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Step 1:

vield prediction = weight 1 * (vield prediction_classification) + weight 2 *
{confidence metric + offset]) + weight 3 ¥ (final test result 1+offser2) +
weight 4 * (final_test result 2+offset3)

Step 2:
If vield prediction >= defined threshold, then product is good and usable

Step 3:
If vield prediction < defined threshold, then product is failed and not usable

Where:
a) yield prediction is the yield prediction made by yield prediction
svstent.
b) vield prediction_classification is the ouiput of the classification
algorithm used in the yield prediction system.
¢} confidence_metric is g veal number between O and 1, 1 being highest
confidence and 0 being lowest confidence. The confidence metric can
be a number novmalized to be hetween 0 and 1 from a previous
canfidence metric or propensity metric.
d) defined threshold time is a predetermined threshold applied to a
real number that can be bounded. The threshold is used to separate
good vield predictions from bad yield predictions.
e} weightl is a predeiermined weight of the confidence metric
calculation.

1) offset! is a predetermined offset of the confidence metric calculation.

Fig. 13
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If vield prediction = good, then burn_in_time =
user_defined max_burn_in_time * weight1*({-confidence metric +

offsetl),

user _defined max_burn_in_time.

where
a) vield prediction is the yield prediction made by vield
prediction system or the algorithm. The algovithm can be a
classification algorithm.
b} confidence metric is a real number between O and 1, 1 being
highest confidence and 0 being lowest confidence. The
confidence metric can be a number normalized to be between ()
and 1 from a previous confidence metric or propensity metric.
c) user_defined max_burn_in_time is a predetermined burn-in
time that can be the standard burn-in time already used, or a
burn-in time deemed likely to identifv a part as reliable or not
reliable.
d) weightl is a predetermined weight of the confidence metric
calculation.
e} offset] is a predetermined offset of the confidence metric
calculation.

Fig. 14
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PROCESS CONTROL TECHNIQUES FOR
SEMICONDUCTOR MANUFACTURING
PROCESSES

CROSS REFERENCE

This application claims priority from U.S. Patent Appli-
cation No. 62/437,055 entitled A System for Machine Learn-
ing Assistance of Manufacturing Processes, filed Dec. 20,
2016, and also from U.S. patent application Ser. No. 14/952,
266 entitled Process Control Techniques for Semiconductor
Manufacturing Processes, filed Nov. 25, 2015, which in turn
claimed priority from U.S. Patent Application No. 62/084,
551 entitled System and Methods for Overlay Error Com-
pensation, Measurements, and Lithography Apparatus Con-
trol, filed Nov. 25, 2014; U.S. Patent application No. 62/091,
567 entitled System and Methods for Yield Prediction, Test
Optimization, and Burn-In Optimization, filed Dec. 14,
2014; and U.S. Application Patent No. 62/103,946 entitled
System and Methods for Using Algorithms for Semiconduc-
tor Manufacturing, filed Jan. 15, 2015. Each of the foregoing
applications is incorporated herein by reference in its
entirety.

TECHNICAL FIELD

This disclosure relates generally to semiconductor manu-
facturing processes, and more particularly, to improved
process control techniques for lithography, yield prediction,
and other aspects of semiconductor manufacturing pro-
cesses.

BACKGROUND

The semiconductor manufacturing industry is known as a
complex and demanding business, and it continues to evolve
with major changes in device architectures and process
technologies. Traditionally, the semiconductor industry has
been characterized by sophisticated high-tech equipment, a
high degree of factory automation, and ultra-clean manu-
facturing facilities that cost billions of dollars in capital
investment and maintenance expense.

For decades, semiconductor manufacturing was driven by
Moore’s Law and planar transistor architecture. This pro-
vided a predictable, self-sustaining roadmap for transistor
cost scaling and well-defined interfaces where each indi-
vidual process/layer could follow its own technology tra-
jectory independently. However, as the industry scales to
provide sub-20 nm nodes and other popular device archi-
tectures, such as MEMS, new processes are required, and
new approaches for semiconductor manufacturing are being
explored and implemented.

For sub-20 nm nodes, entirely new device architectures
are needed. In parallel, the rapid growth in the Internet of
Things (IoT) is driving the MEMS market. These changes
have presented difficult and unprecedented challenges for
the industry, generally resulting in lower manufacturing
yields.

In order to achieve acceptable yield and device perfor-
mance levels with these new architectures, very tight process
specifications must be achieved. Thus, better process control
and integration schemes are needed now more than ever.

One example of a specific current challenge for the
industry is lithography processes for sub-20 nm node manu-
facturing. EUV lithography techniques are known but have
not yet been widely adopted for production, and therefore,
193 nm immersion lithography must extend its capability via
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multi-patterning schemes, which adds masks and process
steps, and is therefore complicated and expensive.

Various processes also require more complex integration,
and therefore can no longer be developed independently of
each other. For example, the three-dimensional architecture
of finFET’s and 3-D NAND’s, as well as the complex
relationships between corresponding process steps, have
changed the way that process variabilities can affect device
performance and yield. As an example, many semiconductor
manufacturers are experiencing lower yield on their finFET
lines, and the need to increase yield is urgent. In the memory
space, 3-D NAND has become the dominant architecture,
and process control is a key issue for 3-D NAND process
layers. The IoT space is increasingly dominated by the
“More-than-Moore” trend, where devices incorporate tech-
nologies that do not necessarily scale to Moore’s Law. This
growing market space is driven by diversified and specific
processes, and the need for new ways to improve yield and
reduce manufacturing costs when implementing manufac-
turing solutions is needed.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a flow chart illustrating a process for making a
semiconductor device.

FIG. 2 is a block diagram illustrating relationships
between different steps of the process of FIG. 1 and their
cumulative effects on process variation and product perfor-
mance.

FIG. 3A is a top plan view of features formed in two
different layers of a device, with no overlay error.

FIG. 3B is a top plan view of features formed in two
different layers of a device, with overlay error.

FIG. 4 is a top plan view of features formed in a single
layer of a device, with a critical dimension error.

FIG. 5A is a side plan view of a substrate having features
formed in two different layers of a device, with no critical
dimension or overlay errors.

FIG. 5B is a side plan view of a substrate having features
formed in two different layers of a device, with no critical
dimension or overlay errors.

FIG. 6 is a flow chart illustrating a method for training and
deploying a model.

FIG. 7 is a block diagram illustrating examples of input
data and the sources for input data.

FIG. 8 is a flow chart illustrating a method for using a
deployed model to make process adjustments.

FIG. 9 is a graph showing the error between a DBO
measurement and a CD-SEM measurement.

FIG. 10 is a flow chart illustrating yield prediction using
a classification algorithm and a confidence metric.

FIG. 11 is a flow chart illustrating a method for training
and deploying a model to predict yield.

FIG. 12 is a block diagram of one embodiment of a yield
prediction system.

FIG. 13 shows equations illustrating a process for deter-
mining the status of a manufactured product as a function of
weighted test data, confidence metrics, and classification.

FIG. 14 shows equations illustrating a process for opti-
mizing burn-in time.

FIG. 15 is a block diagram illustrating additional appli-
cations in a semiconductor manufacturing process for pre-
dictive analytics.

FIG. 16 is a block diagram illustrating a high level
architecture for a model building system.

FIG. 17 is a flow chart illustrating action steps taken when
an anomaly is detected in the input data.
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FIG. 18 is a flow chart illustrating action steps taken when
erroneous thickness predictions are made in a virtual metrol-
ogy system.

DETAILED DESCRIPTION

1. Overview

This disclosure describes new techniques for measuring
and/or compensating for process variations in production
runs of a semiconductor manufacturing processes, for using
these techniques to predict yield at any step of the process,
and for optimizing testing and burn-in procedures. For
example, machine learning algorithms can be used to create
new approaches to data analysis by incorporating new types
of'input data, and the data can be more effectively correlated,
organized and pre-processed, then used to make process
adjustments. Data from prior production runs can be used to
create a model for a target parameter, and data from a current
production run can be input to the model to generate a
prediction for the target parameter, and to correlate the
prediction with the actual data.

2. Semiconductor Manufacturing Processes Generally

FIG. 1 is a high level view a typical semiconductor
manufacturing process 100, in which there may actually be
hundreds of steps. In general, data can be collected at every
step and sub-step of the process for a production run, and
yield may be calculated for each step as well as total yield
for the entire process predicted.

Wafer fabrication occurs in step 102, where a large
number of integrated circuits are formed on a single slice of
semiconductor substrate, such as silicon, known as a wafer.
Many steps are required in various sequences to build
different integrated circuits. For example, deposition is the
process of growing an insulating layer on the wafer. Diffu-
sion is the process of baking impurities into areas of the
wafer to alter the electrical characteristics. lon implantation
is another process for infusing the silicon with dopants to
alter the electrical characteristics. In between these steps,
lithographic processing allows areas of wafer to be patterned
with an image, then a mask is used to expose photoresist that
has been applied across the wafer, and the exposed photo-
resist is developed. The pattern is then etched to remove
selected portions of the developed photoresist, and these
steps are repeated to create multiple layers. Finally, metal-
lization is a specialized deposition process that forms elec-
trical interconnections between various devices/circuits
formed on the wafer. The fabrication process can take
several months to complete before moving on to the post-
fabrication steps.

Wafer test and sort occurs in step 104. After a wafer has
been fabricated, all the individual integrated circuits that
have been formed on the wafer are tested for functional
defects, for example, by applying test patterns using a wafer
probe. Circuits may either pass or fail the testing procedure,
and failed circuits will be marked or otherwise identified,
e.g., stored in a file that represents a wafer map.

Assembly and packaging takes place in step 106. The
wafer is diced up into separate individual circuits or dies,
and each die that passes through wafer sort and test is
bonded to and electrically connected to a frame to form a
package. Each die/package is then encapsulated to protect
the circuit.

In step 108, the packages are subjected to random elec-
trical testing to ensure that circuits in the package are still
working as expected.

In step 110, the remaining packages go through a burn-in
cycle by exposing the package to extreme but possible
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operating conditions. Burn-in may involve electrical testing,
thermal exposure, stress screening, or a combination of
these, over a period of time. Burn-in testing reveals defec-
tive components.

Finally, in step 112, a final round of electrical testing is
conducted on the remaining packages.

3. Machine Learning Algorithms

Recent advances in computing technologies and data
analysis techniques, such as performing parallel processing
on a massive scale, has led to progress in machine learning
algorithms, data mining, and predictive analytics. Machine
Learning is a branch of artificial intelligence that involves
the construction and study of systems that can learn from
data. These types of algorithms, along with parallel process-
ing capabilities, allow for much larger datasets to be pro-
cessed, without the need to physically model the data. This
opens up the possibility of incorporating data analysis to
make corrections on the lithographic apparatus for overlay
error and critical dimension (CD) variation. For example, in
addition to using the usual parameters to correct for overlay
error (e.g., CD metrology, on-scanner data, wafer shape and
geometry metrology, DBO measurement), process param-
eters and other metrology from upstream processes and
metrology can also be used to train a machine learning
algorithm.

