

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number

WO 2015/087088 A2

(43) International Publication Date
18 June 2015 (18.06.2015)

(51) International Patent Classification:
C12Q 1/68 (2006.01)

(74) Agent: BOULT WADE TENNANT; Verulam Gardens,
70 Grays Inn Road, London, Greater London WC1X 8BT
(GB).

(21) International Application Number:

PCT/GB2014/053694

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(22) International Filing Date:

12 December 2014 (12.12.2014)

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

1322034.8 12 December 2013 (12.12.2013) GB

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

- without international search report and to be republished upon receipt of that report (Rule 48.2(g))
- with sequence listing part of description (Rule 5.2(a))

WO 2015/087088 A2

(54) Title: PROSTATE CANCER CLASSIFICATION

(57) Abstract: A method is provided for characterising and/or prognosing prostate cancer in a subject comprising determining the expression level of at least one of CREM, ERRFI1, SRSF5, PDK4, HJURP, PDRG1, TRPM3, PDE4D, F12, ADAMTS1, ADAMTS9, B3GNT5, CD38, CEBPD, CENPF, DKK1, EMP1, F3, IL1 R1, IL8, JUNB, KLF10, KLF4, LDLR, LGALS3, LPAR1, MALAT1, MTUS1, MYBPC1, NFIL3, NR4A3, OAT, PI15, PTGS2, RHOBTB3, RIN2, RNFT2, SELE, SLC15A2, SOCS2, SOCS3, SSTR1, ST6GAL1, TSC22D1, XBP1 and ZFP36 in a sample from the subject. The method may be used to predict the likelihood of metastasis. Also disclosed are methods for diagnosing and selecting treatment for prostate cancer, together with corresponding methods of treatment. Systems, kits and computer programs for performing the methods are also provided.

PROSTATE CANCER CLASSIFICATION

5 FIELD OF THE INVENTION

The present invention relates to prostate cancer. Provided are methods for characterising and prognosing prostate cancer which rely upon biomarkers. Antibodies, kits and systems useful in the methods are also described.

10 BACKGROUND OF THE INVENTION

Prostate cancer is the most common malignancy in men with a lifetime incidence of 15.3% (Howlader 2012). Based upon data from 1999-2006 approximately 80% of prostate cancer patients present with early disease clinically confined to the prostate (Altekruse et al 2010) of which around 65% are cured by surgical resection or radiotherapy (Kattan et al 1999, Pound et al 1999). 35% will develop PSA recurrence of which approximately 35% will develop local or metastatic recurrence, which is non-curable. At present it is unclear which patients with early prostate cancer are likely to develop recurrence and may benefit from more intensive therapies. Current prognostic factors such as tumour grade as measured by Gleason score have prognostic value but a significant number of those considered lower grade (7 or less) still recur and a proportion of higher-grade tumours do not. Additionally there is significant heterogeneity in the prognosis of Gleason 7 tumours (Makarov et al 2002, Rasiah et al 2003). Furthermore it has become evident that the grading of Gleason score has changed leading to changes in the distribution of Gleason scores over time (Albertsen et al 2005, Smith et al 2002).

20

25 It is now clear that most solid tumours originating from the same anatomical site represent a number of distinct entities at a molecular level (Perou et al 2000). DNA microarray platforms allow the analysis of tens of thousands of transcripts simultaneously from archived paraffin embedded tissues and are ideally suited for the identification of molecular subgroups. This kind of approach has identified primary cancers with metastatic potential in solid tumours such as

30 breast (van 't Veer et al 2002) and colon cancer (Bertucci et al 2004).

DESCRIPTION OF THE INVENTION

The present invention is based upon the identification and verification of prostate cancer biomarkers.

35

The present inventors have identified a group of primary prostate cancers that are similar to metastatic disease at a molecular level. These tumours are defined by loss of expression of

- 2 -

several genes and defined pathways; furthermore this group is defined by activation of the proto-oncogene FOXM1 that leads to increased expression of genes involved in mitosis. A series of biomarkers that can identify tumours within this subgroup have been defined which have multivariate prognostic power and can be used to prospectively assess if a tumour is at 5 increased likelihood of recurrence and/or metastatic development.

Thus, in a first aspect the invention provides a method for characterising and/or prognosing prostate cancer in a subject comprising:

determining the expression level of at least one of

10 FOXM1, TRPM3, PDRG1, SRSF5, PDE4D, F12, PDK4, ADAMTS1, ADAMTS9, B3GNT5, CD38, CEBPD, CENPF, CREM, DKK1, EMP1, ERRFI1, F3, HJURP, IL1R1, IL8, JUNB, KLF10, KLF4, LDLR, LGALS3, LPAR1, MALAT1, MTUS1, MYBPC1, NFIL3, NR4A3, OAT, PI15, PTGS2, RHOBTB3, RIN2, RNFT2, SELE, SLC15A2, SOCS2, SOCS3, SSTR1, ST6GAL1, TSC22D1, XBP1 and ZFP36

15 in a sample from the subject wherein the determined expression level is used to provide a characterisation of and/or a prognosis for the prostate cancer.

According to all aspects of the invention the prostate cancer may be a primary prostate cancer.

20 According to a further aspect of the invention there is provided a method for diagnosing a prostate cancer with an increased metastatic potential in a subject comprising:

determining the expression level of at least one of

FOXM1, TRPM3, PDRG1, SRSF5, PDE4D, F12, PDK4, ADAMTS1, ADAMTS9, B3GNT5, CD38, CEBPD, CENPF, CREM, DKK1, EMP1, ERRFI1, F3, HJURP, IL1R1, IL8, JUNB, KLF10, KLF4, 25 LDLR, LGALS3, LPAR1, MALAT1, MTUS1, MYBPC1, NFIL3, NR4A3, OAT, PI15, PTGS2, RHOBTB3, RIN2, RNFT2, SELE, SLC15A2, SOCS2, SOCS3, SSTR1, ST6GAL1, TSC22D1, XBP1 and ZFP36

in a sample from the subject wherein the determined expression level is used to identify whether a subject has a prostate cancer with increased metastatic potential.

30 In yet a further aspect, the present invention relates to a method for diagnosing a prostate cancer with an increased metastatic potential in a subject comprising:

determining the expression level of at least one of

TRPM3, PDRG1, SRSF5, PDE4D, F12 and PDK4

35 in a sample from the subject wherein the determined expression level is used to identify whether a subject has a prostate cancer with increased metastatic potential.

- 3 -

The invention also relates to a method for characterising and/or prognosing prostate cancer in a subject comprising:

determining the expression level of at least one of

FOXM1, TRPM3, PDRG1, SRSF5, PDE4D, F12, PDK4, ADAMTS1, ADAMTS9, B3GNT5, CD38,

5 CEBPD, CENPF, CREM, DKK1, EMP1, ERRFI1, F3, HJURP, IL1R1, IL8, JUNB, KLF10, KLF4, LDLR, LGALS3, LPAR1, MALAT1, MTUS1, MYBPC1, NFIL3, NR4A3, OAT, PI15, PTGS2, RHOBTB3, RIN2, RNFT2, SELE, SLC15A2, SOCS2, SOCS3, SSTR1, ST6GAL1, TSC22D1, XBP1 and ZFP36

in a sample from the subject in order to identify the presence or absence of cells characteristic of 10 an increased likelihood of recurrence and/or metastasis wherein the determined presence or absence of the cells is used to provide a characterisation of and/or a prognosis for the prostate cancer.

In a further aspect, the present invention relates to a method for characterising and/or

15 prognosing prostate cancer in a subject comprising:

a) obtaining a sample from the subject

b) applying an antibody specific for the protein product of at least one of

FOXM1, TRPM3, PDRG1, SRSF5, PDE4D, F12, PDK4, ADAMTS1, ADAMTS9, B3GNT5, CD38,

CEBPD, CENPF, CREM, DKK1, EMP1, ERRFI1, F3, HJURP, IL1R1, IL8, JUNB, KLF10, KLF4,

20 LDLR, LGALS3, LPAR1, MALAT1, MTUS1, MYBPC1, NFIL3, NR4A3, OAT, PI15, PTGS2, RHOBTB3, RIN2, RNFT2, SELE, SLC15A2, SOCS2, SOCS3, SSTR1, ST6GAL1, TSC22D1, XBP1 and ZFP36

to the sample from the subject

c) applying a detection agent that detects the antibody-protein complex

25 d) using the detection agent to determine the level of the protein

d) wherein the determined level of the protein is used to provide a characterisation of and/or a prognosis for the prostate cancer.

30 The characterization, prognosis or diagnosis of the prostate cancer can also be used to guide treatment.

Accordingly, in a further aspect, the present invention relates to a method for selecting a

treatment for prostate cancer in a subject comprising:

(a) determining the expression level of at least one of

35 FOXM1, TRPM3, PDRG1, SRSF5, PDE4D, F12, PDK4, ADAMTS1, ADAMTS9, B3GNT5, CD38, CEBPD, CENPF, CREM, DKK1, EMP1, ERRFI1, F3, HJURP, IL1R1, IL8, JUNB, KLF10, KLF4, LDLR, LGALS3, LPAR1, MALAT1, MTUS1, MYBPC1, NFIL3, NR4A3, OAT, PI15, PTGS2,

- 4 -

RHOBTB3, RIN2, RNFT2, SELE, SLC15A2, SOCS2, SOCS3, SSTR1, ST6GAL1, TSC22D1, XBP1 and ZFP36

in a sample from the subject wherein the determined expression level is used to provide a characterisation of and/or a prognosis for the prostate cancer and

5 (b) selecting a treatment appropriate to the characterisation of and/or prognosis for the prostate cancer.

In yet a further aspect, the present invention relates to a method for selecting a treatment for prostate cancer in a subject comprising:

10 (a) determining the expression level of at least one of FOXM1, TRPM3, PDRG1, SRSF5, PDE4D, F12, PDK4, ADAMTS1, ADAMTS9, B3GNT5, CD38, CEBPD, CENPF, CREM, DKK1, EMP1, ERRFI1, F3, HJURP, IL1R1, IL8, JUNB, KLF10, KLF4, LDLR, LGALS3, LPAR1, MALAT1, MTUS1, MYBPC1, NFIL3, NR4A3, OAT, PI15, PTGS2, RHOBTB3, RIN2, RNFT2, SELE, SLC15A2, SOCS2, SOCS3, SSTR1, ST6GAL1, TSC22D1,

15 XBP1 and ZFP36

in a sample from the subject wherein the determined expression level is used to provide a characterisation of and/or a prognosis for the prostate cancer

(b) selecting a treatment appropriate to the characterisation of and/or prognosis for the prostate cancer and

20 (c) treating the subject with the selected treatment.

The invention also relates to a method of treating prostate cancer comprising administering a chemotherapeutic agent or radiotherapy, optionally extended radiotherapy, preferably extended-field radiotherapy, to a subject or carrying out surgery on a subject wherein the subject is

25 selected for treatment on the basis of a method as described herein.

In a further aspect, the present invention relates to a chemotherapeutic agent for use in treating prostate cancer in a subject, wherein the subject is selected for treatment on the basis of a method as described herein.

30

In yet a further aspect, the present invention relates to method of treating prostate cancer comprising administering a chemotherapeutic agent or radiotherapy, optionally extended radiotherapy, preferably extended-field radiotherapy to a subject or carrying out surgery on a subject wherein the subject has an increased expression level of at least one of HJURP, PDRG1,

35 TRPM3, F12, CENPF, RNFT2, and SSTR1 and/or a decreased expression level of at least one of CREM, ERRFI1, SRSF5, PDK4, PDE4D, ADAMTS1, ADAMTS9, B3GNT5, CD38, CEBPD, DKK1, EMP1, F3, IL1R1, IL8, JUNB, KLF10, KLF4, LDLR, LGALS3, LPAR1, MALAT1, MTUS1,

- 5 -

MYBPC1, NFIL3, NR4A3, OAT, PI15, PTGS2, RHOBTB3, RIN2, SELE, SLC15A2, SOCS2, SOCS3, ST6GAL1, TSC22D1, XBP1 and ZFP36.

The invention also relates to a chemotherapeutic agent for use in treating prostate cancer in a
 5 subject, wherein the subject has an increased expression level of at least one of HJURP, PDRG1, TRPM3, F12, CENPF, RNFT2, and SSTR1 and/or a decreased expression level of at least one of CREM, ERRFI1, SRSF5, PDK4, PDE4D, ADAMTS1, ADAMTS9, B3GNT5, CD38, CEBPD, DKK1, EMP1, F3, IL1R1, IL8, JUNB, KLF10, KLF4, LDLR, LGALS3, LPAR1, MALAT1, MTUS1, MYBPC1, NFIL3, NR4A3, OAT, PI15, PTGS2, RHOBTB3, RIN2, SELE, SLC15A2,
 10 SOCS2, SOCS3, ST6GAL1, TSC22D1, XBP1 and ZFP36.

In certain embodiments the chemotherapeutic agent comprises, consists essentially of or consists of

- a) an anti-hormone treatment, preferably bicalutamide and/or abiraterone
- 15 b) a cytotoxic agent
- c) a biologic, preferably an antibody and/or a vaccine, more preferably Sipuleucel-T and/or
- d) a targeted therapeutic agent

Suitable therapies and therapeutic agents are discussed in further detail herein.

20 The genes FOXM1, TRPM3, PDRG1, SRSF5, PDE4D, F12, PDK4, ADAMTS1, ADAMTS9, B3GNT5, CD38, CEBPD, CENPF, CREM, DKK1, EMP1, ERRFI1, F3, HJURP, IL1R1, IL8, JUNB, KLF10, KLF4, LDLR, LGALS3, LPAR1, MALAT1, MTUS1, MYBPC1, NFIL3, NR4A3, OAT, PI15, PTGS2, RHOBTB3, RIN2, RNFT2, SELE, SLC15A2, SOCS2, SOCS3, SSTR1,
 25 ST6GAL1, TSC22D1, XBP1 and ZFP36 and their protein products are described and defined in further detail in Table A below. The genes may also be referred to, interchangeably, as biomarkers.

Table A

Gene	Previous names and symbols and Synonyms (HGNC database)	Uniprot number	Protein
FOXM1	FKHL16, HFH-11, HNF-3, INS-1, "M-phase phosphoprotein 2", MPHOSPH2, MPP2, TGT3, trident	Q08050	forkhead box M1

- 6 -

TRPM3	GON-2, KIAA1616, LTRPC3, "melastatin 2"	Q9HCF6	Transient receptor potential cation channel subfamily M member 3
PDRG1	C20orf126, "chromosome 20 open reading frame 126", dJ310O13.3	Q9NUG6	p53 and DNA damage-regulated protein 1
SRSF5	SFRS5, "splicing factor, arginine/serine-rich 5", HRS, "SR splicing factor 5", SRP40	Q13243	Serine/arginine-rich splicing factor 5
PDE4D	DPDE3, "phosphodiesterase 4D, cAMP-specific (dunce (Drosophila)-homolog phosphodiesterase E3)"	Q08499	cAMP-specific 3',5'-cyclic phosphodiesterase 4D
F12	N/A	P00748	Coagulation factor XII
PDK4	"pyruvate dehydrogenase kinase, isoenzyme 4"	Q16654	[Pyruvate dehydrogenase [lipoamide]] kinase isozyme 4, mitochondrial
ADAMTS1	"a disintegrin-like and metalloprotease (reprolysin type) with thrombospondin type 1 motif, 1", C3-C5, KIAA1346, METH1	Q9UHI8	A disintegrin and metalloproteinase with thrombospondin motifs 1
ADAMTS9	KIAA1312	Q9P2N4	A disintegrin and metalloproteinase with thrombospondin motifs 9
B3GNT5	B3GN-T5, beta3Gn-T5, "lactosylceramide 1,3-N-acetyl-beta-D-glucosaminyltransferase"	Q9BYG0	Lactosylceramide 1,3-N-acetyl-beta-D-glucosaminyltransferase
CD38	"CD38 antigen (p45)", "ADP-ribosyl cyclase 1", "NAD(+) nucleosidase"	P28907	ADP-ribosyl cyclase 1
CEBPD	C/EBP-delta, CELF, CRP3, NF-IL6-beta	P49716	CCAAT/enhancer-binding protein delta
CENPF	"centromere protein F, 350/400kDa (mitosin)", hcp-1, "mitosin"	P49454	Centromere protein F

- 7 -

CREM	hCREM-2	Q03060	cAMP-responsive element modulator
DKK1	"dickkopf (<i>Xenopus laevis</i>) homolog 1", "dickkopf 1 homolog (<i>Xenopus laevis</i>)", DKK-1, SK	O94907	Dickkopf-related protein 1
EMP1	CL-20, TMP	P54849	Epithelial membrane protein 1
ERRFI1	GENE-33, MIG-6, RALT	Q9UJM3	ERBB receptor feedback inhibitor 1
F3	CD142	P13726	Tissue factor
HJURP	DKFZp762E1312, FAKTS, hFLEG1, URLC9	Q8NCD3	Holliday junction recognition protein
IL1R1	IL1R, IL1RA, CD121A, D2S1473	P14778	Interleukin-1 receptor type 1
IL8	3-10C, "alveolar macrophage chemotactic factor I", AMCF-I, b-ENAP, "beta endothelial cell-derived neutrophil activating peptide", "chemokine (C-X-C motif) ligand 8", CXCL8, GCP-1, GCP1, "granulocyte chemotactic protein 1", IL-8, K60, LECT, LUCT, "lung giant cell carcinoma-derived chemotactic protein", "lymphocyte derived neutrophil activating peptide", LYNAP, MDNCF, MONAP, "monocyte-derived neutrophil chemotactic factor", "monocyte-derived neutrophil-activating peptide", NAF, NAP-1, NAP1, "neutrophil-activating peptide 1", SCYB8, TSG-1, "tumor necrosis factor-induced gene 1"	P10145	Interleukin-8
JUNB	N/A	P17275	Transcription factor jun-B
KLF10	"TGFB inducible early growth response", TIEG, EGRA, TIEG1	Q13118	Krueppel-like factor 10
KLF4	EZF, GKLF	O43474	Krueppel-like factor 4

- 8 -

LDLR	"familial hypercholesterolemia", LDLCQ2	P01130	Low-density lipoprotein receptor
LGALS3	LGALS2, "galectin 3", GALIG, MAC-2	P17931	Galectin-3
LPAR1	EDG2, "endothelial differentiation, lysophosphatidic acid G-protein-coupled receptor, 2", edg-2, Gpcr26, GPR26, LPA1, Mrec1.3, rec.1.3, vzg-1	Q92633	Lysophosphatidic acid receptor 1
MALAT1	HCN, "hepcarcin", LINC00047, "long intergenic non-protein coding RNA 47", MALAT-1, "metastasis associated in lung adenocarcinoma transcript 1", NCRNA00047, NEAT2, "non-protein coding RNA 47", "nuclear enriched abundant transcript 2", "nuclear paraspeckle assembly transcript 2 (non-protein coding)", PRO1073	Q9UHZ2	Metastasis-associated lung adenocarcinoma transcript 1
MTUS1	"mitochondrial tumor suppressor 1", "AT2 receptor-interacting protein", "AT2R binding protein", ATBP, ATIP1, DKFZp586D1519, FLJ14295, ICIS, KIAA1288, "mitochondrial tumor suppressor gene 1", MP44, MTSG1	Q9ULD2	Microtubule-associated tumor suppressor 1
MYBPC1	"myosin-binding protein C, slow-type"	Q00872	Myosin-binding protein C, slow-type
NFIL3	IL3BP1, E4BP4, NF-IL3A, NFIL3A	Q16649	Nuclear factor interleukin-3-regulated protein
NR4A3	CHN, CSMF, MINOR, NOR1	Q92570	Nuclear receptor subfamily 4 group A member 3
OAT	"gyrate atrophy", HOGA, "Ornithine aminotransferase", "ornithine aminotransferase"	P04181	Ornithine aminotransferase, mitochondrial

- 9 -

	precursor"		
PI15	"protease inhibitor 15", P25TI	O43692	Peptidase inhibitor 15
PTGS2	COX2	P35354	Prostaglandin G/H synthase 2
RHOBTB3	KIAA0878	O94955	Rho-related BTB domain-containing protein 3
RIN2	RASSF4	Q8WYP3	Ras and Rab interactor 2
RNFT2	TMEM118, "transmembrane protein 118", FLJ14627	Q96EX2	RING finger and transmembrane domain-containing protein 2
SELE	ELAM, ELAM1, "endothelial adhesion molecule 1", CD62E, ESEL	P16581	E-selectin
SLC15A2	"solute carrier family 15 (H+/peptide transporter), member 2", PEPT2	Q16348	Solute carrier family 15 member 2
SOCS2	CIS2, Cish2, SOCS-2, SSI-2, SSI2, "STAT-induced STAT inhibitor-2", STATI2	O14508	Suppressor of cytokine signaling 2
SOCS3	CIS3, Cish3, SOCS-3, SSI-3	O14543	Suppressor of cytokine signaling 3
SSTR1	N/A	P30872	Somatostatin receptor type 1
ST6GAL1	"sialyltransferase 1 (beta-galactoside alpha-2,6-sialyltransferase)", SIAT1, "ST6Gal I"	P15907	Beta-galactoside alpha-2,6-sialyltransferase 1
TSC22D1	TGFB1I4, "transforming growth factor beta 1 induced transcript 4", MGC17597, TSC22	Q15714	TSC22 domain family protein 1
XBP1	XBP2	P17861	X-box-binding protein 1
ZFP36	"zinc finger protein 36, C3H type, homolog (mouse)", G0S24, NUP475, RNF162A, TIS11, tristetraprolin, TTP	P26651	Tristetraprolin

- 10 -

In certain embodiments the expression level of at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45 or 46 of

TRPM3, PDRG1, SRSF5, PDE4D, F12, PDK4, ADAMTS1, ADAMTS9, B3GNT5, CD38, CEBPD, 5 CENPF, CREM, DKK1, EMP1, ERRFI1, F3, HJURP, IL1R1, IL8, JUNB, KLF10, KLF4, LDLR, LGALS3, LPAR1, MALAT1, MTUS1, MYBPC1, NFIL3, NR4A3, OAT, PI15, PTGS2, RHOBTB3, RIN2, RNFT2, SELE, SLC15A2, SOCS2, SOCS3, SSTR1, ST6GAL1, TSC22D1, XBP1 and ZFP36

is determined. FOXM1 may be added to the panel in some embodiments.

10

Alternatively, the expression level of at least one of a group of 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45 or 46 of

TRPM3, PDRG1, SRSF5, PDE4D, F12, PDK4, ADAMTS1, ADAMTS9, B3GNT5, CD38, CEBPD, 15 CENPF, CREM, DKK1, EMP1, ERRFI1, F3, HJURP, IL1R1, IL8, JUNB, KLF10, KLF4, LDLR, LGALS3, LPAR1, MALAT1, MTUS1, MYBPC1, NFIL3, NR4A3, OAT, PI15, PTGS2, RHOBTB3, RIN2, RNFT2, SELE, SLC15A2, SOCS2, SOCS3, SSTR1, ST6GAL1, TSC22D1, XBP1 and ZFP36

is determined. FOXM1 may be included in the group in some embodiments.

20

In certain embodiments the expression level of at least one of

TRPM3, PDRG1, SRSF5, PDE4D, PDK4, F12, F3, HJURP, CENPF, MYBPC1, SELE, CEBPD, and XBP1

is determined.

25

In certain embodiments the expression level of at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, or 13 of TRPM3, PDRG1, SRSF5, PDE4D, PDK4, F12, F3, HJURP, CENPF, MYBPC1, SELE, CEBPD, and XBP1

is determined.

30

By characterisation is meant classification and/or evaluation of the prostate cancer. Prognosis refers to predicting the likely outcome of the prostate cancer for the subject. By diagnosis is meant identifying the presence of prostate cancer.

35 According to all aspects of the invention the characterisation of and/or prognosis for the prostate cancer may comprise, consist essentially of or consist of predicting an increased likelihood of recurrence. The characterisation of and/or prognosis for the prostate cancer may comprise,

- 11 -

consist essentially of or consist of predicting a reduced time to recurrence. Recurrence may be clinical recurrence or biochemical recurrence. By biochemical recurrence is meant a rise in the level of PSA in a subject after treatment for prostate cancer. Biochemical recurrence may indicate that the prostate cancer has not been treated effectively or has recurred.

5

The characterisation of and/or prognosis for the prostate cancer may comprise, consist essentially of or consist of predicting an increased likelihood of metastasis.

Metastasis, or metastatic disease, is the spread of a cancer from one organ or part to another non-adjacent organ or part. The new occurrences of disease thus generated are referred to as

10 metastases.

Characterisation of and/or prognosis for the prostate cancer may also comprise, consist essentially of or consist of determining whether the prostate cancer has a poor prognosis. A poor prognosis may be a reduced likelihood of cause-specific, i.e. cancer-specific, or long term survival. Cause- or Cancer-specific survival is a net survival measure representing cancer survival in the absence of other causes of death. Cancer survival may be for 6, 7, 8, 9, 10, 11, 12 months or 1, 2, 3, 4, 5 etc. years. Long-term survival may be survival for 1 year, 5 years, 10 years or 20 years following diagnosis. A prostate cancer with a poor prognosis may be aggressive, fast growing, and/or show resistance to treatment.

