发明名称
一种便携式通用生物信号获取和分析系统及方法

摘要
本发明提供了一种便携式通用生物信号获取和分析系统及方法，通过对传感器接口的模块化、集成式采集硬件单元的模板化，集成采集分析软件的模块化，模板化和可扩展性的设计，使得多源运动生物力学相关信息可在统一的硬件平台和软件平台下进行采集和分析，进而可以对多元数据进行准确的时域同步分析和数据融合处理，为运动生物力学领域提供更加准确的相关特征参数。
1. 一种便携式通用生物信号获取和分析系统，其特征在于：包括有多个模块化传感器接口、集成式采集硬件单元、计算机，所述多个模块化传感器接口分别电连接在集成式采集硬件单元上，所述集成式采集硬件单元与计算机通讯，在所述集成式采集硬件单元中设置有集成式采集软件单元，在计算机的统一控制下，模块化传感器接口和集成式采集硬件单元配置成多种生物信号综合测试的通用硬件平台，可定制采集模式和通道数量，有机集成多种传感器数据，获取动力学、运动学、生理学的综合信息；

所述模块化传感器接口包括与所连接的传感器对应的信号输入电路、信号放大电路、信号滤波电路及信号跟随输出电路，各电路模块化，不同的传感器接入各自对应的模块化传感器接口，传感器采集到的信号经过信号输入电路、信号放大电路、信号滤波电路，最后通过信号跟随输出电路传送至集成式采集硬件单元；

所述集成式采集硬件单元包括有中央处理器，所述中央处理器上集成电连接有多路模拟信号输入电路，与模拟信号输入电路对应的可调增益运算放大电路，及多个数字信号输入、输出电路，所述模块化传感器接口分别通过所述模拟信号输入电路与集成式采集硬件单元电连接，所述传感器采集的信号通过模块化传感器接口传送至所述模拟信号输入电路后，经过可调增益运算放大电路的二次处理，再经过电子开关、信号变换和滤波电路后传送至中央处理器，所述中央处理器通过数字信号输入、输出电路与计算机通讯。

2. 根据权利要求1所述的一种便携式通用生物信号获取和分析系统，其特征在于：所述集成式采集硬件单元通过中央处理器外围的以太网接口或USB接口与计算机通讯，在所述计算机中设置有模块化分析软件单元及可扩充式集成分析软件，集成式采集硬件单元、模块化分析软件单元及可扩充式集成分析软件建立标准，统一的数据采集、分析模板。

3. 根据权利要求1所述的一种便携式通用生物信号获取和分析系统，其特征在于：所述集成式采集硬件单元中的中央处理还外接有显示器接口、存储器接口、键盘接口。

4. 一种便携式通用生物信号获取和分析方法，其特征在于：采用权利要求1所述的一种便携式通用生物信号获取和分析系统，在所述计算机中设置有模块化分析软件单元，可扩充式集成分析软件，在所述集成式采集硬件单元的中央处理器中设置有集成式采集软件单元，将多个不同的生物信号传感器分别接入各自对应的模块化传感器接口，通过生物信号传感器采集人体的生物信号，信号通过模块化传感器接口中，被放大、滤波后传送至集成式采集硬件单元，信号被集成式采集硬件单元中信号变换电路转化成数字信号后，经过集成式采集硬件单元的滤波电路滤波后传送至中央处理器，中央处理器对生物信号初步处理后，通过数字信号数字信号输出电路将生物信号传送至计算机分析；集成式采集硬件单元、集成式采集软件单元具有通用性，用来获取加速度、关节角度、肌电、心电、脉搏波等动力学、运动学参数及其他生理学信号，集成式分析软件单元中各功能单元具有开放式接口，可独立使用，集成分析软件单元可提供进行数据分析的对比、关联、耦合等关系分析，提取与人体运动过程的共性和个性数据，集成式分析软件单元中提供运动人体的综合生物信息，可据此建立特征数据库，为相关理论研究和应用开发提供数据平台，集成式分析软件单元中提供数据导出接口，供第三方软件使用，集成式分析软件单元中预留标准文本数据导入接口，可以获取第三方仪器采集的数据进行分析；模块化分析软件单元、可扩充式集成分析软件具有同步采集、集成分析功能，包含各种生理学信号的独立的模块化分析单元和集成式分析模板，整个系统的采集模式、单元通道数可定制，且通道信源类型可重新配置选择。
一种便携式通用生物信号获取和分析系统及方法