Data has always played a role in semiconductor and
electronics manufacturing. In the semiconductor industry,
data was initially collected manually to track work-in-
progress (WIP). The types of data collected included metrol-
ogy data (measurements taken throughout the IC fabrication
process), parametric test data, die test data, final test data,
defect data, process data, and equipment data. Standard
statistical and process control techniques were used to
analyze and utilize the datasets to improve yields and
manufacturing efficiencies. In many instances, the analysis
was performed in a manual “ad-hoc” fashion by domain
experts.

However, as device nodes became smaller and tolerances
became tighter, factories became more automated and the
ability to collect data improved. Even with this improvement
in the ability to collect data, it has been estimated that no
more than half of the data is ever processed. Further, of the
data that is processed and stored, more than 90% of it is
never again accessed.

Moving forward, data volume and velocity continues to
increase rapidly. The recent norm for data collection rates on
semiconductor process tools is 1 Hz. The International
Technology Roadmap for Semiconductors (ITRS) predicts
that the requirement for data collection rates will reach 100
Hz in three years. Most experts believe a more realistic rate
will be 10 Hz. Even a 10 Hz rate represents a 10x increase
in data rates. In addition to faster data rates, there are also
more sensors being deployed in the semiconductor manu-
facturing process. For example, Applied Materials Factory
Automation group has a roadmap that shows that advanced
technology requirements are driving a 40% increase in
Sensors.

Given the massive amount of sensor data now collected,
and the low retention rates of the data, advancements in data
science could and should be implemented to solve the
problems of the semiconductor industry. Some progress has
been made to leverage data to improve efficiencies in the
semiconductor and electronics industries. For example,
microchip fabrication factories are combining and analyzing
data to predict when a tool for a particular process needs
maintenance, or to optimize throughput in the fab.
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Predictive analytics and Machine Learning Algorithms
can thus be used to address the challenges facing the
semiconductor industry. By drilling deeper into the details of
semiconductor manufacturing and knowing how to apply
predictive analytics to detect and resolve yield issues faster,
and to tighten and target the specifications of individual
manufacturing steps, increased yield can result. FIG. 2
shows an example of the cumulative effects of process
variation on product performance. The relationships can be
complex and difficult to correlate, e.g., key performance
indicators (KPIs) of the process steps, such as the critical
dimensions of lithographic and etch steps 202, the dielectric
film thickness 204, and film resistivity 206; parametrics,
such as channel length and width 212, transistor and diode
thresholds 214, and resistance 216; and product perfor-
mance, such as maximum frequency 222, and maximum
current 224. We can use predictive analytics to quantify
those relationships, and then leverage the relationships to
predict and improve product performance.

The semiconductor industry presents some unique chal-
lenges for applying predictive analytics and machine learn-
ing algorithms. Some of these challenges are: nonlinearity in
most batch processes; multimodal batch trajectories due to
product mix; process drift and shift; small amount of train-
ing data (maybe less than a lot); and process steps with
variable durations (often deliberately adjusted).

A good understanding of these challenges is needed to
properly employ predictive analytics. If applied properly,
predictive analytics can find complex correlations that may
have been difficult to uncover using other techniques. This
new access to deeper understanding and insight can then be
leveraged to increase yield, improve device performance,
and reduce costs like never before.

In one example, machine learning algorithms can be used
to predict yield. Yield prediction for a product refers to the
prediction of the quality or usability of the product after any
number of manufacturing steps are completed. If the yield
prediction for a product is “good” at a given manufacturing
step, then that product is predicted to be usable as of that
manufacturing process and should continue processing. If
the yield prediction is predicted to be “bad”, then that
product is predicted to be faulty or not usable as of that
manufacturing step and is not recommended for continued
processing. The yield prediction is useful in determining if
it is cost effective to continue processing of a product. In
some embodiments, the yield prediction is a component in
deciding whether or not to continue processing of the
product. The yield prediction is not necessarily the only
variable in making a decision about whether or not to
continue processing of a product.

In another example, virtual metrology can use machine
learning algorithms to predict metrology metrics such as
film thickness and critical dimensions (CD) without having
to take actual measurements, in real-time. This can have a
big impact on throughput and also lessen the need for
expensive TEM or SEM x-section measurements. Based on
sensor data from production equipment and actual metrol-
ogy values of sampled wafers to train the algorithm, virtual
metrology can predict metrology values for all wafers. The
algorithm can be a supervised learning algorithm, where a
model can be trained using a set of input data and measured
targets. The targets can be the critical dimensions that are to
be controlled. The input data can be upstream metrology
measurements, or data from process equipment (such as
temperatures and run times).

In yet another example, the metrology measurements
taken in-situ, or after a particular semiconductor process is
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complete, can be used as part of the input data for the virtual
metrology system. For example, metrology data can be
collected after a CMP step that occurred in one or more
processing steps preceding the current lithography step.
These metrology measurements can also be thickness data
determined by each metrology system, or the refractive
index and absorption coefficient.

In another example, metrology data can be collected
during etch processes. Optical emissions spectra or spectral
data from photoluminescence can be utilized as input data.
Data transformation or feature engineering can be performed
on in-situ spectral data or other sensor data that is collected
during a particular process such as etch, deposition, or CMP.
As an example, multiple spectra may be collected in-situ
during processing. The spectral set used may be all spectra
collected during processing, or a subset of spectra collected
during processing. Statistics such as mean, standard devia-
tion, min, and max may be collected at each wavelength
interval of the spectral set over time and used as data inputs.
As an alternative example, similar statistics can be collected
for a given spectrum, and the time series of those statistics
can be used as data inputs. As yet another example, peaks
and valleys in the spectrum can be identified and used as
data inputs (applying similar statistical transformation). The
spectra may need to be normalized or filtered (e.g., lowpass
filter) to reduce process or system noise. Examples of in-situ
spectral data include reflectometry from the wafer, optical
emissions spectra (OES), or photoluminescence.

In yet another example, the target of a virtual metrology
model can be the output of wafer probe tests, or measure-
ments made by wafer probe tests. Additionally, the outputs
from final wafer electrical testing, wafer sort tests and wafer
acceptance tests can be used as a target to the virtual
metrology model. Examples of final wafer electrical testing
parameters include, but are not limited to, diode character-
istics, drive current characteristics, gate oxide parameters,
leakage current parameters, metal layer characteristics,
resistor characteristics, via characteristics, etc. Examples of
wafer sort parameters include, but are not limited to, clock
search characteristics, diode characteristics, scan logic volt-
age, static IDD, IDDQ, VDD min, power supply open short
characteristics, ring oscillator frequency, etc. The target of a
virtual metrology model can be the output from a final test.
The target can come from tests that occur multiple times
under different electrical and temperature conditions, and
before and after device reliability stresses, such as burn-in,
or tests that occur at a burn-in step. The target can come from
electrical tests that are a mix of functional, structural and
system-level tests.

In yet another example, machine learning algorithms can
be used to control a manufacturing process step. As noted
above, virtual metrology can be used to predict a critical
dimension or film thickness for a manufacturing process
step. Before or during processing of this manufacturing step,
the prediction can then be used to set and/or control any
number of processing parameters (e.g. run time) for that
processing step. For example, in the case of CMP, if virtual
metrology predicts that a dielectric film thickness will be
100 Angstroms thicker than the target thickness if the wafer
was to be polished at the nominal polish time, then a
calculation can be made to lengthen the polish time so that
the final polished thickness can be closer to the target
thickness.

In yet another example, machine learning algorithms can
be used to predict when a fault or defect will occur in the
manufacturing process or on a specific tool at a process step.
Identifying a machine fault or failure, and finding the root
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cause of faults quickly can be essential in semiconductor
manufacturing. If faults in the manufacturing process can be
better detected and resolved, downtime and scrap can be
reduced. This is also referred to as fault detection and
classification (FDC). If faults can be predicted before they
occur, then downtime can be optimally scheduled and scrap
can be even further reduced. As an example, decision trees
can be used to determine which input features can best
predict a fault in a process, and develop decision rules
around detecting a fault.

4. Lithography and Overlay Errors

As noted above, lithography processes present a challenge
for sub-20 nm node manufacturing. A lithographic apparatus
is a machine that applies a desired pattern onto a substrate,
usually onto a targeted portion of the substrate. A circuit
pattern of an individual integrated circuit (IC) layer is
generated by a patterning device, usually referred to as a
mask or a reticle, which transfers the pattern onto a target.
Typically, the pattern is transferred by imaging onto a layer
of material (e.g., resist) that is sensitive to radiation, which
has been formed on the substrate. A network of successively
patterned adjacent target portions will reside on one sub-
strate.

One type of lithographic apparatus is a stepper, in which
the entire pattern of a target portion is exposed in a single
instance. Another type of lithography apparatus is a scanner,
where the target portion is irradiated via scanning the pattern
with a radiation beam in a given direction, while scanning
the substrate parallel or anti-parallel to this direction.

The location of patterned features in subsequent layers
must be very precise in order to build the devices properly.
All features should have sizes and shapes that are formed
within specified tolerances. The overlay error, which refers
to the offset or mismatch between features on adjacent
layers, should be minimized and within tolerance in order
for the manufactured devices to function properly. Overlay
measurements are thus important for determining the over-
lay error of a given pattern exposed with a mask on the resist
layer.

An overlay measurement module typically performs the
overlay measurement using an optical inspection system.
The position of the mask pattern in the resist layer relative
to the position of the pattern on the substrate is determined
by measuring an optical response from an optical marker on
the substrate which is illuminated by an optical source. The
signal generated by the optical marker is measured by a
sensor arrangement. Using the output of the sensors, the
overlay error can be derived. Typically, the patterns on
which overlay error are measured are located within a scribe
lane in between target portions.

Two common concepts for measuring overlay are image
based overlay (IBO) and diffraction based overlay (DBO).
For IBO, the image position of the substrate pattern is
compared to the mask pattern position in the resist layer.
Overlay error is a result of the comparison of these two
image positions. Imaging approaches are conceptually
straightforward, since they are based on analysis of a “pic-
ture” directly showing the alignment of the two layers. For
example, box-in-box or line-in-line alignment marks are
commonly used in the two layers. However, IBO error
measurement may be sensitive to vibrations and also to the
quality of focus during measurement, which can both result
in blurring of the picture. Aberrations in the optics may
further reduce the accuracy of the IBO measurement.

For DBO, a first diffraction grating pattern is located on
the pattern layer, and a second diffraction grating pattern
with identical pitch is located in the resist layer. The second
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grating should be nominally on top of the first grating, and
by measuring the intensity of the diffraction patterns, an
overlay measurement may be obtained. If there is an overlay
error between the two gratings, it will be detectable in the
diffraction pattern. DBO is less sensitive to vibration than
1BO.

To make multi-patterning solutions work, especially in
light of the extremely small dimensions now being imple-
mented, the need for more precise and accurate mask
overlay has become critically important. In addition to
minimizing mask overlay errors, critical dimension unifor-
mity (CDU) has also become important as the convolution
of overlay error and critical dimension (CD) variation can
lead to shorts, connection failures, and malfunctioning
devices.

