<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A61K 39/00, C07C 103/52, C07G 7/00, C07K 7/10</td>
<td></td>
<td>(43) International Publication Date:</td>
<td>25 January 1990 (25.01.90)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(21) International Application Number:</th>
<th>PCT/US89/02921</th>
</tr>
</thead>
<tbody>
<tr>
<td>(22) International Filing Date:</td>
<td>7 July 1989 (07.07.89)</td>
</tr>
<tr>
<td>(30) Priority data:</td>
<td>216,088 7 July 1988 (07.07.88) US</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(72) Inventors: KUMAR, Sanjai; 1001 Rockville Pike, 1025, Rockville, MD 20852 (US); MILLER, Louis, H.; 4824 Cumberland Avenue, Chevy Chase, MD 20815 (US); BERZOFSKY, Jay, A.; 9321 Corsica Drive, Bethesda, MD 20814 (US); GOOD, Michael, F.; 12219 Hunters Lane, Rockville, MD 20850 (US).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(81) Designated States: AT (European patent), AU, BE (European patent), CH (European patent), DE (European patent), FR (European patent), GB (European patent), IT (European patent), JP, LU (European patent), NL (European patent), SE (European patent).</td>
</tr>
</tbody>
</table>

Published

With international search report.

<table>
<thead>
<tr>
<th>(54) Title: SYNTHETIC VACCINE AGAINST P. FALCIPARUM MALARIA</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>(57) Abstract</th>
</tr>
</thead>
</table>

A purified peptide induces proliferation or activation of cytotoxic T cells specifically against circumsporozoite protein of P. falciparum.
<table>
<thead>
<tr>
<th>AT</th>
<th>Austria</th>
<th>ES</th>
<th>Spain</th>
<th>MG</th>
<th>Madagascar</th>
</tr>
</thead>
<tbody>
<tr>
<td>AU</td>
<td>Australia</td>
<td>FI</td>
<td>Finland</td>
<td>ML</td>
<td>Mali</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>FR</td>
<td>France</td>
<td>MR</td>
<td>Mauritania</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>GA</td>
<td>Gabon</td>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>GB</td>
<td>United Kingdom</td>
<td>NL</td>
<td>Netherlands</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>HU</td>
<td>Hungary</td>
<td>NO</td>
<td>Norway</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>IT</td>
<td>Italy</td>
<td>RO</td>
<td>Romania</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>JP</td>
<td>Japan</td>
<td>SD</td>
<td>Sudan</td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>KP</td>
<td>Democratic People's Republic of Korea</td>
<td>SE</td>
<td>Sweden</td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>KR</td>
<td>Republic of Korea</td>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>LJ</td>
<td>Liechtenstein</td>
<td>SU</td>
<td>Soviet Union</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>LK</td>
<td>Sri Lanka</td>
<td>TD</td>
<td>Chad</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>LU</td>
<td>Luxembourg</td>
<td>TG</td>
<td>Togo</td>
</tr>
<tr>
<td>DE</td>
<td>Germany, Federal Republic of</td>
<td>MC</td>
<td>Monaco</td>
<td>US</td>
<td>United States of America</td>
</tr>
</tbody>
</table>
SYNTHETIC VACCINE AGAINST P. FALCIPARUM MALARIA

Technical Field

The present invention is related generally to anti-malarial vaccines. More particularly, the present invention is related to providing a synthetic peptide which induces proliferation or activation of cytotoxic T cells having specificity against circumsporozoite protein for protection against Plasmodium falciparum infection.

Background of Invention

Control of malarial disease has been achieved to a certain degree in various parts of the world. Yet, complete eradication of malaria still remains to be achieved. A vaccine providing protective immunity would, therefore, be a desirable tool for checking disease caused by malarial infection.

Summary of Invention

It is, therefore, an object of the present invention to provide a substantially pure peptide which induces proliferation of cytotoxic T lymphocytes (CTL) that specifically recognize native circumsporozoite (CS) protein and kill the cells infected with malaria sporozoites.

It is another object of the present invention to provide a vaccine, comprising immunogenic amount of the purified peptide of the present invention to induce proliferation of the CTLs that specifically recognize CS protein and kill cells expressing CS protein.

It is a further object of the present invention to provide a method of controlling malarial infection, comprising inducing protective immunity in a host susceptible to malarial infection by inoculating said host with immunogenic amount of the vaccine of the present invention.