技术领域
[0001] 本发明涉及运动生物力学领域中的生物信号获取与分析系统及方法，尤其是一种便携式通用生物信号获取和分析系统及方法，特别涉及多种运动学参数和生理学参数的实时、同步、动态获取，集成分析与处理，以及多源运动生物力学信息的数据融合方法。

背景技术
[0002] 在体育训练与科研、运动医学研究、基础医学研究、临床诊断、康复工程和运动生物力学等领域，要求采集人体活动的多种生物信号，通常的检测、记录和分析需要采用示波器、生物信号前置放大器、刺激器以及针对各种生物信号的专用采集分析仪（如肌电仪、心血管监测仪、血氧仪、人体运动加速度测试仪等）来完成，不足之处表现在仪器体积大、数量多，各种仪器操作复杂，数据接口不统一，数据管理不方便，效率低，测试消耗时间周期长，多种仪器投资成本高；同时，人体是一个复杂的大系统，其运动学、动力学和生理学等参数具有非线性、时变性和个体差异性等特征，各种参数之间存在并行、反馈及控制等复杂的耦合关系，需要在时域同步采集多源信息并进行融合处理，才有可能把握运动和健康的本质规律，为相关研究和应用提供理论支撑，而单一的、各自独立的仪器虽然能对特定生物信号进行采集分析，给出特定的结果，却不能保证对不同种类数据采集时间的精确同步，不能有效的综合使用采集数据，因此也就不能对多源信息进行有效的融合处理。

发明内容
[0003] 本发明提供了一种便携式通用生物信号获取和分析系统及方法，以解决传统技术中采集多种人体信号不能进行有效地融合处理的问题。
[0004] 为了达到上述目的，本发明所采用的技术方案为：
[0005] 一种便携式通用生物信号获取和分析系统，其特征在于：包括有三个模块化传感器接口、集成式采集硬件单元、计算机，所述多个模块化传感器接口分别电连接在集成式采集硬件单元上，所述集成式采集硬件单元与计算机通讯，在所述集成式采集硬件单元中设置有集成式采集软件单元，在中心计算机的统一控制下，模块化传感器接口和集成式采集硬件单元配备成多种生物信号综合测试的通用硬件平台，可定制采集模式和通道数量，有机集成多类传感器数据，获取动力学、运动学、生理学的综合信息；
[0006] 所述模块化传感器接口包括与所连接的传感器对应的信号输入电路、信号放大电路、信号滤波电路及信号跟随输出电路，各电路模块化，不同的传感器接入各自对应的模块化传感器接收，传感器采集到的信号经过信号输入电路、信号放大电路、信号滤波电路，最后通过信号跟随输出电路传送至集成式采集硬件单元；
[0007] 所述集成式采集硬件单元包括有中央处理器，所述中央处理器上集成电连接有多路模拟信号输入电路、与模拟信号输入电路对应的可调增益运算放大电路，及多个数字信号输入、输出电路，所述模块化传感器接口分别通过所述模拟信号输入电路与集成式采集硬件单元电连接，所述传感器采集的信号通过模块化传感器接口传送至所述模拟信号输入
电路后，经过可调增益运算放大电路的二次处理，再经过电子开关、信号变换和滤波电路后
传送至中央处理器，所述中央处理器通过数字信号输入、输出电路与计算机通讯。