For example, FIG. 3A shows a top view of a portion of a
device 300 having a feature 302 formed on a first layer and
a feature 304 formed on a second layer, e.g. above the first
layer, without any apparent overlay error. Another feature
(not shown) is also formed on the first layer under and in
direct alignment with feature 304 thereby creating no over-
lay error.

In contrast, FIG. 3B shows a top view of a portion of a
different device 310 having features 312 and 313 formed on
the first layer. Feature 314 is formed on the second layer and
should line up with feature 313 on the first layer, but in this
example exhibits an overlay error 311 due to the misalign-
ment of features 313 and 314.

FIG. 4 shows a top view of a portion of a device 400
having a CD variation between features formed in a single
layer. Thus, the dimension between features is designed to
be “x” and that dimension is observed between features 401
and 402 and between features 403 and 404. However,
between features 402 and 403 the dimension is “less than x”
which is a critical dimension error.

FIG. 5A is a side view of a device 500 having a substrate
501 and a first layer 502 of features formed on top of the
substrate. A second layer of features 503 is formed on top of
the first layer 502 in two different lithography steps. For
example, features 511-514 are formed in a first lithography
step, and then features 515-517 are formed in a second
lithography step. In this example, there are no apparent
overlay errors between features on the different layers, as
well as no CD errors since the dimension between the
features formed in the different lithography steps is consis-
tently “x.”

FIG. 5B is a side view of a different device 520 having a
substrate 521, a first layer 522 of features formed on top of
the substrate, and a second layer of features 503 formed on
top of the first layer 502 in two different lithography steps,
namely features 531-534 formed in a first lithography step,
and features 535-537 formed in a second lithography step. In
this example, however, there is an apparent overlay error
550 in the second lithography step as features 535-537 are
misaligned relative to the first layer. There is also a CD error
between the features formed in the different lithography
steps, where the dimension on one side of the features is
“greater than x” and the dimension on the other side of the
features is “less than x.”

Thus, determining and applying compensation for overlay
errors and CD errors has become extremely important in the
lithography process. Table 1 below illustrates the ever-
tightening budget for acceptable overlay error and CD error
for smaller and smaller nodes:
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TABLE I TABLE 1I
Technology Node (nm) 28 20 14 10 Target Input Data
Overlay budget (nm) 9.0 6.0 4.5 35
CD spec (nm) 4.5 3.0 2.0 1.3 Target 1 Input feature 1, 1 Input feature 1, 2 . Input feature 1, n
5 Target 2 Input feature 2, 1 Input feature 2, 2 Input feature 2, n
There are many sources of patterning errors that lead to Target m  Input feature m, 1 Input feature m, 2 Input feature m, n

overlay and CD errors. For example, the reticle may cause
placement errors, CD uniformity errors, and haze defects.
The lithography and etch processes may have focus and/or
exposure errors, overlay issues, etch profile issues (such as
CD and shape), and other defects. The wafer fabrication and
other processes may have issues with wafer shape and
uniformity, film property uniformity, CMP uniformity, ther-
mal processing, and backside and edge defects.

As processing technology transitions toward smaller and
smaller nodes, such as 10 nm and 7 nm, there is serious
concern about the capability of available metrology solu-
tions. The uncertainty in these solutions must be minimized
so the proper adjustments can be made to the scanner or
stepper to correct for the overlay and CD errors. While
overlay can be defined in an x-y coordinate system, or a
vector representing the overlay, there are many components
on the lithography apparatus that can provide adjustments to
correct for overlay.

Thus, new techniques are described for measuring and/or
compensating for lithographic pattern errors such as overlay
error and CD error. Machine learning algorithms can be used
to create new approaches to data processing and process
control. For example, more and varied types of input data
can be provided to the machine learning algorithms, and the
data can be more effectively organized and pre-processed to
determine how to adjust one or more parameters of the
lithography apparatus to correct the errors.

Referring to FIG. 6, a flow chart illustrates a method 600
for creating and deploying a model to evaluate a semicon-
ductor manufacturing process in order to correct for errors in
a lithographic process, such as overlay errors and CD errors.
In step 602, a target is selected. In one embodiment, the
target is an overlay measurement (e.g., IBO measurement,
DBO measurement, CD-SEM, TEM, etc.) and could be a
linear overlay offset in the x and y direction. The target could
also be other lithography apparatus parameters that need to
be controlled to minimize overlay error, such as reticle
position, reticle rotation, or reticle magnification. The target
could be parametric data such as on/off current of the
transistor, transistor thresholds, or some other parameter that
quantifies the health of the transistor. The target could also
be yield information, such as the functionality of a given die
or area on the wafer (sometimes measured as either pass or
fail). The target could also be semiconductor device perfor-
mance data.

In step 604, the parameters that are useful in evaluating
the target are identified, and in step 606, input data relevant
to the parameters is collected. Every set of input data is
associated with a specific output or target. For example, a set
of measured and observed values can be associated with an
overlay offset. Those values would be an input vector to the
model, and would be associated with the target, e.g., the
measured offset. If there are n input variables, then the input
vector size for each target would be 1xn. Therefore, if there
are m targets, there will be an input data matrix of size mxn,
with each row of the input data matrix associated with a
target. This is a typical training set in matrix format for a
machine learning algorithm. An illustration of this matrix is
given in Table II below:
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The target data could be collected after other processes
have been completed, or could be collected after the semi-
conductor device has finished all of its processing. Post
packaging data could also be used as targets.

Some of the parameters that are already regularly used in
overlay error compensation and lithography apparatus con-
trol will be used as part of this input dataset. For example,
these regularly used parameters can include DBO measure-
ments from the metrology equipment, wafer shape and
geometry measurements, or parameters from the lithography
apparatus.

Most importantly, other parameters from upstream semi-
conductor processes and metrology can be used as inputs to
the algorithm as well. These input parameters can include
other metrology measurements from earlier process steps,
including optical reflectometry or ellipsometry (normal inci-
dent, polarized or unpolarized light, oblique angles of inci-
dence, and varying azimuth angles).

These metrology measurements can be inputs to the
algorithm as an intensity at a given wavelength. For
example, metrology data may be incorporated from a reflec-
tometry measurement taken after a certain processing step
(for example, etch, or deposition). If the reflectometry data
is collected by illuminating the target with unpolarized
broadband light and has a detectable wavelength range of
250 nm to 850 nm, then the user could choose to sample that
light from 250 nm to 850 nm at 2 nm intervals, to get a total
of 301 spectral intensity measurements for that wavelength
range. These 301 samples would each be an input to the
algorithm. An example of how the input data is associated
with a target is shown in Table III.

TABLE I1I
Input Data
Target Intensity 250 nm Intensity 252 nm ... Intensity 850 nm
Target 1 1.2 14 1.5
Target 1 1.3 1.2 1.7
Target m 0.9 08 11

The metrology measurements can be taken in-situ, or after
a particular semiconductor process is complete. For
example, metrology data can be collected after a CMP step
that occurred in one or more processing steps preceding the
current lithography step. These metrology measurements
can also be thickness data determined by each metrology
system, or the refractive index and absorption coefficient. In
another example, metrology data can be collected during
etch processes. Optical emissions spectra or spectral data
from photoluminescence can be utilized as input data.

Data transformation or feature engineering can be per-
formed on in-situ spectral data or other sensor data that is
collected during a particular process such as etch, deposi-
tion, or CMP. As an example, multiple spectra may be
collected in-situ during processing. The spectral set used
may be all spectra collected during processing, or a subset
of spectra collected during processing. Statistics such as
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mean, standard deviation, min, and max may be collected at
each wavelength interval of the spectral set over time and
used as data inputs. As an alternative example, similar
statistics can be collected for a given spectrum, and the time
series of those statistics can be used as data inputs. As yet
another example, peaks and valleys in the spectrum can be
identified and used as data inputs (applying similar statistical
transformation). The spectra may need to be normalized or
filtered (e.g., lowpass filter) to reduce process or system
noise. Examples of in-situ spectral data include reflectom-
etry from the wafer, optical emissions spectra (OES), or
photoluminescence.

The input parameters could also include non-optical mea-
surements, such as Rs (conductivity, resistivity) measure-
ments taken by probes and other types of contact measure-
ments, or contact measurements such as the high resolution
profiler (HRP).

The input parameters can also originate from a Plasma
Impedance Monitor (PIM) which can be installed between
the matching network and the plasma electrodes of an etcher,
and can provide data on reactance, impedance, resistance,
current, voltage, power, phase and fundamental frequencies.

Process equipment measurements or metrics can also be
used as inputs to the algorithm, such as gas flow sensors,
power sensors, pressure sensors, temperature sensors, cur-
rent sensors, voltage sensors, etc. This data can be collected
in process steps that occurred before the lithography step
where overlay is to be measured and controlled. Examples
of these include process time, RF frequency and power from
an etch chamber, electric current and impedance measure-
ments, CMP polish times, motor current from the CMP tool,
CVD deposition times and information from mass flow
controllers, temperatures, pressures, etc. This data could be
from any or all upstream processes from the lithography step
being performed.

Parametric data and measurements such as channel width
and depth, transistor thresholds, and resistance can also be
used as inputs to the algorithm.

The diffraction spectra or data used in the DBO technique
can be part of the input data as well. All of the above
mentioned inputs could be correlated to slight variations in
the DBO output, and could thus result in better control of the
overlay error compensation or better lithography control
given the CD measurements from etch.

CD measurements taken after etch is an important param-
eter to single out as an input. As discussed above, these
measurements are convolved with the overlay error to
determine device performance or yield.

In DBO measurement systems, diffracted light is used to
measure overlay. However, changes in upstream processes
can affect the spectral signature. For example, if there is a
shift in the index of refraction of an upstream film property,
then the spectral signature can change. Likewise, if the
sidewall angle of the diffraction grating shifts due to a
process shift, this may cause a change in the spectral
signature. Therefore, by training the machine learning algo-
rithm with upstream data that may have an effect on the
diffraction spectra, the overlay error can be tightened or the
overlay measurement can be made to be more accurate if
correlations are discovered between upstream processes and
the spectral signature of the diffraction grating.

Returning to FIG. 6, in step 608, filtering, normalization
and/or cleansing steps can be performed on the input data.

In step 610, a dimensionality reduction or feature selec-
tion step is performed. The purpose of this step is to reduce
the number of input parameters for the algorithm. Dimen-
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sionality reduction techniques are generally known, for
example, principle component analysis (PCA).

In step 612, the data is then fed into the algorithm for
training. The algorithm could be one of many different types
of algorithms. Examples of machine learning algorithms
include Decision Trees, such as CART (Classification and
Regression Trees), C5.0, C4.5, and CHAID; Support Vector
Regression; Artificial Neural Networks, including Percep-
tron, Back Propagation, and Deep Learning (BigData
enabled); and Ensemble, including Boosting/Bagging, Ran-
dom Forests, and GBM (Gradient Boosting Machine). The
best algorithm may not be a single algorithm, but can be an
ensemble of algorithms.

In particular, the GBM (Gradient Boosting Machine) and
Random Forests algorithms can produce the best results.
Other machine learning algorithms, including the ones men-
tioned above, can also work well and should be considered.

