
US 2011 0194690A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2011/0194690 A1

Das Gupta et al. (43) Pub. Date: Aug. 11, 2011

(54) DATA ADAPTIVE MESSAGE EMBEDDING (52) U.S. Cl. 380/246; 380/54; 382/100
FOR VISIBLE WATERMARKING (57) ABSTRACT

(76) Inventors: Mithun Das Gupta, Cupertino, CA A watermarking system uses distinct bit patterns to identify a
(US); Jing Xiao, Cupertino, CA logic 0, a logic 1, and a marker bit, which demarcates seg
(US g , Uup s ments of logic bit information. Marker bits, which are printed

on both foreground and background areas of an image, out
line message blocks. In message extraction, a preprocessing

(21) Appl. No.: 12/701,311 step removes any white boarders, identifies the best defined
corner of a message block, crops the image, and rotates the

(22) Filed: Feb. 5, 2010 image to place the identified corner at the top-left corner.
Message extraction scans the rotated image in window seg
ments of increasing size during multiple cycles. During each

Publication Classification cycle, ifa bit pattern cannot be identified as a data bit, then the
(51) Int. Cl. size of the examined bit area is increased and rechecked to see

H04N I/44 (2006.01) it specifically is a marker bit. If no bit information can be
G09C5/00 (2006.01) definitively identified, then it is assigned a logic bit value
GO6K 9/OO (2006.01) based on a 50% random assignment.

Horizontal
Gradient :

3.
:

g 28

Virtical
Gradient

25 27

Patent Application Publication Aug. 11, 2011 Sheet 1 of 27 US 2011/O194690 A1

11-1R 13- 15-1

Logic 1 Logic 0 Marker Bit (MB)

Fig. 1

s
's

is -
re

s

Patent Application Publication Aug. 11, 2011 Sheet 2 of 27 US 2011/O194690 A1

n K

t

US 2011/O194690 A1 Aug. 11, 2011 Sheet 3 of 27 Patent Application Publication

and border areas defined

Fig. 4b

After filling in the interior

by the skeleton pattern

ae __)
Al

Fig. 4c

Patent Application Publication Aug. 11, 2011 Sheet 4 of 27 US 2011/O194690 A1

E

Patent Application Publication Aug. 11, 2011 Sheet 5 of 27 US 2011/O194690 A1

Generation of Connected Components,
Area Mask

Submitted Y 31
Image

Convert to Single Channel

Preferably: RGB to YCbCr conversion,
with all further processing performed on

the luminance (Y) channel

Generate Gradient Image

VI = VI, + VI,

Label Connected
Components

Submitted Image
is an

Image Bloc

59

Intensity
Threshold

63

Area
Threshold

Divide Connected
Component Area into

Mask Blocks

Output
Connected Component

Mask Block
(Identifies foreground and

background)

65

Fig. 6

US 2011/O194690 A1 Aug. 11, 2011 Sheet 6 of 27 Patent Application Publication

Sysia
s
Sexists

8xx Systs

Fig. 8

Patent Application Publication Aug. 11, 2011 Sheet 7 of 27 US 2011/O194690 A1

Input 90 Fig. 9
Image

Divide Input Image vertically
down its center to create a left
hand plane and right-hand planc

Vertically scan the left-hand plane
from the top downward and identify
the first encountered non-white row
of pixels as a non-white-left row

Vertically scan the right-hand plane
from its top downward and identify
the first encountered non-white row
of pixels as a non-white-right row

second row index = row index number of first non-white-right row

Define First Rotation Angle 01 as:

(first row index – second row index)
fan 0I st

half image width

97
Rotate input image 90° and repeat steps 91-96 on the rotated input

image to define a Second Rotation Angle 02

98
General Rotation Error Angle 0 of input image = average of 01 and 02

99
Rotated input image by -0

Patent Application Publication Aug. 11, 2011 Sheet 8 of 27 US 2011/O194690 A1

- - - 101 User-provided input
message String

Adjust bit-length of user-provided input message string
to create a formalized message string "M'offixed length

o 103

Apply Error Correction Code (ECC) and
append ECC string “E”

104

102

YES NO Last data bit of ECC
String “E = Logic 1

Add First Indicator Marker string Add Second Indicator Marker string
“A1" (where A1 = 01010101) 105 106 “AO” (where A0 = 10101010)
to Create Formatted Message to create Formatted Message

“MEA1 “MEAO”

107
Arrange Formatted Message (MEA1 or MEA0) into a Message Block (of

preferably 900 bits) by providing multiple copies of the Formatted Message
or appending a predefined padding-bit-pattern (for example. all 1's or all

0’s) to fill the remainder of the message block. If a predefined padding-bit
pattern is used, then preferably alternately inserting the logic true and logic

complement of the padding-bit-pattern on alternate Message Blocks.

Fig. 10

Patent Application Publication Aug. 11, 2011 Sheet 9 of 27 US 2011/O194690 A1

Divide input image into Square image blocks whose block-size is 108
defined as block-size = 30 X (pattern size + White margin), where the
pattern size is 22 pixels and the white margin is 5 pixels on all sides

Encode each image block with its corresponding
Formatted Message

Fig. 11

109

130
Area
Mask

Divide the Area Mask into mask blocks having a one-to-one relation 132
with an image block according to its relative location within the input
image, With each mask block being of similar shape and size as its

corresponding image block.

Fig. 12

Patent Application Publication Aug. 11, 2011 Sheet 10 of 27 US 2011/0194690 A1

Assign a one-to-one relationship between Mask
Blocks and corresponding Image Blocks

129
Multiply next Image Block with corresponding Mask Block to create

Mask-Filtered Block

Sub-divide the Image Block, or Mask-Filtered Block, into "Message-Pattern
Size Sub-Blocks to be of equal size and dimension as current Message Block

31

All Message-Pattern-Size
Sub-Blocks processed

Sclect next Message Block and its corresponding
McSsage-Pattern-Size Sub-Block

n = 0

n > Message-Bit-Count

h . . Encode Current Image Block region with n" bit pattern from current Message Block.
If background is light, then pattern is printed darker than Surrounding background. If
background is dark, then pattern is printed lighter than Surrounding background.

Fig. 13

Patent Application Publication Aug. 11, 2011 Sheet 11 of 27 US 2011/0194690 A1

S. F:

Š s SS Š SSSSS Š
SS
S. S

Š S

Patent Application Publication Aug. 11, 2011 Sheet 12 of 27

as is a sea a E at a says as aaaaaa.
a Say Sayyyyyya aaaayyya as
says a set as a state a aaaaaaaaaaaas at as a
agay a y Essay

a say as a a
yya aayaaaye.
as aaayaaay
sees
as Essay a

a yet a
Ya?aya as
a yay's

eye say Says
Yy years a
assy estates
ey area abys

a yayaaaaaaaaaayyyy
a gy

s age

EEEEE
at age
EEE
A yes
Syssy
seiya
As a
Reg

Seyyes
ya

Seyyyyyyyyyyya as
yyya Sasy eye eyes y Seyyyyyyyyy
y Saises easy See als. Seasy Sysis a Sas

as SE as Es Eyes esse aess ?ease aye says Eye eye a
ey Es Esgaayaasaye Sassay asses y Satya esses
as seats Aeaea age seas sets a geese syeae sea eas
says as eyes y Eye Esa Eyre are sees asyay systey easy are
Elae is a esses as Esalese as ease Esseese stayed as a
as a says ea a Eya aaaaaaaassy says as sty's says a gases
ages at as a gest Ege yeae seats assessey is aaS sty
assa) as as aaaaaass asses as easis essae is a tes

as a y Essays easy asy. Saatyayy is y
agaayaaaaaaaaaaaaaaaaaaaaay sys
is as Essay a as asy assassy is
See as a sea eas as a years as
as as a aesara aests as a Es as is a stees
sey is styles as E. Rya as as a as a sys

Yayyyyyyyyyyyyyyyyyy
YYYYYYYYYYY

. EEEE

US 2011/O194690 A1

s

O
St
y

b)
o

t
c
s

--

US 2011/O194690 A1 Aug. 11, 2011 Sheet 13 of 27 Patent Application Publication

¿ :

%

m.

Fig. 15

US 2011/O194690 A1 Aug. 11, 2011 Sheet 14 of 27 Patent Application Publication

? ?

Fig. 16

US 2011/O194690 A1 Aug. 11, 2011 Sheet 15 of 27 Patent Application Publication

151 155 155 155 153

Fig. 17

Patent Application Publication Aug. 11, 2011 Sheet 16 of 27 US 2011/0194690 A1

171

172

173
Convert to Single Channel

174

Generate Gradient Image

VI = VI, + VI,

75 176

thr lower thr - 2 lower thr
extracted message = upper thr

177
176

Stop and
Output meSSage

thr e- thr + 2
thr- upper thr

178

Binarize

Message Extraction,
identify new message

180
extracted message =

new message

179

Fig. 18

Patent Application Publication Aug. 11, 2011 Sheet 17 of 27 US 2011/0194690 A1

2 g

Patent Application Publication Aug. 11, 2011 Sheet 18 of 27 US 2011/0194690 A1

3)

Patent Application Publication Aug. 11, 2011 Sheet 19 of 27 US 2011/0194690 A1

-v c
r

o O

Patent Application Publication Aug. 11, 2011 Sheet 20 of 27 US 2011/0194690 A1

3) :

Patent Application Publication Aug. 11, 2011 Sheet 21 of 27 US 2011/0194690 A1

Patent Application Publication Aug. 11, 2011 Sheet 22 of 27 US 2011/0194690 A1

Sample image 17
msge block size, threshold confidence

2

Rotation Compensation, 03
and Margin Cropping as

i = 1.0
current confidence = 0, rotation = 0 N205

row ID = -1, column ID = -1 209
STOP

Rotate and Crop
sample image to place
best watermark block

corner at upper-left corner
angle = -90° of sample image

angle – angle +90°
angle > 270°

Rotate (Sample image, angle)
block side length = i X msge block size

corner image = sample image(0:block side length, 0:block side length)

Best Corner Detection (corner image);
return: new confidence, incwRowID, new Column ID

current confidence
>

new confidence

current confidence = new confidence
row ID = newRowID, column ID = new Column ID

rotation = angle

current confidence >
threshold confidence

Fig. 24

Patent Application Publication Aug. 11, 2011 Sheet 23 of 27 US 2011/0194690 A1

215 221

N. 223 225
Generate Connected intensity Thr
Components Mask area Thr

227

Find square Marker bit patterns
229

231
new RowlD = row with maximum
number of marker bits horizontally

233

row confidence (— HMarker Bits in newRowID
(HMarker Bits + HData Bits) in newRowID

235
new Column ID = column with maximum

number of marker bits vertically

column confidence — #Marker Bits in new ColumnD
(HMarker Bits + HData Bits) in new Column ID

239

new confidence = average of row confidence and column confidence

240
Return:

new confidence
new ROWID

new Column ID

Fig. 25

US 2011/O194690 A1 Aug. 11, 2011 Sheet 24 of 27 Patent Application Publication

|

S
|

Patent Application Publication Aug. 11, 2011 Sheet 25 of 27 US 2011/0194690 A1

Divide Current image into patches of roughly 1.5 times the size of a message block
261

Last patch examined? YES
262 264

265

Image orientation
known to be correct? NO 267

Patch Rotation = 0

Convert current patch into a derivative image that is thresholded to producc
a binary image showing individual marker bit images and data bit images

Go to top-lcft corner of patch, or cquivalently, thc derivative image

Can right-half of next bit image be
identifica as logic 0 or 1 Data Bit?

Examine left and right side of bit
image. Isbit image a marker bit

Assign bit image a random
valuc of logic-l or logic-0 on

a 50% probability basis.

Store Bit-Info

274

All bit images examined?

YES
275

Patch Rotation > 270°

NO

Patch Rotation = Patch Rotation +90°:
Fig. 27 Rotate Patch by Patch Rotation

Patent Application Publication Aug. 11, 2011 Sheet 26 of 27 US 2011/0194690 A1

2

US 2011/O194690 A1 Aug. 11, 2011 Sheet 27 of 27 Patent Application Publication

US 2011/O 194690 A1

DATA ADAPTIVE MESSAGE EMBEDDING
FOR VISIBLE WATERMARKING

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001. This application is related to U.S. patent application
entitled “A Novel Bit Pattern Design For Visible Watermark
ing.” Attorney Docket No. AP405HO and “Embedded Mes
sage Extraction for Visible Watermarking.” Attorney Docket
No. AP409HO filed on the same day as the present applica
tion, which are incorporated by reference herein in their
entirety.