Other objects and advantages will become evident from the following detailed description of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

The above and various other objects and
advantages of the present invention are achieved by a synthetic peptide which resembles the immunodominant epitope on CS protein and which elicits CTL response. This epitope is located within residues 368-390 of the CS protein.

Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, the preferred methods and materials are now described. All publications mentioned hereunder are incorporated herein by reference. Unless mentioned otherwise, the techniques employed herein are standard methodologies well known to one of ordinary skill in the art. The term "substantially pure" as used herein means as pure as can be obtained by standard purification techniques.

Figs. 1-4 describe the various materials and methods employed and the results obtained in accordance with the present invention.

Fig. 1 presents data showing that the CS protein is a target for CTL. B10BR mice (H-2k) were immunized intravenously with 10^7 pfu of a CS-recombinant vaccinia virus. Three weeks later, spleens were taken and 5×10^6 spleen cells were incubated with 2×10^5 CS-transfected L cells treated with mitomycin C (50μ g/ml, 30 min) in 2 ml RPMI 1640 medium containing 10% fetal calf serum, 5×10^{-5}M 2-mercaptoethanol and penicillin and streptomycin. After 7 days culture, cells were harvested, counted and incubated for 6 hours at various effector/target ratios with 5000 51Cr-labelled CS-transfected L cells, ▲; pSV2-neo transfected L cells (L-28), ○; or untransfected, uninfected L cells, ×. Percent specific lysis was determined as:

$$\frac{(\text{experimental cpm} - \text{medium control cpm}) \times 100}{(\text{detergent released cpm} - \text{medium control cpm})}$$
The spontaneous release values (medium control cpm/detergent released cpm) for all targets in all tests were very similar with a mean value of 16.8% +/- 1.1% (S.E.M.). Error bars on this and other figures represent +/- standard error of mean (triplicate assays). Unstimulated spleen cells from unimmunized mice did not kill target cells.

Mouse L cells (H-2k) were transfected with the CS gene of the 7G8 clone of P. falciparum by standard calcium phosphate precipitation. Briefly, the CS gene containing the entire coding sequence was cloned at ECORI site into the expression vector pcEXV-3. This expression vector contains SV40 enhancer, early promoter, splice signals 5' of the gene insert as well as a polyadenylation signal downstream. The rest of the sequences are derived from pBR 322. L cells (5 x 10^5 cells per 60 mm petri dish) were co-transfected in 1 ml with 10 μg of purified plasmid DNA and 3 μg pSV2neo DNA. The calcium phosphate/DNA precipitate was left on the cells overnight. The following day, the original medium was replaced with fresh medium and left for an additional 24 h and then transfectants selected in 2 mg/ml G418 (Geneticin; Gibco) for 1 week. Finally, stable transfected cells were grown in the presence of 200 μg/ml G418. Single colonies of transfecteds were obtained by limiting dilution and screened by standard immunofluorescence technique for the expression of CS protein.

Fig. 2 demonstrates sporozoite stimulation of CS specific CTL. B10.BR mice were immunized intravenously with 10^5 (irradiated, 10000 Rad) P. falciparum sporozoites (7G8 clone) (△, △). Control mice were not immunized (○, ○). After 3 weeks, mice were sacrificed and spleens taken. Spleen cells were then stimulated in vitro with CS - transfected L cells as described in Fig. 1. After 6 days, killing of CS-transfected L cells (△, ○) and untransfected L cells (△, ○) was measured. The data show the results obtained.
Fig. 3A is a schematic illustration of the CS protein and description of the peptides. RI (Region I) and RII (Region II) refer to areas of strong homology between CS proteins from different species of malaria. The sequences of the 34 peptides tested were those described by Dame et al, Science 225:593-599, 1984. Each peptide has a carboxyl terminal cysteine which is not part of the protein sequence. The numbers in brackets refer to the residue number. Peptides were produced as described by Houghten, PNAS (USA) 82; 5131-5135., and desalted prior to use. They were checked for purity by reversed phase HPLC. The peptides were nontoxic. It is noted, however, that the peptides could be produced by any other suitable method known to one of ordinary skill in the art, the method of preparing the peptide per se not being a part of the present invention.

