卖出价定得很高来应对潜在的道德风险情况。
如果投资者本身就是老练的抵押贷款出借人或担保人的话，这种方案特别有吸引力。

[0498] COZIE-DOOR——套现或平静地退休

[0499] 财产缩水和收入来源

[0500] 房主有时希望从其房子中套现资金。套现在一生中是一种理性的举动。典型的例子是，需要收入的退休人员生活在一个十分爱惜的无存款且很有价值的房子里。房主希望继续生活在这个房子里，但想要取出钱来以购买养老金或者产生现金回报。诸如反向分期抵押贷款和售回回租之类的多种工具可以应对这种情况。许多这样的方案的问题是，它们涉及利息或租金支出，也就是流向错误方向的现金流。此外，利用反向抵押贷款之类的工具会有很强的不确定性因素。如果房主活得太久而房价不变或下降，那么抵押贷款会吞掉所有房产值。通常，反向抵押贷款合同要求房主预先支付一笔费用来补偿抵押权人可能的差额。反向抵押贷款还使房主的资产处于最具风险的情况中。

[0501] 对于退休的房主而言，如果不涉及利息或其他支出，尽可能地能够预见未来的情况并且需要最少的关注或管理，则套现策略的效果最好。DOOR的灵活性产生了满足该基本原则的许多可能性。本文的这个部分的重点在于拓展“COZIE-DOOR”之下的一组变体，其中“CO”代表“套现”。这些变体包括资产部分或承诺资产部分，资本结构和中立性。它们与ANZIE-DOOR的不同之处在于，房主和投资者的处境相颠倒了。在解释COZIE-DOOR之前，值得讨论的是可能会促成这种逆转的ANZIE-DOOR型方案和相关问题。

[0502] 使用ANZIE-DOOR的一种非常简单的方法是，初始时呈中性的最大可能套现，然后冻结交易，也就是说，没有周期性的调整。例如，假设一个退休人员拥有价值$600,000的房屋，并且没有贷款债务。在ANZIE-DOOR中投资者要预付一定金额，比如说$250,000，从而在初始时保险资产不在于任何方向上流动。优先权杠杆作用恰好抵消了奖金。在不进行周期性调整的情况下，房主取得25万美元资金并且在长时间内生活免租。不需要支付抵押贷款利息，且房主剩余的$350,000优先于投资者的$250,000资产，这非常类似第一抵押权。房主不必采取任何措施来管理房屋融资事务的任何方面，而是只要在余生中免租地生活，同时还能从$250,000的养老金或其他投资者中获得收入。

[0503] 这个结果是很引人的，但也隐藏着问题。中立性只存在于初始时。假设此后房屋价值下跌。那么房主可能不得不清偿该工具并利用新的工具进行再融资。该新工具甚至允许房主取得比以前还多的资产。假设在先前的例子中房屋价值从$600,000跌至$350,000。这种暴跌彻底限掉了投资者的资产。房主将进行策略性的再融资。如果工具中的条款禁止这么做，那么房主能通过战略出售来实现相同的结果。销售的时机购买等价的房屋，这意味着破坏或损失了居住在爱惜的房屋中的剩余价值。对于某些房主而言。这种消费者剩是如此之高，以至于即使具有很高的融资收益，他们也不会进行战略出售。然后，其他房主在这种情况下会表现得很策略性。如果房主从战略出售中盈利而存在大量增加的金融性诱因，那么至少某些选择，例如搬到退休型社区过着有保障的生活，会变得更有吸引力。

[0504] 此时的情况与常规的资产工具中存在的情况相同。投资者的仓位的内在价值为零，但投资者潜在地具有非常有价值的看涨期权：与房屋在未来的所有升值有关的权利。在不考虑投资者的情况下，房主可以获得与一笔交易的类似条款相关的更多资产，有可能是剩余的$350,000中的$150,000。

[0505] 如果这类策略性行为实际上频繁地发生，那么投资者将预先需要一笔"道德风险"
额外费用。为了实现这笔交易的全部融资收益，房主必须表现得有策略性并尽心尽力地去做。在合同禁止策略性再融资的情况下，采取策略性的行动需要搬出他们爱惜的家园。

【0506】如果房屋升值，则产生相反情况的可能性就很大。在房屋涨价的新交易中，房主不能获得与投资者的当前分成相等的资产额了。因此，如果房主买并到一间等价的房屋中，那么这笔投资目的就更糟糕了。例如，假设价值$600,000的房屋升值到$1200,000。如果房主买房并提出$350,000承诺资产，然后尝试购买等价的房屋（$1200,000），那么房主就必须投入更多资产或贷很多款。如果我们将原来的交易增加，则DOOR工具只融资价值$1200,000的房屋中的$500,000，这会给房主造成搬迁所需的$700,000中的$350,000空头。