BACKGROUND

0002 1. Field of Invention
0003. The present invention is geared toward the field of
watermarking scanned images, and in particular, is geared
toward defining a formatting of an input text string for water
marking that facilitates the reading of the text string.
0004 2. Description of Related Art
0005 Visible watermarking is the science of overlaying
messages comprised of bit-encoded, character Strings onto a
user-provided image (i.e. an input image) prior to printing the
input image. The resultant, printed image is a watermarked
image, and it is said to have been watermarked with a secret,
or hidden, watermark message. The principle motivation
behind Such encoding is that when properly encoded, the
watermark message can be extracted from a scan of the pre
viously-printed, watermarked image.
0006 Visible watermarking schemes can be useful in
many scenarios, Such as having a userID encoded onto docu
ments while printing from a network printer, having the date
and time of printing inconspicuously placed on a printed
document, etc.
0007 Although watermark messages may be incorporated
as textual messages overlaid on an output image, it is pre
ferred that the watermark message not be readily discernable
by a casual viewer of the output image. That is, it is typically
preferred that the watermark message not be printed using
text characters, which can be freely read since Such a message
is likely to become a distraction to a casual viewer, moving
the casual views attention away from the output image itself.
It is therefore customary to first encode the watermark mes
sage using an encoding scheme that is not readily discernable
by a casual viewer, and then to overlay the encoded message
on the output image. Preferably, the encoded message should
be innocuous to the casual viewer and not divert attention
from the main Subject matter of the output image.
0008. One typical method of encoding a message is to use
the standard ASCII code, which is known in the art to provide
a distinct eight-bit, binary code per text character. In this way,
the ASCII encoded message may be printed as a series of O’s
and 1's overlaid on the output image, and is not easily dis
cernable by a casual viewer. However, it is typically not an
optimal solution to clutteran output image with a series of 0's
and 1’s detectable by the human eye.
0009. One approach to hiding the encoded message is to
encode the watermark message into text characters that may
already be a part of the output image. In this approach, an
existing text character within the output image is divided into
an upper region and a lower region, and relative darkness
levels of the two regions are modulated to inscribe the
encoded watermark message. For example, the upper region

Aug. 11, 2011

of a text character may be made darker than its lower region
to representalogic-0. Alternatively, the lower region of a text
character may be made darker than its upper region to repre
sent a logic-1. This approach Succeeds in effectively hiding
the watermark message from a casual reader of the output
document, but to some extent, it may be dependent upon the
quality of Scanning and printing equipment used to process
the watermarked output image to successfully inscribe the
watermarked message and to Successfully extract the water
marked message after multiple scan-and-print cycles.

SUMMARY OF INVENTION

0010. The present invention takes an alternate approach to
solving the above described problem. This alternative
approach is to define new printable pattern symbols to repre
sent individual data bits (i.e. logic 0 bits and logic 1 bits) in a
data bit-string that defines an encoded, character-string mes
sage. Since the newly defined printable pattern symbols
would not be known to a casual observer of the output image,
they would pose a lower level of distraction. Thus, the water
mark message (preferably a bit-string comprising a bit-en
coded, text message) may be overlaid as a series of printable
pattern symbols onto the input image to create a watermarked
image with pattern symbols that are visible, but not decipher
able, by human eyes.
0011. One aspect of the present invention is a method of
formatting an input text string for watermarking onto an input
image, said method comprising the following steps: (a) con
figure said input text string into an intermediately formatted
bit-string having a first fixed bit-length; (b) if the last data bit
of said intermediately formatted bit-string is a logic high 1,
then adding a first indicator marker string 'A1 to create a first
formatted message; else adding a second indicator marker
string "A0 to create second formatted message; (c) arranging
the first or second formatted message created in step (b) into
a message block, said message block being of predefined
block bit-length, and increasing the bit length of the formatted
message created in step (b) to be equal to said predefined
block bit-length.
0012. In this method step (a) includes adjusting the bit
length of the input text string to create a formalized message
string “M” of predefined length. Preferably, formalized mes
sage String “M” is created by appending a known bit pattern
to the input text string if the input text string is shorter than
said predefined length. In this, the known bit patternis a series
of contiguous logic 0's.
0013 Alternatively, step (a) includes applying Error Cor
rection Code (ECC) to formalized message string M and
appending to it an ECC string “E” so that said intermediately
formatted bit-string has pattern “ME'. In this case, in step (b).
if the last data bit of ECC string “E” is a logic high, then
appending said first indicator marker string 'A1 to interme
diate formatted bit-string “ME' to create said first formatted
message "MEA1'; else appending said second indicator
marker string "A0 to create second formatted message
“MEAO.
0014. In a preferred embodiment of the present invention,
the second indicator marker string “A0 is the logic comple
ment of said first indicator marker string “A1. More specifi
cally, the first indicator marker string "A1 is a logic bit string
defined as A1="01010101’, and the second indicator marker
string “A0” is a logic string defined as A0="10101010”.
0015. It is presently preferred that the predefined block
bit-length is 900 bits.

US 2011/O 194690 A1

0016. In an alternate embodiment, in step (c), the bit
length of the formatted message created in step (b) is
increased by providing multiple copies of the same formatted
message. Alternatively in step (c), the bit length of the for
matted message created in step (b) is increased by appending
a predefined first padding-bit-pattern to fill the remainder of
the message block.
0017. In this case, the method may further include (d)
arranging onto said input image, a plurality of said message
blocks adjacent to each other, wherein a first of said message
blocks is padded with said first padding-bit-pattern, and a
second of said message blocks adjacent said first message
block is padded with a second padding-bit-pattern, said sec
ond padding-bit-pattern being the logic compliment of said
first padding-bit-pattern. Preferably, adjacent message blocks
in said plurality of adjacent message blocks are alternatively
padded with said first padding-bit-pattern and second pad
ding-bit-pattern.
0018. The preferred method further includes preparing
said input image to receive said message block, including: (A)
dividing said input-image vertically to create a left-hand
plane and right-hand plane; (B) scanning the left-hand plane
from the top downward and identifying the first encountered
non-white row of pixels as a non-white-left row, the row index
number of said first non-white-left row being a first row
index; (C) scanning the right-hand plane from its top down
ward and identifying the first encountered non-white row of
pixels as a non-white-right row, the row index number of said
first non-white-right row being a second row index; (D) defin
ing a first-rotation-angle 01 as being equal to (first row
index)-(second row index) divided by a first predefined
width dimension; (E) rotating said input-image 90° and
repeat steps (a) to (c) on the rotated input-image; (F) defining
a second-rotation-angle 02 as being equal to (first row index
of the rotated input-image)-(second row index of the rotated
input-image) divided by a second predefined width dimen
sion; (G) rotate input image to be at its original orientation
less the average of 01 and 02.
0019. The present invention further provides a method of
compensating for skew error in an input-image, comprising
the following steps: (a) dividing said input-image vertically to
create a left-hand plane and right-hand plane; (b) scanning the
left-hand plane from the top downward and identifying the
first encountered non-white row of pixels as a non-white-left
row, the row index number of said first non-white-left row
being a first row index; (c) scanning the right-hand plane from
its top downward and identifying the first encountered non
white row of pixels as a non-white-right row, the row index
number of said first non-white-right row being a second row
index; (d) defining a first-rotation-angle 01 as being equal to
(first row index)-(second row index) divided by a first pre
defined width dimension; (e) rotating said input-image 90°
and repeat steps (a) to (c) on the rotated input-image: (f)
defining a second-rotation-angle 02 as being equal to (first
row index of the rotated input-image)-(second row index of
the rotated input-image) divided by a second predefined
width dimension; (g) rotate input image to be at its original
orientation less the average of 01 and 02.
0020. In this approach within step (d), the predefined first
width dimension is the width dimension of one said left-hand
plane or right-hand plane. Additionally in step (a), the input
image is divided Substantially down its centre. Also in step
(d), the first predefined width dimension is half the width
dimension of said input-image; and in step (f), said second

Aug. 11, 2011

predefined width dimension is half the width dimension of
said input-image after having been rotated 90°.
0021. In an alternate embodiment, in step (b), the non
white row is a row having a luminance intensity histogram
containing less than a pre-specified percentage of white pix
els. Preferably, the pre-specified percentage of white pixels is
not greater than 98 percent.
0022 Stated differently, in the above method, in step (b),
the non-white row is a row whose percentage of white pixels
is less than 98 percent of the total pixel in the same row. It
should be noted that the white pixels are preferably defined as
pixels having a luminance intensity not smaller than 250.
0023. Other objects and attainments together with a fuller
understanding of the invention will become apparent and
appreciated by referring to the following description and
claims taken in conjunction with the accompanying draw
1ngS.

BRIEF DESCRIPTION OF THE DRAWINGS

0024. In the drawings wherein like reference symbols
refer to like parts.
0025 FIG. 1 shows three distinct bit-pattern symbols to
representalogic-1 data bit, a logic-0 data bit and a marker bit
(MB), respectively, in accord with the present invention.
(0026 FIG. 2 shows that each dot d in FIG. 1 preferably
consists of sixteen pixels p in a 4x4 grid arrangement.
0027 FIG. 3 shows multiple processing phases in a pro
cess for discerning the general shape of each bit-pattern Sym
bols in an input image.
0028 FIG. 4a shows a binarized bit image of a recovered
skeleton pattern (i.e. outline) of a bit-pattern symbol.
0029 FIG. 4b shows the binarized bit image after appli
cation of a fill-in operation to fill in the interior and border
areas defined by the skeleton pattern of FIG. 4a.
0030 FIG. 4c shows the dividing down the middle of the
filled-in image of FIG. 4b in preparation for extracting bit
pattern information.
0031 FIG. 5 shows the application of the presently pre
ferred bit extraction technique applied to a logic 0 bit pattern
and a logic 1 bit pattern as each bit pattern is rotated at 90°
intervals.
0032 FIG. 6 shows a preferred method of creating a con
nected components mask.
0033 FIG. 7a shows the application of the connected
components mask method of FIG. 6 to an image to remove
everything except the pattern symbols, which are shown as
white image patterns on a black background.
0034 FIG. 7b shows the result of applying the connected
component mask process of FIG. 6 to an image that did have
a watermarked message.
0035 FIG. 8 illustrates an example of rotation error, or
skew error.
0036 FIG. 9 is a preferred method of correcting for skew
error illustrated in FIG. 8.
0037 FIG. 10 illustrates a preferred method of preparing a
user-provided message string for encoding onto an input
image.
0038 FIG. 11 shows an exemplary method of subdividing
an input image into multiple image blocks for encoding a
formatted message therein.
0039 FIG. 12 illustrates that if a connected components
mask has not previously been subdivided into mask blocks
and generally spans the entirety of the input image, then it is
divided into mask blocks of shape, size and number corre

US 2011/O 194690 A1

sponding to the image blocks, with each mask block having a
one-to-one relationship to its corresponding image block
according to its relative location within the input image.
0040 FIG. 13 illustrates a presently preferred watermark
encoding sequence.
0041 FIG. 14a is an example of an encoded image block.
0042 FIG. 14b re-presents the image of FIG. 14a.
0043 FIG. 14c shows the image of FIG. 14b after partial
processing in preparation for extracting an encoded water
mark message.
0044 FIG. 15 is a sample input image with a watermark
message printed upon it.
004.5 FIG. 16 illustrates the image of FIG. 15 after under
going a transformation resulting from a print-and-scan cycle.
0046 FIG. 17 shows a page having another sample image
with multiple message blocks outlined by marker bits.
0047 FIG. 18 shows a general process for decoding a
watermark message.
0048 FIG. 19 is a simplified illustration highlighting ele
ments of a scanned image.
0049 FIG. 20 illustrates image of FIG. 19 rotated by 90°.
0050 FIG. 21 illustrates the image of FIG. 20 rotated by
900.
0051 FIG. 22 illustrates the image o FIG. 21 rotated by
900.
0052 FIG. 23 illustrates that the search window used for
searching for the best corner is increased by 50% in each of
multiple search cycles.
0053 FIG. 24 provides a more detailed description of the
preprocessing step 172 of FIG. 18.
0054 FIG. 25 provides more detailed description of mod
ule Best Corner Detection of sub-step 215 in FIG. 24.
0055 FIG. 26 illustrates the result of applying the pre
processing process of FIGS. 18-25 to page 151 of FIG. 17.
0056 FIG. 27 shows a preferred method of watermark
message extraction.
0057 FIG. 28 shows an image grid representation of
extracted bit pattern information.
0058 FIG. 29 shows the image grid of FIG. 28 after
removing all bit pattern information except for an identified
message block.
0059 FIG. 30 highlights that a properly of the present
invention wherein an improperly oriented image will pro
duced mostly marker bits, while a properly oriented image
will produce mostly data bits with marker bits along its perim
eter.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