20 In certain embodiments an increased expression level of at least one of TRPM3, PDRG1, F12, CENPF, HJURP, RNFT2, and SSTR1 or of FOXM1 indicates an increased likelihood of recurrence and/or metastasis and/or a poor prognosis. In further embodiments a decreased expression level of at least one of SRSF5, PDE4D, PDK4, ADAMTS1, ADAMTS9, B3GNT5, CD38, CEBPD, CREM, DKK1, EMP1, ERF1, F3, IL1R1, IL8, JUNB, KLF10, KLF4, LDLR, LGALS3, LPAR1, MALAT1, MTUS1, MYBPC1, NFIL3, NR4A3, OAT, PI15, PTGS2, RHOBTB3, RIN2, SELE, SLC15A2, SOCS2, SOCS3, ST6GAL1, TSC22D1, XBP1 and ZFP36 indicates an increased likelihood of recurrence and/or metastasis and/or a poor prognosis.

30 In certain embodiments the methods described herein may comprise determining the expression level of at least one of TRPM3, PDRG1, F12, CENPF, HJURP, RNFT2, and SSTR1 or FOXM1 and at least one of SRSF5, PDE4D, PDK4, ADAMTS1, ADAMTS9, B3GNT5, CD38, CEBPD, CREM, DKK1, EMP1, ERF1, F3, IL1R1, IL8, JUNB, KLF10, KLF4, LDLR, LGALS3, LPAR1, MALAT1, MTUS1, MYBPC1, NFIL3, NR4A3, OAT, PI15, PTGS2, RHOBTB3, RIN2, SELE, SLC15A2, SOCS2, SOCS3, ST6GAL1, TSC22D1, XBP1 and ZFP36. Thus, the methods may 35 rely upon a combination of an up-regulated marker and a down-regulated marker.

- 12 -

In certain embodiments the methods described herein comprise comparing the expression level to a reference value or to the expression level in one or more control samples or to the expression level in one or more control cells in the same sample. The control cells may be normal (i.e. cells characterised by an independent method as non-cancerous) cells. The one or 5 more control samples may consist of non-cancerous cells or may include a mixture of prostate cancer cells and non-cancerous cells. The expression level may be compared to the expression level of the same gene in one or more control samples or control cells.

The reference value may be a threshold level of expression of at least one gene set by 10 determining the level or levels in a range of samples from subjects with and without prostate cancer. The prostate cancer may be prostate cancer with or without an increased likelihood of recurrence and/or metastasis and/or a poor prognosis. Suitable methods for setting a threshold are well known to those skilled in the art. The threshold may be mathematically derived from a training set of patient data. The score threshold thus separates the test samples according to 15 presence or absence of the particular condition. The interpretation of this quantity, i.e. the cut-off threshold may be derived in a development or training phase from a set of patients with known outcome. The threshold may therefore be fixed prior to performance of the claimed methods from training data by methods known to those skilled in the art.

20 The reference value may also be a threshold level of expression of at least one gene set by determining the level of expression of the at least one gene in a sample from a subject at a first time point. The determined levels of expression at later time points for the same subject are then compared to the threshold level. Thus, the methods of the invention may be used in order to monitor progress of disease in a subject, namely to provide an ongoing characterization and/or 25 prognosis of disease in the subject. For example, the methods may be used to identify a prostate cancer that has developed into a more aggressive or potentially metastatic form. This may be used to guide treatment decisions as discussed in further detail herein.

30 For genes whose expression level does not differ between normal cells and cells from a prostate cancer that does not have an increased likelihood of recurrence and/or metastasis and/or a poor prognosis the expression level of the same gene in normal cells in the same sample can be used as a control.

Accordingly, in specific embodiments the expression level of at least one of 35 TRPM3, PDRG1, SRSF5, PDE4D, F12, and PDK4 in the prostate cancer cells in a sample is compared to the expression level of the same gene in the normal cells in the same sample.

In specific embodiments if the determined expression level of at least one of TRPM3, PDRG1, SRSF5, PDE4D, F12, and PDK4 is not different in the prostate cancer cells in a sample as compared to the normal cells in the same sample then the prostate cancer does not have an increased likelihood of recurrence and/or metastasis and/or a poor prognosis.

Different may be statistically significantly different. By statistically significant is meant unlikely to have occurred by chance alone. A suitable statistical assessment may be performed according 10 to any suitable method.

In specific embodiments if the gene is TRPM3, PDRG1 or F12 and the expression level is increased in the prostate cancer cells in a sample relative to the normal cells in the same sample then the prostate cancer has an increased likelihood of recurrence and/or metastasis and/or a 15 poor prognosis.

In specific embodiments if the gene is SRSF5, PDE4D or PDK4 and the expression level is decreased in the prostate cancer cells in a sample relate to the normal cells in the sample then the prostate cancer has an increased likelihood of recurrence and/or metastasis and/or a poor 20 prognosis.

The methods described herein may further comprise determining the expression level of a reference gene. A reference gene may be required if the target gene expression level differs between normal cells and cells from a prostate cancer that does not have an increased likelihood 25 of recurrence and/or metastasis and/or a poor prognosis.

In certain embodiments the expression level of at least one of ADAMTS1, ADAMTS9, B3GNT5, CD38, CEBPD, CENPF, CREM, DKK1, EMP1, ERRFI1, F3, HJURP, IL1R1, IL8, JUNB, KLF10, KLF4, LDLR, LGALS3, LPAR1, MALAT1, MTUS1, MYBPC1, 30 NFIL3, NR4A3, OAT, PI15, PTGS2, RHOBTB3, RIN2, RNFT2, SELE, SLC15A2, SOCS2, SOCS3, SSTR1, ST6GAL1, TSC22D1, XBP1 and ZFP36 is compared to the expression level of a reference gene.

The reference gene may be any gene with minimal expression variance across all prostate 35 cancer samples. Thus, the reference gene may be any gene whose expression level does not vary with likelihood of recurrence and/or metastasis and/or a poor prognosis. The skilled person is well able to identify a suitable reference gene based upon these criteria. In particular, the

- 14 -

reference gene may be TPT1, RPS14 or RPL37A. The expression level of the reference gene may be determined in the same sample as the expression level of at least one of ADAMTS1, ADAMTS9, B3GNT5, CD38, CEBPD, CENPF, CREM, DKK1, EMP1, ERRFI1, F3, HJURP, IL1R1, IL8, JUNB, KLF10, KLF4, LDLR, LGALS3, LPAR1, MALAT1, MTUS1, MYBPC1, 5 NFIL3, NR4A3, OAT, PI15, PTGS2, RHOBTB3, RIN2, RNFT2, SELE, SLC15A2, SOCS2, SOCS3, SSTR1, ST6GAL1, TSC22D1, XBP1 and ZFP36.

10 The expression level of the reference gene may be determined in a different sample. The different sample may be a control sample as described above. The expression level of the reference gene may be determined in normal and/or prostate cancer cells in a sample.

15 The expression level of the at least one gene in the sample from the subject may be analysed using a statistical model. In specific embodiments where the expression level of at least 2 genes is measured the genes may be weighted. As used herein, the term "weight" refers to the relative importance of an item in a statistical calculation. The weight of each gene may be determined on a data set of patient samples using analytical methods known in the art. An overall score may be calculated and used to provide a characterisation of and/or prognosis for the prostate cancer.

20 Methods for determining the expression levels of the markers are described in greater detail herein. Typically, the methods may involve contacting a sample obtained from a subject with a detection agent, such as primers/probes/antibodies (as discussed in detail herein) specific for the marker and detecting expression products. A comparison is made against expression levels determined in a control sample to provide a characterization and/or a prognosis for the prostate cancer.

25 According to all aspects of the invention the expression level of the gene or genes may be measured by any suitable method. In certain embodiments the expression level is determined at the level of protein, RNA or epigenetic modification. The epigenetic modification may be DNA methylation.

30 The expression level may be determined by immunohistochemistry. By Immunohistochemistry is meant the detection of proteins in cells of a tissue sample by using a binding reagent such as an antibody or aptamer that binds specifically to the proteins. Thus, the expression level as determined by immunohistochemistry is a protein level. The sample may be a prostate tissue 35 sample and may comprise prostate cancer (tumour) cells, prostatic intraepithelial neoplasia (PIN) cells, normal prostate epithelium, stroma and, optionally, infiltrating immune cells. In some embodiments the expression level of the at least one gene in the prostate cancer (tumour) cells

- 15 -

in a sample is compared to the expression level of the same gene (and/or a reference gene) in the normal cells in the same sample. In some embodiments the expression level of the at least one gene in the prostate cancer (tumour) cells in a sample is compared to the expression level of the same gene (and/or a reference gene) in the normal cells in a control sample. The normal

5 cells may comprise, consist essentially of or consist of normal (non-cancer) prostate epithelial cells. In certain embodiments the normal cells do not comprise PIN cells and/or stroma cells. In certain embodiments the prostate cancer (tumour) cells do not comprise PIN cells and/or stroma cells. In further embodiments the expression level of the at least one gene in the prostate cancer (tumour) cells in a sample is (additionally) compared to the expression level of a reference gene

10 in the same cells or in the prostate cancer cells in a control sample. The reference gene may be TPT1, RPS14 or RPL37A. In yet further embodiments the expression level of the at least one gene in the prostate cancer (tumour) cells in a sample is scored using a method based on intensity, proportion and/or localisation of expression in the prostate cancer (tumour) cells (without comparison to normal cells). The scoring method may be derived in a development or

15 training phase from a set of patients with known outcome.

Accordingly, in a further aspect, the present invention relates to an antibody or aptamer that binds specifically to a protein product of at least one of

20 FOXM1, TRPM3, PDRG1, SRSF5, PDE4D, F12, PDK4, ADAMTS1, ADAMTS9, B3GNT5, CD38, CEBPD, CENPF, CREM, DKK1, EMP1, ERRFI1, F3, HJURP, IL1R1, IL8, JUNB, KLF10, KLF4, LDLR, LGALS3, LPAR1, MALAT1, MTUS1, MYBPC1, NFIL3, NR4A3, OAT, PI15, PTGS2, RHOBTB3, RIN2, RNFT2, SELE, SLC15A2, SOCS2, SOCS3, SSTR1, ST6GAL1, TSC22D1, XBP1 and ZFP36.

25 The antibody may be of monoclonal or polyclonal origin. Fragments and derivative antibodies may also be utilised, to include without limitation Fab fragments, ScFv, single domain antibodies, nanoantibodies, heavy chain antibodies, aptamers etc. which retain peptide-specific binding function and these are included in the definition of "antibody". Such antibodies are useful in the methods of the invention. They may be used to measure the level of a particular protein, or in some instances one or more specific isoforms of a protein. The skilled person is well able to identify epitopes that permit specific isoforms to be discriminated from one another.

30 Methods for generating specific antibodies are known to those skilled in the art. Antibodies may be of human or non-human origin (e.g. rodent, such as rat or mouse) and be humanized etc. according to known techniques (Jones *et al.*, *Nature* (1986) May 29-Jun. 4;321(6069):522-5; Roguska *et al.*, *Protein Engineering*, 1996, 9(10):895-904; and Studnicka *et al.*, *Humanizing*

- 16 -

Mouse Antibody Frameworks While Preserving 3-D Structure. Protein Engineering, 1994, Vol.7, pg 805).

In certain embodiments the expression level is determined using an antibody or aptamer

5 conjugated to a label. By label is meant a component that permits detection, directly or indirectly. For example, the label may be an enzyme, optionally a peroxidase, or a fluorophore.

A label is an example of a detection agent. By detection agent is meant an agent that may be used to assist in the detection of the antibody-protein complex. Where the antibody is

10 conjugated to an enzyme the detection agent may comprise a chemical composition such that the enzyme catalyses a chemical reaction to produce a detectable product. The products of reactions catalyzed by appropriate enzymes can be, without limitation, fluorescent, luminescent, or radioactive or they may absorb visible or ultraviolet light. Examples of detectors suitable for detecting such detectable labels include, without limitation, x-ray film, radioactivity counters,

15 scintillation counters, spectrophotometers, colorimeters, fluorometers, luminometers, and densitometers. In certain embodiments the detection agent may comprise a secondary antibody. The expression level is then determined using an unlabeled primary antibody that binds to the target protein and a secondary antibody conjugated to a label, wherein the secondary antibody binds to the primary antibody.

20

The invention also relates to use of an antibody as described above for characterising and/or prognosing a prostate cancer in a subject.

Additional techniques for determining expression level at the level of protein include, for example,

25 Western blot, immunoprecipitation, immunocytochemistry, mass spectrometry, ELISA and others (see ImmunoAssay: A Practical Guide, edited by Brian Law, published by Taylor & Francis, Ltd., 2005 edition). To improve specificity and sensitivity of an assay method based on immunoreactivity, monoclonal antibodies are often used because of their specific epitope recognition. Polyclonal antibodies have also been successfully used in various immunoassays 30 because of their increased affinity for the target as compared to monoclonal antibodies.

Suitable antibodies which may be used in the methods of the invention or included in the kits of the invention are listed in Table B below:

35 Table B – examples of Antibodies binding to markers of the invention

Gene ID	Antibody Supplier	Antibody Reference
ADAMTS1	Source Bioscience	LS-A1643

- 17 -

	Source Bioscience	LS-A1642
	Source Bioscience	LS-A1649
ADAMTS9	Novus	NBP1-82915
	Novus	NBP1-82916
	Sigma	HPA028577
B3GNT5	Novus	NBP1-88954
CD38	Source Bioscience	LS-A9696
	Source Bioscience	LS-A9697
	Leica Novocastra	CD38-290-L-CE
CEBPD	No suitable antibody	
CENPF	Source Bioscience	LS-B2992
	Source Bioscience	LS-B3157
	Novus	NB500-101
CREM	Sigma	HPA001818
DKK1	Source Bioscience	LS-A2867
	Source Bioscience	LS-A2865
	Source Bioscience	LS-A2868
	Novus	NBP1-95560
EMP1	Sigma	HPA056250
ERRFI1	Novus	NBP1-81835
	Sigma	HPA027206
F12	Source Bioscience	LS-B2649
	Source Bioscience	LS-B3044
	Sigma	HPA003825
F3	Novus	NBP2-15139
FOXM1	Source Bioscience	LS-B3073
	Sigma	HPA029974
	Novus	NBP1-84671
HJURP	Sigma	HPA008436
IL1R1	Source Bioscience	LS-B2859
	Novus	NBP1-30929
IL8	Source Bioscience	LS-B6427
JUNB	Source Bioscience	LS-C176087
	Novus	NBP1-89544
KLF10	Source Bioscience	LS-C119009
KLF4	Source Bioscience	LS-B5641
	Novus	NBP2-24749
LDLR	Source Bioscience	LS-B1598
	Source Bioscience	LS-B8088
	Sigma	HPA009647
LGALS3	Source Bioscience	LS-B5661

- 18 -

	Source Bioscience	LS-B1671
	Sigma	HPA003162
LPAR1	Source Bioscience	LS-A212
	Source Bioscience	LS-A211
MALAT1	NA	NA
MTUS1	Novus	NBP1-82197
MYBPC1	Novus	NBP1-86427
NR4A3	Source Bioscience	LS-A2341
	Source Bioscience	LS-A2328
	Novus	NBP1-92198
OAT	Source Bioscience	LS-B4188
	Novus	NBP1-83239
PDE4D	Source Bioscience	LS-C185640
	Source Bioscience	LS-B8230
	Novus	NBP1-31131
PDK4	Source Bioscience	LS-B3459
PDRG1	Source Bioscience	LS-C163501
	Novus	NBP2-01854
PI15	Source Bioscience	LS-C163698
PTGS2	Source Bioscience	LS-B3296
	Source Bioscience	LS-B2145
	Novus	NB110-1948
RHOBTB3	Source Bioscience	LS-C120337
	Source Bioscience	NBP1-82954
RIN2	Sigma	HPA034641
SELE	Source Bioscience	LS-B2323
SOCS2	Source Bioscience	LS-B1257
SOCS3	Source Bioscience	LS-B3373
	Source Bioscience	NBP2-00850
SRSF5	Source Bioscience	LS-B3091
	Novus	NBP1-92381
SSTR1	Source Bioscience	LS-A994
ST6GAL1	Source Bioscience	LS-B6041
	Novus	NBP1-68447
TRPM3	Novus	NBP1-46344
TSC22D1	Source Bioscience	LS-B8419
XBP1	Source Bioscience	LS-B3178
	Source Bioscience	LS-B188
	Novus	NBP1-95395
ZFP36	Source Bioscience	LS-B5606

- 19 -

Measuring mRNA in a biological sample may be used as a surrogate for detection of the level of the corresponding protein in the biological sample. Thus, the expression level of any of the genes described herein can also be detected by detecting the appropriate RNA.

5 Accordingly, in specific embodiments the expression level is determined by microarray, northern blotting, RNA-seq (RNA sequencing), in situ RNA detection or nucleic acid amplification. Nucleic acid amplification includes PCR and all variants thereof such as real-time and end point methods and qPCR. Other nucleic acid amplification techniques are well known in the art, and include methods such as NASBA, 3SR and Transcription Mediated Amplification (TMA). Other suitable 10 amplification methods include the ligase chain reaction (LCR), selective amplification of target polynucleotide sequences (US Patent No. 6,410,276), consensus sequence primed polymerase chain reaction (US Patent No 4,437,975), arbitrarily primed polymerase chain reaction (WO 90/06995), invader technology, strand displacement technology, and nick displacement 15 amplification (WO 2004/067726). This list is not intended to be exhaustive; any nucleic acid amplification technique may be used provided the appropriate nucleic acid product is specifically amplified. Design of suitable primers and/or probes is within the capability of one skilled in the art. Various primer design tools are freely available to assist in this process such as the NCBI 20 Primer-BLAST tool. Primers and/or probes may be at least 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 or 25 (or more) nucleotides in length. mRNA expression levels may be measured by reverse transcription quantitative polymerase chain reaction (RT-PCR followed with qPCR). RT-PCR is used to create a cDNA from the mRNA. The cDNA may be used in a qPCR assay to produce fluorescence as the DNA amplification process progresses. By comparison to a standard curve, qPCR can produce an absolute measurement such as number of copies of mRNA per cell. Northern blots, microarrays, Invader assays, and RT-PCR combined with capillary 25 electrophoresis have all been used to measure expression levels of mRNA in a sample. See Gene Expression Profiling: Methods and Protocols, Richard A. Shimkets, editor, Humana Press, 2004.

RNA-seq uses next-generation sequencing to measure changes in gene expression. RNA may 30 be converted into cDNA or directly sequenced. Next generation sequencing techniques include pyrosequencing, SOLiD sequencing, Ion Torrent semiconductor sequencing, Illumina dye sequencing, single-molecule real-time sequencing or DNA nanoball sequencing.

In situ RNA detection involves detecting RNA without extraction from tissues and cells. In situ 35 RNA detection includes In situ hybridization (ISH) which uses a labeled (e.g. radio labelled, antigen labelled or fluorescence labelled) probe (complementary DNA or RNA strand) to localize a specific RNA sequence in a portion or section of tissue, or in the entire tissue (whole mount

- 20 -

ISH), or in cells. The probe labeled with either radio-, fluorescent- or antigen-labeled bases (e.g., digoxigenin) may be localized and quantified in the tissue using either autoradiography, fluorescence microscopy or immunohistochemistry, respectively. ISH can also use two or more probes to simultaneously detect two or more transcripts. A branched DNA assay can also be

5 used for RNA in situ hybridization assays with single molecule sensitivity. This approach includes ViewRNA assays. Samples (cells, tissues) are fixed, then treated to allow RNA target accessibility (RNA un-masking). Target-specific probes hybridize to each target RNA. Subsequent signal amplification is predicated on specific hybridization of adjacent probes (individual oligonucleotides that bind side by side on RNA targets). A typical target-specific probe
10 will contain 40 oligonucleotides. Signal amplification is achieved via a series of sequential hybridization steps. A pre-amplifier molecule hybridizes to each oligo pair on the target-specific RNA, then multiple amplifier molecules hybridize to each pre-amplifier. Next, multiple label probe oligonucleotides (conjugated to an enzyme such as alkaline phosphatase or directly to
15 fluorophores) hybridize to each amplifier molecule. Separate but compatible signal amplification systems enable multiplex assays. The signal can be visualized by measuring fluorescence or light emitted depending upon the detection system employed. Detection may involve using a high content imaging system, or a fluorescence or brightfield microscope in some embodiments.

20 Thus, in a further aspect the present invention relates to a kit for (in situ) characterising and/or prognosing prostate cancer in a subject comprising one or more oligonucleotide probes specific for an RNA product of at least one of FOXM1, TRPM3, PDRG1, SRSF5, PDE4D, F12, PDK4, ADAMTS1, ADAMTS9, B3GNT5, CD38, CEBPD, CENPF, CREM, DKK1, EMP1, ERRFI1, F3, HJURP, IL1R1, IL8, JUNB, KLF10, KLF4, LDLR, LGALS3, LPAR1, MALAT1, MTUS1, MYBPC1, NFIL3, NR4A3, OAT, PI15, PTGS2, RHOBTB3, RIN2, RNFT2, SELE, SLC15A2, SOCS2,
25 SOCS3, SSTR1, ST6GAL1, TSC22D1, XBP1 and ZFP36.

The kit may further comprise one or more of the following components:

- a) A blocking probe
- b) A PreAmplifier
- 30 c) An Amplifier and/or
- d) A Label molecule

The components of the kit may be suitable for conducting a viewRNA assay (<https://www.panomics.com/products/rna-in-situ-analysis/view-rna-overview>).

- 21 -

The components of the kit may be nucleic acid based molecules, optionally DNA (or RNA). The blocking probe is a molecule that acts to reduce background signal by binding to sites on the target not bound by the target specific probes (probes specific for the RNA product of the at least one gene of the invention). The PreAmplifier is a molecule capable of binding to a (a pair of)

5 target specific probe(s) when target bound. The Amplifier is a molecule capable of binding to the PreAmplifier. Alternatively, the Amplifier may be capable of binding directly to a (a pair of) target specific probe(s) when target bound. The Amplifier has binding sites for multiple label molecules (which may be label probes).

The invention also relates to use of the kit for characterising and/or prognosing prostate cancer.

10 RNA expression may be determined by hybridization of RNA to a set of probes. The probes may be arranged in an array. Microarray platforms include those manufactured by companies such as Affymetrix, Illumina and Agilent. Examples of microarray platforms manufactured by Affymetrix include the U133 Plus2 array, the Almac proprietary Xcel™ array and the Almac proprietary
15 Cancer DSAs®, including the Prostate Cancer DSA®.

In specific embodiments, expression of the at least one gene may be determined using one or more probes selected from those in Table C below:

20 Table C – list of probes used to measure expression levels of the genes on an array.

Gene	Probeset ID	SEQ ID No
ADAMTS1	PC3P.3828.C1_s_at	30
	PCHP.1595_s_at	75
ADAMTS9	PC3P.17014.C1_s_at	24
	PC3SNGnh.5879_at	53
	PCADA.974_s_at	62
B3GNT5	PCRS2.398_s_at	81
CD38	3Snip.8317-94a_s_at	6
	PC3P.16779.C1_s_at	23
CEBPD	>PCHP.407_s_at_1160	89
	>PC3P.4961.C1_s_at_156	90
CENPF	PC3P.14957.C1_s_at	19
	PCADA.11788_at	55
CREM	PC3P.8627.C1_at	48
	PC3P.8627.C1_s_at	49
DKK1	3Snip.431-44a_s_at	4
EMP1	PC3P.10147.C1_at	9

- 22 -

ERRFI1	PC3P.3363.C1-522a_s_at	29
	PCADA.5865_at	58
	PCADA.5865_x_at	59
	PCRS2.6810_s_at	83
F12	PCADNP.16711_at	63
F3	3Snip.8552-9072a_s_at	7
	PC3P.8519.C1_s_at	46
	PC3P.8519.C2_s_at	47
	PCHP.1022_s_at	70
FOXM1	PCHP.1211_s_at	87
HJURP	PCADA.12835_s_at	56
IL1R1	PCADA.9303_s_at	61
IL8	PCHP.274_s_at	76
KLF10	PCRS2.574_s_at	82
KLF4	PC3P.14562.C1_s_at	18
LDLR	PCHP.101_s_at	69
LGALS3	3Snip.6331-2a_s_at	5
LPAR1	PC3P.4497.C1_at	34
	PCADA.11416_s_at	54
	PCADA.5036_s_at	57
	PCRS2.2781_s_at	80
MALAT1	3Snip.3677-484a_s_at	3
	PC3P.2436.C1_s_at	25
MTUS1	PCRS2.6884_s_at	84
MYBPC1	PC3P.13654.C1_at	16
	PC3P.13654.C1_x_at	17
	PC3P.3003.C1_s_at	27
	PC3P.7685.C1_at	40
	PC3P.7685.C1_x_at	41
	PC3P.7685.C1-693a_s_at	42
NFIL3	>PC3P.9419.C1-398a_s_at_365	88
NR4A3	PC3P.11087.C1_x_at	11
	PC3P.13257.C1_at	15
OAT	PC3P.2802.C1_s_at	26
PDE4D	PC3P.11285.C1_at	12
	PCADNP.1679_s_at	64
PDK4	PC3P.16300.C1_at	20
	PC3P.16300.C1_x_at	21
	PC3P.8159.C1_s_at	43
	PC3P.8159.C1-773a_s_at	44
	PC3SNGnh.4912_at	50
	PC3SNGnh.4912_x_at	51

- 23 -

	PC3SNGNh.5369_x_at	52
	PCADNP.18913_s_at	66
	PCEM.2221_at	68
	PCPD.29484.C1_at	78
PDRG1	>PC3P.15830.C1_s_at_353	93
	3Snip.2873-1277a_at	2
	PC3P.7245.C1_at	38
	PC3P.7245.C1_x_at	39
	PC3P.8311.C1-482a_s_at	45
	PCADNP.17332_s_at	65
	3Snip.950-71a_x_at	8
	PC3P.16654.C1_s_at	22
	PC3P.12138.C1_at	13
	PC3P.12138.C1_x_at	14
	PC3P.5195.C1_s_at	35
RIN2	PC3P.7127.C1_s_at	37
RNFT2	PCADNP.401_s_at	67
SELE	PCHP.1458_s_at	74
	3Snip.1826-385a_s_at	1
	PC3P.10260.C1_at	10
	PC3P.3316.C1_at	28
	PCRS2.7997_s_at	86
	PC3P.5499.C1_at	36
	PCHP.128_s_at	73
SOCS3	PCHP.491_s_at	77
SRSF5	PC3P.394.CB1_s_at	32
	>PCHP.841_s_at_4070	91
	>PC3P.12563.C1_s_at_327	92
ST6GAL1	PCRS2.699_s_at	85
TRPM3	PCADA.7751_s_at	60
	PC3P.41.CB2_s_at	33
	PCHP.112_s_at	71
	PC3P.3909.C1-403a_s_at	31
	PCPD.59444.C1_at	79
ZFP36	PCHP.1147_s_at	72

These probes may also be incorporated into the kits of the invention. The probe sequences may also be used in order to design primers for detection of expression, for example by RT-PCR.