Fig. 3B defines CD8 epitope on CS protein. Spleen cells from CS-vaccinia-immunized B10.BR mice were stimulated in vitro with CS-transfected L cells as described in Fig. 1. Putative CTL were then incubated with untransfected L cells at an effector/target ratio of 10/1 for 6 hours in the presence of various concentrations of peptide 28 (●). There was no specific lysis of L cells by peptide 28 in the absence of CTL (○), i.e., the peptide was not toxic to these cells. The killing of the transfected L cell was also measured, at an effector/target ratio of 10/1 (▲).

Anti-CS protein-specific CTL did not kill L cells in the presence of any of the other 33 peptides at concentrations of 1, 10, 20, or 100 g/ml. Peptide 28 did not sensitize L cells to killing by irrelevant allospecific CTL (C57B1/10 anti-BALB/c).

Fig. 4 presents evidence that the CTL epitope is located within residues 368-390 of CS protein. Spleen cells from CS-vaccinia immunized B10.BR mice were stimulated in vitro with CS-transfected L cells as described in Fig. 1. Cultured cells were then incubated at an
effector/target ratio of 30/1 for 5 hours in the presence of various targets: CS-transfected L cells; untransfected L cells; untransfected L cells incubated overnight with peptide (as indicated) at 100 μg/ml, then washed and re-incubated with peptide at 100, 10, or 1 μg/ml during the cytotoxicity assay. It was found that overnight incubation (about 12 to 16 hours) with peptide increased the degree of specific killing (not shown). Similar results were obtained at an effector/target ratio of 10/1. Peptides 370-390 and 368-390 were not toxic to L cell and peptide 368-390 was not recognized by vaccinia-specific CTL (not shown).

It is known that malaria is initiated following inoculation of sporozoites by a mosquito. Sporozoites enter hepatocytes and develop for a period as exoerythrocytic or hepatic stage parasites. Vaccination with irradiated malaria sporozoites can protect the host from mosquito-induced infection. In vivo depletion of CD8+ T cells, a subset that contains Class I-restricted cytotoxic T lymphocytes (CTL), as well as lymphocytes with a supressor function, in a sporozoite-immunized animal can completely abrogate immunity. It is believed that CTL from immune animals recognize the infected hepatocytes and kill the intrahepatic parasites. The evidence presented herein demonstrates that the circumsporozoite (CS) protein covering the sporozoite contains the target epitopes for CD8+ T cell-mediated immunity. B10.BR mice immunized with sporozoites or with recombinant vaccinia virus expressing the CS protein of Plasmodium falciparum contain CTL that specifically kill L cells (fibroblasts) transfected with the gene encoding the same CS protein. The peptide epitope from the CS protein that is recognized by CTL from this strain of mice was found to be from a variant strain of the CS protein.

As shown herein above, specific killing of the CS gene-transfected L cells was observed indicating that the CS protein did contain one or more epitopes recog-
nized by CTL (Fig. 1). These CTL also recognized the other CS-transfected L cell clone as well as CS-
recombinant vaccinia infected L cells, but not wild type vaccinia infected L cells (data not shown). It was
further observed that CS-specific CTL were sensitive to anti-CD8 monoclonal antibody and complement. Following
incubation of CS-specific CTL with anti-CD8 (19/178 clone) followed by complement, there was 3.8% specific
lysis of CS-transfected targets at an effector/target ratio of 10/1, compared with specific lysis of 29% when
CTL were incubated with complement alone. Lysis of untransfected L cells was 3.2% following complement
treatment, and 0.12% following treatment with anti-CD8 and complement. Because the CS protein was only
expressed cytoplasmically by the transfectants, these data give further confirmation to the findings that the
entire protein containing CTL epitopes need not be expressed on the cell surface for CTL-target cell inter-
action.

It should be noted that while stimulation of the CTL by virus encoded proteins is well documented, heretofore there was no direct evidence of stimulation of CTL by malaria parasites. Therefore, as shown in the data presented herein, B10.BR mice were immunized intra-
venously with freshly prepared 7G8 sporozoites, and three weeks after immunization mice were sacrificed and spleen
cells were stimulated in vitro with CS gene-transfected L cells. After seven days culture, specific lytic activity
was demonstrated against transfected L cells (Fig. 2). Spleen cells from unimmunized B10.BR mice could not be stimulated to generate specific lytic activity against transfected L cells (Fig. 2). Thus, it was concluded that sporozoites stimulate CS-specific CTL in vivo.