0060. Before going into the details of the present inven
tion, an exemplary bit-encoding scheme is presented. It is to
be understood that multiple bit-encoding schemes are known
in the art, and selection of a specific bit-encoding scheme is
not critical to the present invention.
0061. A user-provided message string is first converted
into a suitable form by bit-encoding. The user-provided mes
sage string may be any character string, which for illustration
purposes is herein assumed to be character string: "Hello
world'. This text character string (i.e. message String) is then
re-rendered as (i.e. encoded into) a collection of logic low “O'”
bits and logic high “1” bits. In this encoding operation, every
unique character in the message string is correlated to a cor
responding unique numeric code, preferably in the range
from 0 to 255. Each numeric code, in turn, represents a unique

Aug. 11, 2011

group of data bits, such as a byte (an 8-bit binary number).
This may be achieved by converting the text characters in the
user-provided message string into their ASCII code equiva
lent. As it is known in the art, ASCII code is the American
Standard Code for Information Interchange, and it provides a
character-encoding scheme for converting text characters
into machine readable, binary codes of eight bits each. For the
present exemplary message string of “Hello world', the
ASCII equivalent numeric codes for each text character are
shown in Table 1 below.

TABLE 1

Text ASCII Binary
Character Code Code

H 72 O1 OO1 OOO
e 101 O1100101

108 O1101100
108 O1101100

O 111 O1101111
32 OO1OOOOO

W 119 O1110111
O 111 O1101111
r 114 O111 OO10

108 O1101100
d 1OO O11OO 100

The “Hello world message string can therefore be repre
sented as the following binary bit-vector:

O 100100001100101011011

OOO1101100011011110010

OOOOO 11101110110111101

1100100110110001100100

Since the message is now a collection of logic 0's and 1's, all
that is needed is a way to represent a logic-0 and a logic-1 on
a printed image. The representation of logic 0's and 1's is an
important aspect of the present invention.
0062. A novel, and printable, pattern symbol design (or
bit-pattern design) for representing a 0-bit and a 1-bit for use
in visible image watermarking is described below. Before
describing the presently preferred bit-pattern symbol designs,
however, it is beneficial to first define a “full-length message
string since it is currently preferred that user-provided mes
sage strings be formatted into a full-length message string
prior to being watermarked (i.e. encoded) onto an input
image. It is to be understood that the defined length of the
“full-length message string is a design choice.
0063. It is presently preferred that all message strings that
are to be encoded onto an input image be of equal length, and
preferably be confined to a fix length of 64 bytes (or 64
one-byte characters) in total, which defines the “full-length
message String. Smaller message strings may be padded
with known bit-data to make their final bit-length equal to 64
bytes. For instance, the present exemplary message String,
“Hello world', which consists of only 11 characters, may be
rewritten as “Hello world” with multiple blank spaces
appended at its end. In other words, 53 blank-space characters
may be appended to the end of the original. 1 1-character
“Hello world’ message string to make it a full-length message

US 2011/O 194690 A1

string of 64 characters. Once the bit data representation of the
full-length message string is obtained, a bit-pattern symbol
design is necessary.
0064. With reference to FIG. 1, the presently preferred
embodiment uses three distinct bit-pattern symbols 11, 13,
and 15 to represent a logic-1 bit, a logic-0 bit and a marker bit
(MB), respectively. Each of bit-pattern symbols 11, 13, and
15 consists of a specific arrangement of individual dots (or
squares) d. More specifically, bit-pattern symbol 11 arranges
ten dots d in a triangular arrangement with four dots d at its
base. Bit-pattern symbol 13 likewise arranges ten dots d in a
triangular arrangement with four dots d at its base; wherein
bit-pattern symbol 13 resembles bit-pattern symbol 11
rotated ninety degrees clockwise. By contrast, bit-pattern 15
arranges sixteen dots din a 4x4 square grid arrangement, with
four dots dat its side.
0065. As is shown in FIG. 2, each dotd preferably consists
of sixteen pixels p in a 4x4 grid arrangement 19. Thus, each
dot d preferably has a pixel arrangement matching the dot
arrangement of each marker bit.
006.6 Bit-pattern symbols 11, 13, and 15 have not been
previously used in industry, and were developed to address a
number of specific real-world problems.
0067 Firstly, it has been found that the 4x4 grid arrange
ment 19 of sixteen pixels p per dot d may be printed and
scanned more consistently across a wide array of commercial
and consumer level printers and scanners. Secondly, the pres
ently preferred bit-pattern symbols 11, 13, and 15 permit the
use of simple horizontal and vertical projection-profiles as
part of bit recognition techniques, as is explained more fully
below. Thirdly, the introduction of marker bit 15 for use as a
placeholder to demarcate boundaries of a message string (or
message block, as defined below) facilitates a decoding pro
cedure.
0068. The arrangement of bit-pattern symbols 11, 13, and
15 that represent an input message String may be overlaid on
the entire input image, irrespective of the input image's fore
ground or background pixels. Color selection of each bit
pattern symbol 11, 13, and 15, however, is preferably adap
tively changed so that bright regions of the input image have
darker bit-pattern symbols overlaid on them, and dark regions
of the input image have lighter bit-pattern symbols overlaid
on them.
0069. An important characteristic of the present bit-pat
tern symbols is that after a print-and-scan cycle, the bit
pattern symbols appear as continuous objects rather than as a
collection of dots d. That is, the print-and-scan cycle tends to
blur bit-pattern symbols 11, 13, and 15 such that it becomes
more difficult to differentiate between individual dots d, and
instead what is discernable is the general contiguous shape of
bit-pattern symbols 11, 13, and 15, as defined by the arrange
ment of the collection of dots d. It has been further found that
accurate detection of the bit-pattern symbols 11, 13, and 15 is
not affected by rotation of a watermarked image, under the
presently preferred use of projection profiles to detect bit
pattern symbols, as is described below.
0070. Once the bit-pattern symbols are overlaid on the
input image (or input document), the input image may
undergo a print-and-scan cycle. One of the primary effects of
this print-and-scan cycle is due to the lower dynamic range of
a scanned document. Colors seem to get closer to each other
and sharp edges often get blurred. Consequently, actual inten
sity values extracted from a scanned image may not be opti
mal indicators for use in identifying bit-pattern symbols.

Aug. 11, 2011

0071. Therefore, the present invention makes use of a gra
dient based technique to identify bit-pattern symbols in a
scanned image. The presently preferred gradient based tech
nique computes and combines horizontal and vertical gradi
entS.

0072 FIG. 3 shows a representation of an input image 21
generated by scanning a printed document having nine bit
pattern symbols (i.e. nine representations of bit-pattern Sym
bols 11, 13, and 15), with each bit-pattern symbol being in
accord with the present invention. Also shown are multiple
processing phases (23, 25, and 27) in a process for discerning
the general shape of each of the nine bit-pattern symbols in
input image 21.
0073 First, a horizontal gradient image 23 and a vertical
gradient image 25 are created. Horizontal gradient image 23
is an absolute intensity image of a horizontal gradient, or
derivative, of input image 21, and detects the edges of the
bit-pattern symbols in input image 21 along its horizontal
direction. That is, the horizontal gradient determines an inten
sity difference between adjacent pixels in a horizontal direc
tion in input image 21, and thus is effective for identifying
boundaries between light and dark regions, as encountered
when traversing rows of pixels across input image 21 in the
horizontal direction. For example, the difference in intensity
value between adjacent pixels within the white areas separat
ing bit-pattern symbols 11, 13, and 15 within scanned image
21 is Zero, and thus these regions would typically have an
intensity gradient value of Zero (i.e. be dark) in the resultant
horizontal gradient image 23. However, for ease of illustra
tion, regions of input image 21 having Small gradient differ
ences in intensity values are indicated as light areas in hori
Zontal gradient image 23 rather than as dark areas. Similarly
for illustration purposes, regions of input Scanned image 21
having large gradient differences in intensity values are indi
cated as dark areas in horizontal gradient image 23. In input
scanned image 21, the intensity difference between adjacent
pixels when moving along a horizontal direction is highest
when leaving a white region and entering the beginning of a
bit-pattern symbol, or when leaving a bit-pattern symbol and
entering the beginning of a white region. Therefore, these
left-side and right-side boundary lines of the bit-pattern sym
bols of input image 21 manifest themselves as dark vertical or
diagonal linear arrangements 22 in horizontal gradient image
23.

0074 As is explained above, each the bit-pattern symbolis
comprised of a group of adjacent dots d separated by a blank
Small spaces. The blank spaces between adjacent dots d may
manifest themselves as light areas in a scanned image, such as
input image 21. But desired vertical or diagonal linear
arrangements 22 (or 24) may be identified by looking for
connected components of minimum size within a gradient
image 23 (or 25). Preferably, the minimum size is about 75%
of the area of a marker bit. The end-result is that horizontal
gradient image 23 identifies the horizontal left and right
boundaries, or borders, of bit-pattern symbols within input
image 21.
0075. A similar approach is taken to determine a vertical
gradient of input image 21. Vertical gradient image 25 shows
the absolute intensity image of a vertical gradient (i.e. vertical
derivative) of scanned image 21. In this case, a change in light
intensity when moving vertically along columns of pixels in
input image 21 are encountered when moving into, or out of
a bit-pattern symbol. Thus, the horizontal and diagonal linear

US 2011/O 194690 A1

regions 24 in Vertical gradient image 25 indicate the top and
bottom boundaries of the bit-pattern symbols 11, 13, 15 of
input image 21.
0076 Finally, the horizontal gradient image 23 and the
vertical gradient image 25 are combined to form outline
image 27. The result of this combination is a set of nine
skeleton patterns (i.e. outlines) 26 of the nine scanned bit
pattern symbols of input image 21. As is clear from outline
image 27, the present approach facilitates the reliable repro
ducing, i.e. identifying, of bit-pattern symbols 11, 13, and 15
as Scanned in input image 21.
0077 Once the individual skeleton patterns 26 have been
generated, as shown in outline image 27, a fill-in operation is
performed on skeleton patterns 26, which converts the skel
eton patterns into pattern blocks that represent the original
bit-pattern symbols 11, 13, and 15 of input image 21.
0078 For example, FIG. 4a shows a binarized bit image of
a recovered skeleton pattern (i.e. outline) of bit-pattern Sym
bol 13. FIG. 4b shows the binarized bit image after applica
tion of the fill-in operation to fill in the interior and border
areas defined by the skeleton pattern, which recovers bit
pattern symbol 13.
0079. Having recovered the encoded, bit-pattern symbols,
the next step is reading the bit-pattern symbols (i.e. identify
ing the bit data information represented by bit-pattern Sym
bols 11, 13, and 15). The presently preferred embodiment for
reading bit-pattern symbols uses a projection profile tech
nique to identify the logic bit values represented by each
pattern symbol shape.
0080. As is shown in FIG. 4c., a filled-in image of a pattern
symbol is first divided vertically approximately down the
middle to form a left region LR and a right region RR, whose
widths are approximately the same. A horizontal projection
profile H and a vertical projection profile V are then deter
mined for the right region RR. The horizontal projection
profile H is determined by moving down the rows of pixels
within the right region RR, and counting the number of pixels
that are part of right region RR within each row. If plotted, the
pixel distribution across the rows would form a contour line
for horizontal projection H. The vertical projection V is deter
mined by moving along the columns of pixels within the right
region RR, and counting the number of pixels within each
column of RR. A plot of vertical projection V is shown for
illustration purposes. Thus, the vertical V and horizontal H
projections are in essence row and column histograms of the
pixels that make up right region RR.
0081. By moving along the histogram in the direction of
the shown arrows, and noting the difference in the number of
pixels in each row (or column), one can determine both the
direction and magnitude of a change. For example, when
moving along vertical projection Valong arrow A1, a positive
or negative change would indicate an upward or downward
change in direction along vertical projection V, and the size of
the change would provide an indication of the magnitude of
the change, or slope. Similarly, when moving along horizon
tal projection Halong arrow A2, a positive or negative change
would indicate a rightward or leftward change in direction
along horizontal projection H, and the size of the change
would provide an indication of the magnitude of the change.
0082 Preferably, if the change in direction along a first
predefined span of the horizontal projection H (i.e. the hori
Zontal profile) is greater than a first threshold and the change
in direction along a second predefined span the vertical pro
jection V (i.e. the Vertical profile) is greater than a second

Aug. 11, 2011

threshold, then the recovered pattern symbol is determined to
be a data bit. Preferably, the first and second predefined spans
are at least a third of the span of the horizontal projection H
and vertical projection V, respectively. Additionally, by com
bining the change (and magnitude) in direction the horizontal
projection and the vertical projection, one can identify a data
bit as a logic 0 or a logic 1, as Summarized in the following
table.