【0008】所述的一种便携式通用生物信号获取和分析系统，其特征在于：所述集成式采集
硬件单元通过中央处理器和外接的以太网接口或 USB 接口与计算机通讯；在所述计算机中设
置有模块化分析软件单元及可扩充式集成分析软件；集成式采集软件单元、模块化分析软
件单元及可扩充式集成分析软件建立标准、统一的数据采集、分析模板。

【0009】所述的一种便携式通用生物信号获取和分析系统，其特征在于：所述集成式采集
硬件单元中的中央处理器还外接有显示器接口、存储器接口、键盘接口。

【0010】一种便携式通用生物信号获取和分析方法，其特征在于：采用权利要求 1 所述的
一种便携式通用生物信号获取和分析方法，在所述计算机中设置有模块化分析软件单元、
可扩充式集成分析软件，在所述集成式采集硬件单元的中央处理器中设置有集成式采集软
件单元；将多个不同的生物信号传感器分别接入各自对应的模块化传感器接口，通过生物
信号传感器采集人体的生物信号，信号通过模块化传感器接口中，被放大、滤波后传送至集
成式采集硬件单元，信号被集成式采集硬件单元中信号变换电路转换成数字信号后，经过
集成式采集硬件单元的电路滤波后传送至中央处理器，中央处理器对生物信号初步处
理后，通过数字数字信号输出电路将生物信号传送至计算机分析；集成式采集硬件单元、集
成式采集软件单元具有通用性，用来获取加速度、关节角度、肌电、心电、脉搏波等动力学、
运动学参数及其他生理学信号，集成式分析软件单元中各功能单元具有开放式接口，可独
立使用，集成式分析软件单元可提供进行数据处理的组合、关联、耦合等关系分析，提取与人体
运动过程的共性和个性数据，集成式分析软件单元中提供运动人体的综合生物信息，可据
此建立特征数据库，为相关理论研究和应用开发提供数据平台，集成式分析软件单元中提
供数据导出接口，供第三方软件使用，集成式分析软件单元中预留标准文本数据导出接口，
可以获取第三方仪器采集的数据进行分析，模块化分析软件单元、可扩充式集成分析软件
具有同步采集、集成分析功能，包含各种生理学信号的独立的模块化分析单元和集成式分
析模板，系统系统的采集模式、单元通道数可定制，且通道信号类型可重新配置选择。

【0011】模块化传感器接口；

【0012】系统根据不同种类的生物信号传感器和生物信号处理的需求，设计了不同的模块
化传感器接口，如肌电信号传感器接口、心电信号传感器接口、加速度信号传感器接口、脉
搏波信号传感器接口、关节角度信号传感器接口等等，若需要获取更多其他生物信号，可以
对这种特定信号再设计一个传感器接口，所有接口以一种统一的微型盒体进行封装，这种
针对生物信号类型设计的模块化传感器接口，可以优化设计参数，提高信号的精度，而且扩
充接口方便。模块化传感器接口由信号输入、信号放大、信号滤波、信号跟随输出四部分组
成，原理框图如附图 1 所示。

【0013】集成式采集硬件单元；

【0014】对人体的运动和健康状况进行研究，涉及到多种运动学、动力学参数和生理学参数，
通常的研究都是采用单一的仪器对特定的信号进行采集、监测和处理，并给出相关的分析
结果，如平衡仪、肌电仪、心电仪、脉搏波测试仪等等，如果对平衡、肌电、心电和脉搏波信号
都需要测试，就需要同时购买平衡仪、肌电仪、心电仪和脉搏波测试仪多台仪器设备，同时
由于各台仪器的独立性，操作者需要熟悉每台仪器的使用方法，如果要在同一时间来考
察所有测试信号的变化，综合多种数据和参数分析人体的运动和健康，几乎无法实现，本发明的做法是：设计了一个通用的集成式采集硬件单元，用来采集肌电、心电、脉搏波等多种生物信号。针对不同种类生物信号的模块化传感器接口，电路设计了32个增益可调的模拟信号输入通道，8个数字信号输入/输出通道。任意一个传感器接口模块的任意一路模拟输出信号可以根据在集成式采集硬件单元的任意一个模拟输入通道，集成式采集硬件单元通过以太网接口（有线或无线）或者USB接口与计算机进行连接。如果采集的模拟通道超过32个或者数字输入输出通道超过8个，可以再扩充1到n（n大于1小于128）个集成式硬件采集单元。集成式硬件采集单元还包括SD卡接口、操作键盘接口和LCD显示接口，其系统硬件原理框图如附图2所示。

