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Step 1 : 
yield prediction = weight 1 * yield prediction classification the weight 2 * 
( confidence metrie + offsetl ) weight 3 * ( final test result 1 + offset2 ) + 
weight 4 * ( final test result _ 2 + offset3 ) 
Step 2 : 
If yield prediction > = defined threshold , then product is good and usable 
Step 3 : 
If yield prediction defined threshold , then product is failed and not usable 

Where ; 
a ) yield prediction is the yield prediction made by yield prediction 
system . 
h ) yield prediction classification is the output of the classification 
algorithm used in the yield prediction system . 
c ) confidence metric is a real number between 0 and 1 , 1 being highest 
confidence and ( being lowest confidence . The confidence metric can 
be a number normalized to be between 0 and 1 from a previous 
confidence metric or propensity netric 
d ) defined threshold time is a predetermined threshold applied to a 
real number that can be bounded . The threshold is used to separate 
good yield predictions from bad yield predictions , 
e ) weighil is a predetermined weight of the confidence metric 
calculation . 
D ) offset1 is a predeternined offset of the confidence metric calculation . 

Fig . 13 
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If yield _ prediction = good , then burn _ in _ time = 
user _ defined _ max _ burn _ in _ time * weight / * ( 1 - confidence _ metric + 
offsetl ) , 

If yield prediction = bad , then burn in time - 
user _ defined _ max _ burn _ in _ time . 219 

where 
a ) yield prediction is the yield prediction made by yield 
prediction system or the algorithm . The algorithm can be a 
classification algorithm . 
b ) confidence _ metric is a real number between 0 and 1 , 1 being 
highest confidence and 0 being lowest confidence . The 
confidence metric can be a number normalized to be between 0 
and 1 from a previous confidence imetric or propensity metric . 
c ) user defined max burn in time is a predetermined burn - in 
time that can be the standard burn - in time already used , or a 
burn - in time deemed likely to identify a part as reliable or not 
reliable . 
d ) weightl is a predetermined weight of the confidence metric 
calculation . 
e ) offsetl is a predetermined offset of the confidence metric 
calculation . 

, 427V ? ELE & 7 . 

Fig . 14 
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PROCESS CONTROL TECHNIQUES FOR multi - patterning schemes , which adds masks and process 
SEMICONDUCTOR MANUFACTURING steps , and is therefore complicated and expensive . 

PROCESSES Various processes also require more complex integration , 
and therefore can no longer be developed independently of 

CROSS REFERENCE 5 each other . For example , the three - dimensional architecture 
of finFET ' s and 3 - D NAND ' s , as well as the complex 

This application claims priority from U . S . Patent Appli relationships between corresponding process steps , have 
cation No . 62 / 437 , 055 entitled A System for Machine Learn changed the way that process variabilities can affect device 
ing Assistance of Manufacturing Processes , filed Dec . 20 , performance and yield . As an example , many semiconductor 
2016 , and also from U . S . patent application Ser . No . 14 / 952 , 10 manufacturers are experiencing lower yield on their finFET 
266 entitled Process Control Techniques for Semiconductor lines , and the need to increase yield is urgent . In the memory 
Manufacturing Processes , filed Nov . 25 , 2015 , which in turn space , 3 - D NAND has become the dominant architecture , 
claimed priority from U . S . Patent Application No . 62 / 084 , and process control is a key issue for 3 - D NAND process 
551 entitled System and Methods for Overlay Error Com - layers . The IoT space is increasingly dominated by the 
pensation , Measurements , and Lithography Apparatus Con - 15 “ More - than - Moore ” trend , where devices incorporate tech 
trol , filed Nov . 25 , 2014 ; U . S . Patent application No . 62 / 091 , nologies that do not necessarily scale to Moore ' s Law . This 
567 entitled System and Methods for Yield Prediction , Test growing market space is driven by diversified and specific 
Optimization , and Burn - In Optimization , filed Dec . 14 , processes , and the need for new ways to improve yield and 
2014 ; and U . S . Application Patent No . 62 / 103 , 946 entitled reduce manufacturing costs when implementing manufac 
System and Methods for Using Algorithms for Semiconduc - 20 turing solutions is needed . 
tor Manufacturing , filed Jan . 15 , 2015 . Each of the foregoing 
applications is incorporated herein by reference in its BRIEF DESCRIPTION OF THE DRAWINGS 
entirety . 

FIG . 1 is a flow chart illustrating a process for making a 
TECHNICAL FIELD 25 semiconductor device . 

FIG . 2 is a block diagram illustrating relationships 
This disclosure relates generally to semiconductor manu - between different steps of the process of FIG . 1 and their 

facturing processes , and more particularly , to improved cumulative effects on process variation and product perfor 
process control techniques for lithography , yield prediction , mance . 
and other aspects of semiconductor manufacturing pro - 30 FIG . 3A is a top plan view of features formed in two 
cesses . different layers of a device , with no overlay error . 

FIG . 3B is a top plan view of features formed in two 
BACKGROUND different layers of a device , with overlay error . 

FIG . 4 is a top plan view of features formed in a single 
The semiconductor manufacturing industry is known as a 35 layer of a device , with a critical dimension error . 

complex and demanding business , and it continues to evolve FIG . 5A is a side plan view of a substrate having features 
with major changes in device architectures and process formed in two different layers of a device , with no critical 
technologies . Traditionally , the semiconductor industry has dimension or overlay errors . 
been characterized by sophisticated high - tech equipment , a FIG . 5B is a side plan view of a substrate having features 
high degree of factory automation , and ultra - clean manu - 40 formed in two different layers of a device , with no critical 
facturing facilities that cost billions of dollars in capital dimension or overlay errors . 
investment and maintenance expense . FIG . 6 is a flow chart illustrating a method for training and 

For decades , semiconductor manufacturing was driven by deploying a model . 
Moore ' s Law and planar transistor architecture . This pro FIG . 7 is a block diagram illustrating examples of input 
vided a predictable , self - sustaining roadmap for transistor 45 data and the sources for input data . 
cost scaling and well - defined interfaces where each indi - FIG . 8 is a flow chart illustrating a method for using a 
vidual process / layer could follow its own technology tra - deployed model to make process adjustments . 
jectory independently . However , as the industry scales to FIG . 9 is a graph showing the error between a DBO 
provide sub - 20 nm nodes and other popular device archi - measurement and a CD - SEM measurement . 
tectures , such as MEMS , new processes are required , and 50 FIG . 10 is a flow chart illustrating yield prediction using 
new approaches for semiconductor manufacturing are being a classification algorithm and a confidence metric . 
explored and implemented . FIG . 11 is a flow chart illustrating a method for training 

For sub - 20 nm nodes , entirely new device architectures and deploying a model to predict yield . 
are needed . In parallel , the rapid growth in the Internet of FIG . 12 is a block diagram of one embodiment of a yield 
Things ( IoT ) is driving the MEMS market . These changes 55 prediction system . 
have presented difficult and unprecedented challenges for FIG . 13 shows equations illustrating a process for deter 
the industry , generally resulting in lower manufacturing mining the status of a manufactured product as a function of 
yields . weighted test data , confidence metrics , and classification . 

In order to achieve acceptable yield and device perfor - FIG . 14 shows equations illustrating a process for opti 
mance levels with these new architectures , very tight process 60 mizing burn - in time . 
specifications must be achieved . Thus , better process control FIG . 15 is a block diagram illustrating additional appli 
and integration schemes are needed now more than ever . cations in a semiconductor manufacturing process for pre 
One example of a specific current challenge for the dictive analytics . 

industry is lithography processes for sub - 20 nm node manu FIG . 16 is a block diagram illustrating a high level 
facturing . EUV lithography techniques are known but have 65 architecture for a model building system . 
not yet been widely adopted for production , and therefore , FIG . 17 is a flow chart illustrating action steps taken when 
193 nm immersion lithography must extend its capability via an anomaly is detected in the input data . 
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FIG . 18 is a flow chart illustrating action steps taken when operating conditions . Burn - in may involve electrical testing , 
erroneous thickness predictions are made in a virtual metrol thermal exposure , stress screening , or a combination of 
ogy system . these , over a period of time . Burn - in testing reveals defec 

tive components . 
DETAILED DESCRIPTION 5 Finally , in step 112 , a final round of electrical testing is 

conducted on the remaining packages . 
1 . Overview 3 . Machine Learning Algorithms This disclosure describes new techniques for measuring asuring Recent advances in computing technologies and data and / or compensating for process variations in production analysis techniques , such as performing parallel processing runs of a semiconductor manufacturing processes , for using 10 on a massive scale , has led to progress in machine learning these techniques to predict yield at any step of the process , algorithms , data mining , and predictive analytics . Machine and for optimizing testing and burn - in procedures . For Learning is a branch of artificial intelligence that involves example , machine learning algorithms can be used to create the construction and study of systems that can learn from new approaches to data analysis by incorporating new types 

of input data , and the data can be more effectively correlated , 15 data . These types of algorithms , along with parallel process 
organized and pre - processed , then used to make process ing capabilities , allow for much larger datasets to be pro 
adjustments . Data from prior production runs can be used to cessed , without the need to physically model the data . This 
create a model for a target parameter , and data from a current opens up the possibility of incorporating data analysis to 
production run can be input to the model to generate a make corrections on the lithographic apparatus for overlay 
prediction for the target parameter , and to correlate the 20 error and critical dimension ( CD ) variation . For example , in 
prediction with the actual data . addition to using the usual parameters to correct for overlay 

2 . Semiconductor Manufacturing Processes Generally error ( e . g . , CD metrology , on - scanner data , wafer shape and 
FIG . 1 is a high level view a typical semiconductor geometry metrology , DBO measurement ) , process param 

manufacturing process 100 , in which there may actually be eters and other metrology from upstream processes and 
hundreds of steps . In general , data can be collected at every 25 metrology can also be used to train a machine learning 
step and sub - step of the process for a production run , and algorithm . 
yield may be calculated for each step as well as total yield Data has always played a role in semiconductor and 
for the entire process predicted . electronics manufacturing . In the semiconductor industry , 

Wafer fabrication occurs in step 102 , where a large data was initially collected manually to track work - in 
number of integrated circuits are formed on a single slice of 30 progress ( WIP ) . The types of data collected included metrol 
semiconductor substrate , such as silicon , known as a wafer . ogy data ( measurements taken throughout the IC fabrication 
Many steps are required in various sequences to build process ) , parametric test data , die test data , final test data , 
different integrated circuits . For example , deposition is the defect data , process data , and equipment data . Standard 
process of growing an insulating layer on the wafer . Diffu statistical and process control techniques were used to 
sion is the process of baking impurities into areas of the 35 analyze and utilize the datasets to improve yields and 
wafer to alter the electrical characteristics . Ion implantation manufacturing efficiencies . In many instances , the analysis 
is another process for infusing the silicon with dopants to was performed in a manual “ ad - hoc ” fashion by domain 
alter the electrical characteristics . In between these steps , experts . 
lithographic processing allows areas of wafer to be patterned However , as device nodes became smaller and tolerances 
with an image , then a mask is used to expose photoresist that 40 became tighter , factories became more automated and the 
has been applied across the wafer , and the exposed photo ability to collect data improved . Even with this improvement 
resist is developed . The pattern is then etched to remove in the ability to collect data , it has been estimated that no 
selected portions of the developed photoresist , and these more than half of the data is ever processed . Further , of the 
steps are repeated to create multiple layers . Finally , metal - data that is processed and stored , more than 90 % of it is 
lization is a specialized deposition process that forms elec - 45 never again accessed . 
trical interconnections between various devices / circuits Moving forward , data volume and velocity continues to 
formed on the wafer . The fabrication process can take increase rapidly . The recent norm for data collection rates on 
several months to complete before moving on to the post semiconductor process tools is 1 Hz . The International 
fabrication steps . Technology Roadmap for Semiconductors ( ITRS ) predicts 