【0507】因此这种简单的方案是有问题的。在ANZIE-DOOR型工具中，需要足够频繁地进行调整，从而使与工具有关的嵌入式期权的价值于其微。但进行频繁调整后，不论保险资产开始增加还是贬值，都会产生与反向分期抵押贷款类似的问题。如果房屋升值，那么投资者累积保险资产。如果持续升值，则投资者的保险资产权益最后能比房主的承诺资产还值钱！

【0508】一种可能的答复是继续实现ANZIE-DOOR但改变其条款，从而实现与房主的目标一致的结果：

【0509】（1）增加现金回收；

【0510】（2）确保安全性。

【0511】例如，撤回的金额可能会低于使初始保险资产的增加额归零所需的金额。这种方案产生了“缓冲额度”，缓冲额度往往会阻止产生负保险资产的情况。如果房屋价值下降且保险资产增加得很快，则该工具可能会将超于一定百分比的保险资产套现。另一方面，如果房屋升值，则该工具可能会增加承诺资产而不是保险资产。结果就是更大的“优先权”杠杆作用以及维持保险资产流向房主的趋势。

【0512】在该方案中存在若干问题。首先，房主的回报是不确定的，这不符合稳定性的目标。第二，房屋的部分经济价值被用于产生由保险资产组成的缓冲额度。假定目标是套现的话，维持该缓冲额度是一项费用而不是收益。但缓冲额度是必要的，因为ANZIE-DOOR对房主而言很重要的现金流方面并不是非常稳定。

【0513】COZIE-DOOR方案

【0514】在许多情况下，一种不错的备选方案是，逆转ANZIE-DOOR中存在的资本结构和房主与投资者之间的资本增值仓位。结果产生了各种样式的COZIE-DOOR。有益的是，在对这些样式归类时考虑至少两个方面。首先，有不同的“套现”方案。其中两个方案考虑如下：周期性还款和一次性还款的配给方式，即分别为“年金样式”和“一次性还款样式”。

【0515】另一个方案是涉及选择平衡各方出资的剩余账户。在ANZIE-DOOR中，保险资产就是剩余账户。COZIE-DOOR的相应“保险资产”样式通过增加对投资者而不是房主有利的保险资产恰好逆转ANZIE-DOOR。但是，在某些COZIE-DOOR应用中，最好利用另一个剩余账户来取得平衡。本文考虑了COZIE-DOOR的“承诺资产”样式，其中承诺资产而非保险资产是剩余账户。

【0516】COZIE-DOOR的一个方面不涉及逆转ANZIE-DOOR中房主和投资者的仓位。在ANZIE-DOOR和COZIE-DOOR中，房主占有房屋并从推算租金中充其获利。下文所考虑的COZIE-DOOR的某些样式享有ANZIE-DOOR的另一种相似性：房主承担折旧和财产税。在这些COZIE-DOOR样式中，房主获得净租金和推算租金，这和ANZIE-DOOR中一样。
年金方案

COZIE-DOOR中的一种套现方案是需要投资者向房主长期支付固定或有规划的还款，也就是“年金”。作为交换，在构成ANZIE-DOOR的基础的一种周期性调整机制下，保险资产或承诺资产的增值有利于投资者。比率因子的计算有一点不同。等式(4)右手侧的分子不包括净租金项。净租金流向房主，而不是投资者，且在计算投资者的净出资时没有被减掉。该净出资等于现关还款，分子由与房屋价值成比例的这段时间内的现金还款利率组成。

图17是显示按本发明的COZIE-DOOR方案的保险资产年金样式的示意图。

虽然没有理由将COZIE-DOOR的承诺资产年金样式排除在外，但为了简明扼要，在介绍COZIE-DOOR时只考虑了保险资产样式。当然，某些投资者和房主在年金套件情况中可能更喜欢承诺资产样式。承诺资产样式在某些保全情况中特别有用，且在下文中作为该主题的一部分进行讨论。