Given the training input data and training targets, the
algorithm will produce a model in step 614. The model can
then be deployed in step 616.

FIG. 7 illustrates one example of collecting input data for
an input feature set 710, which is a matrix 712 having a
number of input parameters 712a, 7125 . . . 712x, which are
relevant to a specified target, which may be a measurement,
a calculated parameter, or a modeled parameter. The input
data may be collected during wafer fabrication, at or before
wafer test and sort and/or wafer probe testing. For example,
input data can be collected from the process equipment 720
during steps for etch, CMP, gap fill, blanket, RTP, etc., and
may include process variables such as process duration,
temperature, pressure, RF frequency, etc. Input data may
also include metrology data 730 such a CD, wafer shape,
film thickness, film resistivity, inline or in-situ measure-
ments, etc. Input data may also include parametric data 740
such as channel length, channel width, channel depth, tran-
sistor thresholds, resistance, etc.

FIG. 8 illustrates use of the model. In step 802, specified
input data is collected, e.g., as an input vector, then fed into
the model in step 804. If some of the specified data is not
present in the 1xn vector, there are a number of techniques
that can replace or estimate the missing data in the input
vector.

For each input vector of size 1xn fed into the algorithmic
model, a score will be generated in step 806. The score is a
prediction of the target made by the model, given the input
data. The score generated by the model will correspond to
whatever metric was used as a target for training the
algorithm that generated the model. For example, if a DBO
measurement was used for the target to train the algorithm,
then the score will be a predicted DBO measurement. If the
target was a parametric test value, then the score will be a
prediction of that parametric test value. In a typical situation,
the score can be the overlay offset prediction, for example,
an offset in the x direction or the y direction. In step 808, the
score is used to determine an adjustment to be made to one
or more components of the lithographic apparatus. For
example, the offset data could be applied to a control system
to make an adjustment to the lithography apparatus param-
eters or “control knobs” to adjust for the overlay error.

In addition to the score, the model can also output a
confidence metric that describes how reliable the score
prediction is. This can be useful in determining whether or
not to employ the score, or weight the use of that prediction
in conjunction with other traditional measurements. For
example, if the predicted offset is 3.0 nm, the DBO mea-
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sured offset is 6 nm, and there is a confidence of 0.8 (out of
1.0) in the prediction, then the final predicted offset would
be:

(3.0%0.8)+(6.0%0.2)=3.6 nm

As previously discussed, the convolution of CD error and
overlay error can affect device performance. In order to
optimize the device performance, it may be necessary to
adjust the overlay for a given CD. In one embodiment,
machine learning algorithms could be used with all or some
of the above mentioned input data, along with CD error
measurement and overlay error measurement to create a
model whose target is a lithography apparatus control
parameter, such as focus, power, or x-y direction control.
The goal is to optimize the lithography apparatus control
parameter (given a measured CD) such that the lithography
apparatus output results in the best semiconductor device
performance or yield.

As new input data and corresponding target data is
generated, the algorithm can be retrained so as to produce a
better model that will give better scores. A set of algorithms
can be trained simultaneously with the same input and target
dataset. The algorithm that gives the best output can be the
algorithm that is ultimately deployed. Alternatively, an
ensemble of algorithms can be identified as the best algo-
rithm to be employed. The best algorithm is identified by
whichever algorithm gives the best results through means of
a validation test on the training dataset. For example,
k-means cross validation is a popular technique for validat-
ing algorithms.

As noted above, the input dataset should undergo prepro-
cessing. The preprocessing step can improve the quality of
the input dataset and increase the accuracy and precision of
predictions made by the model. In some embodiments, other
data preparation techniques can be applied to the input data,
such as normalization or parameterization of the data.

Additionally, a z-score can be generated to compensate
for drift and shift in the data. For example if a tool is
calibrated, the input data may shift. If a shift occurs, this may
change the overall mean and standard deviation of the input
data, which would generate poor results with the model.
Either a human or algorithm can signal when a shift occurs,
such as when a process tool undergoes calibration, and the
data can be collected for a period of time in a “listening
mode” (algorithm prediction is not applied to product) after
the calibration to ensure there are not faulty predictions.
After a certain period of time, a z-score is generated from
that data. The z-score should be similar to the z-score of the
data that occurred before the calibration. This is an example
of normalizing the data before and after a calibration has
taken place.

In some embodiments, virtual metrology predictions gen-
erated from upstream process equipment and metrology data
can be used as inputs to the model. This essentially repre-
sents a multi-step model or algorithm, where first the virtual
metrology predictions are determined by a first algorithm.
For example, the outputs can be used as inputs to another
algorithm designed for overlay error compensation, overlay
error measurement, or yield prediction.

A prediction by the algorithm can be made after all testing
and manufacturing is complete on the product. In a typical
situation, the goal is to predict if the product will fail after
shipping and/or is in use, even if the product has passed all
final testing successfully.

The algorithm can be a classification or regression algo-
rithm, which are types of machine learning algorithms, but
could be one of many different types of algorithms.
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Examples of some of these algorithms that can be used
include: Decision Trees, CART (Classification and Regres-
sion Trees), C5.0, C4.5, CHAID, Support Vector Regres-
sion, Artificial Neural Networks, Perceptron, Back Propa-
gation, Deep Learning, Ensemble, Boosting/Bagging,
Random Forests, GBM (Gradient Boosting Machine), Ada-
Boost.

In some embodiments, the best algorithm may not be a
single algorithm, but can be an ensemble of algorithms. An
ensemble of algorithms can use different techniques to
determine which algorithm or combination of algorithms
gives the best prediction. For example, an ensemble algo-
rithm can take the average recommendation from all of the
algorithms in the ensemble. In another example, an
ensemble algorithm can use a voting scheme to make the
final recommendation. The ensemble algorithm can use
different weighting schemes applied to a collection of indi-
vidual algorithms in order to produce the best prediction.

In particular, good predictions have been produced using
the GBM (Gradient Boosting Machine) and Random Forests
algorithms.

The score is a prediction made for each input vector fed
into the model when the model is deployed. For example, if
the goal is to predict whether or not a wafer will be identified
as “good” at wafer test, the input vector can consist of all
input data associated with that wafer and that input data will
be fed into the model to make the prediction.

In some embodiments, the model can also output a
confidence metric that can describe how reliable the score is.
This can be useful in determining whether or not to employ
the score, or to optimize final testing, or to calculate burn-in
time, or it could be used in a final yield prediction. In the
case of a multi-step algorithm, the confidence metric can be
used as an input to a subsequent algorithm.

A propensity metric can also be generated when the
algorithm is a classification algorithm, and in one embodi-
ment, will have a value between 0 and 1. As an example, if
the propensity value is near 0, then the likelihood is that a
prediction is one classification (e.g., FALSE). If the propen-
sity value is near 1, then the likelihood is that a prediction
is the other classification (e.g., TRUE). The propensity
metric can indicate how confident the algorithm is in making
the given prediction, i.e., the closer the propensity metric is
to either O or 1, the higher the confidence that the prediction
is correct. In the case of a multi-step algorithm, the propen-
sity metric can be used as an input to a subsequent algorithm.

In an embodiment, as new input data and corresponding
target data is generated, the algorithm can be retrained so as
to produce a better model that will give better scores.

In some embodiments, a set of algorithms can be trained
simultaneously with the same input and target dataset. The
algorithm that gives the best output can be selected for
deployment.

In one example, algorithms can be applied to the process-
ing and manufacturing of finFET structures. Flowable gap-
fill film material properties are variable, which affects the
film density and its optical properties. This can confuse
optical metrologies used to measure and control film thick-
nesses, leading to erroneous film thickness measurements. In
the fabrication of finFET’s, this can lead to erroneous
measurement of the gate height, and thus cause the gate
heights to be variable. Variable gate height can lead to
increased gate capacitance, leakage, and a need for higher
drive current. Thus, inputs to the algorithm(s) can be etch
process parameters, flowable CVD process parameters,
CMP process parameters, oxide metrology outputs, TEM’s,
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and yield results. The algorithms can be used to either detect
and fix problems with the etch process, flowable CVD
process, and CMP process.

Etch depth can play a big role in the determination of gate
height. Etch process can also influence gate sidewall angles,
which can have an effect on gate performance and the optical
metrology signature. In some embodiments, etch process
parameters can either be used as input parameters to the
above models to detect problems or control the CMP pro-
cess, or can be the target for control. The algorithms can
control the process, detect process issues, and achieve
tighter gate specs. In some embodiments, the etch process
parameters can be used as inputs in determining the litho-
graphic tool control. Etch tool process parameters can be
used to predict the etch rate or final etch depth, as in the case
of virtual metrology. The outputs of the virtual metrology
algorithm can then be used as input to the lithographic tool
control, for example, as an intermediate step algorithm.

Algorithms can also be applied to the processing and
manufacturing of 3D-NAND, or vertical NAND memory
structures. To form vertical NAND (3-D NAND) structures,
semiconductor manufacturers use alternating layers of oxide
and nitride or oxide and conductor layers. These stacks can
be a very thick, such as 2 um high, and are continuing to
scale thicker. This results in high stress, delamination, and
cracking.

To address the stress issues, algorithms can use as inputs
the process parameters (e.g., gas flows, temperature, process
cycle times) of the blanket deposition of these films, as well
as the in-situ and inline metrologies (including broadband
light metrologies) used to measure these film stacks. With-
out explicitly having to apply any physical modeling, cor-
relations can be found between yield/inspection/stress tests
and the inputs mentioned above to immediately identify
problems with the blanket deposition.

3-D memory characterization and failure analysis pres-
ents many challenges, and there is a great need for better
characterization. Currently, TEM and x-ray techniques are
used, but are low throughput and may result in material state
change. Further, correlating probe failures and inline defect
inspection is difficult due to the fact that many defects are
embedded. E-beam inspection is increasingly being used to
identify structural defects, but incurs additional cost. In
some embodiments, gap fill process parameters are used as
inputs to the algorithm(s). E-beam 3D inspection can also be
used as targets for the algorithm.

5. Process Example for Overlay Error

An overlay process can be performed on one or more
training wafers, and the training wafers are then analyzed for
actual overlay errors. The most accurate way to measure
overlay error is CD-SEM or TEM. All available wafer
geometry parameters, such as thickness, diameter wafer
shape variation, in-plane displacement, stress-induced local
curvature, wafer thickness and flatness variation, front and
back surface nanotopography (NT), wafer edge roll-off
(ERO), sliplines; scanner parameters such as translation
(x,y,2), rotation (x,y,z), focus tilt, dose error, focus residual,
magnification, asymmetric magnification, asymmetric rota-
tion; CD measurements such as film thickness, trench depth,
metal gate recess, high k recess, side wall angle, resist
height, hard mask height, pitch walking; film property
parameters such as refractive index and absorption coeffi-
cient (n & k optical constants); parameters of other overlay
measurements such as DBO and IBO (can also include the
intensity values of the diffraction signature along with the
DBO measurement itself), are used as inputs to the training
model, with the corresponding actual overlay error as the
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target. The location on the wafer of the actual overlay
measurement is matched with the location of all of the input
parameters for that site, where applicable. Some process
parameters such as temperature, pressure, process duration,
etc. and other tool-related parameters are collected on a
per-wafer basis and cannot be mapped specifically to a site.
Rather, all sites for a given wafer will contain the same
values collected for the wafer when site-specific information
is not applicable or available. Alternatively if the spatial
resolution of the overlay error measurement is greater than
the spatial resolution of a given input parameter (e.g. a 9-site
CD measurement on a wafer), then the closest input param-
eter will be mapped to that actual overlay error measure-
ment. A good technique for doing this is k-means clustering.
Other techniques include interpolating (3-D) to determine
the value of the input parameter or cubic spline.