Wafer test and sort occurs in step 104 . After a wafer has 50 that the requirement for data collection rates will reach 100 
been fabricated , all the individual integrated circuits that Hz in three years . Most experts believe a more realistic rate 
have been formed on the wafer are tested for functional will be 10 Hz . Even a 10 Hz rate represents a 10x increase 
defects , for example , by applying test patterns using a wafer in data rates . In addition to faster data rates , there are also 
probe . Circuits may either pass or fail the testing procedure , more sensors being deployed in the semiconductor manu 
and failed circuits will be marked or otherwise identified , 55 facturing process . For example , Applied Materials Factory 
e . g . , stored in a file that represents a wafer map . Automation group has a roadmap that shows that advanced 
Assembly and packaging takes place in step 106 . The technology requirements are driving a 40 % increase in 

wafer is diced up into separate individual circuits or dies , sensors . 
and each die that passes through wafer sort and test is Given the massive amount of sensor data now collected , 
bonded to and electrically connected to a frame to form a 60 and the low retention rates of the data , advancements in data 
package . Each die / package is then encapsulated to protect science could and should be implemented to solve the 
the circuit . problems of the semiconductor industry . Some progress has 

In step 108 , the packages are subjected to random elec been made to leverage data to improve efficiencies in the 
trical testing to ensure that circuits in the package are still semiconductor and electronics industries . For example , 
working as expected . 65 microchip fabrication factories are combining and analyzing 

In step 110 , the remaining packages go through a burn - in data to predict when a tool for a particular process needs 
cycle by exposing the package to extreme but possible maintenance , or to optimize throughput in the fab . 
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Predictive analytics and Machine Learning Algorithms complete , can be used as part of the input data for the virtual 
can thus be used to address the challenges facing the metrology system . For example , metrology data can be 
semiconductor industry . By drilling deeper into the details of collected after a CMP step that occurred in one or more 
semiconductor manufacturing and knowing how to apply processing steps preceding the current lithography step . 
predictive analytics to detect and resolve yield issues faster , 5 These metrology measurements can also be thickness data 
and to tighten and target the specifications of individual determined by each metrology system , or the refractive 
manufacturing steps , increased yield can result . FIG . 2 index and absorption coefficient . 
shows an example of the cumulative effects of process In another example , metrology data can be collected 
variation on product performance . The relationships can be during etch processes . Optical emissions spectra or spectral 
complex and difficult to correlate , e . g . , key performance 10 data from photoluminescence can be utilized as input data . 
indicators ( KPIs ) of the process steps , such as the critical Data transformation or feature engineering can be performed 
dimensions of lithographic and etch steps 202 , the dielectric on in - situ spectral data or other sensor data that is collected 
film thickness 204 , and film resistivity 206 ; parametrics , during a particular process such as etch , deposition , or CMP . 
such as channel length and width 212 , transistor and diode As an example , multiple spectra may be collected in - situ 
thresholds 214 , and resistance 216 ; and product perfor - 15 during processing . The spectral set used may be all spectra 
mance , such as maximum frequency 222 , and maximum collected during processing , or a subset of spectra collected 
current 224 . We can use predictive analytics to quantify during processing . Statistics such as mean , standard devia 
those relationships , and then leverage the relationships to tion , min , and max may be collected at each wavelength 
predict and improve product performance . interval of the spectral set over time and used as data inputs . 

The semiconductor industry presents some unique chal - 20 As an alternative example , similar statistics can be collected 
lenges for applying predictive analytics and machine learn - for a given spectrum , and the time series of those statistics 
ing algorithms . Some of these challenges are : nonlinearity in can be used as data inputs . As yet another example , peaks 
most batch processes ; multimodal batch trajectories due to and valleys in the spectrum can be identified and used as 
product mix ; process drift and shift ; small amount of train data inputs ( applying similar statistical transformation ) . The 
ing data ( maybe less than a lot ) ; and process steps with 25 spectra may need to be normalized or filtered ( e . g . , lowpass 
variable durations ( often deliberately adjusted ) . filter ) to reduce process or system noise . Examples of in - situ 

A good understanding of these challenges is needed to spectral data include reflectometry from the wafer , optical 
properly employ predictive analytics . If applied properly , emissions spectra ( OES ) , or photoluminescence . 
predictive analytics can find complex correlations that may In yet another example , the target of a virtual metrology 
have been difficult to uncover using other techniques . This 30 model can be the output of wafer probe tests , or measure 
new access to deeper understanding and insight can then be m ents made by wafer probe tests . Additionally , the outputs 
leveraged to increase yield , improve device performance , from final wafer electrical testing , wafer sort tests and wafer 
and reduce costs like never before . acceptance tests can be used as a target to the virtual 

In one example , machine learning algorithms can be used metrology model . Examples of final wafer electrical testing 
to predict yield . Yield prediction for a product refers to the 35 parameters include , but are not limited to , diode character 
prediction of the quality or usability of the product after any istics , drive current characteristics , gate oxide parameters , 
number of manufacturing steps are completed . If the yield leakage current parameters , metal layer characteristics , 
prediction for a product is “ good ” at a given manufacturing resistor characteristics , via characteristics , etc . Examples of 
step , then that product is predicted to be usable as of that wafer sort parameters include , but are not limited to , clock 
manufacturing process and should continue processing . If 40 search characteristics , diode characteristics , scan logic volt 
the yield prediction is predicted to be “ bad ” , then that age , static IDD , IDDO , VDD min , power supply open short 
product is predicted to be faulty or not usable as of that characteristics , ring oscillator frequency , etc . The target of a 
manufacturing step and is not recommended for continued virtual metrology model can be the output from a final test . 
processing . The yield prediction is useful in determining if The target can come from tests that occur multiple times 
it is cost effective to continue processing of a product . In 45 under different electrical and temperature conditions , and 
some embodiments , the yield prediction is a component in before and after device reliability stresses , such as burn - in , 
deciding whether or not to continue processing of the or tests that occur at a burn - in step . The target can come from 
product . The yield prediction is not necessarily the only electrical tests that are a mix of functional , structural and 
variable in making a decision about whether or not to system - level tests . 
continue processing of a product . 50 In yet another example , machine learning algorithms can 

In another example , virtual metrology can use machine be used to control a manufacturing process step . As noted 
learning algorithms to predict metrology metrics such as above , virtual metrology can be used to predict a critical 
film thickness and critical dimensions ( CD ) without having dimension or film thickness for a manufacturing process 
to take actual measurements , in real - time . This can have a step . Before or during processing of this manufacturing step , 
big impact on throughput and also lessen the need for 55 the prediction can then be used to set and / or control any 
expensive TEM or SEM X - section measurements . Based on number of processing parameters ( e . g . run time ) for that 
sensor data from production equipment and actual metrol - processing step . For example , in the case of CMP , if virtual 
ogy values of sampled wafers to train the algorithm , virtual metrology predicts that a dielectric film thickness will be 
metrology can predict metrology values for all wafers . The 100 Angstroms thicker than the target thickness if the wafer 
algorithm can be a supervised learning algorithm , where a 60 was to be polished at the nominal polish time , then a 
model can be trained using a set of input data and measured calculation can be made to lengthen the polish time so that 
targets . The targets can be the critical dimensions that are to the final polished thickness can be closer to the target 
be controlled . The input data can be upstream metrology thickness . 
measurements , or data from process equipment ( such as In yet another example , machine learning algorithms can 
temperatures and run times ) . 65 be used to predict when a fault or defect will occur in the 

In yet another example , the metrology measurements manufacturing process or on a specific tool at a process step . 
taken in - situ , or after a particular semiconductor process is Identifying a machine fault or failure , and finding the root 
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cause of faults quickly can be essential in semiconductor grating should be nominally on top of the first grating , and 
manufacturing . If faults in the manufacturing process can be by measuring the intensity of the diffraction patterns , an 
better detected and resolved , downtime and scrap can be overlay measurement may be obtained . If there is an overlay 
reduced . This is also referred to as fault detection and error between the two gratings , it will be detectable in the 
classification ( FDC ) . If faults can be predicted before they 5 diffraction pattern . DBO is less sensitive to vibration than 
occur , then downtime can be optimally scheduled and scrap IBO . 
can be even further reduced . As an example , decision trees To make multi - patterning solutions work , especially in 
can be used to determine which input features can best light of the extremely small dimensions now being imple predict a fault in a process , and develop decision rules mented , the need for more precise and accurate mask around detecting a fault . 10 overlay has become critically important . In addition to 4 . Lithography and Overlay Errors minimizing mask overlay errors , critical dimension unifor As noted above , lithography processes present a challenge 
for sub - 20 nm node manufacturing . A lithographic apparatus mity ( CDU ) has also become important as the convolution 
is a machine that applies a desired pattern onto a substrate , of overlay error and critical dimension ( CD ) variation can 
usually onto a targeted portion of the substrate . A circuit 15 lead to shorts , connection failures , and malfunctioning 
pattern of an individual integrated circuit ( IC ) layer is devices . 
generated by a patterning device , usually referred to as a For example , FIG . 3A shows a top view of a portion of a 
mask or a reticle , which transfers the pattern onto a target . device 300 having a feature 302 formed on a first layer and 
Typically , the pattern is transferred by imaging onto a layer a feature 304 formed on a second layer , e . g . above the first 
of material ( e . g . , resist ) that is sensitive to radiation , which 20 layer , without any apparent overlay error . Another feature 
has been formed on the substrate . A network of successively ( not shown ) is also formed on the first layer under and in 
patterned adjacent target portions will reside on one sub direct alignment with feature 304 thereby creating no over 
strate . lay error . 
One type of lithographic apparatus is a stepper , in which In contrast , FIG . 3B shows a top view of a portion of a 

the entire pattern of a target portion is exposed in a single 25 different device 310 having features 312 and 313 formed on 
instance . Another type of lithography apparatus is a scanner , the first layer . Feature 314 is formed on the second layer and 
where the target portion is irradiated via scanning the pattern should line up with feature 313 on the first layer , but in this with a radiation beam in a given direction , while scanning example exhibits an overlay error 311 due to the misalign the substrate parallel or anti - parallel to this direction . ment of features 313 and 314 . The location of patterned features in subsequent layers 30 FIG . 4 shows a top view of a portion of a device 400 FIC 
must be very precise in order to build the devices properly . having a CD variation between features formed in a single All features should have sizes and shapes that are formed layer . Thus , the dimension between features is designed to within specified tolerances . The overlay error , which refers 
to the offset or mismatch between features on adjacent be “ x ” and that dimension is observed between features 401 
layers , should be minimized and within tolerance in order 35 and and 402 and between features 403 and 404 . However , 
for the manufactured devices to function properly . Overlay between features 402 and 403 the dimension is “ less than x ” 

which is a critical dimension error . measurements are thus important for determining the over 
lay error of a given pattern exposed with a mask on the resist FIG . 5A is a side view of a device 500 having a substrate 
layer . 501 and a first layer 502 of features formed on top of the 