与ANZIE-DOOR中的情况相同的是，COZIE-DOOR中的保险资产增值率是随机的，并在将来可能出现的许多不同市场行情的基础上易受各种变化的影响。这种风险影响着投资者的回报。表1中的数值例子表示的是COZIE-DOOR保险品种样式的下投资者回报类似于基准模型场景。如果房主和投资者的仓位被逆转，则该例子恰好对应于COZIE-DOOR。基准模型假设计算保险资产的净租金为零。这种假设对于COZIE-DOOR是“正确的”，因为在计算比率因子时没有减去净租金。在基准模型场景中，这种前景对于投资者是光明的，因为即使在最终价格路径上该百分比不正常的速度缓慢增加，投资者仍占有主要的保险资产百分比。

虽然房主是该方案中的另一方，但作为放弃保险资产的交换，房主在将来很长的一段时间内获得低风险预期回报。相对于初始房屋价值，该回报可能会很大。例如，每年的回报可能等于初始房屋价值的若干百分点，如果有必要的话还可以有通货膨胀的调整。

与反向分期抵押贷款不同的是，保险资产增值不可能变得那么高以至于必须终止工具。保险资产百分比不可能超过100%。参见上文的等式(5)。

此外，房主仍然具有剩余索取权。如果房价暴涨，则房主将得到大部分收益，这使得将来搬家更容易，如果有必要的话。

对于拥有物业且没有债务并且希望继续生活在这个房屋中但需要现金流的人来说，这种模式的COZIE-DOOR是特别合适的。在这种情况下，通过禁止房屋担保的抵押贷款，可以保护投资者的回报。在该方案中，投资者可以确定，在房主在卖房时有办法将相关的保险资产百分比转变为相应的房屋价值增值额。

这种模式的COZIE-DOOR要求在房主死亡及卖房时终止工具。否则，这个家庭能通过赠予或继承将房子传给下一代，继续从投资者那里长期获得付息，保险资产永远也说不清。在死亡时终止具有更广泛的应用。只要合同条件激活诸如信用价值之类的房主特征，就会产生作用。在这些情况下，在通过不同卖房的方式将房屋移交给新的业主之后，投资者希望至少具有终止工具的选择权而不是继续袖手旁观。

还可能存在维护问题。如果保险资产百分比增至很高的水平，则与一分钱换一分货对房主的影响相比，不维护房屋而产生的后果要轻的多。应对此情况的一种方式是，除了合同强制要求房主在卖房时补足房主的销售收益差额而不是保险资产帐户差额之外，还制定与ANZIE-DOOR中类似的维护责任。该帐户属于投资者。
与可能存在的维护责任不同的是，就房主而言，该款式的COZIE-DOOR要求不进行或几乎不进行主动的管理。房主不必作出任何融资决定而只要“拣便宜”，这确实很“安逸”。

图18是说明实现保险资产年金样式的COZIE-DOOR的分析机的流程图。该样式的COZIE-DOOR涉及保险资产的计算。对于构成ANZIE-DOOR基础的分析机而言，该计算在某些方面与图5中所示的类似，但存在重要的不同。投资者的净出者取决于与ANZIE-DOOR中的房主的净出者相对的COZIE-DOOR中的比率因子。由于投资者不再为影响房子中的房主权益的优先权提供资金，所以计算比率因子时不考虑优先权的推算利率。四个关键要素是：净租金、预期升值、房屋价值和投资者对房主的年度还款。比率因子的分子是在下一段的年度还款除以房屋价值，而分母是净租金增值速率率加预期升值速率。回到图18，五个计算参数包括输入到比率因子计算中的灰色阴影框。其中的三个参数（推算租金、预期折旧和财产税）是净租金中的要素。为了强调年度还款对该COZIE-DOOR所起的作用，有两组箭头从DOOR工具特征圆柱发出指向比率因子六边形。一组表示DOOR工具特征圆柱中存在的DOOR合同条款规定了输入到比率因子计算中的年度还款计划表（箭头流程中标有“年度还款计划表”的非粗体框）。其他箭头流程代表来自DOOR工具特征圆柱的其余输入，包括计算比率因子的算法说明。该图中的其余部分与ANZIE-DOOR的图5完全一致。例如，更新后的长期确定性等价率是计算保险资产百分比的一个必要输入。

一次性还款方案

房主希望一次性取回房屋资产，而不是分期性的现金还款。在COZIE-DOOR中，要满足这种需求是很容易的。投资者提出了这笔钱，然后在房屋中获得与其提供的这笔钱的数额相等的优先权。房主具有剩余索取权。作为提供这笔钱的交换，投资者积累保险资产或承诺资产。与年金方案的情况相同，但比率因子的计算方式不同。因为房主获得净租金，所以在等式（4）右则侧的分子中没有净租金项。)