It is generally known that DBO and IBO are not perfect
techniques for measuring overlay due to process and geom-
etry influences. For example, FIG. 9 shows the error
between DBO and a more-accurate CD-SEM representation
of overlay, for 143 measurements. If DBO parameters (such
as intensity at each wavelength of the diffraction spectra are
included in the input dataset, along with the DBO predicted
measurement, it is possible to correlate the error shown in
FIG. 9 to process parameters of the lithography tool.

One approach specifies the target as the delta between the
DBO measurement and CD-SEM measurement. The error
associated between DBO and CD-SEM or TEM can be
attributed to an input dataset and corrected in production.

Once the training input data set is organized, it is
cleansed. The training input data may have corrupted values,
in which case the corrupted values are removed and replaced
with blanks or null values. The dataset may also contain
inconsistent values for various informational features such
as lot or wafer ID. For example, a lot description may appear
as “lot A” in some cases and “lot.A” in other cases. These
values will all have to be converted to the same nomencla-
ture, for example “lot.A.”

The input data is then normalized or transformed. For
example, in the case of tool calibration, the data may need
to be mean shifted. A z-score can also be calculated from the
input data set for different populations or distributions
within a given input data set. For example, if a portion of an
input is collected for a given tool calibration between time
A and time B, then that data is normalized or a z-score is
generated for the portion of data. If a different tool calibra-
tion is used between times B and time C, then normalization
or z-score generation is performed for that portion. The
result is a complete dataset that is insensitive to tool cali-
bration. Events other than tool calibration that can generate
the need for data transformation are upstream process
changes and consumable changes. It is important to note that
the same transformation will need to be applied once pro-
duction commences. To gather enough data in real-time
production in order to make the transformation, predictions
may not be applied until a user-specified amount of data is
collected in order to make transformation. However, it may
be determined that the transformed data is not an important
feature for the model.

The training dataset can be partitioned into training,
testing, and validation portions to ensure a robust model is
built that is not over-fit or over-biased. A typical partition
can be 60% training, 30% testing, and 10% validation. For
some models, such as boosted or bootstrap-aggregated mod-
els implemented in analytics platforms such as IBM SPSS
Modeler, the testing and validation sets need to be separated
as the testing dataset is used to further optimize the model
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while the validation set is completely blind to any model
training or optimizing activity. For other types of models,
such as standard linear regression, it is acceptable to separate
the partitions into training and testing only. It is important to
note that techniques such as k-fold cross validation can be
employed during the model building phase to ensure the
model is not over-fit to any given training set. This involves
rotating the training/testing/validation portions of the dataset
to ensure that all data sees a training or testing portion.

If'a given input has a large number of missing or corrupted
values, then that input feature may be removed from con-
sideration in training the model. For example, if more than
50% of the data is not present for a given input feature, then
that input feature can be thrown out. Alternatively, the
missing data fields may be filled in with nominal values, or
the records that do not contain values may be completely
removed from the training dataset. A determination of which
technique to use can be decided based on a human judgment
of the importance of a given input feature.

That dataset may also have to be merged for a given key.
The key typically is an x-y coordinate on the wafer or
scanner, or could be a die number. As mentioned above,
datasets may need to be mapped to a given key (cubic spline,
interpolation, or nearest neighbor). The location on the
wafer, such as a specific die or its location, is matched with
the location of all of the input parameters for that site, where
applicable. Some process parameters such as temperature,
pressure, process duration, etc. and other tool-related param-
eters are collected on a per-wafer basis and cannot be
mapped specifically to a site. Rather, all sites for a given
wafer will contain the same values collected for the wafer
when site-specific information is not applicable or available.
Alternatively, if the spatial resolution of the die location is
greater than the spatial resolution of a given input parameter
(e.g., a 9-site CD measurement on a watfer), then the closest
input parameter will be mapped to that actual die. A good
technique for doing this is k-means clustering. Other tech-
niques include interpolating (3-D) to determine the value of
the input parameter or cubic spline.

A training input dataset may contain thousands of input
features, and a relevant set of input features may need to be
determined. A process for removing irrelevant input features
that weakly correlate to overlay error may need to be
implemented. As a first step in this process, input features
that do not change at all can be removed.

There are also a number of approaches to feature selec-
tion. One approach is implementing random forests which
identify which input features are most relevant to predicting
overlay error. Another technique is the CHAID decision tree,
which will also identify features that are important. Linear
regression is another technique. ANOVA is another tech-
nique.

Alternatively, dimensionality reduction can also be
employed. Common dimensionality reduction techniques
include partial least squares and principal component analy-
sis, which will create a new smaller set of input parameters
based on the large set of initial input parameters. For
example, an input set of 5000 features can be reduced to an
input set of 30 newly-generated principle components that
can explain a significant portion of the variance in the data.
The outcome or output of the dimensionality reduction step
can be used as new inputs to the model. For example, the
principle components generated by PCA can be inputs to the
model. The principle components will represent a reduced
set of inputs from a larger set of inputs.

From the original input data, a set of virtual metrology
models may be constructed. The purpose of a virtual metrol-
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ogy model is to predict a key metric in the semiconductor
fabrication process. For example, an etch depth may be
predicted given certain upstream variables such as etch tool
process parameters, previous step thickness and process
variables such as deposition tool process parameters, CMP
process parameters, and optical n and k values of the film.
In some embodiments, the etch process parameters can be
used as inputs in determining the lithography tool control.
Etch tool process parameters can be used to predict the etch
rate or final etch depth (as in the case of virtual metrology).
The outputs of the virtual metrology algorithm can then be
used as inputs to the lithography tool control as an interme-
diate step algorithm. The output of the intermediate step
algorithm (or virtual metrology algorithm) can be used as an
input variable for the determination of overlay error.

Certain parameters in the models are important in deter-
mining the best model, of which certain variations can be
tried. The best combination of model parameters that gives
the least error between predicted and actual overlay error is
chosen. For example, the minimum number of records
allowed in a decision tree leaf can be set, or the number of
weak learners employed in a random forest algorithm or
GBM model, or the number of input features for each weak
learner in a random forest algorithm.

The candidate model predicts the overlay errors and
compares them with the actual overlay errors on the vali-
dation wafers. If the prediction accuracy satisfies certain
thresholds based on the overlay budget and other consider-
ations, the candidate model is considered to be valid and
ready to be deployed to predict overlay errors on other
production wafers which share similar processing conditions
with the training and validation wafers.

Once a model or multi-step model and associated param-
eters are chosen, the model is first implemented in produc-
tion in a “listening mode” where overlay error predictions
are made as wafers run through production. The predicted
overlay error can be compared to actual overlay error. If the
predicted error is found to be within a user-defined threshold
or overlay error budget, then the production is allowed to
continue to run and more data is collected.

If instead the model is not predicting within the defined
limits as compared to actual measured overlay error, then all
data collected up to that point is used to retrain the model as
outlined in the above steps. If the model now predicts a
result within the user-defined thresholds after being re-
trained, the model is then re-deployed in listening mode in
production. If the model performs within the specified error
limit (predicted—-actual overlay) for a user-specified period
of time (for example, 8 weeks of production), then the model
is allowed to replace some of the actual overlay measure-
ments used in actual production. Over time, if the model
continues to perform well, more and more product will rely
on the predicted overlay, until the overlay prediction is used
on all production.

The model will continue to be re-trained at user-defined
intervals (for example, once a week) as new data is made
available. To retrain the model, the entire dataset available
may be used. It may also be beneficial to use only the latest
data available for a period of time to train the model, for
example the last 3 months only, and discarding very old data
as it becomes obsolete as the process undergoes significantly
shifts. It may also be beneficial to retain for model training
older data that defines the extremes of the input and target
variance, and discard older redundant data to maintain
model training efficiency or save memory space. It may be
beneficial to continue to monitor the performance of the
predicted overlay, even after full production release, by
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continuing to compare to actual overlay measurements. If it
is found that the error between predicted and actual overlay
falls out of tolerance, then predictions will not be deployed
for a period of time until it is determined why the predictions
fell out of tolerance and the model is retrained and gradually
released back into production.

Once a candidate model is determined, one or more
validation wafers are selected from the production wafers,
and patterned wafer geometry parameters are obtained for
the validation wafers using a patterned wafer geometry
metrology tool. An overlay process is performed on the one
or more validation wafers and the one or more validation
wafers are analyzed for actual overlay errors. The candidate
model predicts the overlay errors and compares them with
the actual overlay errors on the validation wafers. If the
prediction accuracy satisfies certain thresholds based on the
overlay budget and other considerations, the candidate
model is considered to be valid and ready to be deployed to
predict overlay errors on other production wafers which
share similar processing conditions with the training and
validation wafers.

Once the candidate model is validated, the remaining
production wafers are scanned with a patterned wafer geom-
etry metrology tool to determine wafer geometry param-
eters. Based on the wafer geometry parameters and the
deployed predictive model, the system predicts an overlay
error for the remaining production wafers and adjusts the
lithography scanner to correct for the predicted overlay
error. Point-to-point prediction is crucial for feeding forward
the predicted overlay, applying the adjustment, and hence
reducing the actual overlay error after the exposure.

6. Yield Prediction

Predicting yield is generally important in the manufacture
of semiconductor devices, and even more so as the fabrica-
tion of semiconductor devices becomes increasingly expen-
sive. A yield prediction can be made at different steps in the
process.

If yield can be accurately predicted at any stage of the
manufacturing process, then it becomes possible to optimize
and save costs in later processes. For example, if a device
can be predicted to be bad before wafer sort and test, then
further testing and processing of that device can be avoided
thus saving further processing costs. Typically, there are
hundreds of steps in a semiconductor manufacturing pro-
cess. The process for fabrication of wafers can take 2 to 3
months before moving on to the post-fabrication stages,
which usually include wafer test and sort, assembly/pack-
aging, final testing, and burn-in. At each of these steps, a
predicted yield can be calculated. The fabrication yield can
be measured as the ratio of good wafers that make it through
the wafer fabrication process to all wafers that entered the
given process. The wafer test yield can be calculated as the
ratio of non-defective chips determined at wafer test to all
chips that entered into wafer test. The assembly and pack-
aging yields are calculated in a similar manner, i.e. the ratio
of good chips out to the total chips into those respective
processes.