An overlay measurement module typically performs the 40 substrate . A second layer of features 503 is formed on top of 
overlay measurement using an optical inspection system . the first layer 502 in two different lithography steps . For 
The position of the mask pattern in the resist layer relative example , features 511 - 514 are formed in a first lithography 
to the position of the pattern on the substrate is determined step , and then features 515 - 517 are formed in a second 
by measuring an optical response from an optical marker on lithography step . In this example , there are no apparent 
the substrate which is illuminated by an optical source . The 45 overlay errors between features on the different layers , as 
signal generated by the optical marker is measured by a well as no CD errors since the dimension between the 
sensor arrangement . Using the output of the sensors , the features formed in the different lithography steps is consis 
overlay error can be derived . Typically , the patterns on tently “ x . ” 
which overlay error are measured are located within a scribe FIG . 5B is a side view of a different device 520 having a lane in between target portions . substrate 521 , a first layer 522 of features formed on top of Two common concepts for measuring overlay are image the substrate , and a second layer of features 503 formed on based overlay ( IBO ) and diffraction based overlay ( DBO ) . top of the first layer 502 in two different lithography steps , For IBO , the image position of the substrate pattern is namely features 531 - 534 formed in a first lithography step , compared to the mask pattern position in the resist layer . 
Overlay error is a result of the comparison of these two 55 and features 535 - 537 formed in a second lithography step . In this example , however , there is an apparent overlay error image positions . Imaging approaches are conceptually 
straightforward , since they are based on analysis of a “ pic 550 in the second lithography step as features 535 - 537 are 
ture ” directly showing the alignment of the two layers . For misaligned relative to the first layer . There is also a CD error 
example , box - in - box or line - in - line alignment marks are between the features formed in the different lithography 
commonly used in the two layers . However , IBO error 60 steps , where the dimension on one side of the features is 
measurement may be sensitive to vibrations and also to the “ greater than x ” and the dimension on the other side of the 
quality of focus during measurement , which can both result features is “ less than x . ” 
in blurring of the picture . Aberrations in the optics may Thus , determining and applying compensation for overlay 
further reduce the accuracy of the IBO measurement . errors and CD errors has become extremely important in the 

For DBO , a first diffraction grating pattern is located on 65 lithography process . Table I below illustrates the ever 
the pattern layer , and a second diffraction grating pattern tightening budget for acceptable overlay error and CD error 
with identical pitch is located in the resist layer . The second for smaller and smaller nodes : 

V eil . 
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TABLE II TABLE I 
Target Input Data Technology Node ( nm ) 

Overlay budget ( nm ) 
CD spec ( nm ) 

28 
9 . 0 

- 4 . 5 

2 0 
6 . 0 

3 . 0 

14 
4 . 5 

2 . 0 

10 
3 . 5 
1 . 3 

- 5 
Target 1 
Target 2 

Input feature 1 , 1 Input feature 1 , 2 
Input feature 2 , 1 Input feature 2 , 2 

. . . Input feature 1 , n 
Input feature 2 , n 

There are many sources of patterning errors that lead to Target m Input feature m , 1 Input feature m , 2 Input feature m , n 
overlay and CD errors . For example , the reticle may cause 
placement errors , CD uniformity errors , and haze defects . The target data could be collected after other processes 
The lithography and etch processes may have focus and / or 10 have been completed , or could be collected after the semi 
exposure errors , overlay issues , etch profile issues ( such as conductor device has finished all of its processing . Post 
CD and shape ) , and other defects . The wafer fabrication and packaging data could also be used as targets . other processes may have issues with wafer shape and Some of the parameters that are already regularly used in uniformity , film property uniformity , CMP uniformity , ther overlay error compensation and lithography apparatus con 
mal processing , and backside and edge defects . 13 trol will be used as part of this input dataset . For example , 15 
As processing technology transitions toward smaller and these regularly used parameters can include DBO measure 

smaller nodes , such as 10 nm and 7 nm , there is serious ments from the metrology equipment , wafer shape and 
concern about the capability of available metrology solu geometry measurements , or parameters from the lithography 
tions . The uncertainty in these solutions must be minimized apparatus . 
so the proper adjustments can be made to the scanner or 20 Most importantly , other parameters from upstream semi 
stepper to correct for the overlay and CD errors . While conductor processes and metrology can be used as inputs to 
overlay can be defined in an x - y coordinate system , or a the algorithm as well . These input parameters can include 
vector representing the overlay , there are many components other metrology measurements from earlier process steps , 
on the lithography apparatus that can provide adjustments to 25 including optical reflectometry or ellipsometry ( normal inci 
correct for overlay . dent , polarized or unpolarized light , oblique angles of inci 

Thus , new techniques are described for measuring and / or dence , and varying azimuth angles ) . 
compensating for lithographic pattern errors such as overlay These metrology measurements can be inputs to the 
error and CD error . Machine learning algorithms can be used algorithm as an intensity at a given wavelength . For 
to create new approaches to data processing and process 30 example , metrology data may be incorporated from a reflec 

tometry measurement taken after a certain processing step control . For example , more and varied types of input data ( for example , etch , or deposition ) . If the reflectometry data can be provided to the machine learning algorithms , and the is collected by illuminating the target with unpolarized data can be more effectively organized and pre - processed to broadband light and has a detectable wavelength range of determine how to adjust one or more parameters of the 250 nm to 850 nm , then the user could choose to sample that lithography apparatus to correct the errors . 35 light from 250 nm to 850 nm at 2 nm intervals , to get a total Referring to FIG . 6 , a flow chart illustrates a method 600 of 301 spectral intensity measurements for that wavelength for creating and deploying a model to evaluate a semicon range . These 301 samples would each be an input to the ductor manufacturing process in order to correct for errors in algorithm . An example of how the input data is associated a lithographic process , such as overlay errors and CD errors . with a target is shown in Table III . In step 602 , a target is selected . In one embodiment , the 40 
target is an overlay measurement ( e . g . , IBO measurement , TABLE III DBO measurement , CD - SEM , TEM , etc . ) and could be a 
linear overlay offset in the x and y direction . The target could Input Data 

also be other lithography apparatus parameters that need to 
be controlled to minimize overlay error . such as reticle 45 Target Intensity 250 nm Intensity 252 nm . . . Intensity 850 nm 
position , reticle rotation , or reticle magnification . The target Target 1 1 . 4 1 . 5 
could be parametric data such as on / off current of the Target 1 1 . 3 1 . 2 
transistor , transistor thresholds , or some other parameter that Target m 0 . 8 quantifies the health of the transistor . The target could also 
be yield information , such as the functionality of a given die 50 
or area on the wafer ( sometimes measured as either pass or The metrology measurements can be taken in - situ , or after 
fail ) . The target could also be semiconductor device perfor - a particular semiconductor process is complete . For 
mance data . example , metrology data can be collected after a CMP step 

In step 604 , the parameters that are useful in evaluating that occurred in one or more processing steps preceding the 
the target are identified , and in step 606 , input data relevant 55 current lithography step . These metrology measurements 
to the parameters is collected . Every set of input data is can also be thickness data determined by each metrology 
associated with a specific output or target . For example , a set system , or the refractive index and absorption coefficient . In 
of measured and observed values can be associated with an another example , metrology data can be collected during 
overlay offset . Those values would be an input vector to the etch processes . Optical emissions spectra or spectral data 
model , and would be associated with the target , e . g . , the 60 from photoluminescence can be utilized as input data . 
measured offset . If there are n input variables , then the input Data transformation or feature engineering can be per 
vector size for each target would be 1xn . Therefore , if there formed on in - situ spectral data or other sensor data that is 
are m targets , there will be an input data matrix of size mxn , collected during a particular process such as etch , deposi 
with each row of the input data matrix associated with a tion , or CMP . As an example , multiple spectra may be 
target . This is a typical training set in matrix format for a 65 collected in - situ during processing . The spectral set used 
machine learning algorithm . An illustration of this matrix is may be all spectra collected during processing , or a subset 
given in Table II below : of spectra collected during processing . Statistics such as 

1 . 2 
1 . 7 

0 . 9 
. . . 

1 . 1 
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mean , standard deviation , min , and max may be collected at sionality reduction techniques are generally known , for 
each wavelength interval of the spectral set over time and example , principle component analysis ( PCA ) . 
used as data inputs . As an alternative example , similar In step 612 , the data is then fed into the algorithm for 
statistics can be collected for a given spectrum , and the time training . The algorithm could be one of many different types 
series of those statistics can be used as data inputs . As yet 5 of algorithms . Examples of machine learning algorithms 
another example , peaks and valleys in the spectrum can be include Decision Trees , such as CART ( Classification and 
identified and used as data inputs ( applying similar statistical Regression Trees ) , C5 . 0 , C4 . 5 , and CHAID ; Support Vector 
transformation ) . The spectra may need to be normalized or Regression ; Artificial Neural Networks , including Percep 
filtered ( e . g . , lowpass filter ) to reduce process or system tron , Back Propagation , and Deep Learning ( BigData 
noise . Examples of in - situ spectral data include reflectom - enabled ) ; and Ensemble , including Boosting / Bagging , Ran 
etry from the wafer , optical emissions spectra ( OES ) , or dom Forests , and GBM ( Gradient Boosting Machine ) . The 
photoluminescence . best algorithm may not be a single algorithm , but can be an 

The input parameters could also include non - optical mea - ensemble of algorithms . 
surements , such as Rs ( conductivity , resistivity ) measure - 16 In particular , the GBM ( Gradient Boosting Machine ) and 
ments taken by probes and other types of contact measure - Random Forests algorithms can produce the best results . 
ments , or contact measurements such as the high resolution Other machine learning algorithms , including the ones men 
profiler ( HRP ) . tioned above , can also work well and should be considered . 

The input parameters can also originate from a Plasma Given the training input data and training targets , the 
Impedance Monitor ( PIM ) which can be installed between 20 algorithm will produce a model in step 614 . The model can 
the matching network and the plasma electrodes of an etcher , then be deployed in step 616 . 
and can provide data on reactance , impedance , resistance , FIG . 7 illustrates one example of collecting input data for 
current , voltage , power , phase and fundamental frequencies . an input feature set 710 , which is a matrix 712 having a 

Process equipment measurements or metrics can also be number of input parameters 712a , 712b . . . 712x , which are 
used as inputs to the algorithm , such as gas flow sensors , 25 relevant to a specified target , which may be a measurement , 
power sensors , pressure sensors , temperature sensors , cur - a calculated parameter , or a modeled parameter . The input 
rent sensors , voltage sensors , etc . This data can be collected data may be collected during wafer fabrication , at or before 
in process steps that occurred before the lithography step wafer test and sort and / or wafer probe testing . For example , where overlay is to be measured and controlled . Examples input data can be collected from the process equipment 720 
of these include process time , RF frequency and power from 30 during steps for etch , CMP , gap fill , blanket , RTP , etc . , and an etch chamber , electric current and impedance measure may include process variables such as process duration , ments , CMP polish times , motor current from the CMP tool , 
CVD deposition times and information from mass flow temperature , pressure , RF frequency , etc . Input data may 

also include metrology data 730 such a CD , wafer shape , controllers , temperatures , pressures , etc . This data could be 
from any or all upstream processes from the lithography step 35 " film thickness , film resistivity , inline or in - situ measure 
being performed . ments , etc . Input data may also include parametric data 740 

Parametric data and measurements such as channel width such as channel length , channel width , channel depth , tran 
and depth , transistor thresholds , and resistance can also be sistor thresholds , resistance , etc . 
used as inputs to the algorithm . FIG . 8 illustrates use of the model . In step 802 , specified 