这两种一次性还款样式中，一种涉及增加保险资产和其他承诺资产，在许多方面类似于上文所讨论的年金样式。房主预先获得无风险的还款，但保险资产或承诺资产的增值是随机的，可能非常不确定的。作为剩余索取权人，房主至少部分地免受不可预见的高升率。

这两种样式之间是有区别的，有一个区别是特别重要的：如果投资者积累保险资产，那就存在与过度“反向分期偿还”的危险类似的潜在的问题。虽然保险资产百分比永远不能超过100，但在随着某些价格路径经过一段后，投资者的保险资产仓库的值会超出房主在房子中的资产，这些价格路径上包括低升率或实际上贬值的情况。这种可能性要求进行以下的一种或多种适应性调整：(i)如果保险资产账户超过了房主在卖房时的资产，就限制保险资产一次性还款样式对于可能有偿付能力的房主的应用性；(ii)要求房主作出充足的额外担保以确保成效；或(iii)增加合同条款从而保证保险资产能增值，例如，如果房主的资产跌至低于保险资产的水平，就要求房主提供现金缓冲或终止工具并要求还清保险资产。因为房主将来要面对主要的融资意外损失，例如必要的现金缓冲，因此这些适应性调整都是“不轻松的”，或者与通过对额外的担保过帐实现“套现”的目标相抵触，或两者皆是。

幸运的是，不需要面对与保险资产方案有关的问题。积累承诺资产避免了相关方案中的所有问题和结果，这对许多房主和投资者而言是很有吸引力的。投资者的仓位上升，
并且在资本结构中状况良好。如果没有抵押贷款，则投资者拥有房屋价值中所有的“安全货币”部分。同时，房主具有剩余索取权并且因此在市场迅速上涨的情况下受到保护。在此情况中，如果有必要的话，通过使用巨额的资产增值得到一到两家，仍然可以搬离到一到等价的房子中。如果房价下跌或升值很少，那么房主的资产就有可能完全消失，且房子的值低于优先权，优先权包括承诺债务形式的投资者不断增加的资金。

0536 但这并不是问题。如表5中所示，结果显示，承诺资产占房价价值的一半百分比，积累得很快，从而对投资者在房主没有或几乎没有资产时为房主提供非追索性贷款的风险提供补偿。投资者要面对风险，但分析模型准确地提供适当补偿。另一个事实是，投资者掌握与该房屋有关的所有“安全”资金。房主在房子上的融资金额表现为获得活期贷款以及支付优先权上的“利息”的责任。当然，房主继续享有生活在该房子中生活所带来的推算租金收益。

0537 房主的主要目标是套现，该目标已经实现；房主的大部分原始房屋资产不再投于该房屋中。最终，累积承诺资本而不是保险资产重新恢复“安逸”。房主只需要享受一次性投资的回报并生活在该房子中。

0538 图19是显示按照本发明的承诺资产一次性还款样式的COZIE-DOOR方案的的示意图。

0539 图20是说明实现该承诺资产一次性还款样式的COZIE-DOOR的分析机的流程图。该分析机的输出是有利于投资者的更新后的承诺资产余额，该结果由该图右方的“承诺资产余额”六边形代表。计算新的余额需要旧余额，对投资者出资优先权进行补偿的增量和如何计算新余额的说明。从DOOR工具特征圆柱指向计算承诺资产余额的六边形的箭头表示该特征圆柱，从该特征圆柱产生旧余额和相关说明。补偿增量是在“出资额”六边形中计算的，该计算的输入是优先权推算利率和与优先权的大小有关的信息，该利率是从计算优先权推算利率的六边形中产生的，该信息来自DOOR工具特征圆柱。优先权推算利率的计算需要与非追索性看跌期权、房屋价值和房屋的预期升值率有关的信息。在非追索性看跌期权的情况下，这三种信息项是根据来自DOOR工具特征圆柱的优先权大小信息而计算出的。

0540 一次性还款加年金方案以及其他的合适特征

0541 将多个样式组合起来是很简单的，这产生了一种包括一次性还款和年金型还款的方案。投资者在一年时间段之间以该段时间内对房主的支出加上该段时间内的优先权推算利息的信用为基础积累保险资产，承诺资产或两者的组合。与等式(4)相比，用于该组合型样式的比率因子计算模式中的分子包括这两个要素，但不会减去净租金，因为房主获得了净租金。