Horizontal Projection Vertical Projection Inference

<O <-0.2 Logic O
eO <-0.2 Logic 1

I0083. For example, the pattern symbol of FIGS. 4a-4c
represents a logic-0 bit (i.e. pattern symbol 13 in FIG. 1).
Therefore, as is indicated in FIG. 4c, the vertical projection
profile V of right region RR decreases from left to right along
arrow A1. Stated differently, the vertical pixel-length (i.e.
pixel count) of pixel columns within right region RR is
reduced as one progresses from left to right within right
region RR. Similarly, the horizontal projection profile H (i.e.
the pixel-length of adjacent horizontal lines of pixels within
right region RR) decreases as one progresses from top to
bottom along arrow A2. Since the direction and length
change of the vertical and horizontal projections is greater
than their respective predefined first and second thresholds,
the recovered pattern symbol of FIG. 4c is correctly deter
mined to be a data bit, rather than a marker bit MB. Addition
ally, since the vertical projection decreases from left to right,
and the horizontal projection decreases from top to bottom,
the pattern symbol is further correctly identified as a logic-0
bit.
I0084. Alternatively, if the vertical projection had
decreased from left to right, but the horizontal projection had
increased from top to bottom, then the pattern symbol would
have been identified as a logic-1 bit. This is better illustrated
in FIG. 5, below.
I0085. Another important feature of the present invention is
that if an image scan of a document is rotated, only the
original, correct orientation of the document will render cor
rect data. For example, the left side of FIG. 5 shows four
rotations of pattern symbol 13. The four rotations of pattern
symbol 13 are arranged as four pairs, 31a/31b through 37a/
37b.
I0086. Within each pair, the left-side pattern symbol (31a
37a) shows the initial state of a recovered symbol after appli
cation of the fill-in process, as is described above in reference
to FIG.4b. Also within each of pair31a/31b through 37a/37b,
the right-side symbol 31b-37b shows the identification of its
respective right region RR (shown as a shaded area) in prepa
ration for reading the symbol, as is explained above in refer
ence to FIG. 4C.
I0087 Pattern symbol 31 a shows a correctly orientated
pattern symbol representing a logic-0 bit. Pattern symbol 31b
shows the reading of this pattern symbol by identifying its
right-region RR, and determining its respective vertical pro
jection V and horizontal projection H. In the present case, the
vertical projection V of pattern symbol 31b decreases from
left-to-right along the direction arrow A3, which identifies it
as a logic bit as opposed to a marker bit. Additionally, the
horizontal projection H of pattern symbol 31b decrease from
top-to-bottom along the direction of arrow A4, which identi

US 2011/O 194690 A1

fies it a logic-0 bit. If horizontal projection H of pattern
symbol 31b increased from top-to-bottom, then it would have
been identified as a logic-1 bit. Thus, since vertical projection
V decreases from left-to-right and horizontal projection H
decreases from top-to-bottom, pattern symbol 31b is cor
rectly identified as representing a logic-0 bit.
I0088. If pattern symbol 31a were rotated 90 degrees
clockwise as indicated by pattern symbol pair 33a/33b, then
the right-region RR of pattern symbol 33b would be rectan
gular. In this case, its vertical projection V would have a
relatively flat bottom and its horizontal projection H would
also have a relatively flat side. Consequently, both the vertical
V and horizontal H projections would manifest changes
(from column-to-column and from row-to-row) of less than
the prescribed thresholds, and the pattern would be errone
ously identified as a marker bit.
0089. If original pattern symbol 31a were rotated still
another 90 degrees counterclockwise as shown in pattern
symbol pair 35a/35b, then its right-region RR would be as
shown in pattern symbol 35b. In this case, its respective
vertical projection V would decreases from left-to-right indi
cating that it is a data bit, and not a marker bit. However, its
horizontal projection Hwould increase from top to bottom (or
equivalently, it would decrease from bottom-to-top). Pattern
symbol 35b would therefore be erroneously identified as rep
resenting a logic-1 bit.
0090. If original pattern symbol 31a were rotated 180
degrees clockwise as shown in pattern symbol pair 37a/37b,
then its right-region RR would be as shown in pattern symbol
37b. Again, the resultant shape of the vertical and horizontal
projections of its respective right-region RR would appear
relatively flat, and pattern symbol 37b would again be erro
neously identified as a marker bit.
0091 Thus, the pattern symbol representing a logic-0bit is
correctly identifiable only when it is read in its correctorien
tation.

0092. Similar results are obtained if a logic-1 pattern sym
bol is rotated, as is shown in pattern symbol pairs 41a/41b
through 47a/47b on the right side of FIG. 5. Pattern symbol
41a shows a correctly orientated image of a pattern symbol 11
representing a logic-1 bit, pattern symbol 41b shows the
identification of its right-region RR in preparation for reading
the pattern symbol by identifying its vertical projection V and
its horizontal projection H. In the present case, its vertical
projection V decreases from left-to-right along arrow A5, but
its horizontal projection H decreases from bottom-to-top
along arrow A6. Pattern symbol 41b would therefore be cor
rectly identified as representing a logic-1 bit.
0093. If the original symbol 41a were rotated 90 degrees
clockwise as is shown in pattern symbol pair 43a/43b, then
the right-region RR would be tapered, as shown in pattern
symbol 43b. In this case, the vertical projection V would
decrease from left-to-right indicating that it is a logic bit, but
the horizontal projection H would decrease from top-to-bot
tom erroneously identifying it as a logic-0 bit.
0094. If the pattern symbol 43a were then rotated another
90 degrees as indicated by pattern symbol pair 45a/45b, then
the right-region RR would be rectangular. In this case, the
vertical V and horizontal H projections would show changes
ofless than the prescribed thresholds and the pattern would be
erroneously identified as a marker bit.
0095. If pattern symbol 45a were rotated another 90
degrees clockwise as indicated by pattern symbol pairs 47a/

Aug. 11, 2011

47b, then its right-region RR would again be rectangular.
Thus, pattern symbol 47b would again be erroneously iden
tified as a marker bit.

0096. Both in preparation for message encoding and for
message extraction, a connected components mask (i.e. a
binary mask) is created. For message encoding, a first con
nected component mask of the input image upon which the
watermark message is to be written is created. For message
extraction, a second connected component mask of a scanned
image (or the image from which a watermark message is to be
extracted) is created. The basic difference between the first
and second connected component mask is an area threshold
parameter that determines the size of the connected compo
nentS.

(0097. With reference to FIG.7b, image 75 shows a partial
view of an input image upon which a watermark message is to
be written. The objecting in creating the first connected com
ponent is to identify those areas within input image 75 where
the watermark message may be written. In the present
example, image 77 is the resultant first connected component
mask, which shows in white those areas where the watermark
message may be written, and shows in black those areas
where the watermark mark should not be written.

0.098 Image 71 in FIG. 7a shows an example of a water
mark message written upon input image 75 according to first
connected component mask 77. In order to extract the water
mark message from image 71, a second connected component
mask is created that identifies areas (i.e. bit images) of input
image 71 that contain marker bit or data bit information
within image 71. In the present example, second connected
component 73 identifies these bit images that should be read
as white areas in a black field. Message extraction is
explained in more detail below.
0099. A general process for construction of a connected
component mask (for either the first or second connected
component mask) is shown in FIG. 6. To create the connected
components mask, a Submitted image 51 is first converted to
a single channel image (step 53). It is to be understood that
Submitted image 51 may be the input image, in its entirety.
Alternatively, the input image may be divided into multiple
image blocks, and each image block may be processed indi
vidually as the submitted image in step 51. In one embodi
ment of the present invention, an entire image is Submitted for
message encoding, and multiple image blocks are Submitted
for message extraction, but this a design choice.
0100 If separate image blocks are submitted individually,
such that process steps 51-63 are separately applied to each
image block (step 64=YES), then the output mask at step 65
would be a mask block of size equal to the image block.
Alternatively, if the submitted image 51 is the whole input
image, in its entirety, such that steps 51-63 are applied to the
entire input image (step 64=NO), then the resultant connected
component area mask may be divided into mask blocks of
size equal to an image block (step 67) prior to outputting the
result at step 65.
0101 The conversion to a single channel image at step 53
may beachieved by applying an RGB to YCbCr conversion to
image 51, and then performing all further processing only on
the luminance (Y) channel. A light intensity gradient image of
the luminance channel image (i.e. intensity I) is then the
generated (55) using the following relationship:

US 2011/O 194690 A1

0102 Next, a binarized image of the light intensity gradi
ent image is created (57) by comparing each intensity value to
a single intensity threshold 59. Connected components of
binarized image are then labeled (61). An area mask (i.e.
binary mask) can then be created (65) by discarding all con
nected components whose sizes vary more than +25% of an
area threshold 63. The size of area threshold 63 depends on
whether one is creating a first connected component mask for
message insertion (i.e. writing) or a second connected com
ponent for message extraction (i.e. reading). For message
insertion, area threshold 63 defines an area for inserting a
watermark message, and in one embodiment, generally sepa
rates the foreground from the background of the image. For
message extraction, area threshold 63 is much smaller, and
preferably of similar size as the area of a pattern bit.
0103) If the image has not yet been watermarked, then the
watermark message, as encoded, is overlaid (i.e., printed)
using the above described pattern symbols 11, 13, and 15.
Identification of the background and foreground sections of
the input image is advantages for applying optional printing
variations. For example, in a preferred embodiment, data bit
patterns are printed Solely on background sections of the
input image, but marker bit patterns are printed on both fore
ground and background sections of the input image. As it
explained more fully below, the data bit patterns and marker
bit patterns are varied in intensity depending on the general
intensity of their Surrounding image pixels. That is, bit pat
terns are printed darker than their Surrounding image bits in
areas where the input image is light (i.e. above a predefined
intensity threshold), and bit patterns are printed lighter than
their Surrounding image in areas where the input image is
dark (i.e. not above the predefined intensity threshold).
0104 Conversely, if the image is a previously water
marked image (such as a scan image of a previously printed
watermarked image), then the area mask (i.e. mask block)
will highlight (i.e. create pattern images of) the pattern Sym
bols for ease of extraction and decoding.
0105. In either case, providing different thresholds for
luminance intensity and connected component area results in
the final area mask looking quite different from the originally
submitted image from step 51, as is explained above in ref
erence to FIGS. 7a and 7b.
0106 Before continuing with the present discussion of
encoding a watermark message into an image or extracting a
watermark message from a watermarked image, it is benefi
cial to first address two points of interest. First, a potential
problem that may arise during generation of an input image
should be addressed, and secondly one should consider any
preferred formatting of a user-provided message string prior
to encoding the message string as a watermark message.
0107 Firstly, the potential problem that may arise during
generation of the input image is most commonly associated
with a problem arising from a scanning operation. It is be
understood that a printed image on paper may be scanned to
create an electronic image onto which a watermark message
may to be encoded, or a previously encoded, watermarked
image may be scanned in preparation for extracting the
encoded watermark message.
0108. The potential problem being addressed here may be
termed "skew error, and it arises when an original image is
not placed in perfect alignment with the edges of a scanner
platen during a scanning operation. Skew error is basically a
Small rotation error in the electronic image caused when the
original paper image was askew while being Scanned.