Existing techniques for yield prediction have been based
primarily on a univariate analysis. For example, Markov
chains predict whether a chip results in positive yields given
the number of defects. However, multivariate analysis has
become more popular as the amount of test data has become
very large. A common technique employed for multivariate
analysis is discriminant analysis, but this technique assumes
that the data is normally distributed and independent, which
is not always the case.
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Further compounding the need for multivariate analysis is
the fact that the amount of data that is accessible in the
semiconductor manufacturing process continues to grow.
However, the use of machine learning algorithms, data
mining, and predictive analytics make the handling of large
data sets manageable. Furthermore, confidence and propen-
sity metrics associated with many machine learning algo-
rithms can be used to optimize wafer sort/testing, final tests,
and burn-in activities.

For semiconductor manufacturing, the measure of defec-
tive parts per million (DPPM) is evaluated when testing the
outgoing packaged chips. In a typical situation, functional/
structural test patterns are used at wafer sort and also after
the parts (or products) are packaged to determine which
products/die are faulty. Functional system level testing then
follows. The expense of testing at each subsequent stage can
be significantly higher than at the previous stage. Usually,
packaged products are tested in burn-in chambers and on
load boards, using either the same structural patterns used at
wafer sort or with functional test patterns. The cost of such
testing has increased significantly over the past several years
as design complexity has increased.

A typical business model for manufacturing microchips is
the foundry/fabless model, where wafers are fabricated at a
foundry and then passed off to the fabless design house or
packaging partner for subsequent processing and testing.
The term “known good die” (KGD) refers to die at or before
wafer sort/test which have been tested to the same quality
and reliability levels as their packaged counterparts. If a die
passes at the wafer sort/test phase but is found to be faulty
at some point after wafer sort, then the design house or
packaging house can incur the cost of any steps taken in
manufacturing the product after wafer sort. In one business
model, dies from the foundry that pass wafer sort are bought
by the fabless design house. If the die are found to be faulty
after packaging, then the design house pays for those die.
This can get very expensive for dies that go into stacked IC’s
or multi-chip modules, as all dies in the packaged chip
would have to be scrapped if only one of the die were found
to be bad.

Thus, it has become very important to know at the earliest
stage possible if a die will be functional after it is packaged.
If post-package yield can be more accurately predicted at
wafer sort, or at various stages of final test, or pre burn-in,
it can significantly reduce the costs incurred by whichever
entity owns the faulty product post-packaging. Also, predic-
tion and confidence metrics can be determined and can be
used to optimize burn-in times, which can result in signifi-
cant cost savings.

In general, yield prediction for a product refers to the
prediction of the quality or usability of the product. In one
embodiment, yield prediction can be one of two values,
namely, either “pass” or “fail” (or “good” or “bad” or
“usable” or “not usable”). For example, if the yield predic-
tion for a product is “pass” at a given manufacturing step,
then that product is predicted to be usable as of that
manufacturing process and should continue processing. If
the yield prediction is predicted to be “fail,” then that
product is predicted to be faulty or not usable as of that
manufacturing step and is not recommended for continued
processing. The yield prediction is thus useful in determin-
ing if' it is cost effective to continue processing of a product.
In some embodiments, the yield prediction is a component
in deciding whether or not to continue processing of the
product. The yield prediction is not necessarily the only
variable in making a decision about whether or not to
continue processing of a product.
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This disclosure describes novel techniques for predicting
yield before, during and after wafer sort. These yield pre-
dictions can be used to reduce costs by more accurately
predicting yield at wafer sort, final test, burn-in, and other
post-wafer sort testing. Yield predictions and their associ-
ated confidence metrics can also be used to make decisions
about which tests to perform after wafer sort. Yield predic-
tions can also be used to optimize and reduce burn-in time.

In one embodiment, yield prediction can be the prediction
or outcome of a classification system or algorithm. The
classification system or algorithm can determine if the
product will be functional or non-functional after all manu-
facturing steps are complete, given an input dataset to the
algorithm. For example, if the classification system or
algorithm predicts the product will be functional, then it can
be said that the yield prediction is positive, or that the
product will yield. For example, a “0” may be assigned to
indicate a passing/functional product, while a “1” may be
assigned for a failing/nonfunctional product.

As discussed with regard to overlay error, the classifica-
tion system or algorithm used to make a yield prediction can
also provide a confidence or propensity metric along with a
pass or fail classification, given the input data to the algo-
rithm. The confidence or propensity metric can be a value in
a defined range or an undefined range. In a typical situation,
the value can be a real number between 0 and 1. In this
example, if the value is close to 0, then the confidence is low.
If the value is close to 1, then the confidence is high.

A threshold can be set for the confidence value to bin the
confidence value as high or low. For example, if the confi-
dence metric varies between 0 and 1, and the threshold is set
at 0.5, then confidence values above 0.5 will be deemed as
high confidence, while values below 0.5 will be deemed to
be low confidence.

The confidence or propensity metric may be used in
conjunction with the pass or fail classification to make the
final yield prediction, as illustrated in FIG. 10. Data is input
to the classification algorithm in step 1002. If in step 1004
the classification algorithm predicts that the product will
pass, and the confidence metric is high for the classification
prediction in step 1006, then the yield prediction in step
1008 is said to be positive meaning there is a high confi-
dence that the product will pass.

However, if the classification algorithm predicts in step
1004 that the product will pass, but the confidence value is
low in step 1006, then the yield prediction in step 1010 is
negative so as to not produce any false positive outcomes. In
some situations, a false positive of this nature is very
undesirable, as products that are actually faulty but predicted
to be good can be very costly for the manufacturer.

Similar to the discussion of predicting overlay error
above, a yield prediction can be made by implementing
machine learning, predictive analytics, and data mining
algorithms (all of which will be referred to as algorithms).
The types of input data identified in the overlay sections are
also relevant to predicting yield and evaluation of other
targets. Further, the techniques and examples described in
the overlay sections above are incorporated by reference
here as well since they are also relevant to predicting yield
or evaluating other targets. Thus, the techniques described
for identifying input data, collecting input data, transforming
the input data, training and re-training the model, and
deploying the model, are applicable to yield prediction and
evaluation of other targets. FIG. 11 illustrates a method 1100
for creating and deploying a model to evaluate a semicon-
ductor manufacturing process in order to predict yield. In
step 1102, a target is selected. In one embodiment, the target
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is total yield for the entire manufacturing process. In another
embodiment, the target is yield for an individual process
step. The target could be yield for an individual die on a
wafer, or the entire wafer. The target could also be the yield
of a packaged chip or product at final test, before burn-in, or
a packaged chip or product at final test, after burn-in.

In step 1104, the parameters that are useful in evaluating
yield are identified, and in step 1106, input data relevant to
the parameters is collected. Every set of input data is
associated with a specific output or target. For example, a set
of measured and observed values are associated with actual
yield values, and those values are provided as an input
vector to the model.

In general, the input data to the algorithm can be input
data from any or all processes performed during wafer
fabrication. Wafer level data from the semiconductor fabri-
cation processes and metrology that are collected before
wafer sort and test can be used as part or all of the total
inputs to the algorithm. These input parameters can include
metrology measurements from process steps or metrology
measurements collected during the wafer fabrication pro-
cess. These measurements can include optical reflectomety
or ellipsometry data, and the intensity of each measurement
at a given wavelength. The metrology data can be incorpo-
rated from a reflectometry measurement taken after a certain
processing step (for example, CMP or Etch, or Gap Fill
processes). The metrology measurements can also be pro-
duced by non-optical measurements, such as Rs (conduc-
tivity, resistivity) measurements taken by probes and other
types of contact measurements, or contact measurements
such as the HRP or high resolution profiler.

In some embodiments, part or all of the input data can be
from the output of wafer probe tests, or measurements made
by wafer probe tests. Additionally, data from final wafer
electrical testing, wafer sort tests, and wafer acceptance tests
can be used as input data. Examples of final wafer electrical
testing parameters include, but are not limited to, diode
characteristics, drive current characteristics, gate oxide
parameters, leakage current parameters, metal layer charac-
teristics, resistor characteristics, via characteristics, etc.
Examples of wafer sort parameters include, but are not
limited to, clock search characteristics, diode characteristics,
scan logic voltage, static IDD, IDDQ, VDD min, power
supply open short characteristics, ring oscillator frequency,
etc.

The input data can come from a final test. The input data
can come from tests that occur multiple times under different
electrical and temperature conditions, and before and after
device reliability stresses, such as burn-in, or tests that occur
at a burn-in step. The input data can come from electrical
tests that are a mix of functional, structural and system-level
tests.

The test outputs which can serve as inputs to the yield
prediction system can be of binary type (pass/fail) or can be
analog, or a real number that can be bounded or unbounded.
The analog output can be a voltage reading, or a current
reading.

In step 1108, the input data undergoes filtering, normal-
ization and/or cleansing steps. In step 1110, dimensionality
reduction or feature selection is performed to reduce the
number of input parameters for processing the algorithm.

In step 1112, the data is then fed into one or more
algorithms for training. Given the training input data and
training targets, the algorithm(s) will produce a model in
step 1114, which can be deployed in step 1116 to act on real
time data.
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In one embodiment, the status of the manufactured prod-
uct can be the result of a function that weights the results of
final tests, the confidence metric of the yield prediction
system, and the classification of the yield prediction system,
as illustrated in FIG. 13. If the status prediction is above a
specified threshold, then the part can be determined to be
good, or usable.

In an embodiment, the algorithm utilizes calculated pro-
pensity from an upstream test which contains more failures
to determine the failure rate of the final test, which may
contain much fewer failures. For example, at the end of an
upstream testing process, the failure rate may be higher,
which would make it easier to produce a model that gives
more accurate predictions (e.g., a CHAID decision tree). A
model can be built to determine the failure rate of this
upstream process, and produce a pass/fail prediction along
with a confidence and propensity metric. The failure pre-
diction, confidence and propensity metric can then be used
as inputs to predict the failure of a test further downstream.
This may be particularly useful when the test downstream
has a lower number of failures, making it more difficult to
build an accurate model.

In some embodiments, a data processing step for a clas-
sification model may include oversampling. For example, if
there are 100 failed chips and 10,000 passed chips in the
training dataset, oversampling would mean replicating the
rows of failed chips 100 times so that there are now 10,000
rows of failed chips. This balanced set is then fed into the
model. Alternatively, under sampling would mean (ran-
domly) selecting 100 passed chips and feeding that into the
model, along with the other 100 failed chips to create a
balanced training set. This can be an important step in
creating a decision tree.

In some embodiments, limits are set on how small the leaf
nodes of the decision tree can be so as not to result in an
over-biased or over-fit model to the training dataset.

In some embodiments, the model is trained on a portion
of the data. It is then tested on a different portion of the data
that is blind to the training phase. K-fold cross validation can
also be applied to determine the robustness of the model. In
the case of boosted on bagged algorithms, a training, testing,
and validation dataset can be partitioned, where the valida-
tion set is completely blind while the testing set is used to
optimize the model.