0542 COZIE-DOOR具有与一般DOOR工具相同的灵活性。例如，它可以适应年金样式的体验的还款方案。可能存在的最大和最小月还款。房主自动获得最低金额，但可以要求最多达最大数目的金额。一个相关的方案积累“空闲”投资能力，该投资能力等于与在“储蓄账户”中有利息的最大金额相当的差额。在该方案中，房主能够在任何时候从该账户中取回资金，这些方案和许多其他方案是很容易适应的。还可以允许房主修改所用的特定方案，从而
在任意时刻从菜单中选择新的方案。DOOR中的动态机制自动地为各方所作的改动产生相关的补偿调整。

【0543】投资者的仓位

【0544】在COZIE-DOOR中投资者的仓位与ANZIE-DOOR中的十分不同，且这种不同不只是将房主的仓位进行简单的逆转。具有简单逆转风格(“对称”)的要素包括：

【0545】(1) 房主而非投资者具有剩余索取权，他要面对的是与房价波动对应的边际利润的亏损和盈利。

【0546】(2) 在一次性还款样式中，投资者而非房主具有承诺资产仓位，在销售收入方面优先于剩余索取权人。

【0547】在逆转后，有些要素是不对称。在维护责任上是不存在逆转的。在所有样式的COZIE-DOOR及ANZIE-DOOR中，房主维护房屋。这种动机结构与ANZIE-DOOR不同，且这种不同的性质取决于是否将ANZIE-DOOR与保险资产或承诺资产样板的COZIE-DOOR相比。在COZIE-DOOR的初始时，正常的一分钱换一分货的动机是存在的，因为尚未积累任何承诺资产或保险资产，且房主具有剩余索取权。在保险资产样板的COZIE-DOOR中，随着保险资产的增加，这种动机逐渐下降到低于一分钱换一分货的水平。如果没有维护合同，那在ANZIE-DOOR中就会出现相反的结果。在COZIE-DOOR的承诺资产样板中，只要房主在房子里还有资产，一分钱换一分货的动机就一直存在。

【0548】另一个不对称的要素涉及比率因子的正负。在ANZIE-DOOR中，比率因子可以是负的，这是因为比率因子中的分子等于优先块上的推算利息减去净租金。在所有COZIE-DOOR样式中，在计算中是不考虑净租金的。房主继续享有推算租金的好处，因此，比率因子分子中的所有要素都是正的。投资者出资还款(在年金样式中)，优先块贷款上的推算利息(在一次性还款样式中)，或这两块都出，并且可以以其他方式出资，例如，通过支付财产税。结果是，比率因子总是为正，且保险资产总是积累到投资者头上。在ANZIE-DOOR中，房主没有这样的保障。

【0549】在保险资产样板的COZIE-DOOR中，这种正向增值的保障对于投资者而言是蛋糕上的酥皮，房子中非杠杆性百分比的所有权随时间积累，吸引着投资者。相反，在ANZIE-DOOR中，投资者作为杠杆型方案中的剩余索取权人要面对很高的亏损风险。由于存在这种正向增值的保障，虽然房主在ANZIE-DOOR中获得的收益已经很稳健，但保险资产样板的COZIE-DOOR给投资者提供了更稳健的房产收益。显然，这两类工具是不同类型的投资者所关心的。ANZIE-DOOR投资者获得一部分融资性房产所有权，或者获得对于较大程度账户上的多样性而言和对不同的业主所用型房屋中或具有具体地理特征、人口特征或其他特征的房屋中的投机性投资而言十分理想的仓位。相反，保险资产样板的COZIE-DOOR是一种稳健得多的增加资产收益的方式。不存在很高的预期回报和更高的融资风险。

【0550】如果投资者利用抵押债务为部分优先块提供资金，那么承诺资产样板的COZIE-DOOR就会有融资风险，但与投资者是ANZIE-DOOR中的剩余索取权人的情况相比，投资者的资产处于极差的状态。在有抵押借款的承诺资产样板的COZIE-DOOR中，投资者的全损风险比保险资产样板中的高，这是因为在后一种情况下仅当房屋价值最终为零时才会出现全损。另一方面，如果在承诺资产样板的COZIE-DOOR中存在足够的房主(剩余索取权人)资产缓冲额，则投资者不受房屋价值缓慢下跌的影响。在保险资产样板中，投资者会因房屋价
值下降而遭受损失，这是因为如果房屋价值下降则保险资产仓位的价值下降。这些不同的风险削减与每个方案的形态吻合：投资者在承诺资产样式的资产仓位是在资本结构中作为的“水平”削减。在保险资产样式的，则是由总房屋价值百分比组成的“垂直”削减。