Aug. 11, 2011

0109 An example of this type of rotation error, or skew
error, is illustrated in FIG. 8, and a preferred method for
correcting for skew error is illustrated in FIG. 9. Preferably,
one begins by first dividing the input image 90 (i.e. a scanned
image in the present example of FIG. 8) into a left-hand plane
83 and a right-hand plane 85 with a vertical divide (or cut) 87
separating the left-hand plane 83 from the right-hand plane 85
(step 91). Preferably, the vertical divide 87 is along the center
of the input image 81 such that the left-hand plane 83 spans a
left half of the input image 81 and the right-hand plane 85
spans a right half of the input image 81.
0110. Next, the left-hand plane 85 is searched (i.e. scanned
vertically downward from top-to-bottom) to identify the first
non-white row (i.e. non-blank row) of pixels (step 92). This
first non-white row is hereafter identified as the first non
white-left row and is indicated by dash line 88 in FIG. 8.
Basically, this search identifies the first such non-white row
encountered when searching from the top of the left-hand
plane towards the bottom of the left-hand plane, and desig
nates the encountered row as the first non-white-left row. The
row index number of this first non-white-left row may be
identified as a first row index (step 93). Similarly, the right
hand plane 85 is searched to identify its first non-white-right
row of pixels when searching vertically from its top towards
its bottom (step 94), and a second row index corresponding to
the first non-white-right row 89 is recorded (step 95).
0111. In the presently preferred embodiment, a non-white
row is characterized as row having a luminance intensity
histogram containing less than a pre-specified percentage of
white pixels (preferably less than 98 percent). In other words,
the percentage of white pixels (i.e. pixels having aluminance
intensity greater than 250) in a non-white row is less than 98
percent of the total pixels in the same row.
0112 The vertical spatial difference between the esti
mated first non-white-left row and the first non-white-right
row may be used as a metric to determine image rotation.
Basically, the difference between the first row index and
second row index is a measure of the vertical offset from the
first non-white-left row to the first non-white-right row. The
width of the left-hand plane may then be used in combination
with the vertical offset to obtain a first estimate the rotation
angle 01. Furthermore, since the left-hand plane and right
hand plane preferably have similar widths, the width of the
left-hand plane may be estimated as half the width of the input
image. Consequently, an estimate of a first rotation angle 01
may be obtained as shown in step 96 as,

rotation angle 61 & tané1

(first non-white-right row) -
(first non-white-left row) -

half image width

Preferably, the input image 90 is then rotated ninety degrees,
and this same procedure for estimating rotation angle is
repeated on the rotated, input image (step 97) to obtain an
estimate of a second rotation angle 02 for the rotated input
image. As is indicated in step 98, the two estimated rotation
angles 01 and 02 may then be averaged together to obtain an
estimate of the general rotation error angle 0 of input image
90 (i.e. the skew error of input image 90). Note that the image
is preferably converted to a single channel image (RGB to
YCbCr), and then work with the Y channel only. The con

US 2011/O 194690 A1

verted image is further smoothed and binarized to handle
noise. Skew angle may be corrected by countering the esti
mated general rotation error angle 0 of input image 90 (step
99). That is, input image 90 may be rotated by minus the
rotation error angle (i.e. by -0).
0113 Having discussed the first point of interest (i.e. the
detection and correction of skew error), the second point of
interest to be discussed prior to presenting an encoding pro
cess is the issue of applying a preferred formatting scheme to
a user-provided, message string prior to encoding as a water
mark message. The presently preferred formatting scheme
has been found to provide benefits in facilitating the recovery
of encoded watermarked messages.
0114 With reference to FIG. 10, the task of preparing a
user-provided message string for later encoding onto an input
image goes through the following steps. Upon receiving a
user-provided input message String (Step 101), a formalized
message string “M” is created (Step 102) by checking the
length (i.e. character orbit length) of the user-provided mes
sage string and, if necessary, padding the user-provided mes
sage string with blanks (i.e. blank spaces) to make it a pre
defined, fixed length of preferably 64 bytes, or 512 bits.
0115 If desired, error correction code (ECC) may be
incorporated into the message string (Step 103). In the pres
ently preferred embodiment, an ECC string “E” consisting of
eighterror correction bytes based on the Reed-Solomon tech
nique, are appended to the formalized message string M.
which makes the length of message string “ME' equal to 72
bytes (i.e. 576 bits).
0116. Next, a predefined indicator marker string (i.e. a
known bit-pattern) is added to message string ME, or to
formalized message string “M” if ECC is not provided. In the
following discussion, it is assumed that ECC is used. The
predefined indicator marker string may be inserted at the
beginning of message ME, but preferably is appended to the
end of the message ME.
0117. Further preferably, one of two predefined indicator
marker Strings, A0 or A1, are used, depending on whether a
pre-designated bit (preferably the last bit) of ECC string E (or
alternatively a pre-designated bit of formalized message
string “M”) is a logic high (“1”) or a logic low (“0”) (Step
104).
0118. In the preferred embodiment, the first indicator
marker string is defined as pattern A1 (where
A1-01010101). The second indicator marker string may be
defined as the logic complement of pattern A1, and defines a
complement pattern A0-10101010. It is to be understood that
second indicator marker string A0 may be any string pattern
distinct from first indicator marker String A1, but it is pres
ently preferred that A0 be the logic complement of A1. The
point is that either pattern A1-01010101 or complement pat
tern A0=10101010 is added to message ME, depending on the
last bit of ECC string E to create a formatted message MEA1
or MEA0. Further preferably, if the last bit of ECC string E is
1, then pattern A1 is appended (Step 105), and if the last bit of
ECC string E is 0 then complement pattern A0 is appended
(Step 106).
0119 The resultant formatted message (either MEA0 or
MEA1) is then arranged into a message block of 900 bits
(Step 107), and preferably the message block is of enough bits
to span 2.5 percent of the input image. In one embodiment,
multiple copies of the formatted message (MEA1 or MEA0)
may be copied to fill the message block of 900 bits. Alterna
tively, the formatted message (MEA1 or MEA0) may be

Aug. 11, 2011

padded with a known bit pattern or with a series of identical
bits, such as all Zeros or all ones, to fill the complete message
block (preferably a perfect square) of 900 bits. If a known bit
pattern (such as a series of identical bits) is used, then it is
preferred that on alternate message blocks, the message
blocks have all Zeros or all ones padded onto the end of the
formatted message to complete the 900 bits, as described in
Step 107.
I0120 Thus, after the aforementioned steps, the original
user-provided message becomes a formatted message defined
as MEA1 or MEA0 (i.e., formalized message string M--Error
Correction Code string E+indicator marker string A0 or A1,
depending on the last bit value of E) and arranged into a
message block of 900 bits with Zeros or ones padding the end
of the formatted message on alternate message blocks.
I0121 Having discussed how to correct for skew error as
described in FIG. 9, how to generate a formatted message
block as shown in FIG. 10, and how to create a mask block as
shown in FIG. 6, one may now provide an overview of the
presently preferred encoding processes for applying a water
mark message onto an input image. One preferred preparation
step prior to watermarking an input image, however, is to
assure that the input image is Subdivided into image blocks.
0.122 FIG. 11 shows an exemplary method of subdividing
an input image 90 into multiple image blocks (step 108).
Preferably, the image blocks are square in shape and have a
block-size defined as block-size=30x(pattern size--white
margin), where the pattern size is 22 pixels and the white
margin is defined as 5 pixels on all sides. Each image block
may then be encoded (Step 109) with the appropriate format
ted message (containing MEA1 or MEA0), as defined in FIG.
10.

I0123. It is to be understood that before the image block
may be encoded with the formatted message (or equivalently,
with a corresponding message block); a connected compo
nents mask is first created (as described in FIG. 6) to identify
areas of the image block suitable for encoding with the for
matted message. As is explained above, it is preferred that the
connected component mask be divided into multiple mask
blocks, as described in FIG. 6. However, as is shown for
illustration purposes in FIG. 12, if a connected components
mask 130 has not previously been subdivided into mask
blocks and generally spans the entirety of the input image,
then it is divided (step 132) into mask blocks of shape, size
and number corresponding to the image blocks, with each
mask block having a one-to-one relationship to its corre
sponding image block according to its relative location within
the input image. The mask blocks may have a logic-1 indi
cating regions of the image blocks where message informa
tion may be encoded, and have a logic-0 indicating image
block regions where no message information may be
encoded.
0.124 With reference to FIG. 13. a watermark encoding
sequence may begin by providing a mask block 121, a mes
sage block 122, and an image block, and a one-to-one relation
is established between each mask block and its corresponding
mask block (step 125). As is explained above, an input image
may be divided into multiple image blocks, and the connected
components mask may also be divided into multiple mask
blocks of equal number and size as the image blocks.
0.125. As is also explained above, a formatted message
block may be of fixed size (preferably 900 bits), and has
alternating message content in alternate message blocks
based on formatted message MEA0 or MEA1 and any pre

US 2011/O 194690 A1

defined padding-bit-pattern. It is to be understood that the
message blocks are not necessarily square in shape nor are
they the same size as the image blocks. It is presently pre
ferred that the message blocks be smaller than the image
blocks.
0126. If all image blocks have been processed, then the
encoding sequence ends at Step 128, but if all image blocks
have not yet been processed (step 127), then based on the
message length and pattern dimensions, an image block 123
extracted from the input image is multiplied by its corre
sponding mask block 121 to create a mask-filtered block (step
129). The resultant mask-filtered block, which masks out
areas of the image block where data bit patterns should not be
encoded, is further Subdivided into message-pattern-size Sub
blocks.
0127. When all message-pattern-size sub-blocks have
been processed (step 133=YES), i.e. watermark encoded,
then the process returns to step 127 to determine if another
image block remains to be processed.
0128 ASSuming that a message-pattern-size Sub-blocks
requires encoding (step 133=NO), the bit patterns defined by
the formatted message MEA0 or MEA1 that defines a current
message block is overlaid on (i.e. encoded onto) its corre
sponding message-pattern-size Sub-block (step 135). It is to
be noted that data bit patterns are not overlaid on foreground
regions of the image block. Another important aspect of the
present method is an adjustment of color of the watermark
patterns. For lighter regions of the image block, the water
mark pattern is made dark (i.e. darker than Surrounding image
block pixels), and for darker regions of the image block, the
watermark pattern is overlaid in lighter color (lighter than
Surrounding image block pixels).
0129. The total number of watermark pattern symbols in a
message block is identified as “message-bit-count’, and the
encoding of the watermark message begins by defining a
counting variable n equal to 0 (step 135). When counting
variable nexceeds the message-bit-count (step 137=YES), it
means that all of the watermark pattern symbols have been
encoded (i.e. incorporated into the current message Sub
block), and processing returns to step 133 to determine if any
additional sub-blocks remain to be encoded.
0130. If n is not higher than the message-bit-count (step
37=NO), then it is determined if the current image block
region defined by the current message-pattern-size Sub-block
is suitable for encoding (step 139). That is, if step 139 iden
tifies the current sub-block region not suitable for encoding
(step 139=NO), then the processing returns to step 137. Con
versely, if step 139 identifies the current sub-block region as
suitable for encoding (step 139=YES), then processing pro
ceeds to step 140, and the n' bit pattern from the message
block is encoded onto the current region of the image block.
As is explained, above, if the current image block region is
background and a relatively light region of the input image (as
defined by an intensity value of 225 or higher), then the
pattern symbol is encoded in a color darker than its Surround
ing background pixels. Similarly, if the current region is a
background region of the input image and is a relatively dark
region (as defined by an intensity value of 35 or lower), then
the pattern symbol is encoded in a color lighter than its Sur
rounding background pixels.
0131) An example of an encoded image block is shown in
FIG. 14a. The “marker' bit patterns 141 (square arrangement
of dots) are overlaid on the entire image block, whereas, the
“logic' bit patterns 143 (triangular arrangement of dots) are