5 Such primers may also be included in the kits of the invention.

- 24 -

Increased rates of DNA methylation at or near promoters have been shown to correlate with reduced gene expression levels. DNA methylation is the main epigenetic modification in humans. It is a chemical modification of DNA performed by enzymes called methyltransferases, in which a methyl group (m) is added to specific cytosine (C) residues in

5 DNA. In mammals, methylation occurs only at cytosine residues adjacent to a guanosine residue, i.e. at the sequence CG or at the CpG dinucleotide.

Accordingly, in yet a further aspect, the present invention relates to a method for characterising and/or prognosing prostate cancer in a subject comprising:

10 determining the methylation status of at least one of ADAMTS9, EMP1, F3, LDLR, LGALS3, MALAT1, MTUS1, NR4A3, PTGS2, RIN2, SLC15A2, SOCS3 and TSC22D1

in a sample from the subject wherein the determined methylation status is used to provide a characterisation of and/or a prognosis for the prostate cancer.

15 In certain embodiments if at least one of

ADAMTS9, EMP1, F3, LDLR, LGALS3, MALAT1, MTUS1, NR4A3, PTGS2, RIN2, SLC15A2, SOCS3 and TSC22D1

is (hyper)methylated the likelihood of recurrence and/or metastasis is increased.

20 Determination of the methylation status may be achieved through any suitable means. Suitable examples include bisulphite genomic sequencing and/or by methylation specific PCR. Various techniques for assessing methylation status are known in the art and can be used in conjunction with the present invention: sequencing, methylation-specific PCR (MS-PCR), melting curve

25 methylation-specific PCR(McMS-PCR), MLPA with or without bisulphite treatment, QAMA (Zeschnigk et al, 2004), MSRE-PCR (Melnikov et al, 2005), MethylLight (Eads et al., 2000), ConLight-MSP (Rand et al., 2002), bisulphite conversion-specific methylation-specific PCR (BS-MSP)(Sasaki et al., 2003), COBRA (which relies upon use of restriction enzymes to reveal methylation dependent sequence differences in PCR products of sodium bisulphite - treated

30 DNA), methylation-sensitive single-nucleotide primer extension conformation(MS-SNuPE), methylation-sensitive single-strand conformation analysis (MS-SSCA), Melting curve combined bisulphite restriction analysis (McCOBRA)(Akey et al., 2002), PyroMethA, HeavyMethyl (Cottrell et al. 2004), MALDI-TOF, MassARRAY, Quantitative analysis of methylated alleles (QAMA), enzymatic regional methylation assay (ERMA), QBSUPT, MethylQuant, Quantitative PCR

35 sequencing and oligonucleotide-based microarray systems, Pyrosequencing, Meth-DOP-PCR. A review of some useful techniques for DNA methylation analysis is provided in Nucleic acids

- 25 -

research, 1998, Vol. 26, No. 10, 2255-2264, Nature Reviews, 2003, Vol.3, 253-266; Oral Oncology, 2006, Vol. 42, 5-13.

Techniques for assessing methylation status are based on distinct approaches. Some include

5 use of endonucleases. Such endonucleases may either preferentially cleave methylated recognition sites relative to non-methylated recognition sites or preferentially cleave non-methylated relative to methylated recognition sites. Some examples of the former are Acc III, Ban I, BstN I, Msp I, and Xma I. Examples of the latter are Acc II, Ava I, BssH II, BstU I, Hpa II, and Not I. Differences in cleavage pattern are indicative for the presence or absence of a

10 methylated CpG dinucleotide. Cleavage patterns can be detected directly, or after a further reaction which creates products which are easily distinguishable. Means which detect altered size and/or charge can be used to detect modified products, including but not limited to electrophoresis, chromatography, and mass spectrometry.

15 Alternatively, the identification of methylated CpG dinucleotides may utilize the ability of the methyl binding domain (MBD) of the MeCP2 protein to selectively bind to methylated DNA sequences (Cross et al, 1994; Shiraishi et al, 1999). The MBD may also be obtained from MBP, MBP2, MBP4, poly-MBD (Jorgensen et al., 2006) or from reagents such as antibodies binding to methylated nucleic acid. The MBD may be immobilized to a solid matrix and used for preparative

20 column chromatography to isolate highly methylated DNA sequences. Variant forms such as expressed His-tagged methyl-CpG binding domain may be used to selectively bind to methylated DNA sequences. Eventually, restriction endonuclease digested genomic DNA is contacted with expressed His-tagged methyl-CpG binding domain. Other methods are well known in the art and include amongst others methylated-CpG island recovery assay (MIRA). Another method, MB-

25 PCR, uses a recombinant, bivalent methyl-CpG-binding polypeptide immobilized on the walls of a PCR vessel to capture methylated DNA and the subsequent detection of bound methylated DNA by PCR.

Further approaches for detecting methylated CpG dinucleotide motifs use chemical reagents that

30 selectively modify either the methylated or non-methylated form of CpG dinucleotide motifs. Suitable chemical reagents include hydrazine and bisulphite ions. The methods of the invention may use bisulphite ions, in certain embodiments. The bisulphite conversion relies on treatment of DNA samples with sodium bisulphite which converts unmethylated cytosine to uracil, while methylated cytosines are maintained (Furuichi et al., 1970). This conversion finally results in a

35 change in the sequence of the original DNA. It is general knowledge that the resulting uracil has the base pairing behaviour of thymidine which differs from cytosine base pairing behaviour. This makes the discrimination between methylated and non-methylated cytosines possible. Useful

- 26 -

conventional techniques of molecular biology and nucleic acid chemistry for assessing sequence differences are well known in the art and explained in the literature. See, for example,

Sambrook, J., et al., Molecular cloning: A laboratory Manual, (2001) 3rd edition, Cold Spring Harbor, NY; Gait, M.J.(ed.), Oligonucleotide Synthesis, A Practical Approach, IRL Press (1984);

5 Hames B.D., and Higgins, S.J. (eds.), Nucleic Acid Hybridization, A Practical Approach, IRL Press (1985); and the series, Methods in Enzymology, Academic Press, Inc.

Some techniques use primers for assessing the methylation status at CpG dinucleotides. Two approaches to primer design are possible. Firstly, primers may be designed that themselves do

10 not cover any potential sites of DNA methylation. Sequence variations at sites of differential methylation are located between the two primers and visualisation of the sequence variation requires further assay steps. Such primers are used in bisulphite genomic sequencing, COBRA, Ms-SnuPE and several other techniques. Secondly, primers may be designed that hybridize specifically with either the methylated or unmethylated version of the initial treated sequence.

15 After hybridization, an amplification reaction can be performed and amplification products assayed using any detection system known in the art. The presence of an amplification product indicates that a sample hybridized to the primer. The specificity of the primer indicates whether the DNA had been modified or not, which in turn indicates whether the DNA had been methylated or not. If there is a sufficient region of complementarity, e.g., 12, 15, 18, or 20

20 nucleotides, to the target, then the primer may also contain additional nucleotide residues that do not interfere with hybridization but may be useful for other manipulations. Examples of such other residues may be sites for restriction endonuclease cleavage, for ligand binding or for factor binding or linkers or repeats. The oligonucleotide primers may or may not be such that they are specific for modified methylated residues.

25 A further way to distinguish between modified and unmodified nucleic acid is to use oligonucleotide probes. Such probes may hybridize directly to modified nucleic acid or to further products of modified nucleic acid, such as products obtained by amplification. Probe-based assays exploit the oligonucleotide hybridisation to specific sequences and subsequent detection 30 of the hybrid. There may also be further purification steps before the amplification product is detected e.g. a precipitation step. Oligonucleotide probes may be labeled using any detection system known in the art. These include but are not limited to fluorescent moieties, radioisotope labeled moieties, bioluminescent moieties, luminescent moieties, chemiluminescent moieties, enzymes, substrates, receptors, or ligands.

35 In the MSP approach, DNA may be amplified using primer pairs designed to distinguish methylated from unmethylated DNA by taking advantage of sequence differences as a result of

- 27 -

sodium-bisulphite treatment (WO 97/46705). For example, bisulphite ions modify non-methylated cytosine bases, changing them to uracil bases. Uracil bases hybridize to adenine bases under hybridization conditions. Thus an oligonucleotide primer which comprises adenine bases in place of guanine bases would hybridize to the bisulphite-modified DNA, whereas an

5 oligonucleotide primer containing the guanine bases would hybridize to the non-modified (methylated) cytosine residues in the DNA. Amplification using a DNA polymerase and a second primer yield amplification products which can be readily observed, which in turn indicates whether the DNA had been methylated or not. Whereas PCR is a preferred amplification method, variants on this basic technique such as nested PCR and multiplex PCR are also included within

10 the scope of the invention.

As mentioned earlier, one embodiment for assessing the methylation status of the relevant gene requires amplification to yield amplification products. The presence of amplification products may be assessed directly using methods well known in the art. They simply may be visualized

15 on a suitable gel, such as an agarose or polyacrylamide gel. Detection may involve the binding of specific dyes, such as ethidium bromide, which intercalate into double-stranded DNA and visualisation of the DNA bands under a UV illuminator for example. Another means for detecting amplification products comprises hybridization with oligonucleotide probes. Alternatively,

20 fluorescence or energy transfer can be measured to determine the presence of the methylated DNA.

A specific example of the MSP technique is designated real-time quantitative MSP (QMSP), and permits reliable quantification of methylated DNA in real time or at end point. Real-time methods are generally based on the continuous optical monitoring of an amplification procedure and utilise

25 fluorescently labelled reagents whose incorporation in a product can be quantified and whose quantification is indicative of copy number of that sequence in the template. One such reagent is a fluorescent dye, called SYBR Green I that preferentially binds double-stranded DNA and whose fluorescence is greatly enhanced by binding of double-stranded DNA. Alternatively,

30 labelled primers and/or labelled probes can be used for quantification. They represent a specific application of the well-known and commercially available real-time amplification techniques such as TAQMAN®, MOLECULAR BEACONS®, AMPLIFLUOR® and SCORPION®, DzyNA®, PlexorTM etc. In the real-time PCR systems, it is possible to monitor the PCR reaction during the exponential phase where the first significant increase in the amount of PCR product correlates to the initial amount of target template.

35

Real-Time PCR detects the accumulation of amplicon during the reaction. Real-time methods do not need to be utilised, however. Many applications do not require quantification and Real-Time

PCR is used only as a tool to obtain convenient results presentation and storage, and at the same time to avoid post-PCR handling. Thus, analyses can be performed only to confirm whether the target DNA is present in the sample or not. Such end-point verification is carried out after the amplification reaction has finished.

5

According to all aspects of the invention determining the expression level of at least one of FOXM1, TRPM3, PDRG1, SRSF5, PDE4D, F12, PDK4, ADAMTS1, ADAMTS9, B3GNT5, CD38, CEBPD, CENPF, CREM, DKK1, EMP1, ERRFI1, F3, HJURP, IL1R1, IL8, JUNB, KLF10, KLF4, LDLR, LGALS3, LPAR1, MALAT1, MTUS1, MYBPC1, NFIL3, NR4A3, OAT, PI15, PTGS2,

10 RHOBTB3, RIN2, RNFT2, SELE, SLC15A2, SOCS2, SOCS3, SSTR1, ST6GAL1, TSC22D1, XBP1 and ZFP36

may involve determining the level of all or a selection of the transcripts and/or proteins isoforms produced from the gene. Examples of transcripts and corresponding protein isoforms that may be detected for each gene are shown in Table D below:

15

Table D – representative transcripts and corresponding protein isoforms that may be detected in the invention

Gene ID	EntrezGene ID of transcript detected (SVA/NCBI reference)	Protein ID
TRPM3	ENST00000377111	ENSP00000366315
	ENST00000423814	ENSP00000389542
	ENST00000357533	ENSP00000350140
	ENST00000354500	Non-protein coding
	ENST00000377110	ENSP00000366314
PDRG1	ENST00000202017	ENSP00000202017
	ENST00000553635	ENSP00000451391
	ENST00000554465	Non-protein coding
	ENST00000556184	Non-protein coding
	ENST00000557154	ENSP00000451088
	ENST00000394366	ENSP00000377892
SRSF5	ENST00000557460	Non-protein coding
	ENST00000556587	Non-protein coding
	ENST00000555547	Non-protein coding
	ENST00000556330	Non-protein coding
	ENST00000554929	Non-protein coding
	ENST00000553521	ENSP00000452123
	ENST00000507116	ENSP00000424852
	ENST00000502575	ENSP00000425917
	ENST00000502484	ENSP00000423094

- 29 -

	ENST00000340635	ENSP00000345502
	ENST00000546160	ENSP00000442734
	ENST00000505453	ENSP00000421013
	ENST00000360047	ENSP00000353152
	ENST00000405053	Non-protein coding
	ENST00000405755	ENSP00000384806
	ENST00000309641	Non-protein coding
	ENST00000514231	Non-protein coding
PDK4	ENST00000473796	Non-protein coding
	ENST00000005178	ENSP00000005178
ADAMTS1	ENST00000284984	ENSP00000284984
	ENST00000464589	Non-protein coding
ADAMTS9	ENST00000482490	Non-protein coding
	ENST00000295903	ENSP00000295903
	ENST00000481060	ENSP00000417521
	ENST00000498707	ENSP00000418735
B3GNT5	ENST00000460419	ENSP00000420778
	ENST00000326505	ENSP00000316173
CEBD	ENST00000408965	ENSP00000386165
CENPF	ENST00000366955	ENSP00000355922
CREM	ENST00000464475	ENSP00000418450
	ENST00000488328	ENSP00000417460
	ENST00000490460	Non-protein coding
	ENST00000479070	ENSP00000420511
	ENST00000463314	ENSP00000418336
	ENST00000374734	ENSP00000363866
	ENST00000484283	ENSP00000417165
	ENST00000463960	ENSP00000419684
	ENST00000460270	ENSP00000420437
	ENST00000473940	ENSP00000420681
	ENST00000469517	Non-protein coding
	ENST00000342105	ENSP00000341875
	ENST00000461968	Non-protein coding
	ENST00000374728	ENSP00000363860
	ENST00000395887	ENSP00000379225
	ENST00000495960	Non-protein coding
	ENST00000429130	ENSP00000393538
	ENST00000348787	ENSP00000345384
	ENST00000337656	ENSP00000337138
	ENST00000333809	ENSP00000333055
	ENST00000487132	ENSP00000418798
	ENST00000374721	ENSP00000363853
	ENST00000439705	ENSP00000409220

- 30 -

	ENST00000344351	ENSP00000344365
	ENST00000345491	ENSP00000265372
	ENST00000474362	ENSP00000419018
	ENST00000361599	ENSP00000354593
	ENST00000395895	ENSP00000379232
	ENST00000354759	ENSP00000346804
	ENST00000487763	ENSP00000417807
	ENST00000356917	ENSP00000349387
DKK1	ENST00000476752	Non-protein coding
	ENST00000373970	ENSP00000363081
EMP1	ENST00000256951	ENSP00000256951
	ENST00000537612	ENSP00000445319
ERRFI1	ENST00000487559	ENSP00000467030
	ENST00000474874	ENSP00000466958
	ENST00000377482	ENSP00000366702
	ENST00000467067	ENSP00000465100
	ENST00000469499	ENSP00000466454
HJURP	ENST00000441687	ENSP00000401944
	ENST00000411486	ENSP00000414109
	ENST00000432087	ENSP00000407208
	ENST00000433484	Non-protein coding
	ENST00000422532	Non-protein coding
	ENST00000409929	ENSP00000386776
	ENST00000233946	ENSP00000233946
IL1R1	ENST00000409288	ENSP00000386478
	ENST00000413623	Non-protein coding
	ENST00000409589	ENSP00000386555
	ENST00000424272	ENSP00000415366
	ENST00000409329	ENSP00000387131
	ENST00000428279	ENSP00000410461
	ENST00000410023	ENSP00000386380
JUNB	ENST00000302754	ENSP00000303315
KLF10	ENST00000285407	ENSP00000285407
	ENST00000395884	ENSP00000379222
KLF4	ENST00000497048	Non-protein coding
	ENST00000493306	Non-protein coding
	ENST00000374672	ENSP00000363804
LDLR	ENST00000252444	ENSP00000252444
	ENST00000560628	Non-protein coding
LGALS3	ENST00000254301	ENSP00000254301
	ENST00000556438	Non-protein coding
LPAR1	ENST00000358883	ENSP00000351755
	ENST00000541779	ENSP00000445697

- 31 -

MALAT1	ENST00000374430	ENSP00000363552
	ENST00000374431	ENSP00000363553
	ENST00000534336	Non-protein coding
MTUS1	ENST00000517413	Non-protein coding
	ENST00000381861	ENSP00000371285
	ENST00000520196	Non-protein coding
	ENST00000381869	ENSP00000371293
	ENST00000262102	ENSP00000262102
	ENST00000400046	ENSP00000382921
	ENST00000544260	ENSP00000445738
	ENST00000297488	ENSP00000297488
	ENST00000541119	ENSP00000442847
MYBPC1	ENST00000551300	ENSP00000447116
	ENST00000361466	ENSP00000354849
	ENST00000547509	ENSP00000447362
	ENST00000552198	Non-protein coding
	ENST00000547405	ENSP00000448175
	ENST00000441232	ENSP00000388989
	ENST00000452455	ENSP00000400908
	ENST00000550270	ENSP00000449702
	ENST00000392934	ENSP00000376665
	ENST00000545503	ENSP00000440034
	ENST00000550514	ENSP00000447404
	ENST00000550501	Non-protein coding
	ENST00000553190	ENSP00000447900
	ENST00000360610	ENSP00000353822
	ENST00000361685	ENSP00000354845
	ENST00000549145	ENSP00000447660
	ENST00000536007	ENSP00000446128
NFIL3	ENST00000534336	ENSP00000297689
NR4A3	ENST00000395097	ENSP00000378531
	ENST00000330847	ENSP00000333122
PI15	ENST00000260113	ENSP00000260113
	ENST00000523773	ENSP00000428567
PTGS2	ENST00000490885	Non-protein coding
	ENST00000559627	Non-protein coding
	ENST00000367468	ENSP00000356438
	ENST00000466691	Non-protein coding
RHOBTB3	ENST00000510313	ENSP00000424844
	ENST00000379982	ENSP00000369318
	ENST00000504179	ENSP00000422360
RIN2	ENST00000484638	Non-protein coding
	ENST00000255006	ENSP00000255006

- 32 -

RNFT2	ENST00000319176	ENSP00000321405
	ENST00000547718	Non-protein coding
	ENST00000551251	Non-protein coding
	ENST00000407967	ENSP00000385669
	ENST00000392549	ENSP00000376332
	ENST00000257575	ENSP00000257575
SELE	ENST00000367777	ENSP00000356751
	ENST00000367775	ENSP00000356749
	ENST00000367781	ENSP00000356755
	ENST00000333360	ENSP00000331736
	ENST00000367776	ENSP00000356750
	ENST00000367779	ENSP00000356753
	ENST00000367780	ENSP00000356754
	ENST00000367782	ENSP00000356756
	ENST00000469422	Non-protein coding
SLC15A2	ENST00000295605	ENSP00000295605
	ENST00000489711	ENSP00000417085
	ENST00000549206	ENSP00000448815
SOCS2	ENST00000549122	ENSP00000447161
	ENST00000548537	ENSP00000448709
	ENST00000551883	ENSP00000474805
	ENST00000340600	ENSP00000339428
SOCS3	ENST00000330871	ENSP00000330341
SSTR1	ENST00000267377	ENSP00000267377
ST6GAL1	ENST00000470633	Non-protein coding
	ENST00000457772	ENSP00000412221
	ENST00000169298	ENSP00000169298
	ENST00000448044	ENSP00000389337
TSC22D1	ENST00000261489	ENSP00000261489
	ENST00000458659	ENSP00000397435
	ENST00000501704	ENSP00000437414
XBP1	ENST00000216037	ENSP00000216037
	ENST00000405219	ENSP00000384295
	ENST00000344347	ENSP00000343155
	ENST00000403532	ENSP00000385162
	ENST00000482720	Non-protein coding
ZFP36	ENST00000594442	ENSP00000471239
	ENST00000248673	ENSP00000248673
	ENST00000597629	ENSP00000469647
F12	ENST00000510358	Non-protein coding
	ENST00000514943	Non-protein coding
	ENST00000502854	Non-protein coding
	ENST00000504406	Non-protein coding

	ENST00000253496	ENSP00000253496
CD38	ENST00000226279	ENST00000226279
	ENST00000502843	Non-protein coding
F3	ENST00000370207	ENSP00000359226
	ENST00000334047	ENSP00000334145
	ENST00000480356	Non-protein coding
IL8	ENST00000307407	ENSP00000306512
OAT	ENST00000471127	Non-protein coding
	ENST00000368845	ENSP00000357838
	ENST00000539214	ENSP00000439042
FOXM1	ENST00000342628	ENSP00000342307
	ENST00000536066	Non-protein coding
	ENST00000361953	ENSP00000354492
	ENST00000359843	ENSP00000352901

The methods described herein may further comprise extracting total nucleic acid or RNA from the sample. Suitable methods are known in the art and include use of commercially available kits

5 such as Rneasy and GeneJET RNA purification kit.

In certain embodiments the methods may further comprise obtaining the sample from the subject. Typically the methods are in vitro methods performed on an isolated sample.

10 According to all aspects of the invention samples may be of any suitable form. The sample may comprise, consist essentially of or consist of prostate cells and often a prostate tissue sample. The prostate cells or tissue may comprise prostate cancer cells. In specific embodiments the sample comprises, consists essentially of or consists of a formalin-fixed paraffin-embedded biopsy sample. The tissue sample may be obtained by any suitable technique. Examples 15 include a biopsy procedure, optionally a fine needle aspirate biopsy procedure. Body fluid samples may also be utilised. Suitable sample types include blood, to encompass whole blood, serum and plasma samples, urine and semen.

20 The methods of the invention may comprise selecting a treatment for prostate cancer in a subject and optionally performing the treatment. In certain embodiments if the characterisation of and/or prognosis for the prostate cancer is an increased likelihood of recurrence and/or metastasis and/or a poor prognosis the treatment selected is one or more of
25 a) an anti-hormone treatment
b) a cytotoxic agent
c) a biologic

- 34 -

- d) radiotherapy
- e) targeted therapy
- f) surgery

5 By anti-hormone treatment (or hormone therapy) is meant a form of treatment which reduces the level and/or activity of selected hormones, in particular testosterone. The hormones may promote tumour growth and/or metastasis. The anti-hormone treatment may comprise a luteinizing hormone blocker, such as goserelin (also called Zoladex), buserelin, leuprorelin (also called Prostap), histrelin (Vantas) and triptorelin (also called Decapeptyl). The anti-hormone treatment may comprise a gonadotrophin release hormone (GnRH) blocker such as degarelix (Firmagon) or an anti-androgen such as flutamide (also called Drogenil) and bicalutamide (also called Casodex). In specific embodiments the anti-hormone treatment may be bicalutamide and/or abiraterone.