To determine the epitope recognized by CS pro-

tein-specific CTL, a series of overlapping peptides spanning the entire CS protein were constructed (Fig. 3A). (See also Good et al, PNAS, USA, 85:1199-1203,
1988). CTL were then incubated with L cells in the presence of each of the peptides, and lysis determined by
51Cr release procedure as described, for example, by Townsend et al, Cell, 44:959, 1986. Peptides were tested
at concentrations of 1, 10, 20, and 100 μg/ml. Only one peptide (#28) was recognized by CTL. A dose-response
study demonstrated significant killing at concentrations as low as 0.2 μg/ml (Fig. 3B). However, specific killing
by B10.BR anti-CS protein CTL in the presence of this
peptide was not as great as killing of the transfected L cells, possibly indicating that peptide 28 does not con-
tain the full T site. Thus, peptides 370-390 and 368-390
were made (lacking the additional carboxy-terminal
cysteine present on peptide 28) and tested for recogni-
tion by B10.BR anti-CS protein CTL. L cells incubated
with peptide 368-390 were killed at the same level as CS-
transfected cells, and more efficiently than L cells
incubated with peptide 370-390 (Fig. 4) indicating that
the full T site was contained within residues 368-390.
The observation that CTL recognized peptide 368-390 to
the same degree as the transfectant, gave further indica-
tion that B10.BR CS-specific-CTL recognize only this
single epitope on the CS protein.

The results further demonstrate that malaria
sporozoites induce CS-protein-specific CTL, adn that in
B10.BR mice the CTL response is restricted to a single
peptide epitope from a variant region of the protein
(residues within 368-390 region of the CS protein).
Since sporozoites can prime CTL in vivo, it is postulated
without being bound to any specific theory that the
sporozoites must generate stimulator cells in the host to
induce CTL, and these stimulators are equivalent to
targets as well. Thus, generation of CTL by injection of
sporozoites indicates that sporozoite infected cells in
vivo are targets of CTL, thereby providing protection
from sporozoite infection.

A synthetic vaccine for protection against P.
falciparum is now made possible by a pharmaceutical composition, comprising immunogenic amount of the isolated, substantially pure peptide, constituting residues 368-390 (or modified equivalent thereof) of CS protein containing about 23 amino acid residues in functionally equivalent sequence. The term "modified equivalent" as used herein means that the 368-390 epitope can be changed by any means such as deletion, addition, derivatization, substitution and the like so that a peptide of at least an equivalent function is obtained. The composition, may, of course, include pharmaceutically acceptable carriers or vehicles, such as non-toxic, sterile buffers and physiological saline, adjuvants, preservatives or sterilants as are well known to one of ordinary skill in the art. The present invention now also provides a method for inducing protective immunity against P. falciparum malaria, comprising inoculating a host susceptible to P. falciparum malaria, with immunogenic amount of peptide 368-390 or modified equivalent thereof to induce production of CTLs sufficient to kill cells infected with P. falciparum sporozoites. Booster inoculations at periodic intervals, as necessary, may be administered to maintain immunogenic or cytocidal level of CTLs.

It is understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of the application and scope of the appended claims.
WHAT IS CLAIMED IS:

1. A substantially pure peptide, comprising amino acid residues 368-390, or functionally equivalent sequence thereof, of P. falciparum circumsporozoite protein.

2. A pharmaceutical composition, comprising immunogenic amount of the peptide of claim 1 in a pharmaceutically acceptable carrier.

3. A method for inducing protective immunity against malarial infection, comprising inoculating a host susceptible to malarial infection with an immunogenic amount of the peptide of claim 1 to activate or induce cytotoxic T cells having specificity against P. falciparum circumsporozoite protein.
FIG. 1