The diffraction spectra or data used in the DBO technique 40 input data is collected , e . g . , as an input vector , then fed into 
can be part of the input data as well . All of the above the model in step 804 . If some of the specified data is not 
mentioned inputs could be correlated to slight variations in present in the 1xn vector , there are a number of techniques 
the DBO output , and could thus result in better control of the that can replace or estimate the missing data in the input 
overlay error compensation or better lithography control vector . 
given the CD measurements from etch . 45 For each input vector of size 1xn fed into the algorithmic 

CD measurements taken after etch is an important param - model , a score will be generated in step 806 . The score is a 
eter to single out as an input . As discussed above , these prediction of the target made by the model , given the input 
measurements are convolved with the overlay error to data . The score generated by the model will correspond to 
determine device performance or yield . whatever metric was used as a target for training the 

In DBO measurement systems , diffracted light is used to 50 algorithm that generated the model . For example , if a DBO 
measure overlay . However , changes in upstream processes measurement was used for the target to train the algorithm , 
can affect the spectral signature . For example , if there is a then the score will be a predicted DBO measurement . If the 
shift in the index of refraction of an upstream film property , target was a parametric test value , then the score will be a 
then the spectral signature can change . Likewise , if the prediction of that parametric test value . In a typical situation , 
sidewall angle of the diffraction grating shifts due to a 55 the score can be the overlay offset prediction , for example , 
process shift , this may cause a change in the spectral an offset in the x direction or the y direction . In step 808 , the 
signature . Therefore , by training the machine learning algo - score is used to determine an adjustment to be made to one 
rithm with upstream data that may have an effect on the or more components of the lithographic apparatus . For 
diffraction spectra , the overlay error can be tightened or the example , the offset data could be applied to a control system 
overlay measurement can be made to be more accurate if 60 to make an adjustment to the lithography apparatus param 
correlations are discovered between upstream processes and eters or “ control knobs ” to adjust for the overlay error . 
the spectral signature of the diffraction grating . In addition to the score , the model can also output a 

Returning to FIG . 6 , in step 608 , filtering , normalization confidence metric that describes how reliable the score 
and / or cleansing steps can be performed on the input data . prediction is . This can be useful in determining whether or 

In step 610 , a dimensionality reduction or feature selec - 65 not to employ the score , or weight the use of that prediction 
tion step is performed . The purpose of this step is to reduce in conjunction with other traditional measurements . For 
the number of input parameters for the algorithm . Dimen example , if the predicted offset is 3 . 0 nm , the DBO mea 
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sured offset is 6 nm , and there is a confidence of 0 . 8 ( out of Examples of some of these algorithms that can be used 
1 . 0 ) in the prediction , then the final predicted offset would include : Decision Trees , CART ( Classification and Regres 

sion Trees ) , C5 . 0 , C4 . 5 , CHAID , Support Vector Regres 
( 3 . 0 * 0 . 8 ) + ( 6 . 0 * 0 . 2 ) = 3 . 6 nm sion , Artificial Neural Networks , Perceptron , Back Propa 

gation , Deep Learning , Ensemble , Boosting / Bagging , 
As previously discussed , the convolution of CD error and Random Forests , GBM ( Gradient Boosting Machine ) , Ada 

overlay error can affect device performance . In order to Boost . optimize the device performance , it may be necessary to In some embodiments , the best algorithm may not be a adjust the overlay for a given CD . In one embodiment , single algorithm , but can be an ensemble of algorithms . An machine learning algorithms could be used with all or some 10 ensemble of algorithms can use different techniques to of the above mentioned input data , along with CD error determine which algorithm or combination of algorithms measurement and overlay error measurement to create a gives the best prediction . For example , an ensemble algo model whose target is a lithography apparatus control 
parameter , such as focus , power , or x - y direction control . rithm can take the average recommendation from all of the 
The goal is to optimize the lithography apparatus control 15 algorith trol 15 algorithms in the ensemble . In another example , an 
parameter ( given a measured CD ) such that the lithography ensemble algorithm can use a voting scheme to make the 
apparatus output results in the best semiconductor device final recommendation . The ensemble algorithm can use 
performance or yield . different weighting schemes applied to a collection of indi 
As new input data and corresponding target data is v idual algorithms in order to produce the best prediction . 

generated , the algorithm can be retrained so as to produce a 20 In particular , good predictions have been produced using 
better model that will give better scores . A set of algorithms the GBM ( Gradient Boosting Machine ) and Random Forests 
can be trained simultaneously with the same input and target algorithms . 
dataset . The algorithm that gives the best output can be the The score is a prediction made for each input vector fed 
algorithm that is ultimately deployed . Alternatively , an into the model when the model is deployed . For example , if 
ensemble of algorithms can be identified as the best algo - 25 the goal is to predict whether or not a wafer will be identified 
rithm to be employed . The best algorithm is identified by as “ good ” at wafer test , the input vector can consist of all 
whichever algorithm gives the best results through means of input data associated with that wafer and that input data will 
a validation test on the training dataset . For example , be fed into the model to make the prediction . 
k - means cross validation is a popular technique for validat - In some embodiments , the model can also output a 
ing algorithms . 30 confidence metric that can describe how reliable the score is . 
As noted above , the input dataset should undergo prepro - This can be useful in determining whether or not to employ 

cessing . The preprocessing step can improve the quality of the score , or to optimize final testing , or to calculate burn - in 
the input dataset and increase the accuracy and precision of time , or it could be used in a final yield prediction . In the 
predictions made by the model . In some embodiments , other case of a multi - step algorithm , the confidence metric can be 
data preparation techniques can be applied to the input data , 35 used as an input to a subsequent algorithm . 
such as normalization or parameterization of the data . propensity metric can also be generated when the 

Additionally , a z - score can be generated to compensate algorithm is a classification algorithm , and in one embodi 
for drift and shift in the data . For example if a tool is ment , will have a value between 0 and 1 . As an example , if 
calibrated , the input data may shift . If a shift occurs , this may the propensity value is near 0 , then the likelihood is that a 
change the overall mean and standard deviation of the input 40 prediction is one classification ( e . g . , FALSE ) . If the propen 
data , which would generate poor results with the model . sity value is near 1 , then the likelihood is that a prediction 
Either a human or algorithm can signal when a shift occurs , is the other classification ( e . g . , TRUE ) . The propensity 
such as when a process tool undergoes calibration , and the metric can indicate how confident the algorithm is in making 
data can be collected for a period of time in a “ listening the given prediction , i . e . , the closer the propensity metric is 
mode " ( algorithm prediction is not applied to product ) after 45 to either 0 or 1 , the higher the confidence that the prediction 
the calibration to ensure there are not faulty predictions . is correct . In the case of a multi - step algorithm , the propen 
After a certain period of time , a z - score is generated from sity metric can be used as an input to a subsequent algorithm . 
that data . The z - score should be similar to the Z - score of the In an embodiment , as new input data and corresponding 
data that occurred before the calibration . This is an example target data is generated , the algorithm can be retrained so as 
of normalizing the data before and after a calibration has 50 to produce a better model that will give better scores . 
taken place . In some embodiments , a set of algorithms can be trained 

In some embodiments , virtual metrology predictions gen - simultaneously with the same input and target dataset . The 
erated from upstream process equipment and metrology data algorithm that gives the best output can be selected for 
can be used as inputs to the model . This essentially repre - deployment . 
sents a multi - step model or algorithm , where first the virtual 55 In one example , algorithms can be applied to the process 
metrology predictions are determined by a first algorithm . ing and manufacturing of finFET structures . Flowable gap 
For example , the outputs can be used as inputs to another fill film material properties are variable , which affects the 
algorithm designed for overlay error compensation , overlay film density and its optical properties . This can confuse 
error measurement , or yield prediction . optical metrologies used to measure and control film thick 

Aprediction by the algorithm can be made after all testing 60 nesses , leading to erroneous film thickness measurements . In 
and manufacturing is complete on the product . In a typical the fabrication of finFET ' s , this can lead to erroneous 
situation , the goal is to predict if the product will fail after measurement of the gate height , and thus cause the gate 
shipping and / or is in use , even if the product has passed all heights to be variable . Variable gate height can lead to 
final testing successfully . increased gate capacitance , leakage , and a need for higher 

The algorithm can be a classification or regression algo - 65 drive current . Thus , inputs to the algorithm ( s ) can be etch 
rithm , which are types of machine learning algorithms , but process parameters , flowable CVD process parameters , 
could be one of many different types of algorithms . CMP process parameters , oxide metrology outputs , TEM ' s , 



US 10 , 430 , 719 B2 
15 

and yield results . The algorithms can be used to either detect target . The location on the wafer of the actual overlay 
and fix problems with the etch process , flowable CVD measurement is matched with the location of all of the input 
process , and CMP process . parameters for that site , where applicable . Some process 

Etch depth can play a big role in the determination of gate parameters such as temperature , pressure , process duration , 
height . Etch process can also influence gate sidewall angles , 5 etc . and other tool - related parameters are collected on a 
which can have an effect on gate performance and the optical per - wafer basis and cannot be mapped specifically to a site . 
metrology signature . In some embodiments , etch process Rather , all sites for a given wafer will contain the same 
parameters can either be used as input parameters to the values collected for the wafer when site - specific information 
above models to detect problems or control the CMP pro - is not applicable or available . Alternatively if the spatial 
cess , or can be the target for control . The algorithms can 10 resolution of the overlay error measurement is greater than 
control the process , detect process issues , and achieve the spatial resolution of a given input parameter ( e . g . a 9 - site 
tighter gate specs . In some embodiments , the etch process CD measurement on a wafer ) , then the closest input param 
parameters can be used as inputs in determining the litho - eter will be mapped to that actual overlay error measure 
graphic tool control . Etch tool process parameters can be ment . A good technique for doing this is k - means clustering . 
used to predict the etch rate or final etch depth , as in the case 15 Other techniques include interpolating ( 3 - D ) to determine 
of virtual metrology . The outputs of the virtual metrology the value of the input parameter or cubic spline . 
algorithm can then be used as input to the lithographic tool I t is generally known that DBO and IBO are not perfect 
control , for example , as an intermediate step algorithm . techniques for measuring overlay due to process and geom 

Algorithms can also be applied to the processing and etry influences . For example , FIG . 9 shows the error 
manufacturing of 3D - NAND , or vertical NAND memory 20 between DBO and a more - accurate CD - SEM representation 
structures . To form vertical NAND ( 3 - D NAND ) structures , of overlay , for 143 measurements . If DBO parameters ( such 
semiconductor manufacturers use alternating layers of oxide as intensity at each wavelength of the diffraction spectra are 
and nitride or oxide and conductor layers . These stacks can included in the input dataset , along with the DBO predicted 
be a very thick , such as 2 um high , and are continuing to measurement , it is possible to correlate the error shown in 
scale thicker . This results in high stress , delamination , and 25 FIG . 9 to process parameters of the lithography tool . 
cracking . One approach specifies the target as the delta between the 

To address the stress issues , algorithms can use as inputs DBO measurement and CD - SEM measurement . The error 
the process parameters ( e . g . , gas flows , temperature , process associated between DBO and CD - SEM or TEM can be 
cycle times ) of the blanket deposition of these films , as well attributed to an input dataset and corrected in production . 
as the in - situ and inline metrologies ( including broadband 30 Once the training input data set is organized , it is 
light metrologies ) used to measure these film stacks . With - cleansed . The training input data may have corrupted values , 
out explicitly having to apply any physical modeling , cor - in which case the corrupted values are removed and replaced 
relations can be found between yield / inspection / stress tests with blanks or null values . The dataset may also contain 
and the inputs mentioned above to immediately identify inconsistent values for various informational features such 
problems with the blanket deposition . 35 as lot or wafer ID . For example , a lot description may appear 