【0551】使各方在COZIE-DOOR中的“标准”税务处理方式形象化是很容易的，这种处理方式类似于本文为其他变体所建议的处理方式。无论哪一方支付财产税或抵押贷款利息（如果有的话），都要将这些因素扣除。在保险资产样式的，保险资产账户产生不受诸如§121排除性规定之类特殊业主自用型房屋规定支配的资本盈利/资本亏损。房主在房子本身上的盈利和亏损在所有样式的中受这些规定的支配。周期性地向房主还款不会产生各方的收入或损失，但对保险资产样式的保险资产帐私下交易、对房主的剩余索取权人仓位、以及对承诺资产样式的房主的承诺资产仓位具有根本性的含义。类似的是，对房主的一次性还款和投资者的补偿性优先权仓位会导致资本金的调整，房主在房子上的资本金下降，但不低于零。（资本盈利导致一次性还款额超过资本金的幅度），投资者在优先权仓位中的原始资本金等于一次性还款的数额。在承诺资产样式的下承诺资产的积累可以增加投资者在承诺资产仓位中的资本金并减少房主的资本金，但不会产生期收入或损失。

【0552】IS-A-DOOR

【0553】转移房主的目标

【0554】房主的目标随时间和不断改变的环境而变化。许多年轻的房主希望增加房屋资产但只有极少的承诺金并且他们的投资组合是均衡的。ANZIE-DOOR和诸如ANZIE’S SIDE DOOR之类派生出的变体对于这种打算而言是理想的。在后半生中，他们的目标可能是留在那个房子里但获得与房屋产值相对应的收入。多种样式的COZIE-DOOR可以有效满足这个目标。

【0555】除考虑生命周期之外，房主主要面对的临时环境会使现有方案不那么理想。例如房主主要面对无法预期的医疗费用，这使房主有必要从房屋资产中取出资金。另一方面，房主可能突然就发迹了，这使不同的DOOR变体更有吸引力。

【0556】利用IS-A-DOOR的低费用“再融资”

【0557】在每个DOOR变体中都可以包含对灵活性的大量需求。可以规定一次性地通过周期性或间歇性还款来撤回或增加资金。但源自分析调整工具的这种固有的灵活性允许更多基本可能性，诸如IS-A-DOOR。在IS-A-DOOR中，房主能在任何时候在各种中性DOOR工具之间进行切换。因此，我们只能说，房主拥有的，是一种DOOR”

【0558】IS-A-DOOR内产生低的费用以及很广且不断壮大的融资期权。不需要评估，没有极高的成交价，大量文书工作，不耗费时间，再融资所需要的只是几分钟打电话或者敲键盘。由于旧工具和新工具两者都是中性的，因此分析工具适当地为房主所需的改动进行调整。

【0559】改动可能存在一定的限制。例如，消除有利于房主的保险资产增值的改动会危及相关维护合同的有效性。然而，改动可以具有难以置信的广度和灵活性。

【0560】图21是说明实现IS-A-DOOR的分析机的流程图。该分析机使房主按其所需在中性DOOR工具之间切换。正如该图顶部所示，该进程以房主请求一个改动作为开始。服务器或包含可用于中性DOOR工具菜单的其他设备处理该请求。该设备找到现有的工具和所请求的新工具。现有DOOR工具的分析机包括一个DOOR工具特征圆柱，该圆柱包含该工具的说明以及诸
说明书

如保险资产的所有关键帐户的值和历史值，当房主请求时可利用现有分析机将这些值更新（步骤“1”）到最新，设一个切合的生物学的比方：DOOR工具特征圆柱就像细胞核；分析机本身是细胞。细胞核包含指导细胞活动的所有关键信息。改变DOOR工具包括移出细胞核、更改细胞核，然后将它植入到新的细胞中，也就是新DOOR工具的分析机中。更改（步骤“2”）包括：(i) 将现有DOOR工具的操作指令更换为新工具的操作指令，和(ii) 将参数和账户调整为与新工具及其分析机相容。例如，如果现有工具为一种样式的ANZIE-DOOR且新工具为保险资产年金样式的COZIE-DOOR，那么在现有工具下房主的保险资产余额需要被转换为新工具下的房主“剩余索取权人”的实际资产。从现有的DOOR工具特征圆柱来看，当前的保险资产余额是可用的，这是因为房屋价值和保险资产百分比两者目前都已经在步骤“1”中被现有工具的分析机更新，然后存入该圆柱。新DOOR工具下的保险资产账户将属于投资者而非房主。在完成更改之后，新的DOOR工具特征圆柱被并入（步骤“3”）新工具的合适的分析机中。该分析机运行（步骤“4”），为新DOOR工具的运行产生初始参数。