10

15 The cytotoxic agent may be a platinum based agent and/or a taxane. In specific embodiments the platinum based agent is selected from cisplatin, carboplatin and oxaliplatin. The taxane may be paclitaxel, cabazitaxel or docetaxel. The cytotoxic agent may also be a vinca alkaloid, such as vinorelbine or vinblastine. The cytotoxic agent may be a topoisomerase inhibitor such as etoposide or an anthracycline (antibiotic) such as doxorubicin. The cytotoxic agent may be an alkylating agent such as estramustine.

20

25 By biologic is meant a medicinal product that is created by a biological process. A biologic may be, for example, a vaccine, blood or blood component, cells, gene therapy, tissue, or a recombinant therapeutic protein. Optionally the biologic is an antibody and/or a vaccine. The biologic may be Sipuleucel-T.

In certain embodiments the radiotherapy is extended radiotherapy, preferably extended-field radiotherapy.

30 Surgery may comprise radical prostatectomy. By radical prostatectomy is meant removal of the entire prostate gland, the seminal vesicles and the vas deferens. In further embodiments surgery comprises tumour resection i.e. removal of all or part of the tumour.

35 By targeted therapy is meant treatment using targeted therapeutic agents which are directed towards a specific drug target for the treatment of prostate cancer. In specific embodiments this may mean inhibitors directed towards targets such as PARP, AKT, MET, VEGFR etc. PARP inhibitors are a group of pharmacological inhibitors of the enzyme poly ADP ribose polymerase

- 35 -

(PARP). Several forms of cancer are more dependent on PARP than regular cells, making PARP an attractive target for cancer therapy. Examples (in clinical trials) include iniparib, olaparib, rucaparib, veliparib, CEP 9722, MK 4827, BMN-673 and 3-aminobenzamide. AKT, also known as Protein Kinase B (PKB), is a serine/threonine-specific protein kinase that plays a key role in

5 multiple cellular processes such as glucose metabolism, apoptosis, cell proliferation, transcription and cell migration. AKT is associated with tumor cell survival, proliferation, and invasiveness.

Examples of AKT inhibitors include VQD-002, Perifosine, Miltefosine and AZD5363. MET is a proto-oncogene that encodes hepatocyte growth factor receptor (HGFR). The hepatocyte growth

factor receptor protein possesses tyrosine-kinase activity. Examples of kinase inhibitors for

10 inhibition of MET include K252a, SU11274, PHA-66752, ARQ197, Foretinib, SGX523 and

MP470. MET activity can also be blocked by inhibiting the interaction with HGF. Many suitable antagonists including truncated HGF, anti-HGF antibodies and uncleavable HGF are known.

VEGF receptors are receptors for vascular endothelial growth factor (VEGF). Various inhibitors are known such as lenvatinib, motesanib, pazopanib and regorafenib.

15

The methods of the present invention can guide therapy selection as well as selecting patient groups for enrichment strategies during clinical trial evaluation of novel therapeutics. For example, when evaluating a putative anti-cancer agent or treatment regime, the methods disclosed herein may be used to select individuals for clinical trials that have prostate cancer

20 characterized as having an increased likelihood of recurrence and/or metastasis and/or a poor prognosis.

The invention also relates to a system or device for performing a method as described herein.

25 In a further aspect, the present invention relates to a system or test kit for characterising and/or prognosing prostate cancer in a subject, comprising:

a) one or more testing devices for determining the expression level of at least one of FOXM1, TRPM3, PDRG1, SRSF5, PDE4D, F12, PDK4, ADAMTS1, ADAMTS9, B3GNT5, CD38, CEBPD, CENPF, CREM, DKK1, EMP1, ERRFI1, F3, HJURP, IL1R1, IL8, JUNB, KLF10, KLF4,

30 LDLR, LGALS3, LPAR1, MALAT1, MTUS1, MYBPC1, NFIL3, NR4A3, OAT, PI15, PTGS2, RHOBTB3, RIN2, RNFT2, SELE, SLC15A2, SOCS2, SOCS3, SSTR1, ST6GAL1, TSC22D1, XBP1 and ZFP36 in a sample from the subject

b) a processor; and

c) storage medium comprising a computer application that, when executed by the

35 processor, is configured to:

(i) access and/or calculate the determined expression levels of the at least one of

- 36 -

FOXM1, TRPM3, PDRG1, SRSF5, PDE4D, F12, PDK4, ADAMTS1, ADAMTS9, B3GNT5, CD38, CEBPD, CENPF, CREM, DKK1, EMP1, ERF1, F3, HJURP, IL1R1, IL8, JUNB, KLF10, KLF4, LDR, LGALS3, LPAR1, MALAT1, MTUS1, MYBPC1, NFIL3, NR4A3, OAT, PI15, PTGS2, RHOBTB3, RIN2, RNFT2, SELE,

5 SLC15A2, SOCS2, SOCS3, SSTR1, ST6GAL1, TSC22D1, XBP1 and ZFP36 in the sample on the one or more testing devices

(ii) calculate whether there is an increased or decreased level of the at least one of

FOXM1, TRPM3, PDRG1, SRSF5, PDE4D, F12, PDK4, ADAMTS1, ADAMTS9, B3GNT5, CD38, CEBPD, CENPF, CREM, DKK1, EMP1, ERF1, F3, HJURP, IL1R1, IL8, JUNB, KLF10, KLF4, LDR, LGALS3, LPAR1, MALAT1, MTUS1, MYBPC1, NFIL3, NR4A3, OAT, PI15, PTGS2, RHOBTB3, RIN2, RNFT2, SELE, SLC15A2, SOCS2, SOCS3, SSTR1, ST6GAL1, TSC22D1, XBP1 and ZFP36

in the sample; and

10 15 (iii) output from the processor the characteristaion of and/or prognosis for the prostate cancer.

By testing device is meant a combination of components that allows the expression level of a gene to be determined. The components may include any of those described above with respect 20 to the methods for determining expression level at the level of protein, RNA or epigenetic modification. For example the components may be antibodies, primers, detection agents and so on. Components may also include one or more of the following: microscopes, microscope slides, x-ray film, radioactivity counters, scintillation counters, spectrophotometers, colorimeters, fluorometers, luminometers, and densitometers.

25 In certain embodiments the system or test kit further comprises a display for the output from the processor.

30 The invention also relates to a computer application or storage medium comprising a computer application as defined above.

In certain example embodiments, provided is a computer-implemented method, system, and a computer program product for characterising and/or prognosing prostate cancer in a subject, in accordance with the methods described herein. For example, the computer program product 35 may comprise a non-transitory computer-readable storage device having computer-readable program instructions embodied thereon that, when executed by a computer, cause the computer

to characterise and/or prognose prostate cancer in a subject as described herein. For example, the computer executable instructions may cause the computer to:

- (i) access and/or calculate the determined expression levels of the at least one of FOXM1, TRPM3, PDRG1, SRSF5, PDE4D, F12, PDK4, ADAMTS1, ADAMTS9, B3GNT5, CD38, CEBPD, 5 CENPF, CREM, DKK1, EMP1, ERRFI1, F3, HJURP, IL1R1, IL8, JUNB, KLF10, KLF4, LDLR, LGALS3, LPAR1, MALAT1, MTUS1, MYBPC1, NFIL3, NR4A3, OAT, PI15, PTGS2, RHOBTB3, RIN2, RNFT2, SELE, SLC15A2, SOCS2, SOCS3, SSTR1, ST6GAL1, TSC22D1, XBP1 and ZFP36 in a sample on one or more testing devices;
- (ii) calculate whether there is an increased or decreased level of the at least one of FOXM1, 10 TRPM3, PDRG1, SRSF5, PDE4D, F12, PDK4, ADAMTS1, ADAMTS9, B3GNT5, CD38, CEBPD, CENPF, CREM, DKK1, EMP1, ERRFI1, F3, HJURP, IL1R1, IL8, JUNB, KLF10, KLF4, LDLR, LGALS3, LPAR1, MALAT1, MTUS1, MYBPC1, NFIL3, NR4A3, OAT, PI15, PTGS2, RHOBTB3, RIN2, RNFT2, SELE, SLC15A2, SOCS2, SOCS3, SSTR1, ST6GAL1, TSC22D1, XBP1 and ZFP36 in the sample; and,
- 15 (iii) provide an output regarding the characterization of and/or prognosis for the prostate cancer.

In certain example embodiments, the computer-implemented method, system, and computer program product may be embodied in a computer application, for example, that operates and executes on a computing machine and a module. When executed, the application may 20 characterise and/or prognose prostate cancer in a subject, in accordance with the example embodiments described herein.

As used herein, the computing machine may correspond to any computers, servers, embedded systems, or computing systems. The module may comprise one or more hardware or software 25 elements configured to facilitate the computing machine in performing the various methods and processing functions presented herein. The computing machine may include various internal or attached components such as a processor, system bus, system memory, storage media, input/output interface, and a network interface for communicating with a network, for example. The computing machine may be implemented as a conventional computer system, an embedded 30 controller, a laptop, a server, a customized machine, any other hardware platform, such as a laboratory computer or device, for example, or any combination thereof. The computing machine may be a distributed system configured to function using multiple computing machines interconnected via a data network or bus system, for example.

35 The processor may be configured to execute code or instructions to perform the operations and functionality described herein, manage request flow and address mappings, and to perform calculations and generate commands. The processor may be configured to monitor and control

the operation of the components in the computing machine. The processor may be a general purpose processor, a processor core, a multiprocessor, a reconfigurable processor, a microcontroller, a digital signal processor ("DSP"), an application specific integrated circuit ("ASIC"), a graphics processing unit ("GPU"), a field programmable gate array ("FPGA"), a

5 programmable logic device ("PLD"), a controller, a state machine, gated logic, discrete hardware components, any other processing unit, or any combination or multiplicity thereof. The processor may be a single processing unit, multiple processing units, a single processing core, multiple processing cores, special purpose processing cores, co-processors, or any combination thereof. According to certain example embodiments, the processor, along with other components of the 10 computing machine, may be a virtualized computing machine executing within one or more other computing machines.

The system memory may include non-volatile memories such as read-only memory ("ROM"), programmable read-only memory ("PROM"), erasable programmable read-only memory

15 ("EPROM"), flash memory, or any other device capable of storing program instructions or data with or without applied power. The system memory may also include volatile memories such as random access memory ("RAM"), static random access memory ("SRAM"), dynamic random access memory ("DRAM"), and synchronous dynamic random access memory ("SDRAM").

Other types of RAM also may be used to implement the system memory. The system memory 20 may be implemented using a single memory module or multiple memory modules. While the system memory may be part of the computing machine, one skilled in the art will recognize that the system memory may be separate from the computing machine without departing from the scope of the subject technology. It should also be appreciated that the system memory may include, or operate in conjunction with, a non-volatile storage device such as the storage media.

25 The storage media may include a hard disk, a floppy disk, a compact disc read only memory ("CD-ROM"), a digital versatile disc ("DVD"), a Blu-ray disc, a magnetic tape, a flash memory, other non-volatile memory device, a solid state drive ("SSD"), any magnetic storage device, any optical storage device, any electrical storage device, any semiconductor storage device, any physical-based storage device, any other data storage device, or any combination or multiplicity

30 thereof. The storage media may store one or more operating systems, application programs and program modules such as module, data, or any other information. The storage media may be part of, or connected to, the computing machine. The storage media may also be part of one or more other computing machines that are in communication with the computing machine, such as servers, database servers, cloud storage, network attached storage, and so forth.

35

The module may comprise one or more hardware or software elements configured to facilitate the computing machine with performing the various methods and processing functions presented

herein. The module may include one or more sequences of instructions stored as software or firmware in association with the system memory, the storage media, or both. The storage media may therefore represent examples of machine or computer readable media on which instructions or code may be stored for execution by the processor. Machine or computer readable media may

5 generally refer to any medium or media used to provide instructions to the processor. Such machine or computer readable media associated with the module may comprise a computer software product. It should be appreciated that a computer software product comprising the module may also be associated with one or more processes or methods for delivering the module to the computing machine via a network, any signal-bearing medium, or any other 10 communication or delivery technology. The module may also comprise hardware circuits or information for configuring hardware circuits such as microcode or configuration information for an FPGA or other PLD.

The input/output ("I/O") interface may be configured to couple to one or more external devices, to 15 receive data from the one or more external devices, and to send data to the one or more external devices. Such external devices along with the various internal devices may also be known as peripheral devices. The I/O interface may include both electrical and physical connections for operably coupling the various peripheral devices to the computing machine or the processor.

The I/O interface may be configured to communicate data, addresses, and control signals 20 between the peripheral devices, the computing machine, or the processor. The I/O interface may be configured to implement any standard interface, such as small computer system interface ("SCSI"), serial-attached SCSI ("SAS"), fiber channel, peripheral component interconnect ("PCI"), PCI express (PCIe), serial bus, parallel bus, advanced technology attached ("ATA"), serial ATA ("SATA"), universal serial bus ("USB"), Thunderbolt, FireWire, various video buses, and the like. 25 The I/O interface may be configured to implement only one interface or bus technology.

Alternatively, the I/O interface may be configured to implement multiple interfaces or bus 30 technologies. The I/O interface may be configured as part of, all of, or to operate in conjunction with, the system bus. The I/O interface may include one or more buffers for buffering transmissions between one or more external devices, internal devices, the computing machine, or the processor.

The I/O interface may couple the computing machine to various input devices including mice, 35 touch-screens, scanners, electronic digitizers, sensors, receivers, touchpads, trackballs, cameras, microphones, keyboards, any other pointing devices, or any combinations thereof. The I/O interface may couple the computing machine to various output devices including video displays, speakers, printers, projectors, tactile feedback devices, automation control, robotic

components, actuators, motors, fans, solenoids, valves, pumps, transmitters, signal emitters, lights, and so forth.

The computing machine may operate in a networked environment using logical connections

5 through the network interface to one or more other systems or computing machines across the network. The network may include wide area networks (WAN), local area networks (LAN), intranets, the Internet, wireless access networks, wired networks, mobile networks, telephone networks, optical networks, or combinations thereof. The network may be packet switched, circuit switched, of any topology, and may use any communication protocol. Communication
10 links within the network may involve various digital or an analog communication media such as fiber optic cables, free-space optics, waveguides, electrical conductors, wireless links, antennas, radio-frequency communications, and so forth.

The processor may be connected to the other elements of the computing machine or the various peripherals discussed herein through the system bus. It should be appreciated that the system

15 bus may be within the processor, outside the processor, or both. According to some embodiments, any of the processor, the other elements of the computing machine, or the various peripherals discussed herein may be integrated into a single device such as a system on chip ("SOC"), system on package ("SOP"), or ASIC device.

20 Embodiments may comprise a computer program that embodies the functions described and illustrated herein, wherein the computer program is implemented in a computer system that comprises instructions stored in a machine-readable medium and a processor that executes the instructions. However, it should be apparent that there could be many different ways of implementing embodiments in computer programming, and the embodiments should not be
25 construed as limited to any one set of computer program instructions. Further, a skilled programmer would be able to write such a computer program to implement one or more of the disclosed embodiments described herein. Therefore, disclosure of a particular set of program code instructions is not considered necessary for an adequate understanding of how to make and use embodiments. Further, those skilled in the art will appreciate that one or more aspects
30 of embodiments described herein may be performed by hardware, software, or a combination thereof, as may be embodied in one or more computing systems. Moreover, any reference to an act being performed by a computer should not be construed as being performed by a single computer as more than one computer may perform the act.

35 The example embodiments described herein can be used with computer hardware and software that perform the methods and processing functions described previously. The systems, methods, and procedures described herein can be embodied in a programmable computer,

computer-executable software, or digital circuitry. The software can be stored on computer-readable media. For example, computer-readable media can include a floppy disk, RAM, ROM, hard disk, removable media, flash memory, memory stick, optical media, magneto-optical media, CD-ROM, etc. Digital circuitry can include integrated circuits, gate arrays, building block logic,

5 field programmable gate arrays (FPGA), etc.

Reagents, tools, and/or instructions for performing the methods described herein can be provided in a kit. Such a kit can include reagents for collecting a tissue sample from a patient, such as by biopsy, and reagents for processing the tissue. The kit can also include one or more

10 reagents for performing a expression level analysis, such as reagents for performing nucleic acid amplification, including RT-PCR and qPCR, NGS, northern blot, proteomic analysis, or immunohistochemistry to determine expression levels of biomarkers in a sample of a patient. For example, primers for performing RT-PCR, probes for performing northern blot analyses, and/or antibodies or aptamers, as discussed herein, for performing proteomic analysis such as Western blot, immunohistochemistry and ELISA analyses can be included in such kits. Appropriate buffers for the assays can also be included. Detection reagents required for any of these assays can also be included. The kits may be array or PCR based kits for example and may include additional reagents, such as a polymerase and/or dNTPs for example. The kits featured herein can also include an instruction sheet describing how to perform the assays for measuring

15 expression levels.

20 The kit may include one or more primer pairs complementary to at least one of TRPM3, PDRG1, SRSF5, PDE4D, F12, PDK4, ADAMTS1, ADAMTS9, B3GNT5, CD38, CEBPD, CENPF, CREM, DKK1, EMP1, ERRFI1, F3, HJURP, IL1R1, IL8, JUNB, KLF10, KLF4, LDLR, LGALS3, LPAR1, MALAT1, MTUS1, MYBPC1, NFIL3, NR4A3, OAT, PI15, PTGS2, RHOBTB3, RIN2, RNFT2, SELE, SLC15A2, SOCS2, SOCS3, SSTR1, ST6GAL1, TSC22D1, XBP1 and ZFP36.

25 The kit may also include one or more primer pairs complementary to a reference gene, for example primers complementary to at least one of TPT1, RPS14 or RPL37A.

30 Such a kit can also include primer pairs complementary to at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45 or 46 of

35 TRPM3, PDRG1, SRSF5, PDE4D, F12, PDK4, ADAMTS1, ADAMTS9, B3GNT5, CD38, CEBPD, CENPF, CREM, DKK1, EMP1, ERRFI1, F3, HJURP, IL1R1, IL8, JUNB, KLF10, KLF4, LDLR, LGALS3, LPAR1, MALAT1, MTUS1, MYBPC1, NFIL3, NR4A3, OAT, PI15, PTGS2, RHOBTB3,

- 42 -

RIN2, RNFT2, SELE, SLC15A2, SOCS2, SOCS3, SSTR1, ST6GAL1, TSC22D1, XBP1 and ZFP36.

The kit may include one or more primer pairs complementary to at least one of TRPM3, PDRG1,

5 F12, CENPF, HJURP, RNFT2, and SSTR1 and one or more primer pairs complementary to at least one of SRSF5, PDE4D, PDK4, ADAMTS1, ADAMTS9, B3GNT5, CD38, CEBPD, CREM, DKK1, EMP1, ERRFI1, F3, IL1R1, IL8, JUNB, KLF10, KLF4, LDLR, LGALS3, LPAR1, MALAT1, MTUS1, MYBPC1, NFIL3, NR4A3, OAT, PI15, PTGS2, RHOBTB3, RIN2, SELE, SLC15A2, SOCS2, SOCS3, ST6GAL1, TSC22D1, XBP1 and ZFP36.

10

Kits for characterising and/or prognosing prostate cancer in a subject may permit the methylation status of at least one of ADAMTS9, EMP1, F3, LDLR, LGALS3, MALAT1, MTUS1, NR4A3, PTGS2, RIN2, SLC15A2, SOCS3 and TSC22D1 to be determined. The determined methylation status, which may be hypermethylation, is used to provide a characterisation of and/or a

15 prognosis for the prostate cancer. Such kits may include primers and/or probes for determining the methylation status of the gene or genes directly. They may thus comprise methylation specific primers and/or probes that discriminate between methylated and unmethylated forms of DNA by hybridization. Such kits will typically also contain a reagent that selectively modifies either the methylated or non-methylated form of CpG dinucleotide motifs. Suitable chemical 20 reagents comprise hydrazine and bisulphite ions. An example is sodium bisulphite. The kits may, however, contain other reagents as discussed hereinabove to determine methylation status such as restriction endonucleases.

Accordingly, the invention also relates to a kit for characterising and/or prognosing prostate 25 cancer in a subject comprising one or more antibodies or aptamers as described above.

As discussed above, in certain embodiments an increased expression level of at least one of TRPM3, PDRG1, F12, CENPF, HJURP, RNFT2, and SSTR1 or of FOXM1 indicates an increased likelihood of recurrence and/or metastasis and/or a poor prognosis. In further 30 embodiments a decreased expression level of at least one of SRSF5, PDE4D, PDK4, ADAMTS1, ADAMTS9, B3GNT5, CD38, CEBPD, CREM, DKK1, EMP1, ERRFI1, F3, IL1R1, IL8, JUNB, KLF10, KLF4, LDLR, LGALS3, LPAR1, MALAT1, MTUS1, MYBPC1, NFIL3, NR4A3, OAT, PI15, PTGS2, RHOBTB3, RIN2, SELE, SLC15A2, SOCS2, SOCS3, ST6GAL1, TSC22D1, XBP1 and ZFP36 indicates an increased likelihood of recurrence and/or metastasis and/or a 35 poor prognosis.

- 43 -

Accordingly, the kits described herein may comprise primers, probes or antibodies/aptamers (as discussed herein) for determining the expression level of at least one of TRPM3, PDRG1, F12, CENPF, HJURP, RNFT2, and SSTR1 or FOXM1 and at least one of SRSF5, PDE4D, PDK4, ADAMTS1, ADAMTS9, B3GNT5, CD38, CEBPD, CREM, DKK1, EMP1, ERF1, F3, IL1R1, IL8, 5 JUNB, KLF10, KLF4, LDLR, LGALS3, LPAR1, MALAT1, MTUS1, MYBPC1, NFIL3, NR4A3, OAT, PI15, PTGS2, RHOBTB3, RIN2, SELE, SLC15A2, SOCS2, SOCS3, ST6GAL1, TSC22D1, XBP1 and ZFP36. Thus, the kits may incorporate reagents to determine expression levels of a combination of an up-regulated marker and a down-regulated marker. Suitable antibodies and/or primers/probes can be derived from Tables B, C and D herein.

10

Informational material included in the kits can be descriptive, instructional, marketing or other material that relates to the methods described herein and/or the use of the reagents for the methods described herein. For example, the informational material of the kit can contain contact information, e.g., a physical address, email address, website, or telephone number, where a user 15 of the kit can obtain substantive information about performing a gene expression analysis and interpreting the results.

The kit may further comprise a computer application or storage medium as described above.

20

The example systems, methods, and acts described in the embodiments presented previously are illustrative, and, in alternative embodiments, certain acts can be performed in a different order, in parallel with one another, omitted entirely, and/or combined between different example embodiments, and/or certain additional acts can be performed, without departing from the scope and spirit of various embodiments. Accordingly, such alternative embodiments are included in 25 the examples described herein.

Although specific embodiments have been described above in detail, the description is merely for purposes of illustration. It should be appreciated, therefore, that many aspects described above are not intended as required or essential elements unless explicitly stated otherwise.

30

Modifications of, and equivalent components or acts corresponding to, the disclosed aspects of the example embodiments, in addition to those described above, can be made by a person of ordinary skill in the art, having the benefit of the present disclosure, without departing from the spirit and scope of embodiments defined in the following claims, the scope of which is to be 35 accorded the broadest interpretation so as to encompass such modifications and equivalent structures.

DESCRIPTION OF THE FIGURES**Figure 1**

Unsupervised hierarchical clustering of a FFPE prostate cancer sample set comprising 70 primary prostate cancers, 20 primary cancers with concomitant metastatic disease, 11 metastatic disease and 25 normal prostate samples FFPE.

- A. Using the most variable genes across the dataset identified a subset of primary tumours that cluster with metastatic disease application (chi squared 2.77×10^{-10})
- B. Semi-supervised hierarchical clustering using 1083 differentially expressed genes identified from the internal dataset of the dataset published by Taylor and colleagues identified a similar subcluster of primary tumours that cluster with metastatic disease application (chi squared 2.78×10^{-6}).
- C. Kaplan-Meier analysis of the probability that patients would remain disease free following surgery if they were part of the metastatic biology group or not, hazard ratios were determined by log-rank test.

Figure 2

- A. Overlap of 83 overexpressed genes with FOXM1 CHIP-Seq hits from publications, hypergeometric test of overlap p-value 9.269×10^{-5}
- B. Box plot of pearson correlation scores of 39 over-expressed targets which overlapped with FOXM1 CHIP-seq hits and remaining over-expressed targets. T-test (p-value <0.0001).

Figure 3

- A. Great (<http://beierano.stanford.edu/great/public/html/>) functional analysis, molecular function of genomic regions in which the hypermethylated probes are located.
- B. Venn diagram demonstrating overlap of under-expressed genes with CHIP-SEQ identified targets of EZH2 and H3K27me3, Hypergeometric test of overlap.
- C. Venn diagram demonstrating overlap of under-expressed genes with hyper-methylated and H3K27me3 modifications.

Figure 4

Venn diagram showing the overlap between the top 10,000 ranked probesets including those that are least correlated between the metastatic biology subgroup and non-metastatic biology subgroup ("Lists 1 & 2") and those that are highly correlated between the non-metastatic biology subgroup and benign groups ("List 3").

- 45 -

Figure 5

GAP analysis of sample clusters identified in internal dataset.