Aug. 11, 2011

only overlaid only on the background regions. This is
required due to the high dependence of the decoding stages on
the correct recognition of the marker regions. The luminosity
level of the patterns is changed based on the average intensity
of the image block. For white background regions, such as on
the left side of FIG. 14, the marker bit patterns 141 and logic
bit patterns 143 are black (or darker than their surrounding
background), whereas for dark background regions, such as
the right side of FIG. 14, the marker bit patterns 141 and logic
bit patterns 143 are white (or lighter than their surrounding
background). It should be noted that for background regions
that are not fully black or fully white, such as the region
identified by reference character 149, marker bit patterns and
data bit patterns are printed in an intensity lighter or darker,
respectively, than their surrounding pixels. However, the
actual color of the bit and marker patterns may be determined
by the color of their surrounding pixels so as to blend in with
the colors of the Surrounding pixels. In an alternate embodi
ment of the present invention, the color of the bit and marker
patters are selected to blend with their surrounding pixels.
I0132 FIG. 14b represents a scan of the image of FIG. 14a,
and image 14b shows same image after partially processing in
preparation for extracting the encoded watermark message.
In FIGS. 14b and 14c, elements similar to those of FIG. 14a
have similar reference characters and are described above. As
is explained more fully below, to help overcome reproduction
errors resulting from print-and-scan cycles, the image of FIG.
14b is preferably converted to a binary image in FIG. 14c
(with regions not having data or bit patterns blacked out) to
facilitate identification of the marker bits and data bits.
0.133 Another example of an input image with a water
mark message printed upon it is shown in FIG. 15. As shown,
the watermark patterns are dark on the light areas of the input
image 150, and they are light in the darker areas of the input
image 150.
0.134 Recovering (i.e. reading, deciphering, or extracting)
a watermark message from an image that has undergone a
print-and-scan cycle requires some pre-processing. This is
because once an image undergoes a print-and-scan cycle, the
scanned image may appear very different from the original
image. The print-and-scan cycle introduces non-linear trans
formations in addition to color changes. Apart from color
changes, one of the transformations that are addressed within
the present invention is the introduction of Small rotations
introduced due to Small misalignments between the scan bed
and the paper edges, as is described above in reference to FIG.
9. It is presently assumed that such rotations are less than 2.
0.135 An example of such transformation is illustrated in
FIG. 16, which shows a resultant image after the image of
FIG. 15 undergoes a print-and-scan cycle using an Epson(R)
CX11 multifunction device, which has integrated fax/copier/
scanner/printer functionality.
0.136 The following discussion will use a different sample
image to illustrate the presently preferred process for decod
ing a watermark message from a watermarked image. The
decoding process includes two key steps (i.e. a pre-processing
step and message extraction step) that are described sepa
rately in more detail below.
0.137 FIG. 17 shows a page 151 having a sample image
152 with multiple message blocks 153 (square in shape)
outlined by marker bits 155. Data bits 156 are contained
within the boundaries of message blocks 153. As is explained
above, the watermark messages are extracted from within the
message blocks 153. However, since an image from which a

US 2011/O 194690 A1

watermark message is to be extracted may have been cropped
(or otherwise distorted) so that the message blocks 153 do not
necessarily begin at the upper left corner of page 151, or of
sample image 152, a preprocessing step is necessary to iden
tify a corner of a message block 153 prior to applying a bit
extraction step. Indeed, sample image 152 shows partial mes
sage blocks 154 along its top that have been partially cut off,
Such as from a prior cropping action.
0138 FIG. 18 shows a general process for decoding a
watermark message, which includes two key steps: a pre
processing step 172 and message extraction step 179. First,
the Supplied sample image 171 is applied to pre-processing
step 172, which includes several sub-step described in more
detail below. Generally, preprocessing step 172 corrects for
any skew error in sample image 171, removes any white
border around sample image 171, reviews sample image 171
to identify a good corner of a message block, and crops and
rotates sample image 171 to place the identify good corner at
the upper left corner of the rotated image. The identified good
corner is placed at the upper-left corner because message
extraction step 179 assumes this arrangement in order to read
a message block from left-to-right and from top-to-bottom
starting from the upper-left corner of the image. It should be
noted, however, that since the corner identified processing
step 172 is not necessarily the top left corner of a message
block, message extraction step 179 will have to determine for
itself the true top-left corner of a message block. This is
because the Supplied sample image 171 is not necessarily
right-side-up, but may have any orientation, such as being
upside-down in landscape or portrait view.
0.139. After having identified the best corner of a message
block and aligning it with the upper-left corner of the image,
the resultant image is converted to a single channel (step 173)
in a manner similar to that described above in reference to step
53 in FIG. 6. A gradient image is then created in step 174 in a
manner similar to that of step 55 in FIG. 6. Step 175 makes use
of two user-provided threshold options, a lower threshold,
“lower thr”, and an upper threshold, “upper thr’. A variable
thr (i.e. a first variable memory location or memory space), is
set to a value of two less than lower thr, and a character array
“extracted message' (i.e. second variable memory location
or second memory space) is set to hold the message String that
will be decoded.

0140 Step 177 increases thr by a value of two, and then
checks if the increased value of thr now exceeds the upper
threshold, upper thr. Steps 177-179 are repeated until thr
exceeds upper thr. When thr exceeds upper thr, the process
stops (step 176) and “extracted message” holds the deci
phered watermark messaged.
0141 Binarize step 178 creates a binarized image using
the threshold thrin a manner similar to step 57 in FIG. 6. The
binarized image is a pre-step in preparation for creating a
mask that determines which pixels are included in a search for
message bits, and which are avoided, as illustrated in FIG.
14c. Thus, during each cycle, the number of pixels included
for examination, i.e. the mask sensitivity, is decreased and the
best message extracted during all the cycles is outputted (step
176) after the last cycle, as determined by step 177.
0142 Extract message step 179 receives the output from
binarize step 175. Extract message step 179 creates a mask,
searches for marker bits and data bits, identifies any data bit
characters, creates a message string from the identified data
bit characters, compares the characters in the currently cre
ated message string with the characters identified in previous

Aug. 11, 2011

cycles to determined the most probably character string, and
stores this most probable character string as the current “new
message'. As is explained above in reference to FIG. 6, the
connected component size is selected to be closed to a pattern
symbol size in order to identify pattern images of the printed
bit patterns. Details of this extract message step 179 are
provided below. Finally, the “new message' is copied to
memory space "extracted message' (step 180).
0.143 Preprocessing step 172 includes several sub-steps.
Before describing these preprocessing Sub-steps, it may be
beneficial to first pictorially illustrate some of theses prepro
cessing Sub-steps using a simplified sample image, as shown
in FIG. 19.
0144) With reference to FIG. 19, paper flap 164 identifies
the lower right corner of a sample page 181, which holds a
scanned image 182. As shown, a printer or scanner may
introduce a white border, or margin, 183a-183d of undeter
mined thickness at any or all sides of Scanned image 182. In
sample scanned image 182, the marker bits are represented as
black squares 185. It is to be understood that the data bits (not
shown) that constitute the watermark message would be dis
tributed within the boundaries of each message block 186, as
defined by the rows and columns of marker bits 185.
0145 Although it is preferred that watermark blocks 186
be overlaid on the entirety of a watermark image, FIG. 19
illustrates that within a sample image Submitted for decipher
ing, watermark blocks 186 might be shown on only a portion
of the sample image 182 by design, or by cropping, or by
some other editing manipulation. However, FIG. 18 empha
sizes that within the areas where message blocks 186 are
shown, the marker bits 185 are printed continuously across
both foreground and background areas of the scanned image
182. In the present example, the marker bits 185 that are
printed upon foreground snowman 187 are dark when printed
on light areas of snowman 187 (such as when printed over
empty areas of the Snowman's torso), and are light when
printed on dark areas of snowman 187 (such as when printed
on the snowman's hat or bowtie).
014.6 An early preprocessing Sub-step crops off (i.e.
removes) the top white, border or margin 183a until a domi
nant line of dark pixels 188 of scanned image 182 is encoun
tered, as is explained below. Next is to search for the best
message block 186 available in scanned image 182. To do
these, one may begin with a search window 189 whose size is
equal to the size of a message block 186. However, since the
dimensions of a scanned image might be distorted during a
scanning operation, it is preferred that one begin with a search
window 190a whose side lengths are one and half that of the
message block's corresponding side lengths. In the present
example, the message blocks 186 are square, so each side of
search window 190a is 1.5 times the length of a side of a
message block. The preprocessing Sub-steps then proceed to
search within the current search window 190a to identify the
best possible corner marker bit of any (full or partial) message
block 186 with the current search window 90. In the present
example of FIG. 18, that would be corner 191. Criteria for
identifying the best corner of a message block are defined
more fully below.
0.147. In the following discussion, all elements of FIGS.
20-23 similar to those of FIG. 19 have similar reference
characters and are described above.
(0.148. The image of FIG. 19 is then rotated 90°, resulting in
image 182 of FIG. 20, and preprocessing sub-steps that were
applied to FIG. 19 are now applied to the current image 182 of

US 2011/O 194690 A1

FIG. 20. In the present example, search window 190a now
identifies the new upper-left corner (after rotation), and
within search window 190a, the current best corner marker bit
191 is again identified.
0149. The image of FIG. 20 is then rotated 90°, as shown
in FIG. 21, and preprocessing Sub-steps that were applied to
FIG. 19 are applied to the current image 182 of FIG. 21. In the
present example, search window 190a is applied to the new
upper-left corner, and the current best corner marker bit 191 is
again identified.
0150. The image of FIG. 21 is then again rotated 90°, as
shown in FIG. 22, and preprocessing Sub-steps that were
applied to FIG. 19 are applied to the current image 182 of
FIG. 22. In the present example, search window 190a is
applied to the new upper-left corner, and the current best
corner marker bit 191 is again identified.
0151. The repeated application of search window 190a to
each of the four corners of image 182 as is illustrated in
reference to FIGS. 19-22, is then preferably repeated two
additional times. Each time, the size of search window 190a
is increased by 50% to create larger search windows 190band
190c, as shown in FIG. 23. At the ends of these repeated
cycles, the best corner would have been identified and the
sample image 182 is cropped and rotated to place the best
identified watermark block corner at the upper-left corner to
proceed with processing step 173, as described in reference to
FIG. 17.

0152. With reference to FIG. 24, preprocessing step 172 of
FIG. 18 receives the sample image, which may be a scanned
image, a crop image or other user-provided image, and essen
tially rotates and crops the sample image so that the top-left
corner of the sample image coincides with a corner of a
message block. In this way, decoding (i.e. message extrac
tion) can begin in a left-to-right, top-to-bottom fashion. Pre
processing step 172 performs the following Sub-steps.
0153. Sub-step 201 receives the sample image, along with
the dimensions of the message blocks and a preferred confi
dence level (threshold confidence) for determining the cor
ner of a message block. In the present case, since the message
blocks are preferably square in shape, only one side dimen
sion (msge block size) is necessary. It is to be understood
that both of these parameters (msge block size and thresh
old confidence) may be predefined so that they need not be
specified sub-block 201.
0154 Sub-step 203 then provides rotation compensation
and margin cropping. Preferably rotation compensation is
achieved by applying the skew correction process described
above in reference to FIG. 9.