% SPECIFIC LYSIS

EFFECOR/TARGET RATIO

SUBSTITUTE SHEET
FIG. 3A
FIG. 4

<table>
<thead>
<tr>
<th>TARGET CELLS</th>
<th>% SPECIFIC LYSIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS-TRANSFECTED L CELLS</td>
<td></td>
</tr>
<tr>
<td>L CELLS</td>
<td></td>
</tr>
<tr>
<td>L CELLS + PEPTIDE 371-390 (100 µg/ml)</td>
<td></td>
</tr>
<tr>
<td>L CELLS + PEPTIDE 371-390 (10 µg/ml)</td>
<td></td>
</tr>
<tr>
<td>L CELLS + PEPTIDE 371-390 (1 µg/ml)</td>
<td></td>
</tr>
<tr>
<td>L CELLS + PEPTIDE 368-390 (100 µg/ml)</td>
<td></td>
</tr>
<tr>
<td>L CELLS + PEPTIDE 368-390 (10 µg/ml)</td>
<td></td>
</tr>
<tr>
<td>L CELLS + PEPTIDE 368-390 (1 µg/ml)</td>
<td></td>
</tr>
</tbody>
</table>

SUBSTITUTE SHEET
INTERNATIONAL SEARCH REPORT

I. CLASSIFICATION OF SUBJECT MATTER

According to International Patent Classification (IPC) or to both National Classification and IPC:

INT. CL. 4th Edition A61K 39/00; C07C 103/52; C07G 7/00;
C07K 7/16; C07R 1/48; 530/326; 530/350; 514/13;

II. FIELDS SEARCHED

<table>
<thead>
<tr>
<th>Classification System</th>
<th>Classification Symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>US</td>
<td>424/88; 530/326; 530/350; 514/13;</td>
</tr>
</tbody>
</table>

Documentation Search other than Minimum Documentation to the extent that such Documents are Included in the Fields Search 8.

On line research conducted on Chemical Abstracts, Biosis and Med-line.

III. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of Document, 11 with indication, where appropriate, of the relevant passage 12</th>
<th>Relevant to Claim 13</th>
</tr>
</thead>
<tbody>
<tr>
<td>X,Y</td>
<td>US A 4,707,357, Dame et al. published 17 Nov. 1987, see the entire document and particularly Figure 2.</td>
<td>1-3</td>
</tr>
</tbody>
</table>

* Special categories of cited documents: 12
 * "A" document defining the general state of the art which is not considered to be of particular relevance
 * "E" earlier document but published on or after the international filing date
 * "L" document which may throw doubts on the priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 * "O" document referring to an oral disclosure, use, exhibition or other means
 * "P" document published prior to the international filing date but later than the priority date claimed
 * "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 * "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step
 * "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 * "Z" document member of the same patent family

IV. CERTIFICATION

Date of the Actual Completion of the International Search: 28 Sep 1989
Date of Making of this International Search Report: 16 Oct 1989

International Searching Authority: ISA/US

Signature of Authorized Officer: Abdel A. Mohamed
FURTHER INFORMATION CONTINUED FROM THE SECOND SHEET

Chemical Abstracts, Volume IIu, Reference #2970JR, published 19 June, 1989, Dantdrait et al., "Human and murine CD4 T cell epitopes map to the same region of malaria circumsporozoite protein limited immunogenicity of sporozoites and circumsporozoite protein."

V. ☐ OBSERVATIONS WHERE CERTAIN CLAIMS WERE FOUND UNSEARCHABLE

This international search report has not been established in respect of certain claims under Article 17(2) (a) for the following reasons:
1 ☐ Claim numbers, because they relate to subject matter not required to be searched by this Authority, namely:

2 ☐ Claim numbers, because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3 ☐ Claim numbers, because they are dependent claims not drafted in accordance with the second and third sentences of PCT Rule 6.4(a).

VI. ☐ OBSERVATIONS WHERE UNITY OF INVENTION IS LACKING

This International Searching Authority found multiple inventions in this international application as follows:

1 ☐ As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims of the international application.
2 ☐ As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims of the international application for which fees were paid, specifically claims:
3 ☐ No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claim numbers:
4 ☐ As all searchable claims could be searched without effort justifying an additional fee, the International Searching Authority did not invite payment of any additional fee.

Remark on Protest
☒ The additional search fees were accompanied by applicant's protest.
☐ No protest accompanied the payment of additional search fees.
Attachment to Form PCT/ISA/210 Part III

A, P
Chemical Abstracts, Volume 109, reference # 168485e, published 7 Nov. 1988, Guttinger et al., "Human T cells recognize polymorphic and non-polymorphic regions of the Plasmodium falciparum circumsporozoite protein."

A, P
US.A 4,843,146, Bernardi et al., published 27 June 1989, See the entire document.