5 Figure 6

Functional analysis of 1182 unique genes differentially expressed genes using Toppfun
(<http://toppgene.cchmc.org/>)

- A. Significant molecular processes of under-expressed genes
- B. Significant molecular processes of overexpressed genes.

10

Figure 7

Study outline for screening potential IHC antibodies

EXAMPLES

15 The present invention will be further understood by reference to the following experimental examples.

Results

**Unsupervised hierarchical clustering identifies a distinct molecular subgroup in prostate
20 cancer defined by metastatic biology**

We hypothesized that primary prostate cancers with metastatic potential would be transcriptionally similar to metastatic disease and primary disease with known concomitant metastases. In order to identify this metastatic subgroup we took an unsupervised hierarchical clustering approach using 70 resected primary prostate cancers clinically confined to prostate, 20
25 primary prostate cancer with known concomitant metastatic disease, 11 lymph nodes with metastatic disease, and 25 normal prostate samples. Clustering was performed using the most variable probe sets across the entire dataset. GAP statistical testing (Tibshirani et al 2001) identified 2 major sample clusters with statistical significance (figure 1A, figure 5).

30 One of these molecular subgroups had significant enrichment for metastatic disease and primary tumours with known concomitant metastases (χ^2 squared $p=2.77 \times 10^{-10}$). Importantly, 29 primary prostate samples were also found in this group, which did not present with metastatic

- 46 -

disease but shared a similar transcriptional biology. This group of tumours is hereon referred to as the “metastatic biology subgroup” and the second subgroup the “non-metastatic subgroup”.

Next we performed gene expression analysis between primary tumours in the metastatic and 5 non-metastatic subgroups and identified 1182 differentially expressed transcripts. The majority of these transcripts were under-expressed in the metastatic subgroup (1099 under-expressed versus 83 over-expressed).

In order to identify if the 1182 differentially expressed genes were prognostic in a second 10 dataset, we used the genes to cluster the prostate cancer dataset published by Taylor and colleagues (Taylor et al 2010), this dataset represents prostate cancers managed by surgery for which PSA follow-up is available. Consistent with our internal training set, we found 2 robust sample clusters, one of which demonstrated enrichment for metastatic samples (Chi squared p=2.78x10⁻⁶ (Figure 1B). Importantly this group also contained 63 primary tumour samples 15 without known metastatic disease at the time of presentation. Kaplan Meier analysis demonstrated that primary tumours within the metastatic biology group had a shorter time to disease recurrence (Figure 1C) following surgery (Hazard Ratio (HR) 2.377 and p-value 0.0351). The clinical and pathological characteristics of the sample clusters are detailed in table 1. Importantly, there were no differences in other prognostic clinical factors such as stage, grade or 20 PSA levels pre-treatment.

Molecular pathways that underlie the metastatic biology group

To establish which molecular pathways give rise to the metastatic phenotype and poor 25 prognosis, we performed pathway analysis using 1182 differentially expressed genes between the metastatic and non-metastatic subgroups. This identified 10 significant over-expressed pathways and 20 under-expressed pathways in the metastatic subgroup (Table 2i and 2ii). Interestingly the majority of pathways overexpressed in the metastatic subgroup were related to mitotic progression (Table 2i), whereas the molecular pathways that were under-expressed were involved in cell adhesion, morphology, ATF2 and p53 transcription.

30 To establish which of these molecular pathways were responsible for the poor prognosis we used the genes representing each pathway to cluster the Taylor dataset and a second dataset published by Sun and colleagues (Sun et al 2009). This later dataset represents primary prostate cancers managed with surgery with PSA follow-up. A Kaplan Meier analysis of time to 35 recurrence was used for each of the observed clusters (Tables 2i and 2ii).

- 47 -

Of the overexpressed molecular pathways, only FOXM1 transcription factor network was significantly prognostic in the Taylor dataset (HR 2.755 p=0.0134). Furthermore FOXM1 itself was overexpressed in the metastatic biology subgroup in our internal training dataset (FC 2.13). To establish if increased FOXM1 was responsible for the overexpression of the mitotic genes in the metastatic biology group we interrogated 2 public FoxM1 CHIP-Seq data published by Sander and colleagues and Chen and colleagues (Chen et al 2013, Sanders et al 2013). We overlapped the identified FOXM1 CHIP-Seq targets with genes overexpressed in the metastatic biology group. Significantly, 39 out of 83 overexpressed genes in the metastatic subgroup were bound by FOXM1 in either of the datasets, with 20 being common to both. This overlap was highly significant (9.269×10^{-5}). Furthermore we performed correlation analysis of all the overexpressed transcripts against FOXM1 levels in the internal dataset, (supplementary table 3). Comparison of the correlations of the 39 FOXM1 targets identified through the analysis of CHIP-Seq data to the non-CHIP targets demonstrated a highly significant increase in correlation scores for the FOXM1 targets versus those not bound by FOXM1 (t test p-value <0.0001) of the CHIP-Seq targets (Figure 2B). Taken together this data strongly suggest that FoxM1 overexpression is responsible for the transcriptional activation of a large subset of the 83 genes that were detected as over-expressed in the metastatic subgroup.

Under-expressed molecular pathways that were significantly prognostic in both the Taylor and Sun datasets were muscle contraction, adipogenesis and ATF2 transcriptional targets. The diltiazem pathway was significantly prognostic in the Taylor dataset whereas integrin signaling and transcriptional targets for p53 although lost in the Taylor dataset, only reached prognostic significance in the Sun dataset.

25 **Epigenetic Silencing of Gene Expression Occurs in the Metastatic biology subgroup**

The majority of differentially expressed genes in the metastatic biology subgroup were down-regulated. Next we asked what potential mechanisms could account for this marked loss of gene expression in the metastatic biology group. Analysis of the molecular processes identified that genes involved in chromatin binding were over-expressed (figure 6), importantly we noted that several genes known to be involved in epigenetic gene regulation were up-regulated including AR, EZH2, HELLs and UHRF1) (Table 3).

UHRF1 was overexpressed in the metastatic biology subgroup (2.375 fold). This protein has recently been shown to contribute to and to maintain epigenetic silencing in prostate cancer (Babbio et al 2012). UHRF1 can bind to hemimethylated CpGs and can recruit DNMT1 to maintain DNA methylation patterns (Bostick et al 2007, Sharif et al 2007). Increased rates of

- 48 -

DNA methylation at or near promoters has been shown to correlate to reduced gene expression, this is most probably related to accessibility of transcription factors to the gene promoters.

We therefore measured the DNA methylation levels in a subset of 22 tumours from our interim
5 training set (11 from each subgroup) using a high content DNA methylation array (sample details
in supplementary table 3). Global analysis of the 1098 under-expressed genes in the metastatic
subgroup demonstrated that 418 had increased rates of DNA methylation (p-value of overlap
1.546x10⁻³⁴) (table 4). Furthermore, analysis of the over-expressed gene sets showed no
significant hyper or hypo methylation status thereby suggesting that altered methylation status is
10 not important in the over-expressed gene sets.

GREAT (<http://bejerano.stanford.edu/great/public/html/>) analysis of the hyper-methylated
genomic regions demonstrated a number of enriched molecular processes (Figure 3A), in
particular DNA binding and transcription factor functions. This suggested that methylation not
15 only silences genes directly in the metastatic biology group, but could be responsible for the loss
of genes involved in transcription causing a further loss in gene expression.

Another gene involved in epigenetic silencing, EZH2 was over 2 fold over-expressed in the
metastatic biology group (Table 3). EZH2 is a component of the PRC2 (Polycomb Repressive
20 Complex 2) one of the two classes of polycomb-group proteins or (PcG). This complex has
histone methyltransferase activity and EZH2 is the catalytic subunit. Indeed, EZH2 expression is
the key determinant of histone methyltransferase activity. The PRC2 complex trimethylates
histone H3 on lysine 27 (i.e. H3K27me3), this site is a mark of transcriptionally silent chromatin.
To establish if EZH2 function might account for at least part of the loss of gene expression in the
25 metastatic subgroup, we used a public CHIP-Seq (Wu et al 2012) prostate cancer cell line
dataset. Specifically we compared genes known to bind EZH2 and H3K27me3 to those that were
suppressed in the metastatic biology subgroup (Figure 3B). A significant number of the under-
expressed genes were bound by EZH2, H3K27me3 or both (p-Value 2.597x10⁻¹²), thereby
30 strongly implicating chromatin silencing via EZH2 mediated histone modification as a key
mechanism for silencing of a subset of the genes within the metastatic subgroup.

Interestingly, only a proportion of the targets of epigenetic silencing (123/602) had increased
rates of hyper-methylation (Figure 3C) and were predicted to have H3K27me3 related histone
modification thereby suggesting that the two mechanisms may work largely independently to
35 silence gene expression.

Methods for detection of the metastatic biology subgroup

Hierachal clustering is a useful analysis method of gene expression data from a number of samples, however it cannot be used to prospectively classify individual tumours. Additionally, in a previous study we have demonstrated that tumour heterogeneity in prostate cancer causes

5 significant discordance between tumour biopsy and resected tumour profiles from the same patient. Therefore we elected to develop markers suitable for immunohistochemistry (IHC) that would prospectively classify if a tumour were similar to the metastatic biology subgroup.

To achieve this we employed 2 methods, firstly we identified transcripts that were differentially expressed between the metastatic biology subgroup and the non-metastatic biology subgroup
10 but had little expression difference between the non-metastatic biology subgroup and normal.

This process identified 393 probesets, using the 2-sample t-test method, ~75% of these probesets were overexpressed in the non-metastatic biology subgroup in comparison to the metastatic biology subgroup. We termed this approach the targeted as the normal prostate within the test case can be used as a reference.

15

For the second approach we assessed the 1182 differentially expressed between the metastatic biology subgroup non-metastatic subgroup, in this instance as there maybe expression differences between the non-metastatic biology group and benign/normal there is a requirement for a reference target, to identify suitable references we identified genes with minimal expression
20 variance within all prostate cancer samples regardless of subgroup (the top 3 genes are summarised in table 7).

Prognostic utility of IHC targets

For the first approach the 393 probesets were mapped to a gene level to assist independent evaluation in an external dataset, Taylor et al 2010. In this dataset a total of 349 of the genes were detected. We performed multivariate analysis of these 349 genes in Taylor using time-to-biochemical recurrence with Cox proportional hazard corrected for Age, Grade and Stage, this resulted in 7 genes with significant multivariate prognostic function (p-value < 0.05.), these were TRPM3, PDRG1, SRSF5, PDE4D, CNPY4, F12 and PDK4. (Table 5) Univariate survival analysis
30 was also performed, in which 52 genes were significant with a p-value < 0.05. There was an overlap of 3 genes in these top ranked probesets; these were SRSF5, PDE4D and PDK4. The 393 probesets were also assessed using an anova test to determine if they were significantly associated to clinical factors, namely Pathology Gleason score (and Gleason score 1 and 2).

- 50 -

For the second approach the 1182 differentially expressed genes tested in the same multivariate analysis, this identified 56 genes with significant multivariate prognostic function (p-value < 0.05.), (Table 6). Univariate survival analysis was also performed, in which 304 unique genes were significant with a p-value < 0.05. There was an overlap of 41 genes in these top ranked 5 probesets. The numbers of targets with significant multivariate prognostic function was outside the scope of validation therefore we further refined the list by cross-referencing with the prognostic pathways (Table 2i and 2ii), the FOXM1 CHIP-Seq hits and selected literature review. The top 14 genes from the focused, pathway and literature comparisons are summarised in 10 Table 7. FOXM1 itself and the differentially expressed FOXM1 CHIP-Seq targets which demonstrated significant multivariate prognostic power are summarized in Table 9

Discussion

Since the majority of men who develop early prostate cancer will not die from the disease, there 15 is a clear requirement to better understand the biology underlying metastatic spread. This may allow appropriate selection of high-risk patients for more aggressive primary therapies and spare low risk patients unnecessary side effects.

In this study we have identified a group of primary prostate cancers that are similar to metastatic 20 disease at a molecular level. These tumours are defined by loss of expression of several genes and defined pathways; furthermore this group is defined by activation of the proto-oncogene FOXM1 that leads to increased expression of genes involved in mitosis.

We have define a series of markers which have multivariate prognostic power and are highly 25 suitable for IHC development to prospectively assess if a tumour is at increased likelihood of recurrence and metastatic development.

Table 1

	Metastatic Biology Group	Others	p-value
Mean Gleason Score	6.952	6.714	0.0730
Mean Stage	2.429	2.381	0.648
Mean PSA	9.677	7.788	0.1984

- 51 -

Patient age	57.9	57.7	0.8633
Time to relapse	40.29	56.95	0.0014**

Clinical and pathological criteria of the metastatic biology tumours and non-metastatic biology group in the Taylor dataset.

Table 2i

Pathway	p-Value	Taylor HR	Taylor p-Value	Sun HR	Sun p-Value
Genes involved in Cell Cycle, Mitotic	1.78E-10	2.118	0.0614	2.061	0.0602
PLK1 signalling events	4.42E-07	1.843	0.1306	1.54	0.2774
Genes involved in Mitotic M-M/G1 phases	1.10E-06	1.988	0.0997	0.841	0.6823
Genes involved in Mitotic Prometaphase	3.92E-06	2.062280 883	0.0779	0.9289	0.8284
Aurora B signalling	8.51E-06	1.823	0.1352	1.031	0.9268
FOXM1 transcription factor network	4.19E-04	2.755	0.0134	1.737	0.1064
Genes involved in Cyclin A1 associated events during G2/M transition	1.21E-02	1.871	0.1274	0.7773	0.4777
Genes involved in Phosphorylation of the APC/C	1.79E-02	1.995	0.0922	0.9521	0.8838
Cell cycle	3.35E-02	1.837	0.1397	0.8063	0.5324

- 52 -

Genes involved in E2F transcriptional targets at G1/S	3.98E-02	0.462	0.0699	0.4214	0.07
---	----------	-------	--------	--------	------

Significant over-expressed pathways as detected using Topfun, pathway p-value noted, Kaplan meier survival analysis results using pathways to cluster and define class labels in Taylor and Sun datasets.

5

Table 2ii

Pathway	Pathway p-Value	Taylor HR	Taylor p-Value	Sun HR	Sun p-Value
Genes involved in Muscle contraction	2.26E-10	2.495	0.0339	2.361	0.0196
Genes involved in Smooth Muscle Contraction	1.61E-07	2.155	0.0648	2.808	0.0094
Adipogenesis	4.05E-07	2.378	0.0391	2.336	0.0117
Focal Adhesion	4.79E-07	1.726	0.1814	1.01	0.9807
Striated Muscle Contraction	4.08E-06	2.600	0.0189	2.24	0.0163
Genes involved in Haemostasis	1.14E-04	1.1	0.8235	1.322	0.4404
Diltiazem Pathway	5.21E-04	2.289	0.0431	1.568	0.1993
Plasma membrane estrogen receptor signalling	6.24E-04	2.179	0.0914	1.384	0.3411
Genes involved in Formation of	7.81E-04	1.872	0.1226	1.19	0.6283

- 53 -

Platelet plug					
Genes involved in Platelet degranulation	9.60E-04	1.129	0.769	1.502	0.2263
Myometrial Relaxation and Contraction Pathways	1.04E-03	2.611	0.0188	2.06	0.0342
Integrins in angiogenesis	1.74E-03	1.639	0.2234	0.8937	0.7829
ATF-2 transcription factor network	1.74E-03	4.006	0.0037	4.026	0.0004
Genes involved in Platelet Activation	1.75E-03	2.047	0.0788	1.347	0.422
Syndecan-4-mediated signaling events	2.61E-03	3.686	0.0105	1.667	0.1268
LPA receptor mediated events	5.01E-03	2.158	0.149	1.332	0.3791
Integrin Signalling Pathway	1.41E-02	1.893	0.1202	2.069	0.0306
Genes involved in Integrin cell surface interactions	2.44E-02	1.584	0.2567	1.549	0.1905
Direct p53 effectors	2.53E-02	2.151	0.0676	3.836	0.0003
Integrin-mediated cell adhesion	3.78E-02	1.941	0.1084	0.765	0.4997

Significant under-expressed pathways as detected using Toppfun, pathway p-value noted, Kaplan meier survival analysis results using pathways to cluster and define class labels in Taylor and Sun datasets.

5 Table 3

	Fold Change	FDR corrected p-	Role in transcriptional
--	-------------	------------------	-------------------------

- 54 -

		value	repression
AR	2.41796	4.86E-10	Yes
CENPA	2.87805	3.23E-09	Na
CENPF	3.00853	4.19E-09	Na
DLX1	3.22068	8.49E-08	Na
EZH2	2.7026	2.45E-12	Yes
HELLS	2.10418	6.92E-05	Yes
TOP2A	2.90041	3.84E-09	Na
UBE2T	2.36638	3.65E-07	Na
UHRF1	2.37542	2.32E-09	Yes
ZIC2	2.08528	6.52E-05	Yes

Genes annotated as chromatin binding, fold change expression of metastatic biology group versus non and FDR corrected p-Value. Published role in transcriptional repression is noted.

Table 4

Genes Set Name	Genes methylated	Hyper-	Hypergeometric test p-value
Under-expressed genes	418/1098		1.546x10 ⁻³⁴
Over-expressed genes	13/83		0.947

5 Over or under-expressed genes with increased hyper-methylation in the metastatic biology group, Hypergeometric test to test significance of overlap.

Table 5

- 55 -

TRPM3	6.64	0.01	5.763	0.055	0.02	0.437	0.677	Over-expressed
PDRG1	4.883 5	0.027	2.416	0.256	0.046	0.035	0.351	Over-expressed
SRSF5	0.378	0.029	0.398	0.031	0.11	0.382	0.165	Under-expressed
PDE4D	0.425	0.035	0.268	0	0	0.004	0	Under-expressed
F12	5.523	0.042	2.789	0.263	0.895	0.845	0.844	Over-expressed
PDK4	0.641	0.048	0.52	0.001	0.009	0.069	0.018	Under-expressed

Top ranked prognostic markers based upon multivariate survival analysis in Taylor dataset.

Table 6

	Multivariate		Univariate		Expression in Metastatic biol. Group
	HR	pval	HR	pval	
ADAMTS1	0.553383	0.0348589	0.54021	0.0194342	Under-expressed
ADAMTS9	0.4585803	0.0288481	0.371399	0.00848	Under-expressed
B3GNT5	0.5137102	0.0299695	0.3956727	0.0017219	Under-expressed
CD38	0.6091854	0.0138355	0.5143886	0.0004166	Under-expressed
CEBPD	0.3271493	0.0097009	0.1813086	8.15E-06	Under-expressed
CENPF	3.5933385	0.0416512	9.1943228	0.0001128	Over-expressed
CREM	0.2330916	0.0448842	0.1947922	0.01595	Under-expressed
DKK1	0.2871025	0.0482413	0.3428314	0.0473753	Under-expressed
EMP1	0.4347836	0.0071015	0.3768645	0.0006745	Under-expressed
ERRFI1	0.5542049	0.0300146	0.5263541	0.0078253	Under-expressed
F3	0.579862	0.0170842	0.6133141	0.0418215	Under-expressed
HJURP	13.578677	0.0428399	46.05557	0.002649	Over-expressed
IL1R1	0.4800943	0.0108723	0.3570689	0.0002425	Under-expressed
IL8	0.3158031	0.0348507	0.47006	0.0724264	Under-expressed
JUNB	0.5484282	0.0347493	0.4460346	0.0008361	Under-expressed
KLF10	0.5017168	0.030925	0.4394025	0.0066195	Under-expressed
KLF4	0.3979693	0.0274113	0.2711992	0.000817	Under-expressed
LDLR	0.4540006	0.0299326	0.2845191	0.0001791	Under-expressed
LGALS3	0.2425137	0.0163003	0.1363453	0.0005586	Under-expressed

- 56 -

LPAR1	0.4085325	0.0398731	0.2924915	0.0043957	Under-expressed
MALAT1	0.1444922	0.0264399	0.2732161	0.1174596	Under-expressed
MTUS1	0.4461261	0.0438701	0.293677	0.0001736	Under-expressed
MYBPC1	0.5829982	0.002379	0.5657745	0.0003248	Under-expressed
NFIL3	0.494893	0.0271456	0.3853505	0.0006228	Under-expressed
NR4A3	0.3498147	0.0058837	0.3287529	0.0013712	Under-expressed
OAT	0.6455529	0.0451212	0.6272926	0.0531972	Under-expressed
PDE4D	0.4404056	0.0389414	0.2744262	0.0004312	Under-expressed
PDK4	0.6173687	0.0302305	0.5004434	0.0008031	Under-expressed
PI15	0.609224	0.0068663	0.4940706	7.96E-06	Under-expressed
PTGS2	0.5919948	0.0206793	0.5621402	0.0077942	Under-expressed
RHOBTB3	0.5457431	0.0455287	0.4498483	0.0117462	Under-expressed
RIN2	0.4232609	0.0422486	0.3777279	0.0290502	Under-expressed
RNFT2	38.724825	0.0168421	52.633909	0.0070457	Over-expressed
SELE	0.4784527	0.0139667	0.4724994	0.0036146	Under-expressed
SLC15A2	0.5968128	0.03609	0.4424453	0.0005391	Under-expressed
SOCS2	0.2955096	0.003396	0.2391982	0.0005038	Under-expressed
SOCS3	0.4423332	0.042005	0.3155164	0.0014183	Under-expressed
SSTR1	9.0410923	0.0182887	15.147803	0.0033901	Over-expressed
ST6GAL1	0.6042365	0.0088117	0.5305465	0.0016829	Under-expressed
TSC22D1	0.452536	0.0301503	0.3209002	0.0011309	Under-expressed
XBP1	0.2271852	0.0008373	0.2747813	0.0006004	Under-expressed
ZFP36	0.517509	0.0108194	0.4385203	0.0001823	Under-expressed

Top ranked prognostic markers based upon multivariate survival analysis in Taylor dataset of differentially expressed genes between metastatic biology subgroup and non-metastatic biology subgroup.

Table 7

Gene	Multivariate HR	pval	Univariate HR	pval	Source	Expression in Metastatic biology Group
TRPM3	6.6406	0.0105	5.7636	0.0551	Targeted	Over-expressed
PDRG1	4.8835	0.0272	2.416	0.2566	Targeted	Over-

- 57 -

						expressed
SRSF5	0.3787	0.0294	0.3986	0.031	Targeted	Under-expressed
PDE4D	0.4255	0.035	0.2685	0.0005	Targeted	Under-expressed
PDK4	0.6415	0.0484	0.52	0.0019	Targeted	Under-expressed
F12	5.5235	0.0428	2.7897	0.2638	Targeted	Over-expressed
F3	0.591462629	0.026150109	0.641392413	0.070885567	Pathway	Under-expressed
HJURP	17.72622995	0.028647576	58.21478537	0.001862129	Pathway	Over-expressed
CENPF	4.009668447	0.028698111	9.892737548	8.66E-05	Pathway	Over-expressed
MYBPC1	0.616919233	0.009107673	0.596731068	0.001740583	Pathway	Under-expressed
SELE	0.506452771	0.023940071	0.494071466	0.006723235	Pathway	Under-expressed
CEBDP	0.33366283	0.012163084	0.188671187	1.76E-05	Pathway	Under-expressed
XBP1	0.227185248	0.000837328	0.274781347	0.000600431	Literature	Under-expressed
TPT1	NA	NA	NA	NA	Reference	NA
RPS14	NA	NA	NA	NA	Reference	NA
RPL37A	NA	NA	NA	NA	Reference	NA

Summarised IHC targets with reference genes.

Table 8

	Expression in Metastatic biology Group	Hypermethylated
ADAMT	Under-expressed	Hypermethylated
S9		
EMP1	Under-expressed	Hypermethylated
F3	Under-expressed	Hypermethylated

- 58 -

LDLR	Under-expressed	Hypermethylated
LGALS3	Under-expressed	Hypermethylated
MALAT1	Under-expressed	Hypermethylated
MTUS1	Under-expressed	Hypermethylated
NR4A3	Under-expressed	Hypermethylated
PTGS2	Under-expressed	Hypermethylated
RIN2	Under-expressed	Hypermethylated
SLC15A2	Under-expressed	Hypermethylated
SOCS3	Under-expressed	Hypermethylated
TSC22D1	Under-expressed	Hypermethylated

Top underexpressed markers that have increased hypermethylation levels.