0155. In the presently preferred embodiment, margin
cropping is based on the assumption that printers and/or scan
ners may introduce a white border (i.e. margin), to images (as
described above in reference to FIG. 19). Preferably, the
margin cropping Sub-step removes the white border from all
four sides of the sample image. This may be accomplished
by starting from the top boundary of the sample image, and
proceeding downwards cropping offs rows of pixels until
encountering a row whose white-pixel-count is less than 90%
of the total pixel-count for that row (alternatively, until the
white pixels make up less than 90% of the image row length
dimension). This process may then be repeated at each of the
remaining three sides of the sample image. For example, the
sample image may be rotated three additional times, and the

Aug. 11, 2011

same process for removing rows of white pixels may be
repeated at each rotation to remove the white border from all
four sides.
0156. In preparation for looking for the best message
block corner, several parameters are initiated, as shown in
Sub-step 205. First, a dimension multiplier, i, is assigned a
value of 1. As is explained above in reference to FIG. 19.
search window 190a, which is initially 50% bigger than a
margin block size, is preferably increased by 50% in each of
two Subsequent cycles, as is illustrated by search windows
190b and 190c in FIG. 23. Dimension multiplier, i, is used for
increasing the size of the search window during each cycle.
0157 Parameter “current confidence holds the current
confidence level of the currently identified, best watermark
block corner at the end of each cycle. Since no corner has yet
been identified, this current confidence parameter is initial
ized to Zero. Parameter “rotation' specifies the amount of
rotation necessary for bringing the best identified corner of a
watermark block to the upper-left corner of the image, and it
is also initialized to a value of Zero. Parameters row ID and
column ID hold the Cartesian coordinates of the best water
mark block corner identified after each cycle, and they are
initialized to row ID=-1 and column ID=-1 in preparation
for starting the search for the best corner.
0158. The cycle begins with sub-step 207, which increases
dimension multiplier, i, by 0.5, and then checks if the
increased value of i is greater than 2.5. If i is greater, then step
172 ends at sub-step 209. Since i has is initialized to a value of
1 in sub-step 205, it takes three iterations for i to increase
beyond 2.5, and thus the search window is increased only
three times, as illustrated by 109a–109c in FIG. 23.
0159. As is explained above in reference to FIGS. 19-22,
during each cycle, the search window is applied to each of the
sample image's four corners. This is achieved by rotating the
sample image in 90° increments, and searching for the best
watermark block corner at each increment. Parameter
“angle', which is initialized to -90°, determines the four
rotation angles of the sample image during each cycle.
0160. In sub-step 213, parameter angle is increased by
90°. Since parameter angle was initialized to -90° in sub-step
211, the value of angle after the first increment is 0°, as shown
in FIG. 19. During each cycle determined by sub-step 207, the
sample image is rotated four times by 0.90°, 180°, and 270°
as determined by sub-step 213. Thus, after increments of 90°,
parameter angle will be greater than 270°, as determined in
sub-step 213, and the process returns to sub-step 207 in prepa
ration for the next cycle.
0.161. However, if parameterangle is not greater than 270°
after being incremented in sub-step 213, then control trans
fers to sub-step 214. Here, the sample image is rotated by the
amount indicated by the value of parameter angle. Parameter
block side length, which determines the size of the search
window, is defined by the size of a message block (i.e. msge
block size) multiplied by dimension multiplier, i. An image
segment at the upper-left corner of the sample image of size
defined by the search window is hereinafter identified as
“corner image'. Stated differently, “corner image' identi
fies an image segment of the sample image that coincides
with the search window when the search window is superim
posed on the upper-left corner of the sample image, as cur
rently rotated.
0162 Module Best Corner Detection in sub-step 215
receives and searches the corner image for the best water
mark block corner. Module Best Corner Detection is one of

US 2011/O 194690 A1

the most important modules based on the fact that the sub
sequent processing blocks are all dependent on the output of
this module. Module Best Corner Detection identifies all
the marker bit patterns present in the image segment, and
then, based on the number of continuous marker bit patterns
in one direction, determines the row index and column index
for each watermark block corner within the image segment. A
confidence level is calculated for each identified watermark
block corner. Parameter new confidence holds the highest
calculated confidence level, and the row index and column
index of the corner with the highest calculated confidence are
saved as parameters newRowID and new Column ID, respec
tively. Module Best Corner Detection is described in greater
detail in reference to FIG. 25 below.
0163. In sub-step 217, if the new confidence parameter is
greater than the current confidence, then control flows to
sub-step 219. In this case, the new confidence value is copied
to the current confidence parameter, the newRowID is saved
as row ID, the newColumn ID is saved as column ID, and the
current angle parameter that yielded the higher new confi
dence is stored in parameter rotation.
0164. On the other hand, if sub-step 217 determines that
the current confidence parameter is greater than the new
confidence parameter returned by the Best Corner Detec
tion module, then processing returns to Sub-step 213 to check
if the current search window has been applied to all four
corners of the sample image. If not, then the sample image is
rotated 90° and the search window is applied to the next
upper-left corner. However, if the current search window has
been applied to all four corners of the sample image, then
control returns to sub-step 207 to determine if the search
window should be increased by 50% and re-applied to the
sample image. If not, then processing ends with Sub-step
209, which by using row ID, column ID, and rotation to
select the sample image corner that has the highest confi
dence level, and rotates and crops the image to align the best
corner to the upper-left corner of the sample image.
0.165. After sub-step 219, processing may return to sub
step 213, as indicated by dash line 218. Alternatively, option
sub-step 220 determines if the current current confidence
level is greater than the threshold confidence parameter. If
so, then the currently identified watermark block corner is
acceptable and processing is terminated early by returning to
sub-step 209. If not, then processing continues with sub-step
213.

(0166 With reference to FIG. 25, module Best Corner
Detection of sub-step 215 from FIG. 24 includes several
Sub-steps of its own. After receiving the corner image (Sub
step 221), a connected components mask of the corner image
is generated (Sub-step 223) using a specified intensity thresh
old and area threshold (225) in a manner similar to FIGS. 6-7,
discussed above. Parameter new confidence is initialized to
Zero in sub-step 227, and in sub-step 229 areas of the corner
image identified by the connected component mask are
searched for marker bit patterns, as described generally
above, and in particular as described in reference to FIGS.
1-5. Sub-step 231 stores the row ID of the row having the most
marker bits in parameter newRowID.
0167. In sub-step 233, a confidence metric is then calcu
lated for row identified by newRowID. Preferably, the confi
dence metric is calculated by determining what fraction of the
total bits (both marker bits and data bits) in row newRowID
are marker bits. The calculated metric is stored in parameter
row confidence.

Aug. 11, 2011

0168 A similar procedure is followed for identifying the
best column of marker bits. Sub-step 235 stores the column
ID of the column having the most marker bits in parameter
new Column ID. A confidence metric is then calculated for
column identified by new ColumnID in sub-step 237. Prefer
ably, the confidence metric is calculated by determining what
fraction of the total bits (both marker bits and data bits) in
column newColumn ID are marker bits. The calculated metric
is stored in parameter column confidence.
(0169. To determine a confidence level of the corner
defined by the intersection of row newRowID and column
newColumnID, sub-step 239 stores the average of row con
fidence and column confidence in parameter new confi
dence.
0170 Finally, sub-step 240 returns the values of new
confidence, newRowID, and new ColumnID as outputs of
sub-step 215.
0171 FIG. 26 shows the result of applying the pre-pro
cessing process of FIGS. 18-25 to page 151 of FIG. 17. As
part of the pre-processing steps, the white border areas 253
will be removed. The above described process identifies cor
ner 255 as the best corner of a watermark block, and outline
252A extends the row and column at the intersection of corner
255 to identify the section (252A) of page 151 that will be
cropped, and rotated. The right side of FIG. 26 shows the
resultant cropped and rotated image 252B. As is described
above, the cropped image is rotated so as to place corner 255
at the upper left corner.
(0172 Pre-processed image 252B is now ready for extract
ing its watermarked message, as describe in steps 173-180 of
FIG. 18. The following is a more detailed description of this
process, and in particular, a more detailed description of
message extraction step 179. This message extraction phase
incorporates string matching. The presently preferred process
can handle message extraction irrespective of whether pre
processed image 252B is in known correctorientation, or is in
an unknown landscape or portrait mode. It is to be under
stood, however, that if it is known that pre-processed image
252B is correctly oriented with its watermarked message
written from left-to-right starting from its upper-left corner,
then the Sub-steps for determining correct landscape/portrait
mode and orientation may be skipped. Additionally for ease
of explanation, the following message extraction Sub-steps
are described with reference to the close-up views provided
by the sample images of FIGS. 7a and 14a-14c, described
above.
(0173 With reference to FIG. 27, message extraction pref
erably begins by dividing the pre-processed image (such as
image 252B of FIG. 26) into patches (sub-step 261) roughly
1.5 times (preferably within 1.1 to 2.0 times) the size of a
message block, as shown, for example, in FIGS. 14a and 14b.
It is preferred that the patch be bigger than the message block
because nonlinear distortions introduced during a scan-and
print cycle may alter the shape and/or dimensions of an
image, including the message block. By increasing the size of
the patch to be bigger than a message block, one increases the
chances of encompassing a complete message block within
the patch area. Ideally, a message block should be in the
center of the image. The watermark message will be extracted
from the message block that lies within the patch area.
0.174. If desired, one may extract the watermark message
from one watermark block within one patch, and thereby
speedup the message extraction process. However, to
increase the chances of Successfully extracting a complete

US 2011/O 194690 A1

message, it is presently preferred that multiple patches (and
thereby multiple message blocks) be examined for message
extraction.

0175 Sub-step 262 addresses the question of whether a
watermark message is extracted from more than one patch. If
only one patch is used, then the message extraction process
ends at the completion of the current patch. Otherwise, the
process ends (sub-step 264) after the desired number of
patches have been examined.
0176). If the last patch has not yet been examined, then the
process goes to the next patch (sub-step 263). When defining
a next patch within the image, it is preferred that the center of
a current patch (i.e. the location of the center bit within the
current patch) be used as a reference point for defining the
location and dimensions of the next, adjacent patch. Since an
image may be non-uniformly distorted, the center bit within a
patch would likely shift along with shifts in the image dimen
sions due to distortion. Therefore, using the shifting center bit
location of a current patch to define the dimension and loca
tion of an adjacent patch relative to that center bit (as opposed
to using a fixed reference point, Such as the upper-left corner
of the image) compensates for non-uniform distortions in the
image, and improves the chances of enclosing the adjacent
watermark block within the adjacent patch.
0177. As stated above, if it is known that the image is a
correct orientation (not upside down or otherwise rotated),
then there is no need for extra steps for determining a correct
orientation of the image, or patch of the image. Thus, if it is
not known if the image orientation correct (Sub-step
265-NO), then Patch Rotation is set to 0° in preparation for
later rotations to search for the correct orientation. In the
presently preferred approach, only four orientations (i.e. rota
tions of 0°->90°->180°->270°) are checked. At each rota
tion, the bit extraction process described below is repeated.
Thus, a method by which to determine if any additional rota
tion and bit extraction cycles are pending is to determining if
the value of Patch Rotation exceeds 270° since 270° is the
last rotation. Therefore, if the orientation is known to be
correct (sub-step 265=YES), then Patch Rotation may be set
to a value higher than 270° (i.e. set to 360° in the present
example) to indicate that no additional rotation and bit extrac
tion cycles are necessary.
0178. In sub-step 268, the patch image is turned into a
gradient image, which is then thresholded to produce a binary
image (such as shown in FIG. 14c., for example) further pro
cessing. Preferably the connected components based tech
nique described in reference to FIGS. 6 and 7 is used to
generate the binary mask.
0179 Presently, sub-step 268 is applied on a patch-by
patch basis to reduce time requirements. That is, if only one or
a few patches are processed, then there is no need to convert
the entire image to a binary image. It is to be understood,
however, that if the process of sub-step 268 were applied to
the entire image prior to defining a patch (in Sub-step 261, for
example), then there is no need to re-apply this Sub-step to
each patch individually in Sub-step 268, and processing could
proceed from sub-step 266/267 directly to sub-step 269,
which goes to the top-left corner of the patch to start reading
the bit information.

0180. The resultant binary image is a series of white bit
images on a black background. Each white bit image is then
examined to determine whether it is a marker bit, a logic-0

Aug. 11, 2011

data bit, or a logic-1 data bit. Reading of each bit image
preferably follows the process described above in reference to
FIGS 1-5.
0181. In other words, each bit image is examined to deter
mine whether it can be identified as a marker bit or a data bit.
As is explained above in reference to FIG. 4, this may be
accomplished by filling-in individual bit images and then
Subjecting the right half of each bit image to a projection
computation. As is illustrated above using arrows in to FIG.5
(for example arrows A3-A6), the direction of decreasing hori
Zontal projection Hand vertical projection V are determined.
The horizontal and vertical projection values are then com
bined to determine whether the bit image is a logic-0 bit or a
logic-1 bit.
0182. Sub-step 270 determines if the horizontal and verti
cal projections of the right-half of the next bit image Success
fully identify a logic-0 data bit or a logic-1 data bit, as is
illustrated by the following table.