The following is an example of a yield prediction algo-
rithm. The input data is cleansed, transformed, and orga-
nized as previously described. The input data can be asso-
ciated with each die, or mapped to a particular die by using
the techniques described above. The input dataset can con-
tain a set of die manufactured throughout the manufacturing
process with associated input data for each die. Along with
each die can be the associated health of the die, i.e., pass or
fail. Typically, most of the die will pass but some of the die
will be determined to fail after the final testing step.
Throughout the final testing process, the die will undergo
various tests and reliability stresses (e.g., burn-in), and some
of'the die will incrementally fail and be removed. The model
is a type of classification model that uses the die’s health
(pass/fail) as a target. The issue with training a model around
the die health (pass/fail) at the final stage of the process is
that the number of failures is usually very low by this stage.
For example, the number of failures after final testing may
be only 100 out of 1,000,000. Most classification models
will not be able to predict failure accurately with such a low
number of failures in the dataset used to train the model. To
mitigate this issue, an intermediary model is trained around
an earlier upstream test that will have more failures. Bal-
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ancing techniques such as oversampling are still applied to
the dataset since the number of failures will be relatively low
as compared to number of passes, for example 10,000
failures out of 1,000,000. From this intermediary model, a
propensity metric is generated for all remaining passed die
which will continue to undergo subsequent processing. By
the time the die reaches final test, the propensity score from
the earlier intermediary model is used as an additional input
to train the final failure prediction model. The dataset is
again balanced (e.g., oversampling) to ensure the number of
failures will equal the number of passes in the model training
set. The overall accuracy of the model can improve if the
propensity of the upstream model is also used as input.
Training, testing, validation, and cross validation techniques
are applied to determine the best model. Various models are
tried in the techniques described earlier. The model that
gives the least number of false positives and/or false nega-
tives (depending on which metric is of most importance to
the user) will be the model that is selected. Typically, the
user will be interested in minimizing false negatives (i.e.,
predicting a die will pass but in actuality it fails), since this
will mean it may be erroneously routed for less stringent
testing or burn-in, resulting in a sub-stardard die being
shipped to a customer, thus increasing risk of field failure.

7. Testing and Burn-In Optimization

The yield prediction system can be used to calculate and
optimize burn-in time. The burn-in time calculation can be
a function of the yield prediction or classification produced
by the yield prediction system, the confidence or propensity
metric computed by the yield prediction system, and/or
actual final test results, as illustrated in FIG. 14. As an
example, if the yield is predicted to be positive by the yield
prediction system, and the confidence metric calculated by
the yield prediction system is a relatively high value, then
the burn-in time can be calculated to be lower than average,
or completely eliminated. In another example, if the product
is predicted to be good by the yield prediction system, and
the confidence metric is calculated by the yield prediction
system to be low, then the burn-in time may be calculated to
be higher than average. In another example, if the product is
predicted to be bad by the yield prediction system, then the
burn-in time can be set to a maximum value.

The yield prediction can also be used to optimize final
testing. For example, if the product is predicted to be good
with a high confidence value, then certain expensive tests
can be skipped. In another example, if the yield prediction
is good but the confidence value is low, then more exhaus-
tive testing can be implemented than the case where yield
prediction is good and confidence is low. In yet another
example, if the product is predicted to be good, a decision
can be made to do the most rigorous amount of testing, or
the decision can be made to forgo further testing and
processing, and scrap the product.

8. Other Applications

As discussed herein, predictive analytics can be used to
discover the relationships between the various process steps,
parametrics, and product performance, which can then be
leveraged to predict and improve product performance. By
incorporating the advantages of machine learning and par-
allel processing, predictive analytics can find complex cor-
relations among the input data that have been difficult to
uncover using other techniques. Thus, in addition to pre-
dicting yield and correcting for overlay errors and CD
variations, as discussed above, predictive analytics can be
used in many ways in the semiconductor manufacturing
process to improve performance, quality, and yield, and to
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reduce costs. Algorithms can be used to optimize some or all
of the processes in semiconductor manufacturing.

FIG. 15 illustrates several additional applications 1302 for
the techniques described herein, including yield prediction/
improvement; run-to-run control; wafer-to-wafer control;
real-time and in-situ control; virtual metrology; fault pre-
diction and classification; factory-wide control; and predic-
tive maintenance, among others. With regard to yield, the
techniques disclosed herein can predict yield, or identity the
root cause of yield detractors, or link parametric faults to
inline process data, as shown in box 1304, among others.
With regard to virtual metrology, the techniques disclosed
herein can predict specific process metrics using metrology
equipment data, process equipment data, and upstream data,
as shown in box 1306. With regard to fault prediction and
classification, the techniques disclosed herein can classify or
detect faults on process equipment using process equipment
data and in-situ metrology, as shown in box 1308. With
regard to factory-wide control, the techniques disclosed
herein can discover relationships hidden in the process data,
as shown in box 1310. With regard to predictive mainte-
nance, the techniques disclosed herein can identify root
causes for different types of defects, and predict future
defects using inline process data, as shown in box 1312.

In some embodiments, virtual metrology can use algo-
rithms to predict metrology metrics such as film thickness
and critical dimensions (CD) without having to take actual
measurements in real time. This can have a big impact on
throughput and also lessen the need for expensive TEM or
SEM x-section measurements. Based on sensor data from
production equipment and actual metrology values of
sampled wafers to train the algorithm, virtual metrology can
predict metrology values for all wafers. The algorithm can
be a supervised learning algorithm, where a model can be
trained using a set of input data and measured targets. The
targets can be the critical dimensions that are to be con-
trolled. The input data can be upstream metrology measure-
ments, or data from process equipment (such as tempera-
tures and run times).

Identifying a machine fault or failure, and finding the root
cause of faults quickly, can be essential in semiconductor
manufacturing. If faults in the manufacturing process can be
better detected and resolved, downtime and scrap can be
reduced. This is also referred to as fault detection and
classification (FDC). If faults can be predicted before they
occur, then downtime can be optimally scheduled and scrap
can be even further reduced. Thus, algorithms can be used
to predict when a fault or defect will occur in the manufac-
turing process or on a specific tool at a process step.

In some embodiments of the invention, algorithms can be
used to determine when maintenance needs to be performed
on manufacturing equipment. This is referred to as predic-
tive maintenance in the semiconductor manufacturing pro-
cess.

9. Model Creation and Implementation

FIG. 16 illustrates an embodiment of a high level system
architecture for creating and using models for improved
semiconductor process control. At the highest level, the
system consists of a model creation server (MCS) 1610 and
one or more prediction clients (PCs) 1620 which can use
models created by the MCS, and which interact with the
fab’s centralized data repository 1630. The MCS 1610
generates models that are deployed on the Process Tool 1640
for which control will be implemented. The PC 1620 col-
lects in-situ metrology/process data and sends predictions
and process control signals based on an embedded model, in
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real time. The data repository 1630 contains CD/inline
measurements, upstream in-situ metrology, trace data, and
other upstream process data.

At set time periods, the MCS can collect data about the
manufacturing process from one or more sources. This data
can typically be a collection of readings from sensors used
in the manufacturing process. The collection can typically be
all the relevant measurements made during the manufactur-
ing of a set of earlier completed items. After collecting data,
the MCS can enter a model building phase. During the
model build phase, the MCS can build numerous machine
learning models designed to make a prediction. From the
generated models, one or more preferred models can be
selected. Code for these models can be generated and
compiled and sent to the PCs. The PCs can be software
programs that periodically receive the data from prior steps
in the manufacturing process for the current item. They then
can use the generated model(s) to predict necessary infor-
mation for the current manufacturing step on an item.

The MCS 1610 can periodically build new models for the
PCs. The desired frequency of this period is provided by the
user of this system. Further the user can be allowed to
specify the length of time spent in creation of new models.
At the end of'this time period, the system can choose the best
model(s) and send a program to the PCs that implements the
model(s).

Prior to the model building phase, the MCS can collect the
needed data. The sources of this data can be set by the user
of this system. The data sources can be, but are not limited
to, databases of collected information, local or remote files
containing the desired data, or through network connections
that feed the data to the MCS.

Collected fields data can be labelled according to its
importance. This labelling of data fields may be done as a
configuration step, by a user of the system, or by the system
itself from information it learned in analyzing the prior data.
The labels can be used to help the system understand the role
a given data field plays in the prediction making process.
Examples of potential labels are:

Critical: a new model or prediction will not be made

without this data

Non-critical-replaceable: a new model or prediction can

be made with older copies of the data field or imputed
values for the field

Non-critical-irreplaceable: a new model or prediction will

be made with reduced accuracy.

New data can be checked for correctness. The system can
check for correct column/field counts, correct header names,
value types, reasonable values, missing values, null values,
or unexpected whitespace. These checks can be set by the
user, or system configuration, or suggested by the system
based on prior values seen. Further, new data can be checked
by use of a checksum or similar device to ensure that the new
data is not an unintended repeat of earlier data. Deviance
from the expected values can generate a warning if non-
critical, or an error if critical data is not available.

If the MCS is configured to rely on several data sources
to build a model and one or more of those data sources
cannot provide the expected data, and that data has been
labelled as Non-critical, then the model building can pro-
ceed after repeated attempts to collect the data. Model
building will proceed using the most appropriate choice: use
prior data in place of the missing data, impute missing data
values, or build models without it. The most appropriate
choice may be set by either the user, system configuration,
or the system itself.
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In some cases it can be necessary for the user to specify
a subset of the historical data that should be ignored or
weighted differently during the training of a model. An
example that would require this is when models are built
relying on an upstream data source and the performance of
that source is changed radically (e.g. repairs, or given new
settings). In such cases a user would know explicitly about
the change, and could adjust how or if that historical data
should be used.

This system provides the means for a user to specify what
data should be treated differently and how in future training.
Further when the system detects large changes in a data
source, it can send an alert to the user to consider whether
such changes should be considered.

This historical data may be stored in a local database that
the system uses in the cases where the data sources do not
store enough historical data.

Once the data is collected, it may then need to be
transformed into a more appropriate format for model build-
ing. Some transformations will be operations typical to
standard database operations. For example: inner-join,
outer-join, partial joins, group-by, columnar or row wise
appending of two datasets. Other transformations may
involve value imputation. If value imputation is needed,
several methods may be used. Examples are: expected
means, imputation through Generalized Low Rank Models.
Beyond this, a wide variety of domain transformations will
be used to convert data fields into new fields that are better
suited to constructive machine learning models. These trans-
formations can have a wide range of possibilities. For
example, in the manufacturing of semiconductors, transfor-
mations of spectra may involve low pass filters, Fourier
transforms, binning values and tracking peaks, among other
things. In wafer processing an example would be the trans-
formation of coordinate systems. Some examples of other
common transformations are:

Normalization: the generation of z-scores from an exist-
ing field, or offset by mean divided by the standard
deviation.

Aggregation: aggregate the mean failures for an indi-
vidual LotID/WaferlD, aggregate the mean of an input
value for a given radial band on the wafer.

Binning: decile binning.

Modelling: using the output of one model as input to
another, common examples are PCA, GLRM, cluster-
ing, regressions, or classifications to create new data
features.

Weight generation: the generation of weights to aid
machine learning algorithms to give greater value to
specific data input.

Rebalancing: countering imbalanced datasets with over or
under sampling as needed.

Filtering: identification and possible removal or weight-
ing of outliers.