【0561】用于保全的DOOR

【0562】在目前的房产危机期间，“保全”，也就是处于资不抵债的“缩水”境地的房主进行再融资的处理过程，已经被证明是一种挑战。当房主是多项抵押贷款的抵押人且这些抵押贷款是债券池的一部分时，处境特别困难。结算需要所有抵押权人的同意，但联营的信托公司可能会拒绝参与，或者因为联营投资者可能发起法律上的质疑而勉强作出让步。即使在只有一个抵押权人且该抵押贷款不是债券池的一部分的情况下，抵押权人也不大情愿免除本金，也会采取其他步骤使情况合理化，希望房主个人即使在他们应当违约时仍继续为其房子还款。这种情况下许多房主至少资产管理表而言已经被移开职务。房子可能已经是他们最主要的资产，而其大部分财产已经没有了。

【0563】若干DOOR变体特别适用于这种情况。很有可能“保全”房主但不动贷款余额，同时房子仍然是“缩水”的。一种途径是ANZIE-DOOR型变体。第一抵押权人或类似政府的第三方可以给房主提供一个ANZIE-DOOR工具。房主放弃这些融资中富有风险的升值，但以保险资产的形式增加股权。现存的贷款包括优先权，且房主继续支付利息。因为房屋缩水了，所以保险资产累积得很快。表5显示了缩水约17%的房子的比率因子有多高。确实很高，最可能的是大于1。在第一年中，保险资产百分比从零增至大约5%。

【0564】这种快速累积完全补偿了房主以使其继续供货，且不再有动机去违约。如果房主在完成供货义务时需要一些帮助，则某些样式的ANZIE’S SIDE DOOR是非常有效的。例如，交易中可能包括对房主的周期性型支付，其代价是稍微减地累积保险资产。

【0565】第二种途径是使用承保资产年金样式的COZIE-DOOR。在这种样下，房主继续供货并获得实际上呈周期性的付款，该付款使供货能进行下去。如果房价回升并结清了贷款和承保资产，则投资者增加承保资产，同时房主保留“强有力”的资产。这类方案对于不愿承担风险的当地政府或非营利组织而言是理想的。他们的资本收益情况比房主的资产要好，但仍然在随时间增加。

【0566】虽然使用承保资产年金样式的通常是更好的方案，但在保全情况下还可以使用承保资产年金样式的COZIE-DOOR。承保资产样式只在房主办理时支付保险资产的承保可信时起作用。在保全情况下，这种可信度是特别成问题的：在该方案之初，房主办在房子中已经没有常的资产了，在房主的资产抵消保险资产责任前必须有高额升值。本文其他部分所讨
论的应用涉及很不一致的初始情况，房子没有完全被抵押。正如所讨论的那样，保险资产年金样式的COZIE-DOOR通常可以保证通过禁止对该房屋进行抵押贷款来继续这种初始情况，确保有足够的资金用于抵消卖房时的代价，这样做可以保护投资者的保险资产仓位。

【0567】 ANZIE-DOOR和承诺资产样式的COZIE-DOOR并不是仅有的两种有吸引力的方案。DOOR下的选择多而宽，可能性就有多宽广。一个有趣之处是引入类似于ANZIE’S NU DOOR或ANZIE’S NU TRIE DOOR的债务清偿元素。投资者可基于一个计划表或甚至以特定的市场行情（例如房价的进一步下降）为条件偿还房屋的全部债务。与传统的债务免除不同，投资者以某种取决于工具的基本属性的方式获得基于市场的补偿：有利于房主的较慢的保险资产积累(ANZIE-DOOR)，有利于投资者的较快积累(COZIE-DOOR)，向房主提供的较低的辅助还款(ANZIE’S SIDE DOOR)等。

【0568】 这些债务偿还变体提供了一个普遍的观点。抵押权人不由债务免除债务的一个原因是，他们希望房主被陷在这样一个系统中，其(1)充满了因嵌入式期权而产生的不正当的动机；和(2)因为对一笔更合适的方式交易进行再融资是非常昂贵的，因而有非常不灵活的特征。在DOOR的世界中，没有理由维持债务水平并保持房主的房产缩水。减免债务产生对债权人的再交易（对DOOR投资者而言，缩水的情况没有任何吸引力)。在ANZIE-DOOR中，例如在缩水情况下，投资者希望房价回升可以恢复投资者在房子中的资产，也就是强有力的价值期权。但同时，投资者允许保险资产以有利于房主的非常低的速率积累，由此为这项期权付出代价。