Table 9

Gene	Multivariate		Univariate		Expression in Metastatic Biology Group
	HR	pval	HR	pval	
FOXM1	3.6353510	0.1583446	9.4463205	0.0116584	Over-expressed
	21	19	85	25	
CENPF	3.5933384	0.0416511	9.1943227	0.0001127	Over-expressed
	84	66	68	62	
HJURP	13.578676	0.0428399	46.055570	0.0026490	Over-expressed
	93	01	07	46	
RNFT2	38.724825	0.0168420	52.633908	0.0070456	Over-expressed
	02	83	75	87	
XBP1	0.2271852	0.0008373	0.2747813	0.0006004	Under-expressed
	48	28	47	31	
SOCS2	0.2955096	0.0033959	0.2391981	0.0005037	Under-expressed
	06	53	63	79	
NR4A3	0.3498146	0.0058836	0.3287529	0.0013712	Under-expressed
	83	74	43	06	
EMP1	0.4347835	0.0071014	0.3768645	0.0006744	Under-expressed

- 59 -

	57	7	3	58	
ZFP36	0.5175090	0.0108193	0.4385202	0.0001823	Under-expressed
	16	86	53	13	
IL1R1	0.4800943	0.0108722	0.3570688	0.0002424	Under-expressed
	31	79	77	95	
SELE	0.4784527	0.0139667	0.4724993	0.0036146	Under-expressed
	26	48	6	1	
LGALS3	0.2425137	0.0163002	0.1363453	0.0005586	Under-expressed
	44	57	09	37	
MALAT1	0.1444922	0.0264399	0.2732160	0.1174596	Under-expressed
	02	02	94	35	
NFIL3	0.4948930	0.0271455	0.3853504	0.0006228	Under-expressed
	03	95	74	18	
LDLR	0.4540006	0.0299326	0.2845191	0.0001791	Under-expressed
	47	34	4	38	
ERRFI1	0.5542048	0.0300145	0.5263541	0.0078252	Under-expressed
	51	85	1	97	
KLF10	0.5017168	0.0309250	0.4394024	0.0066194	Under-expressed
	31	35	87	67	
JUNB	0.5484281	0.0347492	0.4460345	0.0008361	Under-expressed
	87	58	58	12	
MTUS1	0.4461260	0.0438700	0.2936770	0.0001736	Under-expressed
	88	83	25	24	
CREM	0.2330915	0.0448841	0.1947922	0.01595	Under-expressed
	94	66	47		
RHOBTB3	0.5457430	0.0455287	0.4498483	0.0117462	Under-expressed
	73	1	27	42	
DKK1	0.2871025	0.0482412	0.3428313	0.0473752	Under-expressed
	03	65	7	65	

FOXM1 and FOXM1 CHIP-Seq targets which were differentially expressed in the metastatic biology group.

Methods

5 Patient Samples

- 60 -

126 samples (70 resected primary prostate cancers clinically confined to prostate, 20 primary prostate cancer with known concomitant metastatic disease, 11 lymph nodes with metastatic disease, and 25 normal prostate) were provided by Addenbrookes Hospital and Karolinska Institute following local ethical approval.

5 The subgroup and the prognostic significance were validated and tested in dataset published by Taylor et al which contained 179 samples (131 primary tumours, 29 normal and 19 metastatic disease. Time to biochemical recurrence and recurrence status following surgery were used to test prognostic significance, 5 samples were excluded from the analysis because of (surgery type PCA0056, and neo-adjuvant treatment, PCA0050, PCA0103, PCA119 and PCA0176).

10 Sun et al (79 tumour samples), samples were following surgery, 79 cases, 39 of which were classified as having disease recurrence.

Gene Expression Profiling.

Total RNA was extracted from macrodissected FFPE tumor samples using the Roche High Pure RNA Paraffin Kit (Roche Diagnostics Ltd.) as described previously (Kennedy RD, Bylesjo M, Kerr 15 P et al. Development and independent validation of a prognostic assay for stage II colon cancer using formalin-fixed paraffin-embedded tissue. J Clin Oncol 2011; 29: 4620-4626). Total RNA was amplified using the NuGEN WT-Ovation™ FFPE System (NuGEN) and hybridized to the Almac Prostate Cancer DSAT™ (Affymetrix) as described previously.

20 Statistical Analysis Methods

A one-way ANOVA analysis identified differentially expressed probesets between 29 primary metastatic biology group tumours and 41 primary non-metastatic biology tumours group controls using a fold-change (FC) threshold of $\text{abs}(\text{FC}) > 2$ and a significance p-value threshold adjusted for False Discovery Rate (FDR) ($\text{p-value FDR} < 0.05$). Unique genes were determined as those in 25 the sense orientation with at least 6 probes aligned.

A combined background & variance filter was applied to the data matrix to identify the most variable genes using an in-house developed feature selection program. Firstly, a background filter was applied to remove genes with expression values too low to be distinguished from the background noise. A high threshold was used to remove a large number of probesets and ensure 30 these probesets are highly expressed (Threshold: $\leq 10^{-16}$). Secondly, an intensity dependent variance filter was applied to the data matrix to remove probesets with low variance across all samples (Threshold: $\leq 5.10^{-16}$). Feature selection resulted in 1651 most variable probesets.

- 61 -

Hierarchical clustering (Pearson correlation distance and Ward's linkage) was applied to probesets and samples from each dataset separately. The number of sub-clusters was determined using the gap statistic.

IHC target identification

5 The IHC targets of interest are those that are least correlated between the metastatic and non-metastatic groups (Lists 1 & 2) and those that are highly correlated between the non-metastatic and benign groups (List 3).

Correlation p-values for probesets in each of the three lists were ranked according to these criteria. The range of p-values observed in the top 10,000 ranked probesets in each list ranged
10 from [0 - 6.62e-05] for List 1, [1.03e-19 - 6.17e-04] for List 2 and [0.99 - 0.82] for List 3.

The intersection of the top 10,000 ranked probesets in the three lists revealed 512 common probesets (Figure 4). Antisense probesets and those with less than 6 probes aligned to the probeset were removed to leave 393. Partek® Genomics Suite™ version 6.6, was used to generated fold change values.

15

Methylation

For the 22 patients, 11 metastatic biology subgroup and 11 non-metastatic biology subgroup, DNA was extracted using Recoverall (Life technologies). Genomic DNA (800 ng) was treated with sodium bisulfite using the Zymo EZ DNA Methylation KitTM (Zymo Research, Orange, CA, USA) according to the manufacturer's procedure, with the alternative incubation conditions recommended when using the Illumina Infinium Methylation Assay. The methylation assay was performed on 4 µl bisulfite-converted genomic DNA at 50 ng/µl according to the Infinium HD Methylation Assay protocol. Samples were processed onto Illumina 450k arrays as per manufacturer's procedures. Uncorrected b-values were extracted with the same software. Probe-
20 sets with changes in bvalues that were statistically significant were assessed using the Significance Analysis of Microarrays (SAM) (Tusher et al 2001). Using a False Discovery Rate (FDR) of 0.05, of the 235,526 probesets on the array 32,286 were hypo-methylated
25 (corresponding to 7,222 unique genes) and 9,184 probesets (4,003 unique genes).

30 **References**

Albertsen PC, Hanley JA, Barrows GH, Penson DF, Kowalczyk PD, Sanders MM *et al* (2005). Prostate cancer and the Will Rogers phenomenon. *J Natl Cancer Inst* 97: 1248-1253.

- 62 -

Altekruse SF, Huang L, Cucinelli JE, McNeel TS, Wells KM, Oliver MN (2010). Spatial patterns of localized-stage prostate cancer incidence among white and black men in the southeastern United States, 1999-2001. *Cancer Epidemiol Biomarkers Prev* 19: 1460-1467.

Babbio F, Pistore C, Curti L, Castiglioni I, Kunderfranco P, Brino L *et al* (2012). The SRA protein 5 UHRF1 promotes epigenetic crosstalks and is involved in prostate cancer progression. *Oncogene*.

Bertucci F, Salas S, Eysteries S, Nasser V, Finetti P, Ginestier C, Charafe-Jauffret E, Loriod B, Bachelart L, Montfort J, Victorero G, Viret F, Ollendorff V, Fert V, Giovaninni M, Delpero JR, Nguyen C, Viens P, Monges G, Birnbaum D, Houlgate R. Gene expression profiling of colon 10 cancer by DNA microarrays and correlation with histoclinical parameters. *Oncogene*. 2004 Feb 19;23(7):1377-91. PubMed PMID: 14973550.

Bostick M, Kim JK, Esteve PO, Clark A, Pradhan S, Jacobsen SE (2007). UHRF1 plays a role in maintaining DNA methylation in mammalian cells. *Science* 317: 1760-1764.

Chen X, Muller GA, Quaas M, Fischer M, Han N, Stutchbury B *et al* (2013). The forkhead 15 transcription factor FOXM1 controls cell cycle-dependent gene expression through an atypical chromatin binding mechanism. *Mol Cell Biol* 33: 227-236.

Howlader A (2012). SEER Cancer Statistics Review, 1978-2009.

Kattan MW, Wheeler TM, Scardino PT (1999). Postoperative nomogram for disease recurrence after radical prostatectomy for prostate cancer. *J Clin Oncol* 17: 1499-1507.

Makarov DV, Sanderson H, Partin AW, Epstein JI (2002). Gleason score 7 prostate cancer on 20 needle biopsy: is the prognostic difference in Gleason scores 4 + 3 and 3 + 4 independent of the number of involved cores? *J Urol* 167: 2440-2442.

Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA *et al* (2000). Molecular portraits of human breast tumours. *Nature* 406: 747-752.

Pound CR, Partin AW, Eisenberger MA, Chan DW, Pearson JD, Walsh PC (1999). Natural 25 history of progression after PSA elevation following radical prostatectomy. *JAMA* 281: 1591-1597.

Rasiah KK, Stricker PD, Haynes AM, Delprado W, Turner JJ, Golovsky D *et al* (2003). Prognostic significance of Gleason pattern in patients with Gleason score 7 prostate carcinoma. *Cancer* 98: 30 2560-2565.

- 63 -

Sanders DA, Ross-Innes CS, Beraldi D, Carroll JS, Balasubramanian S (2013). Genome-wide mapping of FOXM1 binding reveals co-binding with estrogen receptor alpha in breast cancer cells. *Genome Biol* 14: R6.

Sharif J, Muto M, Takebayashi S, Suetake I, Iwamatsu A, Endo TA *et al* (2007). The SRA protein 5 Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. *Nature* 450: 908-912.

Smith EB, Frierson HF, Jr., Mills SE, Boyd JC, Theodorescu D (2002). Gleason scores of prostate biopsy and radical prostatectomy specimens over the past 10 years: is there evidence for systematic upgrading? *Cancer* 94: 2282-2287.

10 Sun Y, Goodison S. Optimizing molecular signatures for predicting prostate cancer recurrence. *Prostate*. 2009 Jul 1;69(10):1119-27. doi: 10.1002/pros.20961.

Tibshirani R, Walther G, Hastie T (2001). Estimating the number of clusters in a data set via the gap statistic. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)* 63: 411-423.

15 Tusher VG, Tibshirani R, Chu G (2001). Significance analysis of microarrays applied to the ionizing radiation response. *Proc Natl Acad Sci U S A* 98: 5116-5121.

Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, Arora VK, Kaushik P, Cerami E, Reva B, Antipin Y, Mitsiades N, Landers T, Dolgalev I, Major JE, Wilson M, Soccia ND, Lash AE, Heguy A, Eastham JA, Scher HI, Reuter VE, Scardino PT, Sander C, Sawyers CL, 20 Gerald WL. Integrative genomic profiling of human prostate cancer. *Cancer Cell*. 2010 Jul 13;18(1):11-22. doi: 10.1016/j.ccr.2010.05.026. Epub 2010 Jun 24.

Unoki M, Kelly JD, Neal DE, Ponder BA, Nakamura Y, Hamamoto R (2009). UHRF1 is a novel molecular marker for diagnosis and the prognosis of bladder cancer. *Br J Cancer* 101: 98-105.

van 't Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M *et al* (2002). Gene expression 25 profiling predicts clinical outcome of breast cancer. *Nature* 415: 530-536.

Xu K, Wu ZJ, Groner AC, He HH, Cai C, Lis RT, Wu X, Stack EC, Loda M, Liu T, Xu H, Cato L, Thornton JE, Gregory RI, Morrissey C, Vessella RL, Montironi R, Magi-Galluzzi C, Kantoff PW, Balk SP, Liu XS, Brown M. EZH2 oncogenic activity in castration-resistant prostate cancer cells is Polycomb-independent. *Science*. 2012 Dec 14;338(6113):1465-9. doi: 30 10.1126/science.1227604. PubMed PMID: 23239736; PubMed Central PMCID: PMC3625962.

Supplementary Table 1

Characteristic	Numbers	%
Type		
Primary Tumour	70	100
Primary Tumour with Mets	21	100
Metastatic Disease	10	100
Benign	25	100
Total	126	100
Gleason Score		
<7	10	7.936507937
7	24	19.04761905
>7	56	44.44444444
NA	36	28.57142857
	126	100
Centre		

- 65 -

Cambridge	73	57.93650794
Karolinska	53	42.06349206
Total	126	100

Patient characteristics of internal sample set.

Supplementary Table 2 FOXM1 correlations

Gene Symbol	r	p-value(correlation)	Lower CI	Upper CI	N	CHIP Overlap
CENPA	0.7729	2.91E-26	0.69152	0.83496	126	Yes
	42		2	8		
NUSAP1	0.7702	5.55E-26	0.68799	0.83292	126	Yes
	2		6			
KIF11	0.7628	3.08E-25	0.67843	0.82734	126	Yes
	21		1	3		
BUB1	0.7607	4.94E-25	0.67574	0.82577	126	Yes
	37		2			
TOP2A	0.7548	1.81E-24	0.66819	0.82134	126	Yes
	79		4	2		
CDCA3	0.7534	2.46E-24	0.66639	0.82028	126	Yes
	81		6	5		
KIF11	0.7494	5.90E-24	0.66118	0.81721	126	Yes
	25		4	3		
ANLN	0.7491	6.29E-24	0.66079	0.81698	126	Yes
	2		3	2		
FAM111B	0.7460	1.20E-23	0.65686	0.81466	126	Yes
	59		6	1		

- 66 -

KIFC1	0.7436	2.00E-23	0.65372	0.81280	126	Yes
	11		8	4		
ASPM	0.7418	2.91E-23	0.65142	0.81143	126	Yes
	14		7	9		
CENPA	0.7366	8.26E-23	0.64485	0.80753	126	Yes
	76		7	4		
RRM2	0.7317	2.18E-22	0.63862	0.80381	126	Yes
	95		8	8		
CENPF	0.7296	3.33E-22	0.63587	0.80217	126	Yes
	36		7	3		
UBE2C	0.7253	7.65E-22	0.63039	0.79888	126	Yes
	26		2	5		
ASPM	0.7202	2.01E-21	0.62390	0.79498	126	Yes
	23		9	5		
ZWINT	0.7160	4.34E-21	0.61863	0.79180	126	Yes
	62		3	1		
NUSAP1	0.7159	4.45E-21	0.61846	0.79169	126	Yes
	26		1	8		
EZH2	0.7152	5.03E-21	0.61761	0.79118	126	Yes
	54		1	3		
PKMYT1	0.7146	5.65E-21	0.61679	0.79069	126	Yes
	12		7	1		
KIFC1	0.7136	6.79E-21	0.61552	0.78992	126	Yes
	07		5	2		
IQGAP3	0.7134	6.98E-21	0.61532	0.78980	126	Yes
	52		8	2		
SPAG5 //---//	0.7057	2.75E-20	0.60562	0.78391	126	Yes
---// ALDOC	74		6	2		
PTTG1	0.7007	6.62E-20	0.59926	0.78003	126	Yes

- 67 -

	28		7		4	
IQGAP3	0.7007	6.65E-20	0.59923	0.78001	126	Yes
	02		4		4	
MLF1IP	0.6956	1.57E-19	0.59287	0.77612	126	Yes
	49		9		4	
CDCA8	0.6951	1.72E-19	0.59221	0.77571	126	Yes
	22		6		8	
CDCA8	0.6908	3.53E-19	0.58679	0.77238	126	Yes
	06		8		9	
AURKA	0.6901	3.94E-19	0.58595	0.77186	126	Yes
	33		4		9	
PTTG1	0.6890	4.73E-19	0.58456	0.77101	126	Yes
	26		7		6	
HJURP	0.6886	4.99E-19	0.58414	0.77075	126	Yes
	93		9		8	
KIF14	0.6863	7.34E-19	0.58119	0.76893	126	Yes
	36		6		7	
RRM2	0.6851	8.92E-19	0.57968	0.76800	126	Yes
	29		7		5	
CDK1	0.6765	3.51E-18	0.56891	0.76133	126	Yes
	07		5			
CENPF	0.6736	5.44E-18	0.56538	0.75913	126	Yes
	72		2		2	
UHRF1	0.6733	5.75E-18	0.56493	0.75885	126	Yes
	13		5		4	
KIF20A	0.6661	1.72E-17	0.55599	0.75327	126	Yes
	26		7		1	
CDK1	0.6637	2.43E-17	0.55310	0.75145	126	Yes
	94		2		7	

- 68 -

HIST1H2AJ	0.6322	2.03E-15	0.51415	0.72675	126	Yes
	12		7	7		
PLK1	0.6242	5.72E-15	0.50442	0.72049	126	Yes
	58		6	8		
RNFT2	0.6169	1.44E-14	0.49552	0.71474	126	Yes
	6		4	1		
CBX2	0.6042	6.80E-14	0.48012	0.70471	126	Yes
	89		7	4		
UBE2T	0.6028	8.12E-14	0.47832	0.70353	126	Yes
	02		4	4		
SGOL1	0.5922	2.79E-13	0.46556	0.69514	126	Yes
	43			4		
CDT1	0.5730	2.36E-12	0.44245	0.67979	126	Yes
	18		4	5		
RHPN1	0.5365	9.40E-11	0.39913	0.65044	126	Yes
	86		6	9		
AMH	0.4972	3.16E-09	0.35307	0.61839	126	Yes
	71		1	5		
ZNF251	0.4870	7.33E-09	0.34120	0.60999	126	Yes
	51		8	5		
AR	0.4869	7.42E-09	0.34104	0.60987	126	Yes
	09		4	8		
ZNF467	0.4847	8.82E-09	0.33856	0.60811	126	Yes
	64			2		
PRAME	0.4793	1.36E-08	0.33226	0.60362	126	Yes
	2		6	3		
MEX3A	0.4614	5.38E-08	0.31171	0.58884	126	Yes
	66		6	7		
ZNF467	0.4499	1.25E-07	0.29852	0.57926	126	Yes

- 69 -

	44		8		6	
APLN	0.4483	1.40E-07	0.29674	0.57796	126	Yes
	82		5	4		
GPC2	0.4455	1.72E-07	0.29348	0.57558	126	Yes
	27		8	4		
PRAAME	0.4395	2.61E-07	0.28672	0.57062	126	Yes
	91		7	6		
SAC3D1	0.4355	3.44E-07	0.28218	0.56728	126	Yes
	99		9	7		
RPL11	0.4099	1.87E-06	0.25317	0.54571	126	Yes
	32		5	3		
HOXC6	0.4081	2.10E-06	0.25114	0.54419	126	No
	28		6	1		
IDUA	0.4070	2.25E-06	0.24991	0.54326	126	No
	34		7	7		
LINC00662	0.4026	2.95E-06	0.24500	0.53956	126	No
	6		6	9		
APLN	0.4013	3.21E-06	0.24348	0.53842	126	No
	04		5	1		
DLX1	0.3973	4.08E-06	0.23908	0.53509	126	No
	75		2	3		
APLN	0.3973	4.10E-06	0.23901	0.53503	126	No
	11			9		
KIFC2	0.3866	7.74E-06	0.22712	0.52600	126	No
	74		5	9		
AR	0.3836	9.22E-06	0.22377	0.52345	126	Yes
	67		4			
AR	0.3754	1.48E-05	0.21466	0.51646	126	Yes
	76		4	8		

- 70 -

--- /// ---	0.3738	1.62E-05	0.21282	0.51505	126	No
	21		7	5		
COMTD1	0.3589	3.67E-05	0.19633	0.50229	126	Yes
	2		6	7		
PTPRT	0.3571	4.04E-05	0.19435	0.50075	126	No
	22		2	3		
ECE2	0.3555	4.39E-05	0.19264	0.49942	126	No
	7		1			
CANX	0.3553	4.45E-05	0.19234	0.49919	126	Yes
	06		9	3		
MIA3	0.3409	9.36E-05	0.17655	0.48681	126	No
	39		7	8		
CPNE4	0.3388	0.000103723	0.17432	0.48505	126	No
	97			5		
ODAM	0.3287	0.000170991	0.16322	0.47627	126	Yes
	47		3	1		
AR	0.3217	0.000239105	0.15558	0.47018	126	Yes
	36		1	6		
CPNE4	0.3132	0.000355568	0.14631	0.46276	126	No
	11		7	9		
RPS2 //	0.3111	0.000390829	0.14407	0.46096	126	No
SNORA64 //	42		3	6		
SNORA10						
AR	0.3108	0.000395174	0.14381	0.46075	126	Yes
	99			4		
HOXC4	0.3105	0.000401081	0.14345	0.46046	126	No
	73		6	9		
PTPRT	0.3099	0.000412213	0.14280	0.45994	126	No
	7		2	3		

- 71 -

CPNE4	0.3068	0.0004738	0.13945	0.45724	126	No
	83		8	9		
DSCAM-AS1	0.3059	0.000493863	0.13845	0.45644	126	No
	57		6			
PPFIA2	0.3004	0.000629772	0.13252	0.45164	126	No
	66		1	1		
IRAK1	0.2990	0.000669126	0.13102	0.45042	126	No
	81		5	8		
---	0.2933	0.000856865	0.12485	0.44541	126	No
	55		1			
HOXC4	0.2921	0.000901978	0.12355	0.44435	126	No
	52		5	5		
FOLH1 //	0.2890	0.00102741	0.12024	0.44165	126	No
FOLH1B	76		6	5		
---	0.2822	0.00136596	0.11288	0.43563	126	No
	26		8	1		
NCAM2	0.2790	0.00155454	0.10949	0.43284	126	No
	58		2	1		
---	0.2660	0.00259802	0.09564	0.42139	126	No
	99		08	6		
---	0.2654	0.00266239	0.09496	0.42083	126	No
	66		55	6		
MT-TG // MT-	0.2628	0.00294821	0.09213	0.41848	126	No
CO3 // MT-TR	11		58	4		
/// MT-ND4L //						
MT-ND3						
NTNG2	0.2596	0.00332155	0.08879	0.41570	126	No
	71		44	1		
SLC25A16	0.2565	0.00373266	0.08548	0.41294	126	No
	63		92	2		

- 72 -

---	0.2359	0.0078127	0.06369	0.39459	126	No
	72		1	6		
EIF3K	0.2299	0.00959972	0.05731	0.38918	126	No
	2		53			
SSTR1	0.2289	0.00992512	0.05627	0.38828	126	No
	27		02	9		
CST1	0.2214	0.0127055	0.04840	0.38157	126	No
	41		62	2		
NIPAL1	0.2115	0.0174161	0.03803	0.37265	126	No
	37		39	8		
SSTR1	0.2048	0.0213703	0.03108	0.36665	126	No
	85		9	5		
---	0.1844	0.0387046	0.00983	0.34810	126	No
	26		315	7		
OXR1	0.1818	0.0415884	0.00713	0.34573	126	Yes
	21		827	6		
OPRK1	0.1615	0.0706621	-	0.32724	126	No
	88		0.01370	9		
			96			
MT-TA /// MT-	0.1399	0.118182	-	0.30729	126	No
TY /// MT-TC ///	03		0.03588	3		
MT-TN			52			
LRRN1	0.1371	0.125644	-	0.30475	126	No
	59		0.03867	8		
			93			
MT-TC /// MT-	0.1294	0.148398	-	0.29766	126	No
TN /// MT-TY ///	98		0.04646	6		
MT-TA			47			
LRRN1	0.1258	0.16021	-	0.29429	126	No
	67		0.05014	8		

- 73 -

					69		
MT-ND2 ///	0.1187	0.185204	-	0.28772	126	No	
MTND2P28 ///	97		0.05730		9		
MT-TW				36			
MT-TH /// MT-	0.0828	0.356482	-	0.25406	126	No	
TS2 /// MT-ND4	304		0.09343				
/// MT-ND5 ///			33				
MT-TL2							
MT-TQ	0.0693	0.440025	-	0.24137	126	No	
	974		0.10680		8		
			9				
WNT5A	0.0551	0.539432	-	0.22788	126	No	
	785		0.12089		9		
			8				
SNORA61 ///	0.0508	0.571383	-	0.22381	126	No	
SNHG12 ///	993		0.12512		7		
SNORA44			5				
MT-TC /// MT-	-	0.923724	-	0.16654	126	No	
TN /// MT-TA ///	0.0086		0.18324		6		
MT-TY	152		9				
MT-CO1 /// MT-	-	0.909852	-	0.16501	126	No	
TW /// MT-ND2	0.0101		0.18476		6		
	882		9				

Pearson correlation of over-expressed targets to FOXM1 levels across the entire internal dataset.