3 - D memory characterization and failure analysis pres as " lot A ” in some cases and “ lot . A ” in other cases . These 
ents many challenges , and there is a great need for better values will all have to be converted to the same nomencla 
characterization . Currently , TEM and X - ray techniques are ture , for example “ lot . A . ” 
used , but are low throughput and may result in material state The input data is then normalized or transformed . For 
change . Further , correlating probe failures and inline defect 40 example , in the case of tool calibration , the data may need 
inspection is difficult due to the fact that many defects are to be mean shifted . A Z - score can also be calculated from the 
embedded . E - beam inspection is increasingly being used to input data set for different populations or distributions 
identify structural defects , but incurs additional cost . In within a given input data set . For example , if a portion of an 
some embodiments , gap fill process parameters are used as input is collected for a given tool calibration between time 
inputs to the algorithm ( s ) . E - beam 3D inspection can also be 45 A and time B , then that data is normalized or a z - score is 
used as targets for the algorithm . generated for the portion of data . If a different tool calibra 

5 . Process Example for Overlay Error tion is used between times B and time C , then normalization 
An overlay process can be performed on one or more or z - score generation is performed for that portion . The 

training wafers , and the training wafers are then analyzed for result is a complete dataset that is insensitive to tool cali 
actual overlay errors . The most accurate way to measure 50 bration . Events other than tool calibration that can generate 
overlay error is CD - SEM or TEM . All available wafer the need for data transformation are upstream process 
geometry parameters , such as thickness , diameter wafer changes and consumable changes . It is important to note that 
shape variation , in - plane displacement , stress - induced local the same transformation will need to be applied once pro 
curvature , wafer thickness and flatness variation , front and duction commences . To gather enough data in real - time 
back surface nanotopography ( NT ) , wafer edge roll - off 55 production in order to make the transformation , predictions 
( ERO ) , sliplines ; scanner parameters such as translation may not be applied until a user - specified amount of data is 
( x , y , z ) , rotation ( x , y , z ) , focus tilt , dose error , focus residual , collected in order to make transformation . However , it may 
magnification , asymmetric magnification , asymmetric rota - be determined that the transformed data is not an important 
tion ; CD measurements such as film thickness , trench depth , feature for the model . 
metal gate recess , high k recess , side wall angle , resist 60 The training dataset can be partitioned into training , 
height , hard mask height , pitch walking ; film property testing , and validation portions to ensure a robust model is 
parameters such as refractive index and absorption coeffi - built that is not over - fit or over - biased . A typical partition 
cient ( n & k optical constants ) ; parameters of other overlay can be 60 % training , 30 % testing , and 10 % validation . For 
measurements such as DBO and IBO ( can also include the some models , such as boosted or bootstrap - aggregated mod 
intensity values of the diffraction signature along with the 65 els implemented in analytics platforms such as IBM SPSS 
DBO measurement itself ) , are used as inputs to the training Modeler , the testing and validation sets need to be separated 
model , with the corresponding actual overlay error as the as the testing dataset is used to further optimize the model 
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while the validation set is completely blind to any model ogy model is to predict a key metric in the semiconductor 
training or optimizing activity . For other types of models , fabrication process . For example , an etch depth may be 
such as standard linear regression , it is acceptable to separate predicted given certain upstream variables such as etch tool 
the partitions into training and testing only . It is important to process parameters , previous step thickness and process 
note that techniques such as k - fold cross validation can be 5 variables such as deposition tool process parameters , CMP 
employed during the model building phase to ensure the process parameters , and optical n and k values of the film . 
model is not over - fit to any given training set . This involves In some embodiments , the etch process parameters can be 
rotating the training / testing / validation portions of the dataset used as inputs in determining the lithography tool control . 
to ensure that all data sees a training or testing portion . Etch tool process parameters can be used to predict the etch 

If a given input has a large number of missing or corrupted 10 rate or final etch depth ( as in the case of virtual metrology ) . 
values , then that input feature may be removed from con - The outputs of the virtual metrology algorithm can then be 
sideration in training the model . For example , if more than used as inputs to the lithography tool control as an interme 
50 % of the data is not present for a given input feature , then diate step algorithm . The output of the intermediate step 
that input feature can be thrown out . Alternatively , the algorithm ( or virtual metrology algorithm ) can be used as an 
missing data fields may be filled in with nominal values , or 15 input variable for the determination of overlay error . 
the records that do not contain values may be completely Certain parameters in the models are important in deter 
removed from the training dataset . A determination of which mining the best model , of which certain variations can be 
technique to use can be decided based on a human judgment tried . The best combination of model parameters that gives 
of the importance of a given input feature . the least error between predicted and actual overlay error is 

That dataset may also have to be merged for a given key . 20 chosen . For example , the minimum number of records 
The key typically is an x - y coordinate on the wafer or allowed in a decision tree leaf can be set , or the number of 
scanner , or could be a die number . As mentioned above , weak learners employed in a random forest algorithm or 
datasets may need to be mapped to a given key ( cubic spline , GBM model , or the number of input features for each weak 
interpolation , or nearest neighbor ) . The location on the learner in a random forest algorithm . 
wafer , such as a specific die or its location , is matched with 25 The candidate model predicts the overlay errors and 
the location of all of the input parameters for that site , where compares them with the actual overlay errors on the vali 
applicable . Some process parameters such as temperature , dation wafers . If the prediction accuracy satisfies certain 
pressure , process duration , etc . and other tool - related param - thresholds based on the overlay budget and other consider 
eters are collected on a per - wafer basis and cannot be a tions , the candidate model is considered to be valid and 
mapped specifically to a site . Rather , all sites for a given 30 ready to be deployed to predict overlay errors on other 
wafer will contain the same values collected for the wafer production wafers which share similar processing conditions 
when site - specific information is not applicable or available . with the training and validation wafers . 
Alternatively , if the spatial resolution of the die location is Once a model or multi - step model and associated param 
greater than the spatial resolution of a given input parameter eters are chosen , the model is first implemented in produc 
( e . g . , a 9 - site CD measurement on a wafer ) , then the closest 35 tion in a " listening mode ” where overlay error predictions 
input parameter will be mapped to that actual die . A good are made as wafers run through production . The predicted 
technique for doing this is k - means clustering . Other tech - overlay error can be compared to actual overlay error . If the 
niques include interpolating ( 3 - D ) to determine the value of predicted error is found to be within a user - defined threshold 
the input parameter or cubic spline . or overlay error budget , then the production is allowed to 

A training input dataset may contain thousands of input 40 continue to run and more data is collected . 
features , and a relevant set of input features may need to be If instead the model is not predicting within the defined 
determined . A process for removing irrelevant input features limits as compared to actual measured overlay error , then all 
that weakly correlate to overlay error may need to be data collected up to that point is used to retrain the model as 
implemented . As a first step in this process , input features outlined in the above steps . If the model now predicts a 
that do not change at all can be removed . 45 result within the user - defined thresholds after being re 

There are also a number of approaches to feature selec - trained , the model is then re - deployed in listening mode in 
tion . One approach is implementing random forests which production . If the model performs within the specified error 
identify which input features are most relevant to predicting limit ( predicted - actual overlay ) for a user - specified period 
overlay error . Another technique is the CHAID decision tree , of time ( for example , 8 weeks of production ) , then the model 
which will also identify features that are important . Linear 50 is allowed to replace some of the actual overlay measure 
regression is another technique . ANOVA is another tech - ments used in actual production . Over time , if the model 
nique . continues to perform well , more and more product will rely 

Alternatively , dimensionality reduction can also be on the predicted overlay , until the overlay prediction is used 
employed . Common dimensionality reduction techniques on all production . 
include partial least squares and principal component analy - 55 The model will continue to be re - trained at user - defined 
sis , which will create a new smaller set of input parameters intervals ( for example , once a week ) as new data is made 
based on the large set of initial input parameters . For available . To retrain the model , the entire dataset available 
example , an input set of 5000 features can be reduced to an may be used . It may also be beneficial to use only the latest 
input set of 30 newly - generated principle components that data available for a period of time to train the model , for 
can explain a significant portion of the variance in the data . 60 example the last 3 months only , and discarding very old data 
The outcome or output of the dimensionality reduction step as it becomes obsolete as the process undergoes significantly 
can be used as new inputs to the model . For example , the shifts . It may also be beneficial to retain for model training 
principle components generated by PCA can be inputs to the older data that defines the extremes of the input and target 
model . The principle components will represent a reduced variance , and discard older redundant data to maintain 
set of inputs from a larger set of inputs . 65 model training efficiency or save memory space . It may be 

From the original input data , a set of virtual metrology beneficial to continue to monitor the performance of the 
models may be constructed . The purpose of a virtual metrol predicted overlay , even after full production release , by 
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continuing to compare to actual overlay measurements . If it Further compounding the need for multivariate analysis is 
is found that the error between predicted and actual overlay the fact that the amount of data that is accessible in the 
falls out of tolerance , then predictions will not be deployed semiconductor manufacturing process continues to grow . 
for a period of time until it is determined why the predictions However , the use of machine learning algorithms , data 
fell out of tolerance and the model is retrained and gradually 5 mining , and predictive analytics make the handling of large 
released back into production . data sets manageable . Furthermore , confidence and propen 
Once a candidate model is determined , one or more sity metrics associated with many machine learning algo 

validation wafers are selected from the production wafers , rithms can be used to optimize wafer sort / testing , final tests , 
and burn - in activities . and patterned wafer geometry parameters are obtained for 

the validation wafers using a patterned wafer geometry 10 For semiconductor manufacturing , the measure of defec 
tive parts per million ( DPPM ) is evaluated when testing the metrology tool . An overlay process is performed on the one outgoing packaged chips . In a typical situation , functional / or more validation wafers and the one or more validation structural test patterns are used at wafer sort and also after wafers are analyzed for actual overlay errors . The candidate the parts ( or products ) are packaged to determine which model predicts the overlay errors and compares them with 15 . th 15 products / die are faulty . Functional system level testing then 

the actual overlay errors on the validation wafers . If the follows . The expense of testing at each subsequent stage can 
prediction accuracy satisfies certain thresholds based on the be significantly higher than at the previous stage . Usually , 
overlay budget and other considerations , the candidate packaged products are tested in burn - in chambers and on 
model is considered to be valid and ready to be deployed to load boards , using either the same structural patterns used at 
predict overlay errors on other production wafers which 20 wafer sort or with functional test patterns . The cost of such 
share similar processing conditions with the training and testing has increased significantly over the past several years 
validation wafers . as design complexity has increased . 
Once the candidate model is validated , the remaining A typical business model for manufacturing microchips is 

production wafers are scanned with a patterned wafer geom - the foundry / fabless model , where wafers are fabricated at a 
etry metrology tool to determine wafer geometry param - 25 foundry and then passed off to the fabless design house or 
eters . Based on the wafer geometry parameters and the packaging partner for subsequent processing and testing . 
deployed predictive model , the system predicts an overlay The term “ known good die ” ( KGD ) refers to die at or before 
error for the remaining production wafers and adjusts the wafer sort / test which have been tested to the same quality 
lithography scanner to correct for the predicted overlay and reliability levels as their packaged counterparts . If a die 
error . Point - to - point prediction is crucial for feeding forward 30 passes at the wafer sort / test phase but is found to be faulty 
the predicted overlay , applying the adjustment , and hence at some point after wafer sort , then the design house or 
reducing the actual overlay error after the exposure . packaging house can incur the cost of any steps taken in 