【0569】 总的来说，DOOR工具为保全情况提供了一组难以置信的强有力的工具。确切的方案能够切合房主和保全者的感觉和目标。

【0570】 计算机实现方式

【0571】 图22是分析机的示意图，该分析机的典型形式为计算机系统1600，其中可执行促使分析机执行以上任一种DOOR方法的一组指令。在可选实施方式中，分析机包括或具有网络路由器、网络开关、网桥、个人数字助理(PDA)、蜂窝电话、网络设备或能够执行或传输一系列指令的其他机器，这些指令指定将要采取的行动。

【0572】 计算机系统1600包括处理器1602，主内存1604和静态内存1606，它们利用总线1608互相通信，计算机系统1600进一步包括显示单元1610，例如液晶显示器(LCD)或阴极射线管(CRT)。计算机系统1600还包括字母数字输入设备1612，例如键盘、光标控制设备1614，例如鼠标；键盘驱动单元1616，信号生成单元1618，例如扬声器，和网络接口设备1628。

【0573】 磁盘驱动单元1616包含机器可读媒介1624，其上存储有一组可执行的指令1626，也就是软件，软件1626收录了本文所述的任一个或所有方法。软件1626还显示为完全或至少部分地驻存在主内存1604及/或处理器1602中。利用网络接口设备1628，可进一步在网络上1630发送或接收软件1626。

【0574】 与上述系统1600相对的是，不同的实施方式使用逻辑电路而不是计算机可执行指令来实现处理实体。取决于应用程序在速度、耗费、修理费等方面的特定需求，该逻辑电路可以通过构建特定用途集成电路(ASIC)来实现，该ASIC具有成千上万个细微的集成电路管。这样的ASIC可以用互补型金属氧化物半导体(CMOS)、晶体管-晶体管逻辑(TTL)、超大规模集成电路(VLSI)或其他合适的构造来实现。其他可选元件包括数字信号处理芯片(DSP)，离散电路(例如电阻、电容、二极管、电感和晶体管)，场可编程门阵列(FPGA)，可编程逻辑阵
列（PLA），可编程逻辑设备（PLD）等。

[0575] 可以理解的是，实施方式可被用作或用于支持软件程序或软件模块，软件程序或软件模块可在某种类型的处理核心（如计算机的CPU）上被执行，或在某个机器或计算机可读媒介中以其他方式被执行或实现。机器可读媒介包括用于储存或发送机器（例如计算机）可读型信息的任意媒介。例如，机器可读媒介包括只读存储器（ROM）；随机存取存储器（RAM）；磁盘储存媒介；光储存媒介；闪存设备；电、光、声或其他形式的传播信号，例如载波、红外信号、数字信号等；或适于储存或发送信息的其他类型媒介。

[0576] 结论

[0577] 目前的住房市场是不正常的，这在很大程度上是因为目前的融资方法是有缺陷的。即使是在各方希望改变交易中相对很小的一些方面时，常见的一些方法也会导致许多房主的不合适融资方案，因嵌入式期权而产生道德风险和估值困难，难以产生充分的维护动力，并且由于再融资很昂贵而不够灵活。设计消除所有这问题的DOOR变体是很容易的。DOOR工具对于房主的各种目标而言是非常优越的方案：增加房屋资产而不牺牲资产组合的平衡，从低资产的仓位变为中等水平的房屋资产，退休收入，保全，等等。同时，DOOR工具为投资者在资产庞大但相对难以接近的资产类型——业主自用型房产——方面提供了新的、非常有价值的工具。

[0578] 虽然本发明在本文中的描述参考了优选实施方式，但本领域技术人员容易理解的是，其他应用方式可以替代本文所提出的那些方式而不必脱离本发明的精神和范围。因此，本发明仅受限于下文所包括的权利要求书。
图1
图4
图10
图13
资本结构

1) 房屋价值下降触发抵押贷款首付
2) 投资者的抵押贷款首付总共是$z
3) 以低于初始优先块金额的价格出售房屋
4) 投资者损失原始资产并且为部分抵押贷款付首付

初始仓位

投资者的资产

抵押贷款

初始优先块

售价

投资者的原始资产和部分$z

卖房时投资者的资产

抵押贷款

卖房时的优先块

净出资
（优先块上的利息减净租金）

房主

投资者

保险资产（较低）=x%售价
资本结构

出售仓位（赢利）

房主的资产

初始仓位

房主的资产

出售仓位（亏损）

房主的资产

私下交易

保险资产的增加额（随机）

房主

投资者

周期性的固定还款
图18