Supplementary Table 3

Samples used for methylation analysis

mRNA Class Label	Sample Type	Centre	Sample Age	Surgery Type	Gleason Score	Stage
Metastatic Biology	Primary Tumour	Karolinska	1	Radical	6	T2C
Metastatic Biology	Primary Tumour	Karolinska	2	Radical	8	T3A
Metastatic Biology	Metastatic Prostate Sample	Cambridge	7	Radical	9	NA
Metastatic Biology	Metastatic Prostate Sample	Cambridge	4	TURPS	9	NA
Metastatic Biology	Primary Tumour	Karolinska	8	Radical	8	TBC
Metastatic Biology	Primary Tumour	Karolinska	1	Radical	8	T3A
Metastatic Biology	Primary Tumour	Karolinska	1	TURPS	9	T3A
Metastatic Biology	Primary Tumour	Karolinska	1	Radical	8	T2A
Metastatic Biology	Primary Tumour	Karolinska	6	Radical	7	T3B
Metastatic Biology	Primary Tumour	Karolinska	1	Radical	8	T3A
Metastatic Biology	Primary Tumour	Karolinska	1	Radical	9	T2C
Non-Met. Biology	Primary Tumour	Karolinska	2	Radical	7	T3A
Non-Met. Biology	Primary Tumour	Karolinska	2	Radical	6	T3A
Non-Met. Biology	Primary Tumour	Karolinska	2	Radical	8	T3A

- 75 -

Non-Met. Biology	Primary Tumour	Cambridge	2	Radical	7	T3B
Non-Met. Biology	Primary Tumour	Cambridge	1	Radical	9	T3B
Non-Met. Biology	Primary Tumour	Cambridge	1	Radical	7	T3A
Non-Met. Biology	Primary Tumour	Karolinska	5	Radical	8	T2C
Non-Met. Biology	Primary Tumour	Karolinska	2	Radical	9	T3A
Non-Met. Biology	Primary Tumour	Karolinska	1	Radical	9	T3A
Non-Met. Biology	Primary Tumour	Karolinska	7	Radical	8	T2C
Non-Met. Biology	Primary Tumour	Karolinska	1	Radical	8	T3B

Prostate IHC development

Approach

5 To identify suitable antibodies we performed analysis of 3 antibodies per target for selected targets against a 4uM full face section from biomarker positive (confirmed by microarray profiling) prostate cancer samples. Each antibody was tested using 3 antigen retrieval methods using 3 dilutions (Figure 7).

10 Each full face section contained an area of tumour, prostatic intraepithelial neoplasia (PIN), normal prostate epithelium, stroma and in some sections infiltrating immune cells.

This process allowed the identification of antibodies, antigen retrieval protocols and dilutions that detect the targets of interest.

Methods

Full face FFPE sections (4μm) of prostate tumour were used.

15 **Test samples:**

- 76 -

• Prostate tumour (DI 20052): Age 58: Male. Pathology - Adenocarcinoma of the prostate gland.
Tumour grade: 3+4=7.

• Prostate tumour (DI 20054): Age 70: Male: Pathology - Adenocarcinoma of the prostate gland.
Tumour grade: 3+4=7.

5 **Protocol**

All incubations were carried out at room temperature, unless otherwise stated.

1. Target retrieval (FFPE):

Antigen retrieval 1- Dako PT Link and 3-in-1 pH6.1 Target Retrieval (TR) Solution.

- 97 °C 20 min with automatic heating and cooling.

10 Antigen retrieval 2- Dako PT Link and 3-in-1 pH9 Target Retrieval (TR) Solution.

- 97 °C 20 min with automatic heating and cooling.

Antigen retrieval 3- Microwave Vector citrate pH6.1 heat-induced epitope retrieval (HIER).

• Slides were deparaffinized and rehydrated and then boiled (3 x 5 min) with the microwave set to full power.

15 All slides were rinsed with PBS - 10 min

2. Assay steps (DAKO Envision Flex plus)

- EnVision peroxidase block - 5min
- Rinse
- Dako CSAII serum-free protein block - 10min

20 • Air-removal

- Primary antibody - 30 min

- Rinse x2

- EnVision Flex/HRP - 20 min

- Rinse x2

25 • DAB - 10 min

- 77 -

3. Counterstain and coverslipping

- Mayer's haematoxylin counterstain
- Dehydrated in an ascending series of ethanols
- Clear in xylene (x3)

5 •Coverslip under DePeX.

Reagents – Primary antibodies

CREM - anti-cAMP responsive element modulator

- 1) Abcam Cat No: AB64832 Tested at 4, 2 and 1 µg/ml
- 10 2) Novus biomedical Cat No: NBP1-81760 Tested at 4, 2 and 1 µg/ml
- 3) Sigma Aldrich Cat No: HPA001818-100UL Tested at 0.8, 0.4 and 0.2µg/ml (recommended concentration 0.16µg/ml)
- R-IgG – rabbit polyclonal IgG (Rabbit isotype control) Alere Cat No: X0936

15 **ERRFI1 - anti-ERBB receptor feedback inhibitor 1**

- 1) Abcam Cat No: ab50272 Tested at 4, 2 and 1 µg/ml
- 2) Insight biotechnology Cat No: SC-137154 Tested at 4, 2 and 1 µg/ml (Santa Cruz Biotechnology, Inc.)
- 3) Sigma Aldrich Cat No: HPA027206-100UL Tested at 4, 2 and 1 µg/ml

20 •M-IgG1 - mouse monoclonal IgG1 (Mouse isotype control) Alere Cat No: X0931

•R-IgG1 – rabbit polyclonal IgG (Rabbit isotype control) Alere Cat No: X0936

HJURP anti-Holliday junction recognition protein

- 1) Abcam Cat No: AB100800 Tested at 4, 2 and 1 µg/ml Rabbit polyclonal
- 25 2) Abcam Cat No: AB175577 Tested at 4, 2 and 1 µg/ml Mouse monoclonal

- 78 -

3) Biorbyt Cat No: ORB140157 Tested at 4, 2 and 1 µg/ml Rabbit polyclonal

• Rabbit isotype control Alere Cat No: X0936

• Mouse IgG1 control Alere Cat No: X0931

5 **PDK4 – anti-pyruvate dehydrogenase kinase, isozyme 4**

1) Sigma Aldrich Cat No: HPA056731-100UL Tested at 4, 2 and 1µg/ml

2) LifeSpan BioSciences Cat No: LS-B3459 Tested at 4, 2 and 1µg/ml

3) Thermo scientific Cat No: PA5-13778 Tested at 4, 2 and 1µg/ml

• R-IgG – rabbit polyclonal IgG (Rabbit isotype control) Alere Cat No: X0936

10

•SRSF5 - anti-serine/arginine-rich splicing factor 5

1) Novus Biomedical Cat No: H00006430-B01P Tested at 4, 2 and 1µg/ml

2) Sigma Aldrich Cat No: HPA043484-100UL Tested at 4, 2 and 1µg/ml

3) LifeSpan BioSciences Cat No: LS-B3091 Tested at 4, 2 and 1µg/ml

15 • R-IgG1 – rabbit polyclonal IgG (Rabbit isotype control) Alere Cat No: X0936

• Sigma Aldrich Cat No: F3520-1ML

• Poly mouse IgG (M-IgG1, 2a, 2b)

• M-IgG1 - Alere Cat No: X0931

• M-IgG2a - Alere Cat No: X0943

20 • M-IgG2b - Alere Cat No: X0944

PDRG1 - anti-p53 and DNA damage-regulated protein 1

1) Abcam Cat No: AB175965 Tested at 4, 2 and 1µg/ml

2) Biorbyt Cat No: ORB162334 Tested at 4, 2 and 1µg/ml

- 79 -

3) Novus Biomedical Cat No: NBP2-01854 Tested at 4, 2 and 1µg/ml

•M-IgG1 - mouse monoclonal IgG1 (Mouse isotype control) Alere Cat No: X0931

•R-IgG1 – rabbit polyclonal IgG (Rabbit isotype control) Alere Cat No: X0936

5

Results

Following review of all the data the following targets have demonstrated IHC assays which are specific and sensitive and can be used for prostate cancer classification or prognosis.

Target	Example Suitable Antibodies	Example Retrieval Conditions	Example Concentrations
CREM	Sigma Aldrich HPA001818	pH9 PT Link	0.8 µg/ml
		pH6 Microwave	0.8 µg/ml
	Novus Biomedical NBP1-81760	pH6 PT link	4 µg/ml
ERRFI1	ABCAM AB50272	pH9 PT Link	4 µg/ml
	Sigma Aldrich HPA027206	pH9 PT Link	4 µg/ml
HJURP	Biorbyt ORB140157	pH6 PT link	4 µg/ml
PDK4	Thermo Scientific PAS-13778	pH6 PT link	4 µg/ml
		pH9 PT Link	4 µg/ml
	Sigma Aldrich HPA056731	pH9 PT Link	4 µg/ml
SRSF5	Sigma Aldrich	pH6 PT link	4 µg/ml

- 80 -

	HPA043484		
PDRG1	ABCAM AB175965	pH9 PT Link	4µg/ml

5

The present invention is not to be limited in scope by the specific embodiments described herein.

Indeed, various modifications of the invention in addition to those described herein will become

10 apparent to those skilled in the art from the foregoing description and accompanying figures.

Such modifications are intended to fall within the scope of the appended claims. Moreover, all embodiments described herein are considered to be broadly applicable and combinable with any and all other consistent embodiments, as appropriate.

15 Various publications are cited herein, the disclosures of which are incorporated by reference in their entireties.

Claims

1. A method for characterising and/or prognosing prostate cancer in a subject comprising:
 - 5 determining the expression level of at least one of CREM, ERRFI1, SRSF5, PDK4, HJURP, PDRG1, TRPM3, PDE4D, F12, ADAMTS1, ADAMTS9, B3GNT5, CD38, CEBPD, CENPF, DKK1, EMP1, F3, IL1R1, IL8, JUNB, KLF10, KLF4, LDLR, LGALS3, LPAR1, MALAT1, MTUS1, MYBPC1, NFIL3, NR4A3, OAT, PI15, PTGS2, RHOBTB3, RIN2, RNFT2, SELE, SLC15A2, SOCS2, SOCS3, SSTR1, ST6GAL1,
 - 10 TSC22D1, XBP1 and ZFP36 in a sample from the subject wherein the determined expression level is used to provide a characterisation of and/or a prognosis for the prostate cancer.
2. The method of claim 1 comprising determining the expression level of at least one of SRSF5, PDK4, HJURP, PDRG1, TRPM3, PDE4D, F12, F3, CENPF, MYBPC1, SELE, CEBPD, and XBP1.
3. The method of claim 1 or 2 wherein the characterisation of and/or prognosis for the prostate cancer comprises, consists essentially of or consists of predicting an increased likelihood of recurrence and/or predicting an increased likelihood of metastasis.
4. The method of claim 1 or 2 wherein the characterisation of and/or prognosis for the prostate cancer comprises, consists essentially of or consists of determining whether the prostate cancer has a poor prognosis.
- 25 5. The method of any preceding claim comprising comparing the expression level to a reference value or to the expression level in one or more control samples.
- 30 6. The method of any preceding claim wherein the expression level is compared to the expression level of the same gene in one or more control samples.
7. The method of any preceding claim wherein the expression level of at least one of SRSF5, PDK4, PDRG1, TRPM3, PDE4D, and F12 in the prostate cancer cells in a sample is compared to the expression level of the same gene in the normal cells in the same sample.

- 82 -

8. The method of any preceding claim further comprising determining the expression level of a reference gene.
9. The method of any preceding claim wherein the expression level of at least one of
5 CREM, ERRFI1, HJURP, ADAMTS1, ADAMTS9, B3GNT5, CD38, CEBPD, CENPF, DKK1, EMP1, F3, IL1R1, IL8, JUNB, KLF10, KLF4, LDLR, LGALS3, LPAR1, MALAT1, MTUS1, MYBPC1, NFIL3, NR4A3, OAT, PI15, PTGS2, RHOBTB3, RIN2, RNFT2, SELE, SLC15A2, SOCS2, SOCS3, SSTR1, ST6GAL1, TSC22D1, XBP1 and ZFP36
is compared to the expression level of a reference gene.
10. The method of claim 8 or claim 9 wherein the reference gene is TPT1, RPS14 or RPL37A.
11. The method of any preceding claim wherein an increased expression level of at least one of HJURP, PDRG1, TRPM3, F12, CENPF, RNFT2, and SSTR1 indicates an increased likelihood of
15 recurrence and/or metastasis and/or a poor prognosis or wherein a decreased expression level of at least one of CREM, ERRFI1, SRSF5, PDK4, PDE4D, ADAMTS1, ADAMTS9, B3GNT5, CD38, CEBPD, DKK1, EMP1, F3, IL1R1, IL8, JUNB, KLF10, KLF4, LDLR, LGALS3, LPAR1, MALAT1, MTUS1, MYBPC1, NFIL3, NR4A3, OAT, PI15, PTGS2, RHOBTB3, RIN2, SELE, SLC15A2, SOCS2, SOCS3, ST6GAL1, TSC22D1, XBP1 and ZFP36 indicates an increased
20 likelihood of recurrence and/or metastasis and/or a poor prognosis.
12. The method of any preceding claim wherein the expression level is determined at the level of protein, RNA or epigenetic modification.
- 25 13. The method of claim 12 wherein the epigenetic modification is DNA methylation.
14. The method of any preceding claim wherein the expression level is determined by immunohistochemistry.
- 30 15. The method of any preceding claim wherein the expression level is determined using an antibody conjugated to a label.
16. The method of any preceding claim wherein the expression level is determined by microarray, northern blotting, RNA-seq (RNA sequencing), in situ RNA detection or nucleic acid
35 amplification.
17. The method of any preceding claim further comprising extracting total RNA from the sample.

18. The method of any preceding claim further comprising obtaining the sample from the subject.
- 5 19. The method of any preceding claim wherein the sample comprises, consists essentially of or consists of prostate tissue.
20. The method of any preceding claim wherein the sample comprises, consists essentially of or consists of a formalin-fixed paraffin-embedded biopsy sample.
- 10 21. The method of any preceding claim comprising determining the expression level of at least one of HJURP, PDRG1, TRPM3, F12, CENPF, RNFT2, and SSTR1 and at least one of CREM, ERRFI1, SRSF5, PDK4, PDE4D, ADAMTS1, ADAMTS9, B3GNT5, CD38, CEBPD, DKK1, EMP1, F3, IL1R1, IL8, JUNB, KLF10, KLF4, LDLR, LGALS3, LPAR1, MALAT1, MTUS1, MYBPC1, NFIL3, NR4A3, OAT, PI15, PTGS2, RHOBTB3, RIN2, SELE, SLC15A2, SOCS2, SOCS3, ST6GAL1, TSC22D1, XBP1 and ZFP36.
22. A method for selecting a treatment for prostate cancer in a subject comprising:
 - (a) determining the expression level of at least one of CREM, ERRFI1, SRSF5, PDK4, HJURP, PDRG1, TRPM3, PDE4D, F12, ADAMTS1, ADAMTS9, B3GNT5, CD38, CEBPD, CENPF, DKK1, EMP1, F3, IL1R1, IL8, JUNB, KLF10, KLF4, LDLR, LGALS3, LPAR1, MALAT1, MTUS1, MYBPC1, NFIL3, NR4A3, OAT, PI15, PTGS2, RHOBTB3, RIN2, RNFT2, SELE, SLC15A2, SOCS2, SOCS3, SSTR1, ST6GAL1, TSC22D1, XBP1 and ZFP36
 - 20 in a sample from the subject wherein the determined expression level is used to provide a characterisation of and/or a prognosis for the prostate cancer and
 - (b) selecting a treatment appropriate to the characterisation of and/or prognosis for the prostate cancer.
- 30 23. A method for selecting a treatment for prostate cancer in a subject comprising:
 - (a) determining the expression level of at least one of CREM, ERRFI1, SRSF5, PDK4, HJURP, PDRG1, TRPM3, PDE4D, F12, ADAMTS1, ADAMTS9, B3GNT5, CD38, CEBPD, CENPF, DKK1, EMP1, F3, IL1R1, IL8, JUNB, KLF10, KLF4, LDLR, LGALS3, LPAR1, MALAT1, MTUS1, MYBPC1, NFIL3, NR4A3, OAT, PI15, PTGS2, RHOBTB3, RIN2, RNFT2, SELE, SLC15A2, SOCS2, SOCS3, SSTR1, ST6GAL1, TSC22D1, XBP1 and ZFP36

in a sample from the subject wherein the determined expression level is used to provide a characterisation of and/or a prognosis for the prostate cancer

(b) selecting a treatment appropriate to the characterisation of and/or prognosis for the prostate cancer and

5 (c) treating the subject with the selected treatment.

24. The method claim 22 or 23, wherein if the characterisation of and/or prognosis for the prostate cancer is an increased likelihood of recurrence and/or metastasis and/or a poor prognosis the treatment selected is one or more of

10 a) an anti-hormone treatment, preferably bicalutamide and/or abiraterone

b) a cytotoxic agent

c) a biologic, preferably an antibody and/or a vaccine, more preferably Sipuleucel-T

d) radiotherapy, optionally extended radiotherapy, preferably extended-field radiotherapy

e) targeted therapy

15 f) surgery.

25. A method of treating prostate cancer comprising administering a chemotherapeutic agent or radiotherapy, optionally extended radiotherapy, preferably extended-field radiotherapy, to a subject or carrying out surgery on a subject wherein the subject is selected for treatment on the basis of a method as claimed in any of claims 22 to 24.

26. A chemotherapeutic agent for use in treating prostate cancer in a subject, wherein the subject is selected for treatment on the basis of a method as claimed in any of claims 22 to 24.

25

27. A method of treating prostate cancer comprising administering a chemotherapeutic agent or radiotherapy, optionally extended radiotherapy, preferably extended-field radiotherapy to a subject or carrying out surgery on a subject wherein the subject has an increased expression level of at least one of HJURP, PDRG1, TRPM3, F12, CENPF, RNFT2, 30 SSTR1 and/or a decreased expression level of at least one of CREM, ERRFI1, SRSF5, PDK4, PDE4D, ADAMTS1, ADAMTS9, B3GNT5, CD38, CEBPD, DKK1, EMP1, F3, IL1R1, IL8, JUNB, KLF10, KLF4, LDLR, LGALS3, LPAR1, MALAT1, MTUS1, MYBPC1, NFIL3, NR4A3, OAT, PI15, PTGS2, RHOBTB3, RIN2, SELE, SLC15A2, SOCS2, SOCS3, ST6GAL1, TSC22D1, XBP1 and ZFP36.

35

28. A chemotherapeutic agent for use in treating prostate cancer in a subject

wherein the subject has an increased expression level of at least one of HJURP, PDRG1, TRPM3, F12, CENPF, RNFT2, and SSTR1 and/or a decreased expression level of at least one of CREM, ERRFI1, SRSF5, PDK4, PDE4D, ADAMTS1, ADAMTS9, B3GNT5, CD38, CEBPD, DKK1, EMP1, F3, IL1R1, IL8, JUNB, KLF10, KLF4, LDLR, LGALS3, LPAR1, MALAT1, MTUS1,

5 MYBPC1, NFIL3, NR4A3, OAT, PI15, PTGS2, RHOBTB3, RIN2, SELE, SLC15A2, SOCS2, SOCS3, ST6GAL1, TSC22D1, XBP1 and ZFP36.

29. The method of claims 25 or 27 or chemotherapeutic agent for use of claims 26 or 28 wherein the chemotherapeutic agent comprises, consists essentially of or consists of

10 a) an anti-hormone treatment, preferably bicalutamide and/or abiraterone
b) a cytotoxic agent
c) a biologic, preferably an antibody and/or a vaccine, more preferably Sipuleucel-T and/or
d) a targeted therapeutic agent

15 30. The method of claim 24 or 29, wherein the cytotoxic agent is a platinum based agent and/or a taxane.

31. The method of claim 30, wherein the platinum based agent is selected from cisplatin, carboplatin and oxaliplatin.

20 32. The method of claim 30, wherein the taxane is paclitaxel or docetaxel.

33. An antibody that binds specifically to a protein product of at least one of CREM, ERRFI1, SRSF5, PDK4, HJURP, PDRG1, TRPM3, PDE4D, F12, ADAMTS1, ADAMTS9, 25 B3GNT5, CD38, CEBPD, CENPF, DKK1, EMP1, F3, IL1R1, IL8, JUNB, KLF10, KLF4, LDLR, LGALS3, LPAR1, MALAT1, MTUS1, MYBPC1, NFIL3, NR4A3, OAT, PI15, PTGS2, RHOBTB3, RIN2, RNFT2, SELE, SLC15A2, SOCS2, SOCS3, SSTR1, ST6GAL1, TSC22D1, XBP1 and ZFP36.

30 34. The antibody of claim 33 conjugated to a label.

35. Use of an antibody of claim 33 or 34 for characterising and/or prognosing a prostate cancer in a subject.

35 36. A method for diagnosing a prostate cancer with an increased metastatic potential in a subject comprising:
determining the expression level of at least one of

- 86 -

CREM, ERRFI1, SRSF5, PDK4, HJURP, PDRG1, TRPM3, PDE4D, F12, ADAMTS1, ADAMTS9, B3GNT5, CD38, CEBPD, CENPF, DKK1, EMP1, F3, IL1R1, IL8, JUNB, KLF10, KLF4, LDLR, LGALS3, LPAR1, MALAT1, MTUS1, MYBPC1, NFIL3, NR4A3, OAT, PI15, PTGS2, RHOBTB3, RIN2, RNFT2, SELE, SLC15A2, SOCS2, SOCS3, SSTR1, ST6GAL1,

5 TSC22D1, XBP1 and ZFP36

in a sample from the subject wherein the determined expression level is used to identify whether a subject has a prostate cancer with increased metastatic potential.

37. A method for diagnosing a prostate cancer with an increased metastatic potential in a

10 subject comprising:

determining the expression level of at least one of
SRSF5, PDK4, TRPM3, PDRG1, PDE4D, and F12

in a sample from the subject wherein the determined expression level is used to identify whether a subject has a prostate cancer with increased metastatic potential.

15

38. A method for characterising and/or prognosing prostate cancer in a subject comprising:

determining the expression level of at least one of

CREM, ERRFI1, SRSF5, PDK4, HJURP, PDRG1, TRPM3, PDE4D, F12, ADAMTS1, ADAMTS9, B3GNT5, CD38, CEBPD, CENPF, DKK1, EMP1, F3, IL1R1, IL8, JUNB, KLF10, KLF4, LDLR, LGALS3, LPAR1, MALAT1, MTUS1, MYBPC1, NFIL3, NR4A3, OAT, PI15, PTGS2, RHOBTB3, RIN2, RNFT2, SELE, SLC15A2, SOCS2, SOCS3, SSTR1, ST6GAL1, TSC22D1, XBP1 and ZFP36 or

in a sample from the subject in order to identify the presence or absence of cells characteristic of an increased likelihood of recurrence and/or metastasis wherein the determined presence or 25 absence of the cells is used to provide a characterisation of and/or a prognosis for the prostate cancer.

39. A method for characterising and/or prognosing prostate cancer in a subject comprising:

a) obtaining a sample from the subject

30 b) applying an antibody specific for the protein product of at least one of

CREM, ERRFI1, SRSF5, PDK4, HJURP, PDRG1, TRPM3, PDE4D, F12, ADAMTS1, ADAMTS9, B3GNT5, CD38, CEBPD, CENPF, DKK1, EMP1, F3, IL1R1, IL8, JUNB, KLF10, KLF4, LDLR, LGALS3, LPAR1, MALAT1, MTUS1, MYBPC1, NFIL3, NR4A3, OAT, PI15, PTGS2, RHOBTB3, RIN2, RNFT2, SELE, SLC15A2, SOCS2, SOCS3, SSTR1, ST6GAL1, TSC22D1, XBP1 and

35 ZFP36

to the sample from the subject

c) applying a detection agent that detects the antibody-protein complex

d) using the detection agent to determine the level of the protein
d) wherein the determined level of the protein is used to provide a characterisation of and/or a prognosis for the prostate cancer.

5 40. A system or device for performing the method of any previous claim.

41. A system or test kit for characterising and/or prognosing prostate cancer in a subject, comprising:

a) one or more testing devices for determining the expression level of at least one of
10 CREM, ERRFI1, SRSF5, PDK4, HJURP, PDRG1, TRPM3, PDE4D, F12, ADAMTS1, ADAMTS9, B3GNT5, CD38, CEBPD, CENPF, DKK1, EMP1, F3, IL1R1, IL8, JUNB, KLF10, KLF4, LDLR, LGALS3, LPAR1, MALAT1, MTUS1, MYBPC1, NFIL3, NR4A3, OAT, PI15, PTGS2, RHOBTB3, RIN2, RNFT2, SELE, SLC15A2, SOCS2, SOCS3, SSTR1, ST6GAL1, TSC22D1, XBP1 and ZFP36

15 in a sample from the subject

b) a processor; and

c) storage medium comprising a computer application that, when executed by the processor, is configured to:

(i) access and/or calculate the determined expression levels of the at least one of
20 CREM, ERRFI1, SRSF5, PDK4, HJURP, PDRG1, TRPM3, PDE4D, F12, ADAMTS1, ADAMTS9, B3GNT5, CD38, CEBPD, CENPF, DKK1, EMP1, F3, IL1R1, IL8, JUNB, KLF10, KLF4, LDLR, LGALS3, LPAR1, MALAT1, MTUS1, MYBPC1, NFIL3, NR4A3, OAT, PI15, PTGS2, RHOBTB3, RIN2, RNFT2, SELE, SLC15A2, SOCS2, SOCS3, SSTR1, ST6GAL1, TSC22D1, XBP1 and ZFP36

25 in the sample on the one or more testing devices

(ii) calculate whether there is an increased or decreased level of the at least one of
CREM, ERRFI1, SRSF5, PDK4, HJURP, PDRG1, TRPM3, PDE4D, F12, ADAMTS1, 30 ADAMTS9, B3GNT5, CD38, CEBPD, CENPF, DKK1, EMP1, F3, IL1R1, IL8, JUNB, KLF10, KLF4, LDLR, LGALS3, LPAR1, MALAT1, MTUS1, MYBPC1, NFIL3, NR4A3, OAT, PI15, PTGS2, RHOBTB3, RIN2, RNFT2, SELE, SLC15A2, SOCS2, SOCS3, SSTR1, ST6GAL1, TSC22D1, XBP1 and ZFP36

35 in the sample; and

(iii) output from the processor the characteristaion of and/or prognosis for the prostate cancer.