[0015] 集成式采集软件单元：

集成式采集软件单元是运行在集成式采集硬件单元上的程序，它和上位机软件经过通信，对每个通道输入的信号类型、采样频率、采样模式等进行用户动态配置，比如模拟通道可以配置为人体运动的加速度信号，也可以配置为人体运动的关节角度信号，用户只要在测试开始时通过在集成式分析软件中的采集设置界面相应的通道进行信号类型设置即可。当集成式采集软件单元完成配置，收到启动采集触发命令后，则开始工作，对信号进行采集、预处理、存储和向上传输等等，其软件工作的流程如附图3所示。

[0017] 模块化分析软件单元：

每一个模块化分析软件单元，根据信号类型，具有该类型独立仪器的所有功能，同时预留功能分析扩展接口，方便功能的扩展，对于不同的传感器接口模块，集成式分析软件根据用户配器的通道信号类型，选择相应的模块化分析软件单元，运用与这种信号类型相应的算法和分析方法，完成信号的分析和处理，给出分析处理的结果，同时又为集成式分析软件提供数据融合的数据源，并向其他第三方软件提供软件接口，软件处理流程图如附图4所示。

[0019] 可扩充式集成分析软件：

[0021] A) 统一的数据采集与分析模板：可设定集成式采集单元的采集模式、通道数、采样频率和采样时间等，在实现功能单元同步集成的基础上，各功能子单元也可以独立采集分析数据。

[0022] B) 各子功能单元配置自主分析软件和人机接口，可作为独立的分析仪器。

[0023] C) 所有功能单元的同步数据有机集成，在时频域进行对比分析和关联耦合性分析，构建融合友好的人机界面，建立人体的综合运动模型和健康模型，提取人体运动和健康的共性特征和个性特征数据。

[0024] D) 建立人体综合生物信息特征数据库，为相关理论研究和应用开发提供数据平台。

[0025] E) 提供数据导出接口，供第三方软件使用。

[0026] F) 预留标准文本数据导出接口，获取第三方仪器采集的数据进行分析。

[0027] G) 简化的独立仪器软件定制功能

[0028] （2）软件在对多源数据进行融合分析时，主要采用的一些算法：

[0029] A) 在波形阶段划分方面，构造多输入多数输出模糊神经网络分类器进行波形自动识
别；
[0030] B) 在特征提取方面，对波形信号序列进行多尺度小波分解，得到各层小波变换系数的能量值并进行归一化处理，形成小波能量特征；C) 在机能诊断方面，利用支持向量机（SVM）在解决非线性极高维空间模式问题中特有的优势，构造K类LS-SVM分类器，将时域特征和小波能量特征作为输入特征向量，提高机能诊断的准确性和鲁棒性；
[0031] D) 在提高识别能力和降低运算复杂度方面，采用基于遗传算法的特征选择方法，降低特征维数，构造最优特征子集。整个集成式分析软件的功能框图如图5所示。
[0032] 离线采集存储功能；
[0033] 以上信号的分析和处理可以通过集成式采集单元将信号实时传输至计算机，通过计算机中的软件在线完成，通过对集成式采集软件单元中软件的更新，也可以先在离线状态下直接将数据采集存储在集成式采集硬件单元的存储卡中，然后再通过通信接口将数据传输到计算机中进行分析和处理。
[0034] 独立数据定制功能；
[0035] 一旦信号进行离线采集和分析时，也可以通过集成式分析软件的独立数据定制功能，将特定信号的采集分析软件下载到集成式采集硬件单元中，此时集成式采集硬件单元加上某一特定的模块化传感器接口就成了一台独立的数据采集处理与分析的仪器，可独立对该特定信号进行采集处理与分析与监测。
[0036] 本发明能够有效地解决传统技术中采集多种人体信号数据后不能实时有效处理的问题，并且不需要大量复杂的仪器与设备，节约了大量的成本，也提高了对人体信号的处理能力。