6 . Yield Prediction manufacturing the product after wafer sort . In one business 
Predicting yield is generally important in the manufacture model , dies from the foundry that pass wafer sort are bought 

of semiconductor devices , and even more so as the fabrica - 35 by the fabless design house . If the die are found to be faulty 
tion of semiconductor devices becomes increasingly expen - after packaging , then the design house pays for those die . 
sive . A yield prediction can be made at different steps in the This can get very expensive for dies that go into stacked IC ' s 
process . or multi - chip modules , as all dies in the packaged chip 

If yield can be accurately predicted at any stage of the would have to be scrapped if only one of the die were found 
manufacturing process , then it becomes possible to optimize 40 to be bad . 
and save costs in later processes . For example , if a device Thus , it has become very important to know at the earliest 
can be predicted to be bad before wafer sort and test , then stage possible if a die will be functional after it is packaged . 
further testing and processing of that device can be avoided If post - package yield can be more accurately predicted at 
thus saving further processing costs . Typically , there are wafer sort , or at various stages of final test , or pre burn - in , 
hundreds of steps in a semiconductor manufacturing pro - 45 it can significantly reduce the costs incurred by whichever 
cess . The process for fabrication of wafers can take 2 to 3 entity owns the faulty product post - packaging . Also , predic 
months before moving on to the post - fabrication stages , tion and confidence metrics can be determined and can be 
which usually include wafer test and sort , assembly / pack - used to optimize burn - in times , which can result in signifi 
aging , final testing , and burn - in . At each of these steps , a cant cost savings . 
predicted yield can be calculated . The fabrication yield can 50 In general , yield prediction for a product refers to the 
be measured as the ratio of good wafers that make it through prediction of the quality or usability of the product . In one 
the wafer fabrication process to all wafers that entered the embodiment , yield prediction can be one of two values , 
given process . The wafer test yield can be calculated as the namely , either " pass " or " fail ” ( or “ good ” or “ bad ” or 
ratio of non - defective chips determined at wafer test to all " usable ” or “ not usable " ) . For example , if the yield predic 
chips that entered into wafer test . The assembly and pack - 55 tion for a product is " pass ” at a given manufacturing step , 
aging yields are calculated in a similar manner , i . e . the ratio then that product is predicted to be usable as of that 
of good chips out to the total chips into those respective manufacturing process and should continue processing . If 
processes . the yield prediction is predicted to be " fail , ” then that 

Existing techniques for yield prediction have been based product is predicted to be faulty or not usable as of that 
primarily on a univariate analysis . For example , Markov 60 manufacturing step and is not recommended for continued 
chains predict whether a chip results in positive yields given processing . The yield prediction is thus useful in determin 
the number of defects . However , multivariate analysis has ing if it is cost effective to continue processing of a product . 
become more popular as the amount of test data has become In some embodiments , the yield prediction is a component 
very large . A common technique employed for multivariate in deciding whether or not to continue processing of the 
analysis is discriminant analysis , but this technique assumes 65 product . The yield prediction is not necessarily the only 
that the data is normally distributed and independent , which variable in making a decision about whether or not to 
is not always the case . continue processing of a product . 
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This disclosure describes novel techniques for predicting is total yield for the entire manufacturing process . In another 

yield before , during and after wafer sort . These yield pre - embodiment , the target is yield for an individual process 
dictions can be used to reduce costs by more accurately step . The target could be yield for an individual die on a 
predicting yield at wafer sort , final test , burn - in , and other wafer , or the entire wafer . The target could also be the yield 
post - wafer sort testing . Yield predictions and their associ - 5 of a packaged chip or product at final test , before burn - in , or 
ated confidence metrics can also be used to make decisions a packaged chip or product at final test , after burn - in . 
about which tests to perform after wafer sort . Yield predic In step 1104 , the parameters that are useful in evaluating 
tions can also be used to optimize and reduce burn - in time . yield are identified , and in step 1106 , input data relevant to In one embodiment , yield prediction can be the prediction the parameters is collected . Every set of input data is or outcome of a classification system or algorithm . The 10 associated with a specific output or target . For example , a set classification system or algorithm can determine if the of measured and observed values are associated with actual product will be functional or non - functional after all manu yield values , and those values are provided as an input facturing steps are complete , given an input dataset to the 
algorithm . For example , if the classification system or vector to the model . 
algorithm predicts the product will be functional , then it can 15 In general , the input data to the algorithm can be input 
be said that the yield prediction is positive , or that the data from any or all processes performed during wafer 
product will yield . For example , a “ O ” may be assigned to fabrication . Wafer level data from the semiconductor fabri 
indicate a passing / functional product , while a “ 1 ” may be cation processes and metrology that are collected before 
assigned for a failing / nonfunctional product . wafer sort and test can be used as part or all of the total 
As discussed with regard to overlay error , the classifica - 20 inputs to the algorithm . These input parameters can include 

tion system or algorithm used to make a yield prediction can metrology measurements from process steps or metrology 
also provide a confidence or propensity metric along with a measurements collected during the wafer fabrication pro 
pass or fail classification , given the input data to the algo - cess . These measurements can include optical reflectomety 
rithm . The confidence or propensity metric can be a value in or ellipsometry data , and the intensity of each measurement 
a defined range or an undefined range . In a typical situation , 25 at a given wavelength . The metrology data can be incorpo 
the value can be a real number between 0 and 1 . In this rated from a reflectometry measurement taken after a certain 
example , if the value is close to 0 , then the confidence is low . processing step ( for example , CMP or Etch , or Gap Fill 
If the value is close to 1 , then the confidence is high . processes ) . The metrology measurements can also be pro 

A threshold can be set for the confidence value to bin the duced by non - optical measurements , such as Rs ( conduc 
confidence value as high or low . For example , if the confi - 30 tivity , resistivity ) measurements taken by probes and other 
dence metric varies between 0 and 1 , and the threshold is set types of contact measurements , or contact measurements 
at 0 . 5 , then confidence values above 0 . 5 will be deemed as such as the HRP or high resolution profiler . 
high confidence , while values below 0 . 5 will be deemed to In some embodiments , part or all of the input data can be 
be low confidence . from the output of wafer probe tests , or measurements made 

The confidence or propensity metric may be used in 35 by wafer probe tests . Additionally , data from final wafer 
conjunction with the pass or fail classification to make the electrical testing , wafer sort tests , and wafer acceptance tests 
final yield prediction , as illustrated in FIG . 10 . Data is input can be used as input data . Examples of final wafer electrical 
to the classification algorithm in step 1002 . If in step 1004 testing parameters include , but are not limited to , diode 
the classification algorithm predicts that the product will characteristics , drive current characteristics , gate oxide 
pass , and the confidence metric is high for the classification 40 parameters , leakage current parameters , metal layer charac 
prediction in step 1006 , then the yield prediction in step teristics , resistor characteristics , via characteristics , etc . 
1008 is said to be positive meaning there is a high confi - Examples of wafer sort parameters include , but are not 
dence that the product will pass . limited to , clock search characteristics , diode characteristics , 
However , if the classification algorithm predicts in step scan logic voltage , static IDD , IDDO , VDD min , power 

1004 that the product will pass , but the confidence value is 45 supply open short characteristics , ring oscillator frequency , 
low in step 1006 , then the yield prediction in step 1010 is etc . 
negative so as to not produce any false positive outcomes . In The input data can come from a final test . The input data 
some situations , a false positive of this nature is very can come from tests that occur multiple times under different 
undesirable , as products that are actually faulty but predicted electrical and temperature conditions , and before and after 
to be good can be very costly for the manufacturer . 50 device reliability stresses , such as burn - in , or tests that occur 

Similar to the discussion of predicting overlay error at a burn - in step . The input data can come from electrical 
above , a yield prediction can be made by implementing tests that are a mix of functional , structural and system - level 
machine learning , predictive analytics , and data mining tests . 
algorithms ( all of which will be referred to as algorithms ) . The test outputs which can serve as inputs to the yield 
The types of input data identified in the overlay sections are 55 prediction system can be of binary type ( pass / fail ) or can be 
also relevant to predicting yield and evaluation of other analog , or a real number that can be bounded or unbounded . 
targets . Further , the techniques and examples described in The analog output can be a voltage reading , or a current 
the overlay sections above are incorporated by reference reading . 
here as well since they are also relevant to predicting yield In step 1108 , the input data undergoes filtering , normal 
or evaluating other targets . Thus , the techniques described 60 ization and / or cleansing steps . In step 1110 , dimensionality 
for identifying input data , collecting input data , transforming reduction or feature selection is performed to reduce the 
the input data , training and re - training the model , and number of input parameters for processing the algorithm . 
deploying the model , are applicable to yield prediction and In step 1112 , the data is then fed into one or more 
evaluation of other targets . FIG . 11 illustrates a method 1100 algorithms for training . Given the training input data and 
for creating and deploying a model to evaluate a semicon - 65 training targets , the algorithm ( s ) will produce a model in 
ductor manufacturing process in order to predict yield . In step 1114 , which can be deployed in step 1116 to act on real 
step 1102 , a target is selected . In one embodiment , the target time data . 
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In one embodiment , the status of the manufactured prod - ancing techniques such as oversampling are still applied to 
uct can be the result of a function that weights the results of the dataset since the number of failures will be relatively low 
final tests , the confidence metric of the yield prediction as compared to number of passes , for example 10 , 000 
system , and the classification of the yield prediction system , failures out of 1 , 000 , 000 . From this intermediary model , a 
as illustrated in FIG . 13 . If the status prediction is above a 5 propensity metric is generated for all remaining passed die 
specified threshold , then the part can be determined to be which will continue to undergo subsequent processing . By 
good , or usable . the time the die reaches final test , the propensity score from 

In an embodiment , the algorithm utilizes calculated pro the earlier intermediary model is used as an additional input pensity from an upstream test which contains more failures to train the final failure prediction model . The dataset is to determine the failure rate of the final test , which may 10 again balanced ( e . g . , oversampling ) to ensure the number of contain much fewer failures . For example , at the end of an failures will equal the number of passes in the model training upstream testing process , the failure rate may be higher , set . The overall accuracy of the model can improve if the which would make it easier to produce a model that gives propensity of the upstream model is also used as input . more accurate predictions ( e . g . , a CHAID decision tree ) . A 
del can be built to determine the failure rate of this 15 Training , testing , validation , and cross validation techniques 

upstream process , and produce a pass / fail prediction along are applied to determine the best model . Various models are 
with a confidence and propensity metric . The failure pre tried in the techniques described earlier . The model that 
diction , confidence and propensity metric can then be used gives the least number of false positives and / or false nega 
as inputs to predict the failure of a test further downstream . tives ( depending on which metric is of most importance to 
This may be particularly useful when the test downstream 20 the user ) will be the model that is selected . Typically , the 
has a lower number of failures , making it more difficult to user will be interested in minimizing false negatives ( i . e . , 
build an accurate model . predicting a die will pass but in actuality it fails ) , since this 