The model building phase can be triggered by either
manually by a user or through user settings. These settings
may be a user defined schedule. This schedule may include
a frequency that is a function of the amount of available data.
As an example, a user may want frequent retraining until the
historic data reaches a set size or the models reach a chosen
metric to indicate stability. Other triggers for training can
include rules within the system. An example could be PCs
seeing data values occurring beyond a preset expected range.
Such an event could be set as a rule for the PCs to contact
the MCS and trigger a new model building phase.

During the model building phase, the MCS can build one
model or an array of machine learning models. A limit to the
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training time to find the best model may be set by the user.
The system can return the “best” model(s) found within that
time.

Models training may begin from scratch, with check-
pointed models or may be seeded with the results of simu-
lated data from physics based models. The system will
decide the most appropriate starting point.

The exploration of different models can be done as a
hyperparameter search that explores the parameter space for
each kind of machine learning model available to the
system. The starting bounds for these hyperparameter
searches may come from either configuration settings of the
system, or from bounds created by the system from exam-
ining the results of previous model building phases. Ran-
domly selected bounds may also be included to allow for the
exploration of new model training parameter spaces.

Further model training may also include creating models
that only rely on subsets of the available data fields. This
modelling can be done to create alternate models that can be
used in the cases where a client with realtime needs does not
receive all expected data in time and needs to make a
prediction with only partial data.

Selecting the “best” models can be based on metrics set by
the user and or system configuration. In addition to standard
machine learning metrics, other metrics include, but are not
limited to, factors such as expected runtime costs (e.g.
execution time, memory footprint) or known benefits of a
particular model type. Another metric that may be included
is checks for models that seem to predict too well. “Too good
to be true” models are typically a sign of model overfitting
and models with these characteristics can be rejected in
favor of a model expected to generalize better.

New models may be compared against pre-existing mod-
els (i.e. models from a previous model training phase). It
may be that previous models are chosen as the most desir-
able.

For data sets that warrant it, the performance of a model
may be judged by cross-validation or against hold-out
validation sets as the system deems appropriate.

An example of one factor that may drive many of the
hyperparameter and evaluation choices is available data
size. Specific model types or parameters settings may be
known to generalize better or train more accurately for given
dataset sizes. The system will apply this knowledge in its
selection of training parameters and choosing the “best”
model(s).

After the desired models are selected, these models are
backed up and stored to either disk or a database.

In one embodiment, once the “best” model(s) are chosen,
the MCS and PCs can begin the process of transferring the
models to the clients. This process includes a communica-
tions handshake between the server and client that may
include authentication. The models being sent may take one
of many forms. The model can be expressed as either source
code, compiled binary code, or a parameter list to allow the
model to be recreated on the client side. The sending of the
model may include encryption of the model being sent.

Once models are received by the PCs, the model can be
checked for accuracy. The first check can be through a
checksum to ensure that the model was transported as
expected. A second check that may be conducted is against
data values that are selected to give a set answer. The model
can be fed these values and the answer checked for validity.

If a PC does not receive a correct model, the desired
failover can be pre-set by the user. This failover can include
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a set number of retries, falling back to using previous
models, or falling back to a “safe mode” whose operation is
defined by the user.

The prediction client (PC) is a system that collects data
from the prior manufacturing steps and using model(s)
provided by the MCS to make a prediction. This prediction
is published to a file, a database, a network connection, an
API call or other electronic mechanism.

The client can attempt to acquire the expected data. The
sources of this data are set by the user of this system. The
data sources can be, but are not limited to, databases of
collected information, local or remote files containing the
desired data, API calls to software or through network
connections that feed the data to the PC. If any data source
is not available, the system can see if a user set time limit has
been set to deliver a prediction. If enough time is expected
to remain, it will repeat its attempts to acquire the needed
data. If insufficient time remains, the system can see if
partial data models exist for the available data. In the case
that they do, the system can use the appropriate partial data
model. In the case that time has elapsed, and no partial data
models exist for the available data, the client can execute its
“safe mode” action as well as send an alert to the MCS. The
“safe mode” action is set by the user.

Further, if the values of the acquired data are not of the
expected type or within expected value ranges (as set by the
user or through system detection), the “safe mode” action
will be executed.

In the case where a prediction can be made, that predic-
tion may then be checked to ensure that the prediction is
within acceptable bounds set by the user or the system. In the
case that the prediction is beyond these bounds, the client
will execute its “safe mode” action. In the case that the
prediction is within the expected ranges, the prediction is
delivered in accordance to the user specified manner. A log
of the data, model used, and the prediction may be kept.

The system can have a defined path of acceptable behav-
iors. All activities outside of this path can generate alerts or
warnings to be consumed by the users of the system.

Some mention of Safe Mode has been given above. Safe
Mode can allow a contingency plan in the event, for
example, if the data needed to make a prediction by the
model(s) is not available, if anomalies are detected in the
data or the input data is corrupt, or if a prediction falls
outside of a user-defined range. Some examples of Safe
Mode are given in FIG. 17 and FIG. 18.

FIG. 17 illustrates one embodiment of a Safe Mode 1700
that is initiated in step 1702 when there is an anomaly
detected in the input data, i.e., critical data is outside of
historical and/or user defined bounds. This data anomaly
triggers the Safe Mode in step 1704. In step 1706, the
process tool takes a user-defined action. An example default
setting is “stop when idle” or “stop production.”

In step 1708, statistics are gathered on critical input data
to check if the data is valid. If critical incoming data is valid
in step 1710, then the model is retrained and tested on
previous data, and the interval is user-defined. If critical
incoming data is not valid in step 1710, then the root cause
of corrupted incoming data is fixed in step 1712 before
continuing to step 1714.

If, after the model is retrained in step 1714, the predicted
thickness is within specification in step 1716, the Safe Mode
is exited in step 1718 and active process control is reinstated.

If the predicted thickness is not within specification in
step 1716, then alternate best models are trained and tested
in step 1720. If the predicted thickness is now within
specification in step 1722, the Safe Mode is exited in step
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1718. If the predicted thickness is still not within specifi-
cation in step 1722, then feature selection and dimension-
ality reduction is performed in step 1724, and the process
returns to step 1708.

FIG. 18 illustrates another embodiment of a Safe Mode
1800 that is initiated in step 1802 when there are erroneous
thickness predictions in a virtual metrology system. This
causes WL endpoint failure due to multiple erroneous thick-
ness predictions during wafer processing (excursion han-
dling), which may cause EP prediction time to fall outside of
a user-specified range. These erroneous thickness predic-
tions trigger the Safe Mode in step 1804. In step 1806, the
process tool takes a user-defined action. An example default
setting is “stop when idle” or “stop production.”

In step 1808, the model is retrained and tested on previous
data, and the interval is user-defined. If the predicted thick-
ness is within specification in step 1810, the Safe Mode is
exited in step 1812 and active process control is reinstated.

If the predicted thickness is not within specification in
step 1810, then statistics are gathered on critical input data
in step 1814 to ensure the data is valid. If critical incoming
data is valid in step 1816, then alternate best models are
trained and tested in step 1818. If the predicted thickness is
now within specification in step 1822, the Safe Mode is
exited in step 1812. If the predicted thickness is still not
within specification in step 1822, then feature selection and
dimensionality reduction is performed in step 1824, and the
process returns to step 1814.

If critical incoming data is not valid in step 1816, then the
root cause of corrupted incoming data is identified and fixed
in step 1820 and the process returns to step 1808 to again
retrain and test the model.

10. Conclusion

While the foregoing written description of the invention
enables one of ordinary skill to make and use what is
considered presently to be the best mode thereof, those of
ordinary skill will understand and appreciate the existence of
variations, combinations, and equivalents of the specific
embodiment, method, and examples herein. The invention
should therefore not be limited by the above described
embodiments, methods, and examples.

The invention claimed is:

1. A method for predicting whether a semiconductor
product will pass or fail a multi-step semiconductor process,
comprising:

receiving input data from a first plurality of metrology

measurements for a current process step and from a
second plurality of metrology measurements for at least
one upstream process step,
analyzing the input data to determine that a first set of the
input data has a multi-variate relationship to at least one
targeted process parameter for the current process step;

evaluating the multi-variate relationship of the first set of
the input data to form an initial prediction as to whether
the current process step will cause a final semiconduc-
tor product formed by the semiconductor process to
pass or fail;

determining a confidence metric corresponding to the

initial prediction; and

generating a final prediction that the final semiconductor

product will fail when the initial prediction is that the
final semiconductor product will fail, or generating the
final prediction that the final semiconductor product
will fail when the initial prediction is that the final
semiconductor product pass and the confidence metric
is less than a threshold value.
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2. The method of claim 1, further comprising:

creating a model for analyzing the input data, evaluating
the multi-variate relationship of the input data for the
targeted process parameter of the individual process
step, and determining the confidence metric;

training the model using the input data; and

deploying the model for subsequent production runs of

the semiconductor process.

3. The method of claim 2, further comprising:

receiving new input data from the subsequent production

runs; and

retraining the model using the new input data.

4. The method of claim 2, wherein the model utilizes
machine learning, predictive analytics and data mining tech-
niques to analyze the input data, evaluate the multi-variate
relationship of the input data, and determine the confidence
metric.

5. The method of claim 2, further comprising:

identifying the input data that are relevant to the targeted

process parameter;

collecting the identified input data;

cleansing the identified input data;

transforming the identified input data; and

training the model using the cleansed and transformed

input data.

6. The method of claim 1, wherein the individual process
steps of the semiconductor process include wafer fabrica-
tion, wafer test and sort, chip assembly and packaging, chip
final testing, system level testing, and chip burn-in.

7. The method of claim 1, wherein the input data includes
key performance indicators, parametric measurements, and
product performance measurements.

8. The method of claim 1, wherein the metrology mea-
surements include optical and non-optical measurements of
the wafer fabrication process step.
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9. The method of claim 7, wherein the input data includes
data from final wafer electrical testing, wafer sort tests, and
wafer acceptance tests.

10. The method of claim 1, wherein the final prediction is
a weighted function that includes results of chip final testing,
the confidence metric, and a yield classification.

11. The method of claim 2, further comprising:

creating a virtual metrology model based on data received

from the at least one upstream process step; and
providing an output of the virtual metrology model as
input data to the model.

12. The method of claim 1, further comprising utilizing
the final prediction to determine next steps in the semicon-
ductor process.

13. A method useful in a multi-step semiconductor pro-
cess, comprising:

receiving sensor data from a plurality of pieces of pro-

duction equipment during prior production runs of the
semiconductor process;
receiving metrology measurements from a plurality of
sampled wafers of the prior production runs;

determining a multi-variate relationship between the sen-
sor data, the metrology measurements, and a targeted
process parameter for one step of the multi-step semi-
conductor process; and

predicting metrology measurements for subsequent pro-

duction runs based on the multi-variate relationship.

14. The method of claim 13, further comprising:

creating a virtual metrology model for predicting metrol-

ogy measurements;

training the virtual metrology model using the sensor data

and metrology measurements from prior production
runs; and

deploying the virtual metrology model for subsequent

production runs of the semiconductor process.
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