Horizontal Projection Vertical Projection Inference

<O <-0.2 O
eO <-0.2 1

0183 If one these two conditions is met (sub-step
270=YES), and the bit image can be successfully identified as
either a logic-0 data bit or a logic-1 data bit, then the identified
bit information is stored (stub-step 273).
0184. If neither of these conditions is met (sub-step
270-NO), then the entire filled-out bit image (i.e. both the left
and right halves) are examined together to determined if the
bit image is a marker bit (sub-step 271). If it is a marker bit
(sub-step 271=YES), then the information is stored (sub-step
273).
0185. If the identity of the bit image is still not discernable
even after examining both halves of the bit image (sub-step
271=NO), then, figuratively speaking, one flips a coin and
assigns the unidentified bit image a value of a logic-0 or a
logic-1 (sub-step 272). More specifically, the unidentified bit
image is assigned a random value of logic-1 or logic-0 on a
50% probability basis, and the assigned logic bit value is
stored (sub-step 273).
0186. Sub-step 271 checks specifically for marker bit pat
terns to reduce the chances of a data bit pattern being errone
ously identified as a marker bit pattern. The consequences of
misidentifying a data bit pattern in Sub-step 272 (i.e. mistak
enly identifying a logic-0 data bit as a logic-1 data bit, or
mistakenly identifying a logic-1 data bit as a logic-0 data bit)
are reasonably tolerable compared to the effects of mistak
enly identifying a data bit pattern as a marker bit pattern.
Since the message block region is not well defined (due to the
image distortions describe above), and owing to the content
specific nature of the present system, any mistakenly identi
fied marker pattern would erroneously denote the end of a
message block row and introduce unwanted errors in a Sub
sequent bit string decoding phase.
0187. If not all the bit images within the current patch have
been examined (sub-step 274=NO), then control returns sub
step 270 to examine the next bit image in the current patch.
However, if there are no more bit images to be examined, then
sub-step 275 determines if the current rotation of the current
patch is greater than 270° (sub-step 275). As it was explained
above in reference to sub-steps 265-267, if it is known that the

US 2011/O 194690 A1

image orientation is correct for left-to-right and top-to-bot
tom reading of the bit images, then there is no need to examine
the current patch for correctorientation and control can return
to sub-step 262 to check if another patch needs to be exam
ined.

0188 However, if it is not known if the patch is its correct
orientation, the patch is rotated 90° (sub-step 276) and sub
steps 269-275 are re-applied to the same patch with the new
orientation. In other words, the bit images within the part are
re-read in the current rotated orientation. Since sub-step 267
assigned an initial orientation of 0°, the patch is read in each
of four orientations, 0°->90°->180°->270°. As is explained
above, the specific shape of the data bits and marker bits
means that when bit data is not read along its correct orien
tation, not only is its data bit information not capable of being
identified, it is most likely to be misidentified as a marker bit.
Therefore, to determine the correct orientation of the patch,
one checks to see which of the four orientations (0°, 90°,
180°, or 270°) rendered the greater number of data bits, and
that orientation is categorized as the correctorientation.
0189 If multiple patches are read (i.e. multiple patches are
examined for data bit extraction), then one may compare
which orientation is categorized the correct orientation most
often among all the examined patches. The orientation most
often categorized as correct, among all the patches, is then
deemed to be the overall correctorientation.
0190. A pictorial example of determining a correctorien
tation by identifying the orientation that reveals the most data
bits is illustrated in reference to FIGS. 28 and 29.

(0191) Once all the bits (both data bits and marker bits)
have been identified, the bits may be arranged as an image
grid, as shown in FIG. 28. In the present example, marker bits
are shown as white squares and data bits are shown as shaded
squares, when logic 0's and logic 1 having an assigned dark
ness level for ease of viewing in FIG. 28. Black regions in
FIG. 28 identify areas masked out that are to be ignored
during reading. Since the objective is to read a message block
within the current patch, one first identifies the message block
by identifying contiguous sequences of at least 3 or 4 marker
bits. These contiguous marker bits define the perimeter of the
message block. In the present example of FIG. 28, the mes
sage block perimeter is identified arrows 281-284, which
delineate a respective sequence of contiguous marker bits.
0.192 All bit information not within the identified message
block, as well as the perimeter of the message, is then pruned
away (i.e. removed or disregarded), as shown in FIG. 29. If
correct mode (landscape VS portrait) and orientation has not
been identified, then the bit allocation process tries all pos
sible 90° rotations, as described above, before ascertaining
the correct mode. For rotations not corresponding to the cor
rect mode and orientation, most of the bit patterns are iden
tified as marker bit patterns and hence no meaningful message
data is obtained. Once the correct rotation is identified, cor
rect bits are also identified, thereby generating the correct
message.
(0193 With reference to FIG. 30, a second example illus
trates this property of the present invention. First image 291 is
a first patch prior to application of the process of FIG. 27.
Image 292 shows the result of arranging the extraction bit
pattern information. In the present example, black areas again
indicated masked regions, but marker 293 bits are shown as
the darkest shade of gray. Data bits 295 are indicated as two
distinct lighter shades of gray (for indicating a logic 0 or a
logic 1). As shown, the vast majority of the bit patterns in this
orientation are identified as marker bits 293. Image 297 shows
the result of rotating image 291 by 270° and re-applying the
data extraction process described above. In this case, arrange

Aug. 11, 2011

ment of the extracted bit information indicates that maker bits
293 are located only along the perimeter of a message block,
and the interior of the message block is comprised predomi
nately of data bits 295.
0194 As is explained above, the present invention prefer
ably uses “centroid feedback', by which the location of a first
patch (or message block) is used to identify the location of a
second patch (or message block) relative to the first patch.
Above, an example is given wherein the first and second
patches are consecutive patches in a Submitted image. How
ever, any desired patch may be used as the reference patch, but
it is preferred that the reference patch selection be updated
periodically.
0.195 Preferably, the centroid of a correct message block

is used to identify the correct centering for the next message
block to be read. This step is important due to non-linear
Scaling introduced by a print-and-scan cycle. As a result of
this non-linear Scaling, the exact dimensions of pattern
images (as well as the dimensions of the message blocks) are
not the same as they were during their initial encoding.
Hence, the step size for cropping Subsequent message blocks
in a Submitted image is constantly updated based on the
centroid of the best message block identified found so far. The
centroid identified for the message block is updated for the
rotation (landscape/portrait correction) before being used by
the Subsequent steps.
0196. Selecting the best message block identified so far,
makes use of several techniques. First as is explained above,
since a single threshold value for binary image generation is
not enough to handle all grayscale variations due to the above
discussed non-linear error introduced by a print-and-scan
cycle, each message block is thresholded multiple times with
a series of increasing threshold values and image bit identi
fication may be attempted at each threshold level. For the
results discussed above, thresholds from 25 to 35 with a step
size of 2 were used. Lastly, not only do all the messages
collected from a single message block go through an error
correction phase, the extracted data bit information is applied
to a string matching routine to generate the most probable
string. As is discussed above, a single message block may
have multiple copies of a single message String (or at least the
repeated message blocks will contain a copy of the original
message string), therefore to identify the most probable mes
sage String, one may compare the bit data from the multiple,
recovered copies of the message string and identify the mes
sage String that repeats itself most consistently.
0.197 While the invention has been described in conjunc
tion with several specific embodiments, it is evident to those
skilled in the art that many further alternatives, modifications
and variations will be apparent in light of the foregoing
description. Thus, the invention described herein is intended
to embrace all such alternatives, modifications, applications
and variations as may fall within the spirit and scope of the
appended claims.
What is claimed is:
1. A method of formatting an input text string for water

marking onto an input image, said method comprising the
following steps:

(a) configure said input text string into an intermediately
formatted bit-string having a first fixed bit-length;

(b) if the last data bit of said intermediately formatted
bit-string is a logic high 1,
then adding a first indicator marker string A1 to create

a first formatted message;
else adding a second indicator marker string A0 to

create second formatted message;

US 2011/O 194690 A1

(c) arranging the first or second formatted message created
in step (b) into a message block, said message block
being of predefined block bit-length, and increasing the
bit length of the formatted message created in step (b) to
be equal to said predefined block bit-length.

2. The method of claim 1, wherein in step (a) includes
adjusting the bit-length of the input text string to create a
formalized message string “M” of predefined length.

3. The method of claim 2, wherein formalized message
string “M” is created by appending a known bit pattern to the
input text string if the input text string is shorter than said
predefined length.

4. The method of claim3, wherein said known bit pattern is
a series of contiguous logic 0's.

5. The method of claim 2, wherein step (a) includes apply
ing Error Correction Code (ECC) to formalized message
string M and appending to it an ECC string “E” so that said
intermediately formatted bit-string has pattern “ME'.

6. The method of claim 5, wherein in step (b), if the last data
bit of ECC string “E” is a logic high,

then appending said first indicator marker string 'A1 to
intermediate formatted bit-string “ME' to create said
first formatted message “MEA1”:

else appending said second indicator marker String "A0 to
create second formatted message “MEA0'.

7. The method of claim 6, wherein said second indicator
marker string A0 is the logic complement of said first
indicator marker string “A1.

8. The method of claim 6, wherein:
said first indicator marker string “A1 is the logic bit string

defined as A1="01010101; and
said second indicator marker string "A0 is a logic string

defined as AO=“10101010.
9. The method of claim 1, wherein said predefined block

bit-length is 900 bits.
10. The method of claim 1, wherein in step (c), the bit

length of the formatted message created in step (b) is
increased by providing multiple copies of the same formatted
message.

11. The method of claim 1, wherein in step (c), the bit
length of the formatted message created in step (b) is
increased by appending a predefined first padding-bit-pattern
to fill the remainder of the message block.

12. The method of claim 11, further including:
(d) arranging onto said input image, a plurality of said
message blocks adjacent to each other, wherein a first of
said message blocks is padded with said first padding
bit-pattern, and a second of said message blocks adja
cent said first message block is padded with a second
padding-bit-pattern, said second padding-bit-pattern
being the logic compliment of said first padding-bit
pattern.

13. The method of claim 12, wherein adjacent message
blocks in said plurality of adjacent message blocks are alter
natively padded with said first padding-bit-pattern and sec
ond padding-bit-pattern.

14. The method of claim 1, further including preparing said
input image to receive said message block, including:

(A) dividing said input-image vertically to create a left
hand plane and right-hand plane;

(B) scanning the left-hand plane from the top downward
and identifying the first encountered non-white row of

Aug. 11, 2011

pixels as a non-white-left row, the row index number of
said first non-white-left row being a first row index;

(C) scanning the right-hand plane from its top downward
and identifying the first encountered non-white row of
pixels as a non-white-right row, the row index number of
said first non-white-right row being a second row index;

(D) defining a first-rotation-angle 01 as being equal to
(first row index)-(second row index) divided by a first
predefined width dimension;

(E) rotating said input-image 90° and repeat steps (a) to (c)
on the rotated input-image;

(F) defining a second-rotation-angle 02 as being equal to
(first row index of the rotated input-image)-(second
row index of the rotated input-image) divided by a
second predefined width dimension;

(G) rotate input image to be at its original orientation less
the average of 01 and 02.

15. A method of compensating for skew error in an input
image, comprising the following steps:

(a) dividing said input-image vertically to create a left
hand plane and right-hand plane;

(b) scanning the left-hand plane from the top downward
and identifying the first encountered non-white row of
pixels as a non-white-left row, the row index number of
said first non-white-left row being a first row index;

(c) scanning the right-hand plane from its top downward
and identifying the first encountered non-white row of
pixels as a non-white-right row, the row index number of
said first non-white-right row being a second row index;

(d) defining a first-rotation-angle 01 as being equal to (first
row index)-(second row index) divided by a first pre
defined width dimension;

(e) rotating said input-image 90° and repeat steps (a) to (c)
on the rotated input-image;

(f) defining a second-rotation-angle 02 as being equal to
(first row index of the rotated input-image)-(second
row index of the rotated input-image) divided by a
second predefined width dimension;

(g) rotate input image to be at its original orientation less
the average of 01 and 02.

16. The method of claim 15, wherein in step (d), said
predefined first width dimension is the width dimension of
one said left-hand plane or right-hand plane.

17. The method of claim 15, wherein in step (a), said
input-image is divided Substantially down its centre.

18. The method of claim 17, wherein in step (d), said first
predefined width dimension is half the width dimension of
said input-image; and in step (f), said second predefined
width dimension is half the width dimension of said input
image after having been rotated 90°.

19. The method of claim 15, wherein in step (b), said
non-white row is a row having a luminance intensity histo
gram containing less than a pre-specified percentage of white
pixels.

20. The method of claim 19, wherein said pre-specified
percentage of white pixels is not greater than 98 percent.

21. The method of claim 15, wherein in step (b), said
non-white row is a row whose percentage of white pixels is
less than 98 percent of the total pixel in the same row.

22. The method of claim 21, wherein said white pixels are
pixels having a luminance intensity not smaller than 250.

c c c c c