In some embodiments , a data processing step for a clas - will mean it may be erroneously routed for less stringent 
sification model may include oversampling . For example , if testing or burn - in , resulting in a sub - stardard die being 
there are 100 failed chips and 10 , 000 passed chips in the 25 shipped to a customer , thus increasing risk of field failure . 
training dataset , oversampling would mean replicating the 7 . Testing and Burn - In Optimization 
rows of failed chips 100 times so that there are now 10 , 000 The yield prediction system can be used to calculate and 
rows of failed chips . This balanced set is then fed into the optimize burn - in time . The burn - in time calculation can be 
model . Alternatively , under sampling would mean ( ran - a function of the yield prediction or classification produced 
domly ) selecting 100 passed chips and feeding that into the 30 by the yield prediction system , the confidence or propensity 
model , along with the other 100 failed chips to create a metric computed by the yield prediction system , and / or 
balanced training set . This can be an important step in actual final test results , as illustrated in FIG . 14 . As an 
creating a decision tree . example , if the yield is predicted to be positive by the yield 

In some embodiments , limits are set on how small the leaf prediction system , and the confidence metric calculated by 
nodes of the decision tree can be so as not to result in an 35 the yield prediction system is a relatively high value , then 
over - biased or over - fit model to the training dataset . the burn - in time can be calculated to be lower than average , 

In some embodiments , the model is trained on a portion or completely eliminated . In another example , if the product 
of the data . It is then tested on a different portion of the data is predicted to be good by the yield prediction system , and 
that is blind to the training phase . K - fold cross validation can the confidence metric is calculated by the yield prediction 
also be applied to determine the robustness of the model . In 40 system to be low , then the burn - in time may be calculated to 
the case of boosted on bagged algorithms , a training , testing , be higher than average . In another example , if the product is 
and validation dataset can be partitioned , where the valida predicted to be bad by the yield prediction system , then the 
tion set is completely blind while the testing set is used to burn - in time can be set to a maximum value . 
optimize the model . The yield prediction can also be used to optimize final 

The following is an example of a yield prediction algo - 45 testing . For example , if the product is predicted to be good 
rithm . The input data is cleansed , transformed , and orga - with a high confidence value , then certain expensive tests 
nized as previously described . The input data can be asso - can be skipped . In another example , if the yield prediction 
ciated with each die , or mapped to a particular die by using is good but the confidence value is low , then more exhaus 
the techniques described above . The input dataset can con tive testing can be implemented than the case where yield 
tain a set of die manufactured throughout the manufacturing 50 prediction is good and confidence is low . In yet another 
process with associated input data for each die . Along with example , if the product is predicted to be good , a decision 
each die can be the associated health of the die , i . e . , pass or can be made to do the most rigorous amount of testing , or 
fail . Typically , most of the die will pass but some of the die the decision can be made to forgo further testing and 
will be determined to fail after the final testing step . processing , and scrap the product . 
Throughout the final testing process , the die will undergo 55 8 . Other Applications 
various tests and reliability stresses ( e . g . , burn - in ) , and some As discussed herein , predictive analytics can be used to 
of the die will incrementally fail and be removed . The model discover the relationships between the various process steps , 
is a type of classification model that uses the die ' s health parametrics , and product performance , which can then be 
( pass / fail ) as a target . The issue with training a model around leveraged to predict and improve product performance . By 
the die health ( pass / fail ) at the final stage of the process is 60 incorporating the advantages of machine learning and par 
that the number of failures is usually very low by this stage . allel processing , predictive analytics can find complex cor 
For example , the number of failures after final testing may relations among the input data that have been difficult to 
be only 100 out of 1 , 000 , 000 . Most classification models uncover using other techniques . Thus , in addition to pre 
will not be able to predict failure accurately with such a low dicting yield and correcting for overlay errors and CD 
number of failures in the dataset used to train the model . To 65 variations , as discussed above , predictive analytics can be 
mitigate this issue , an intermediary model is trained around used in many ways in the semiconductor manufacturing 
an earlier upstream test that will have more failures . Bal process to improve performance , quality , and yield , and to 
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reduce costs . Algorithms can be used to optimize some or all real time . The data repository 1630 contains CD / inline 
of the processes in semiconductor manufacturing . measurements , upstream in - situ metrology , trace data , and 

FIG . 15 illustrates several additional applications 1302 for other upstream process data . 
the techniques described herein , including yield prediction At set time periods , the MCS can collect data about the 
improvement ; run - to - run control ; wafer - to - wafer control ; 5 manufacturing process from one or more sources . This data 
real - time and in - situ control ; virtual metrology ; fault pre can typically be a collection of readings from sensors used 
diction and classification ; factory - wide control ; and predic - in the manufacturing process . The collection can typically be 
tive maintenance , among others . With regard to yield , the all the relevant measurements made during the manufactur 
techniques disclosed herein can predict yield , or identify the ing of a set of earlier completed items . After collecting data , 
root cause of yield detractors , or link parametric faults to the MCS can enter a model building phase . During the 
inline process data , as shown in box 1304 , among others . model build phase , the MCS can build numerous machine 
With regard to virtual metrology , the techniques disclosed learning models designed to make a prediction . From the 
herein can predict specific process metrics using metrology generated models , one or more preferred models can be 
equipment data , process equipment data , and upstream data , 15 selected . Code for these models can be generated and 
as shown in box 1306 . With regard to fault prediction and compiled and sent to the PCs . The PCs can be software 
classification , the techniques disclosed herein can classify or programs that periodically receive the data from prior steps 
detect faults on process equipment using process equipment in the manufacturing process for the current item . They then 
data and in - situ metrology , as shown in box 1308 . With can use the generated model ( s ) to predict necessary infor 
regard to factory - wide control , the techniques disclosed 20 mation for the current manufacturing step on an item . 
herein can discover relationships hidden in the process data , The MCS 1610 can periodically build new models for the 
as shown in box 1310 . With regard to predictive mainte - PCs . The desired frequency of this period is provided by the 
nance , the techniques disclosed herein can identify root u ser of this system . Further the user can be allowed to 
causes for different types of defects , and predict future specify the length of time spent in creation of new models . 
defects using inline process data , as shown in box 1312 . 25 At the end of this time period , the system can choose the best 

In some embodiments , virtual metrology can use algo - model ( s ) and send a program to the PCs that implements the 
rithms to predict metrology metrics such as film thickness model ( s ) . 
and critical dimensions ( CD ) without having to take actual Prior to the model building phase , the MCS can collect the 
measurements in real time . This can have a big impact on needed data . The sources of this data can be set by the user 
throughput and also lessen the need for expensive TEM or 30 of this system . The data sources can be , but are not limited 
SEM X - section measurements . Based on sensor data from to , databases of collected information , local or remote files 
production equipment and actual metrology values of containing the desired data , or through network connections 
sampled wafers to train the algorithm , virtual metrology can that feed the data to the MCS . 
predict metrology values for all wafers . The algorithm can Collected fields data can be labelled according to its 
be a supervised learning algorithm , where a model can be 35 importance . This labelling of data fields may be done as a 
trained using a set of input data and measured targets . The configuration step , by a user of the system , or by the system 
targets can be the critical dimensions that are to be con - itself from information it learned in analyzing the prior data . 
trolled . The input data can be upstream metrology measure - The labels can be used to help the system understand the role 
ments , or data from process equipment ( such as tempera - a given data field plays in the prediction making process . 
tures and run times ) . 40 Examples of potential labels are : 

Identifying a machine fault or failure , and finding the root Critical : a new model or prediction will not be made 
cause of faults quickly , can be essential in semiconductor without this data 
manufacturing . If faults in the manufacturing process can be Non - critical - replaceable : a new model or prediction can 
better detected and resolved , downtime and scrap can be be made with older copies of the data field or imputed 
reduced . This is also referred to as fault detection and 45 values for the field 
classification ( FDC ) . If faults can be predicted before they Non - critical - irreplaceable : a new model or prediction will 
occur , then downtime can be optimally scheduled and scrap be made with reduced accuracy . 
can be even further reduced . Thus , algorithms can be used New data can be checked for correctness . The system can 
to predict when a fault or defect will occur in the manufac - check for correct column / field counts , correct header names , 
turing process or on a specific tool at a process step . 50 value types , reasonable values , missing values , null values , 

In some embodiments of the invention , algorithms can be or unexpected whitespace . These checks can be set by the 
used to determine when maintenance needs to be performed user , or system configuration , or suggested by the system 
on manufacturing equipment . This is referred to as predic - based on prior values seen . Further , new data can be checked 
tive maintenance in the semiconductor manufacturing pro by use of a checksum or similar device to ensure that the new 
cess . 55 data is not an unintended repeat of earlier data . Deviance 

9 . Model Creation and Implementation from the expected values can generate a warning if non 
FIG . 16 illustrates an embodiment of a high level system critical , or an error if critical data is not available . 

architecture for creating and using models for improved If the MCS is configured to rely on several data sources 
semiconductor process control . At the highest level , the to build a model and one or more of those data sources 
system consists of a model creation server ( MCS ) 1610 and 60 cannot provide the expected data , and that data has been 
one or more prediction clients ( PCs ) 1620 which can use labelled as Non - critical , then the model building can pro 
models created by the MCS , and which interact with the ceed after repeated attempts to collect the data . Model 
fab ’ s centralized data repository 1630 . The MCS 1610 building will proceed using the most appropriate choice : use 
generates models that are deployed on the Process Tool 1640 prior data in place of the missing data , impute missing data 
for which control will be implemented . The PC 1620 col - 65 values , or build models without it . The most appropriate 
lects in - situ metrology / process data and sends predictions choice may be set by either the user , system configuration , 
and process control signals based on an embedded model , in or the system itself . 
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In some cases it can be necessary for the user to specify training time to find the best model may be set by the user . 
a subset of the historical data that should be ignored or The system can return the “ best ” model ( s ) found within that 
weighted differently during the training of a model . An time . 
example that would require this is when models are built Models training may begin from scratch , with check 
relying on an upstream data source and the performance of 5 pointed models or may be seeded with the results of simu 
that source is changed radically ( e . g . repairs , or given new lated data from physics based models . The system will settings ) . In such cases a user would know explicitly about decide the most appropriate starting point . 
the change , and could adjust how or if that historical data The exploration of different models can be done as a should be used . hyperparameter search that explores the parameter space for This system provides the means for a user to specify what 10 each kind of machine learning model available to the data should be treated differently and how in future training . system . The starting bounds for these hyperparameter Further when the system detects large changes in a data searches may come from either configuration settings of the source , it can send an alert to the user to consider whether system , or from bounds created by the system from exam such changes should be considered . 