附图说明
[0037] 图1是模块化传感器接口的电路原理框图。
[0038] 图2是集成式采集硬件单元的电路原理框图。
[0039] 图3是集成式采集软件单元的程序流程图。
[0040] 图4是模块化分析软件单元的程序流程图。
[0041] 图5是可扩充式集成分析软件的功能框图。
[0042] 图6是系统基本型硬件组成图。
[0043] 图7是系统扩展型硬件组成图。
[0044] 图8是一种集成式采集硬件单元外形结构示意图。

具体实施方式
[0045] 结合附图和实施例对本发明作进一步说明。
[0046] 一种便携式通用生物信号获取和分析方法可通过如下一种硬件系统和软件系统实现。其硬件系统主要由各种生物信号传感器、模块化传感器接口电路、集成式采集硬件单元电路、上位计算机组成。如需采集更多的模拟通道，可通以太网接口（或USB协议转换卡）连接更多的集成式采集硬件单元电路实现。系统基本型硬件组成如附图6所示，系统扩展性硬件组成图如附图7所示。下面以一个8通道肌电信号和3通道加速度信号采集、处理和分析为例来介绍一个具体的通用生物信号获取和分析系统的实现。
[0047] 在图 8 中，标记“1,2,3,4”为四组信号输入通道接口，每组包含八个模拟信号和两个数字信号，另外向传感器提供 ±5V 电源，“5”为液晶显示器，“6”为操作键盘，“7”为通信接口（USB 和以太网）和电源输入及开关，每组八个通道的模拟信号通过八通道增益可调运算放大器对信号进行二次处理，然后经过四组八选一电子开关，信号变换和滤波后进入 CPU，进行数据采集、处理和分析。其内部电路原理框图如图 2 所示。八路肌电信号和三路加速度信号分别通过各自的传感器接口电路与图 8 集成式采集硬件单元连接好后，再用 USB 电缆线将图 8 中的“7”（USB 通信接口）与计算机连接，即组成了一个八通道肌电信号和三通道加速度信号的测试分析仪，运行上位机的集成式分析软件，通过用户设置采集信号的通道号、采样速率、信号类型，然后启动集成式采集硬件单元，对信号进行采集、预处理和数据上传，再经上位机的集成式分析软件的分析和处理，即可完成对肌电信号的处理分析，又可完成对加速度信号的处理分析，还可以将肌电和加速度信号在时间上同步起来，完成肌电和加速度的融合分析，提取更准确的与运动和健康相关的特征参数。

[0048] 显然，本领域的技术人员可以对本发明的各功能单元测量装置及其测量方法进行各种改动和变型而不脱离本发明的精神和范围。这样，倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内，则本发明也意图包含这些改动和变型在内。
图 1

特定传感器
信号输入 Xin
信号放大
信号滤波
信号跟随输出
Xout

图 2

32 路模拟输入信号
四组 8 路可调增益运算放大电路
四个 8 选一电子开关
四路跟随器

电源输入：
DC12V
电源输出：
模拟（+5V, AGND）
模拟（-5V, AGND）
电压基准：
（+5V, AGND）
数字供电
（3.3V, DGND）

8 路数据输入输出信号

四路滤波
信号输出

中央处理器
STM32F103

256M SD 存储卡

四路±5V 到 0～3.3V 电压转换电路
显示接口
键盘接口
通信接口
图 7

图 8