This historical data may be stored in a local database that 15 ining the results of previous model building phases . Ran 
the system uses in the cases where the data sources do not domly selected bounds may also be included to allow for the 
store enough historical data . exploration of new model training parameter spaces . 
Once the data is collected , it may then need to be Further model training may also include creating models 

transformed into a more appropriate format for model build that only rely on subsets of the available data fields . This 
ing . Some transformations will be operations typical to 20 modelling can be done to create alternate models that can be 
standard database operations . For example : inner - join , used in the cases where a client with realtime needs does not 
outer - join , partial joins , group - by , columnar or row wise receive all expected data in time and needs to make a 
appending of two datasets . Other transformations may prediction with only partial data . 
involve value imputation . If value imputation is needed , Selecting the “ best ” models can be based on metrics set by 
several methods may be used . Examples are : expected 25 the user and or system configuration . In addition to standard 
means , imputation through Generalized Low Rank Models . machine learning metrics , other metrics include , but are not 
Beyond this , a wide variety of domain transformations will limited to , factors such as expected runtime costs ( e . g . 
be used to convert data fields into new fields that are better execution time , memory footprint ) or known benefits of a suited to constructive machine learning models . These trans particular model type . Another metric that may be included formations can have a wide range of possibilities . For 30 is checks for models that seem to predict too well . “ Too good example , in the manufacturing of semiconductors , transfor to be true ” models are typically a sign of model overfitting mations of spectra may involve low pass filters , Fourier and models with these characteristics can be rejected in transforms , binning values and tracking peaks , among other 
things . In wafer processing an example would be the trans favor of a model expected to generalize better . 
formation of coordinate systems . Some examples of other 35 New models may be compared against pre - existing mod 
common transformations are : els ( i . e . models from a previous model training phase ) . It 

Normalization : the generation of z - scores from an exist may be that previous models are chosen as the most desir 
ing field , or offset by mean divided by the standard able . 
deviation . For data sets that warrant it , the performance of a model 

Aggregation : aggregate the mean failures for an indi - 40 may be judged by cross - validation or against hold - out 
vidual LotID / WaferID , aggregate the mean of an input validation sets as the system deems appropriate . 
value for a given radial band on the wafer . An example of one factor that may drive many of the 

Binning : decile binning . hyperparameter and evaluation choices is available data 
Modelling : using the output of one model as input to size . Specific model types or parameters settings may be 

another , common examples are PCA , GLRM , cluster - 45 known to generalize better or train more accurately for given 
ing , regressions , or classifications to create new data dataset sizes . The system will apply this knowledge in its 
features . selection of training parameters and choosing the “ best " 

Weight generation : the generation of weights to aid model ( s ) . 
machine learning algorithms to give greater value to After the desired models are selected , these models are 
specific data input . 50 backed up and stored to either disk or a database . 

Rebalancing : countering imbalanced datasets with over or In one embodiment , once the “ best " model ( s ) are chosen , 
under sampling as needed . the MCS and PCs can begin the process of transferring the 

Filtering : identification and possible removal or weight - models to the clients . This process includes a communica 
ing of outliers . tions handshake between the server and client that may 

The model building phase can be triggered by either 55 include authentication . The models being sent may take one 
manually by a user or through user settings . These settings of many forms . The model can be expressed as either source 
may be a user defined schedule . This schedule may include code , compiled binary code , or a parameter list to allow the 
a frequency that is a function of the amount of available data . model to be recreated on the client side . The sending of the 
As an example , a user may want frequent retraining until the model may include encryption of the model being sent . 
historic data reaches a set size or the models reach a chosen 60 Once models are received by the PCs , the model can be 
metric to indicate stability . Other triggers for training can checked for accuracy . The first check can be through a 
include rules within the system . An example could be PCs checksum to ensure that the model was transported as 
seeing data values occurring beyond a preset expected range . expected . A second check that may be conducted is against 
Such an event could be set as a rule for the PCs to contact data values that are selected to give a set answer . The model 
the MCS and trigger a new model building phase . 65 can be fed these values and the answer checked for validity . 

During the model building phase , the MCS can build one If a PC does not receive a correct model , the desired 
model or an array of machine learning models . A limit to the failover can be pre - set by the user . This failover can include 
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a set number of retries , falling back to using previous 1718 . If the predicted thickness is still not within specifi 
models , or falling back to a “ safe mode ” whose operation is cation in step 1722 , then feature selection and dimension 
defined by the user . ality reduction is performed in step 1724 , and the process 

The prediction client ( PC ) is a system that collects data returns to step 1708 . 
from the prior manufacturing steps and using model ( s ) 5 FIG . 18 illustrates another embodiment of a Safe Mode 
provided by the MCS to make a prediction . This prediction 1800 that is initiated in step 1802 when there are erroneous 
is published to a file , a database , a network connection , an thickness predictions in a virtual metrology system . This 
API call or other electronic mechanism . causes WL endpoint failure due to multiple erroneous thick 

The client can attempt to acquire the expected data . The ness predictions during wafer processing ( excursion han 
sources of this data are set by the user of this system . The 10 dling ) , which may cause EP prediction time to fall outside of 
data sources can be , but are not limited to , databases of a user - specified range . These erroneous thickness predic 
collected information , local or remote files containing the tions trigger the Safe Mode in step 1804 . In step 1806 , the 
desired data , API calls to software or through network process tool takes a user - defined action . An example default 
connections that feed the data to the PC . If any data source setting is " stop when idle ” or “ stop production . ” 
is not available , the system can see if a user set time limit has 15 In step 1808 , the model is retrained and tested on previous 
been set to deliver a prediction . If enough time is expected data , and the interval is user - defined . If the predicted thick 
to remain , it will repeat its attempts to acquire the needed ness is within specification in step 1810 , the Safe Mode is 
data . If insufficient time remains , the system can see if exited in step 1812 and active process control is reinstated . 
partial data models exist for the available data . In the case I f the predicted thickness is not within specification in 
that they do , the system can use the appropriate partial data 20 step 1810 , then statistics are gathered on critical input data 
model . In the case that time has elapsed , and no partial data in step 1814 to ensure the data is valid . If critical incoming 
models exist for the available data , the client can execute its data is valid in step 1816 , then alternate best models are 
" safe mode ” action as well as send an alert to the MCS . The trained and tested in step 1818 . If the predicted thickness is 
" safe mode " action is set by the user . now within specification in step 1822 , the Safe Mode is 

Further , if the values of the acquired data are not of the 25 exited in step 1812 . If the predicted thickness is still not 
expected type or within expected value ranges ( as set by the within specification in step 1822 , then feature selection and 
user or through system detection ) , the " safe mode ” action dimensionality reduction is performed in step 1824 , and the 
will be executed . process returns to step 1814 . 

In the case where a prediction can be made , that predic - If critical incoming data is not valid in step 1816 , then the 
tion may then be checked to ensure that the prediction is 30 root cause of corrupted incoming data is identified and fixed 
within acceptable bounds set by the user or the system . In the in step 1820 and the process returns to step 1808 to again 
case that the prediction is beyond these bounds , the client retrain and test the model . 
will execute its " safe mode ” action . In the case that the 10 . Conclusion 
prediction is within the expected ranges , the prediction is While the foregoing written description of the invention 
delivered in accordance to the user specified manner . A log 35 enables one of ordinary skill to make and use what is 
of the data , model used , and the prediction may be kept . considered presently to be the best mode thereof , those of 

The system can have a defined path of acceptable behav - ordinary skill will understand and appreciate the existence of 
iors . All activities outside of this path can generate alerts or variations , combinations , and equivalents of the specific 
warnings to be consumed by the users of the system . embodiment , method , and examples herein . The invention 
Some mention of Safe Mode has been given above . Safe 40 should therefore not be limited by the above described 

Mode can allow a contingency plan in the event , for embodiments , methods , and examples . 
example , if the data needed to make a prediction by the 
model ( s ) is not available , if anomalies are detected in the The invention claimed is : 
data or the input data is corrupt , or if a prediction falls 1 . A method for predicting whether a semiconductor 
outside of a user - defined range . Some examples of Safe 45 product will pass or fail a multi - step semiconductor process , 
Mode are given in FIG . 17 and FIG . 18 . comprising : 

FIG . 17 illustrates one embodiment of a Safe Mode 1700 receiving input data from a first plurality of metrology 
that is initiated in step 1702 when there is an anomaly measurements for a current process step and from a 
detected in the input data , i . e . , critical data is outside of second plurality of metrology measurements for at least 
historical and / or user defined bounds . This data anomaly 50 one upstream process step ; 
triggers the Safe Mode in step 1704 . In step 1706 , the analyzing the input data to determine that a first set of the 
process tool takes a user - defined action . An example default input data has a multi - variate relationship to at least one 
setting is " stop when idle ” or “ stop production . ” targeted process parameter for the current process step ; 

In step 1708 , statistics are gathered on critical input data evaluating the multi - variate relationship of the first set of 
to check if the data is valid . If critical incoming data is valid 55 the input data to form an initial prediction as to whether 
in step 1710 , then the model is retrained and tested on the current process step will cause a final semiconduc 
previous data , and the interval is user - defined . If critical tor product formed by the semiconductor process to 
incoming data is not valid in step 1710 , then the root cause pass or fail ; 
of corrupted incoming data is fixed in step 1712 before determining a confidence metric corresponding to the 
continuing to step 1714 . 1 60 initial prediction ; and 

If , after the model is retrained in step 1714 , the predicted generating a final prediction that the final semiconductor 
thickness is within specification in step 1716 , the Safe Mode product will fail when the initial prediction is that the 
is exited in step 1718 and active process control is reinstated . final semiconductor product will fail , or generating the 

If the predicted thickness is not within specification in final prediction that the final semiconductor product 
step 1716 , then alternate best models are trained and tested 65 will fail when the initial prediction is that the final 
in step 1720 . If the predicted thickness is now within semiconductor product pass and the confidence metric 
specification in step 1722 , the Safe Mode is exited in step is less than a threshold value . 
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2 . The method of claim 1 , further comprising : 9 . The method of claim 7 , wherein the input data includes 
creating a model for analyzing the input data , evaluating data from final wafer electrical testing , wafer sort tests , and 

the multi - variate relationship of the input data for the wafer acceptance tests . 
targeted process parameter of the individual process 10 . The method of claim 1 , wherein the final prediction is 

5 a weighted function that includes results of chip final testing , step , and determining the confidence metric ; the confidence metric , and a yield classification . training the model using the input data ; and 11 . The method of claim 2 , further comprising : deploying the model for subsequent production runs of creating a virtual metrology model based on data received the semiconductor process . from the at least one upstream process step ; and 
3 . The method of claim 2 , further comprising : providing an output of the virtual metrology model as 
receiving new input data from the subsequent production input data to the model . 

runs ; and 12 . The method of claim 1 , further comprising utilizing 
retraining the model using the new input data . the final prediction to determine next steps in the semicon 
4 . The method of claim 2 , wherein the model utilizes ductor process . 

machine learning , predictive analytics and data mining tech - 10 13 . A method useful in a multi - step semiconductor pro 
niques to analyze the input data , evaluate the multi - variate 15 cess , comprising : 
relationship of the input data , and determine the confidence receiving sensor data from a plurality of pieces of pro 
metric . duction equipment during prior production runs of the 

5 . The method of claim 2 , further comprising : semiconductor process ; 
identifying the input data that are relevant to the targeted 20 receiving metrology measurements from a plurality of 

sampled wafers of the prior production runs ; process parameter ; 
collecting the identified input data ; determining a multi - variate relationship between the sen 
cleansing the identified input data ; sor data , the metrology measurements , and a targeted 
transforming the identified input data ; and process parameter for one step of the multi - step semi 
training the model using the cleansed and transformed 75 conductor process ; and 

predicting metrology measurements for subsequent pro input data . duction runs based on the multi - variate relationship . 6 . The method of claim 1 , wherein the individual process 
steps of the semiconductor process include wafer fabrica 14 . The method of claim 13 , further comprising : 
tion , wafer test and sort , chip assembly and packaging , chip creating a virtual metrology model for predicting metrol 
final testing , system level testing , and chip burn - in . ogy measurements ; 

7 . The method of claim 1 , wherein the input data includes training the virtual metrology model using the sensor data 
key performance indicators , parametric measurements , and and metrology measurements from prior production 

runs ; and product performance measurements . 
8 . The method of claim 1 , wherein the metrology mea deploying the virtual metrology model for subsequent 

production runs of the semiconductor process . surements include optical and non - optical measurements of 
the wafer fabrication process step . 

30 