35

42. The system or test kit of claim 41 further comprising a display for the output from the processor.

43. A computer application or storage medium comprising a computer application as defined in claim 41 or 42.

5 44. A method for characterising and/or prognosing prostate cancer in a subject comprising: determining the methylation status of at least one of ADAMTS9, EMP1, F3, LDLR, LGALS3, MALAT1, MTUS1, NR4A3, PTGS2, RIN2, SLC15A2, SOCS3 and TSC22D1 in a sample from the subject wherein the determined methylation status is used to provide a 10 characterisation of and/or a prognosis for the prostate cancer.

45. The method of claim 44, wherein if at least one of ADAMTS9, EMP1, F3, LDLR, LGALS3, MALAT1, MTUS1, NR4A3, PTGS2, RIN2, SLC15A2, SOCS3 and TSC22D1 15 is hypermethylated the likelihood of recurrence and/or metastasis is increased.

46. A kit for characterising and/or prognosing prostate cancer in a subject comprising one or more antibodies of claim 33 or 34.

20 47. The kit of claim 46 further comprising a computer application or storage medium of claim 43.

48. A computer program product for characterising and/or prognosing prostate cancer in a subject, comprising a non-transitory computer-readable storage device having computer-readable program instructions embodied thereon that cause the computer to:

25 (i) access and/or calculate the determined expression levels of the at least one of CREM, ERRFI1, SRSF5, PDK4, HJURP, PDRG1, TRPM3, PDE4D, F12, ADAMTS1, ADAMTS9, B3GNT5, CD38, CEBPD, CENPF, DKK1, EMP1, F3, IL1R1, IL8, JUNB, KLF10, KLF4, LDLR, LGALS3, LPAR1, MALAT1, MTUS1, MYBPC1, NFIL3, NR4A3, OAT, PI15, PTGS2, RHOBTB3, RIN2, RNFT2, SELE, SLC15A2, SOCS2, SOCS3, SSTR1, ST6GAL1, TSC22D1, XBP1 and 30 ZFP36 in a sample on one or more testing devices;

(ii) calculate whether there is an increased or decreased level of the at least one of CREM, ERRFI1, SRSF5, PDK4, HJURP, PDRG1, TRPM3, PDE4D, F12, ADAMTS1, ADAMTS9, B3GNT5, CD38, CEBPD, CENPF, DKK1, EMP1, F3, IL1R1, IL8, JUNB, KLF10, KLF4, LDLR, LGALS3, LPAR1, MALAT1, MTUS1, MYBPC1, NFIL3, NR4A3, OAT, PI15, PTGS2, RHOBTB3, 35 RIN2, RNFT2, SELE, SLC15A2, SOCS2, SOCS3, SSTR1, ST6GAL1, TSC22D1, XBP1 and ZFP36 in the sample; and,

(iii) provide an output regarding the characterization of and/or prognosis for the prostate cancer.

- 89 -

49. A kit for characterising and/or prognosing prostate cancer in a subject comprising one or more oligonucleotide probes specific for an RNA product of at least one of:

CREM, ERRFI1, SRSF5, PDK4, HJURP, PDRG1, TRPM3, PDE4D, F12, ADAMTS1, ADAMTS9, B3GNT5, CD38, CEBPD, CENPF, DKK1, EMP1, F3, IL1R1, IL8, JUNB, KLF10,

5 KLF4, LDLR, LGALS3, LPAR1, MALAT1, MTUS1, MYBPC1, NFIL3, NR4A3, OAT, PI15, PTGS2, RHOBTB3, RIN2, RNFT2, SELE, SLC15A2, SOCS2, SOCS3, SSTR1, ST6GAL1, TSC22D1, XBP1 and ZFP36

and further comprising one or more of the following components:

- a) a blocking probe
- 10 b) a PreAmplifier
- c) an Amplifier and/or
- d) a Label molecule.

15

20

25

30

35

1/8

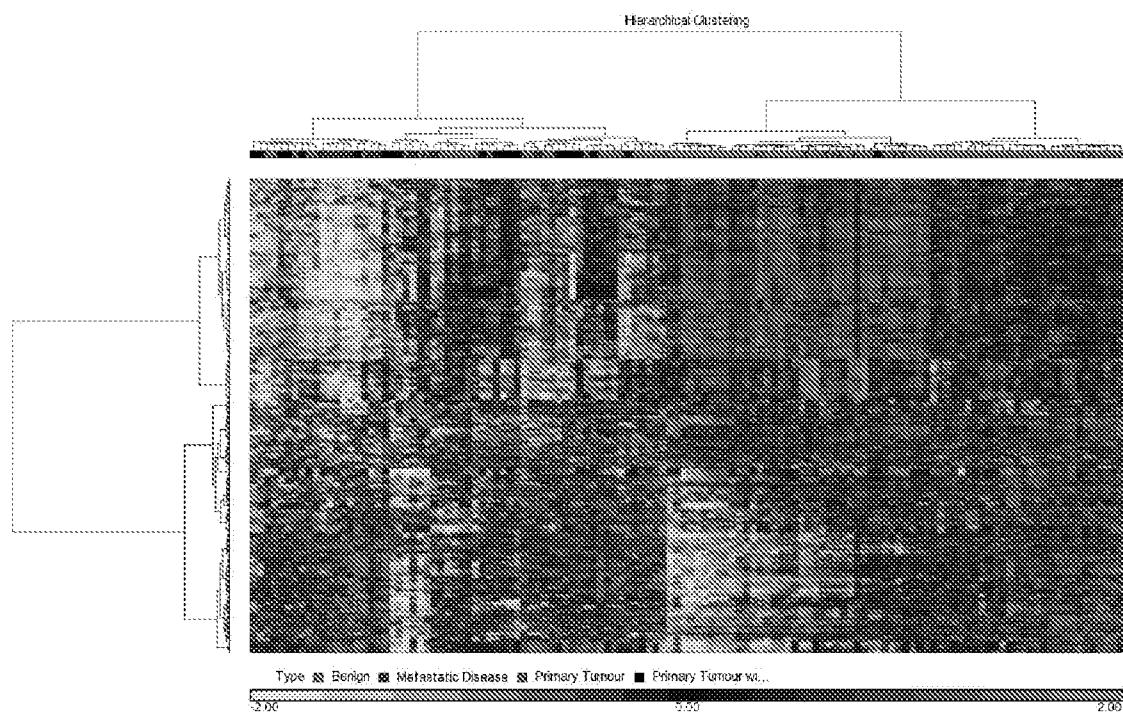


Figure 1A

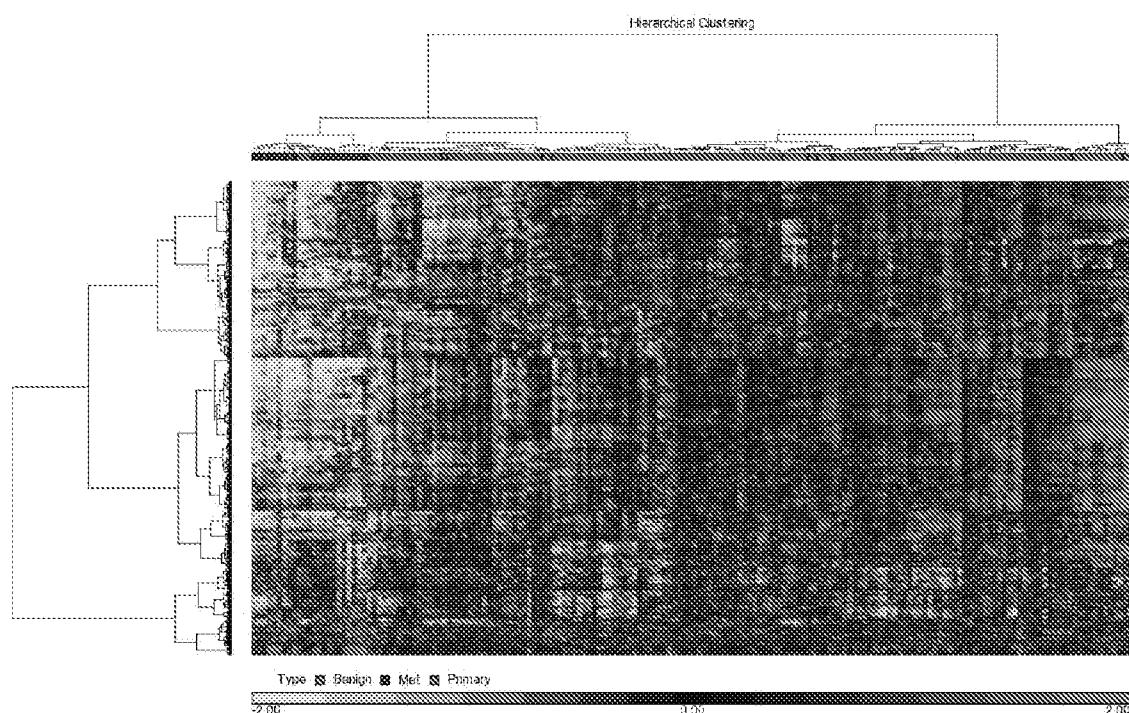


Figure 1B

2/8

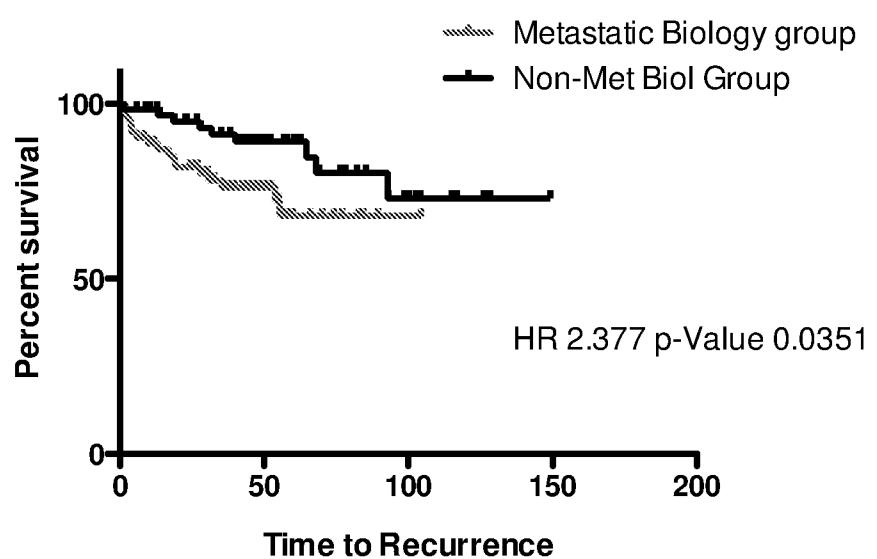


Figure 1C

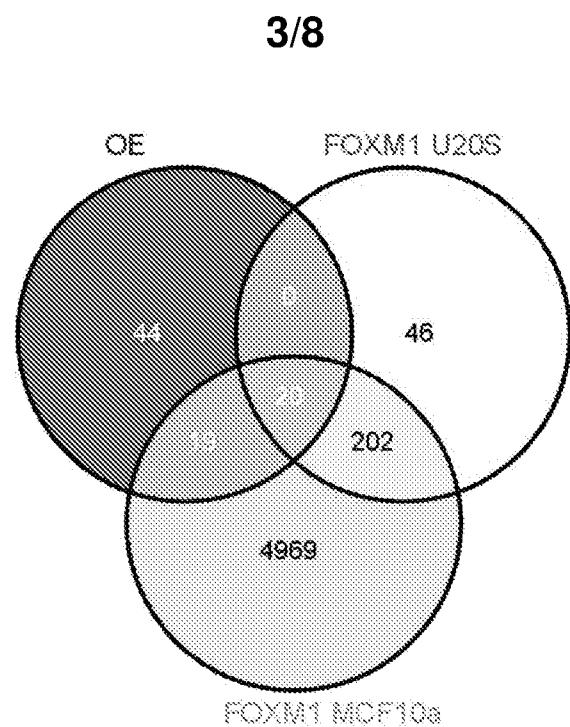


Figure 2A

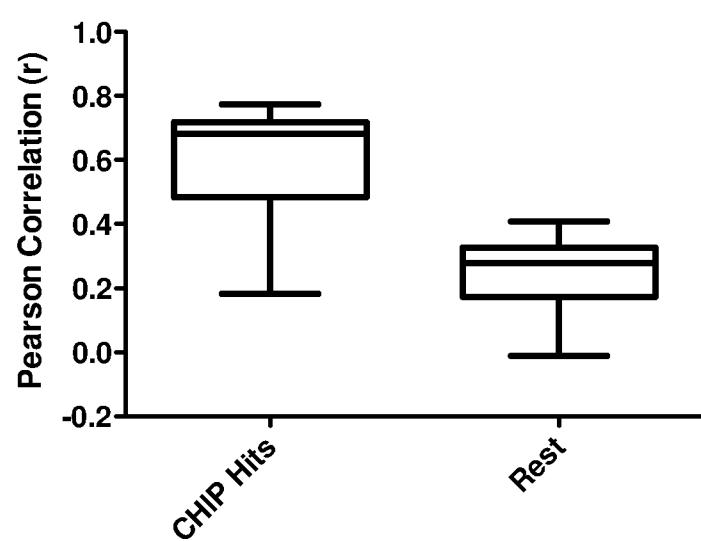


Figure 2B

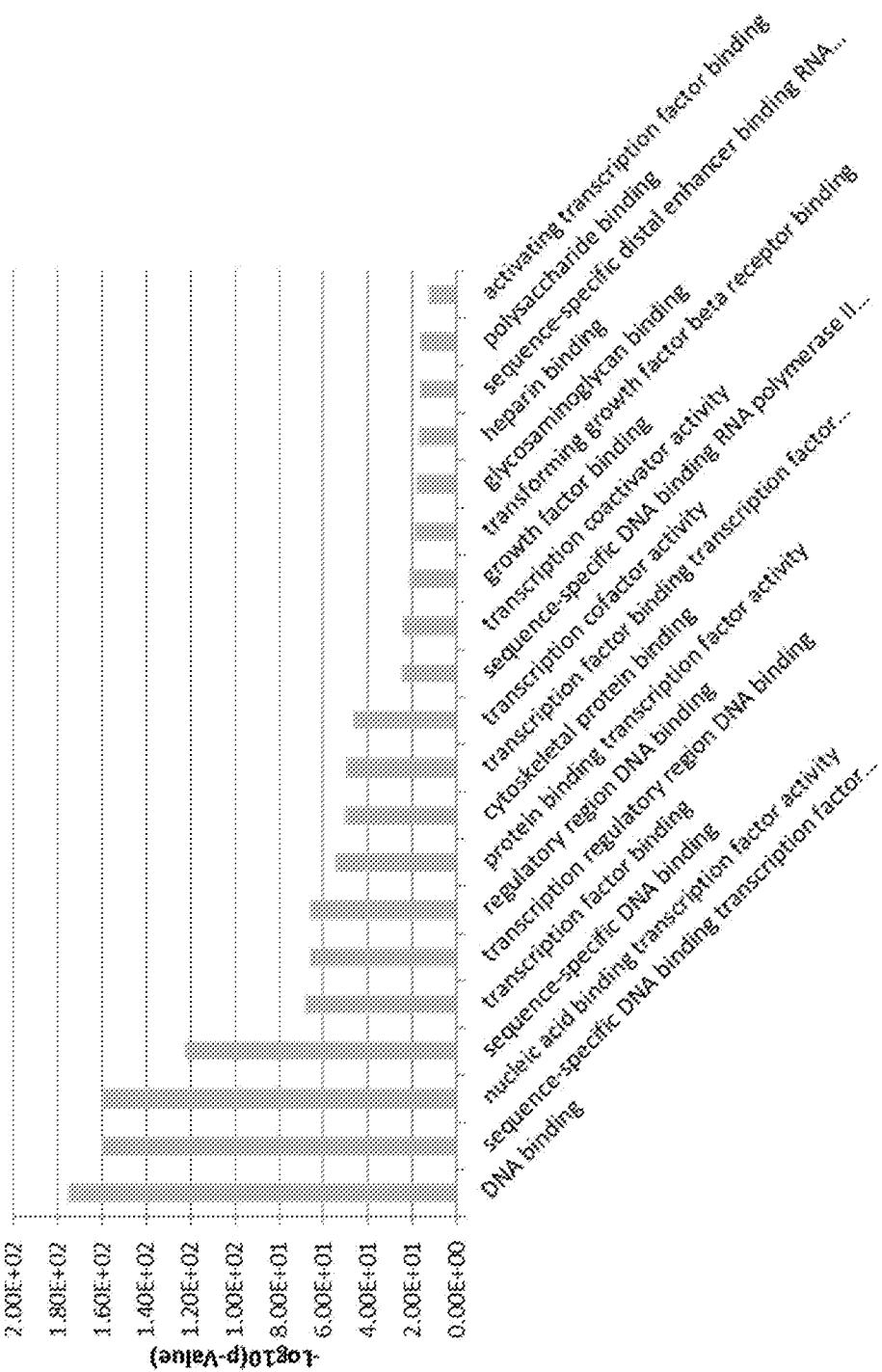


Figure 3A

5/8

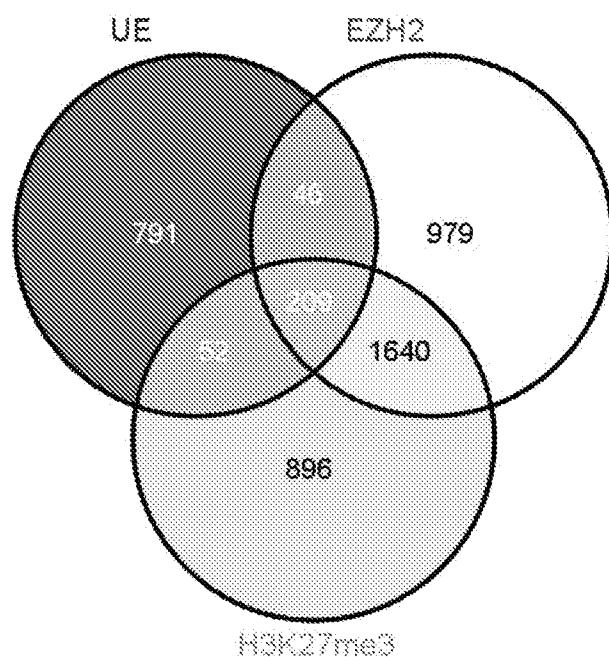


Figure 3B

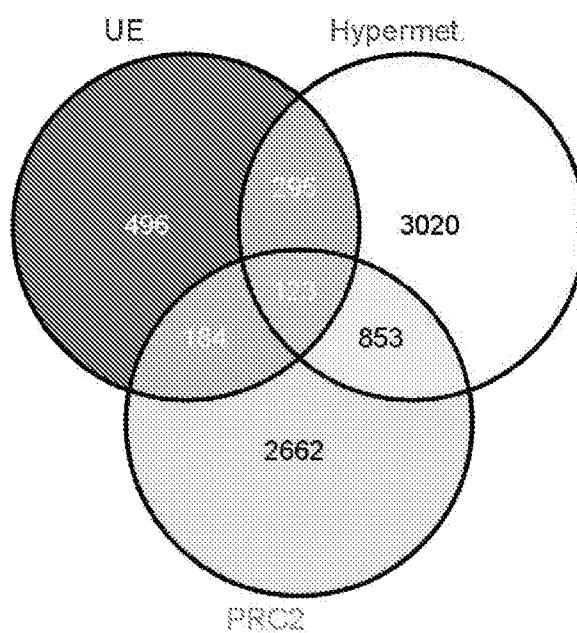


Figure 3C

6/8

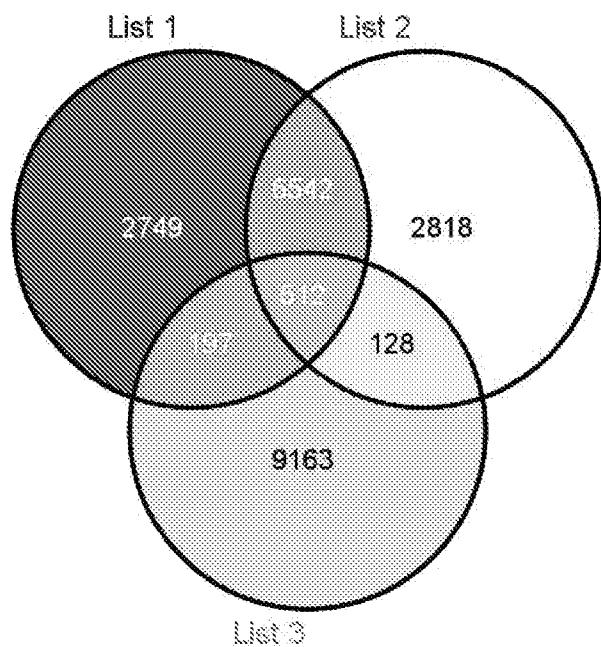


Figure 4

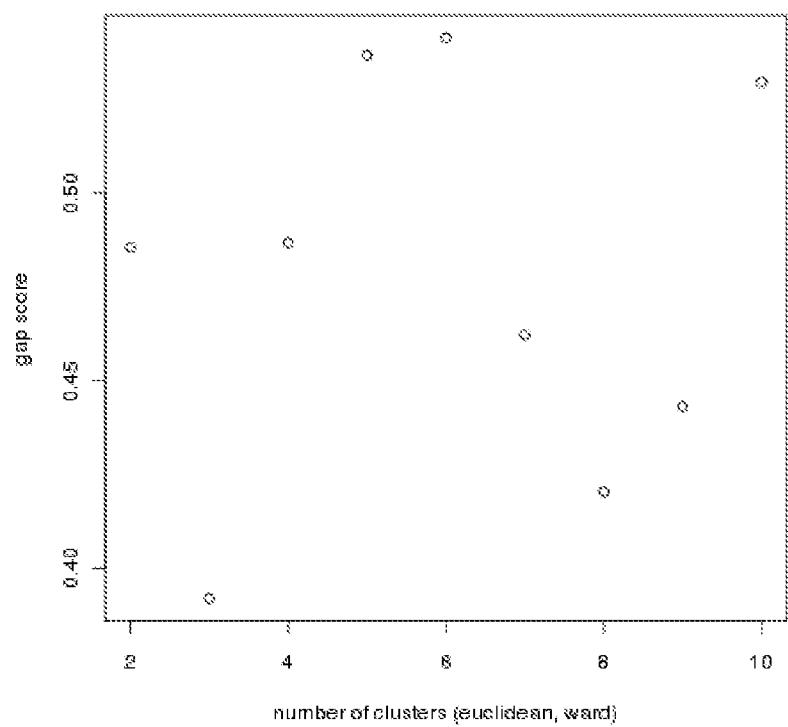


Figure 5

7/8

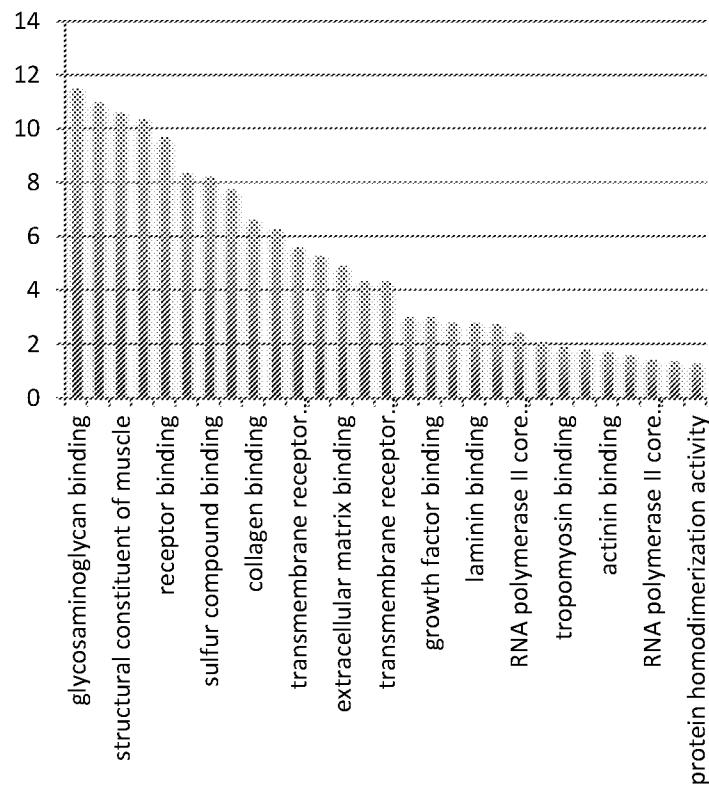


Figure 6A

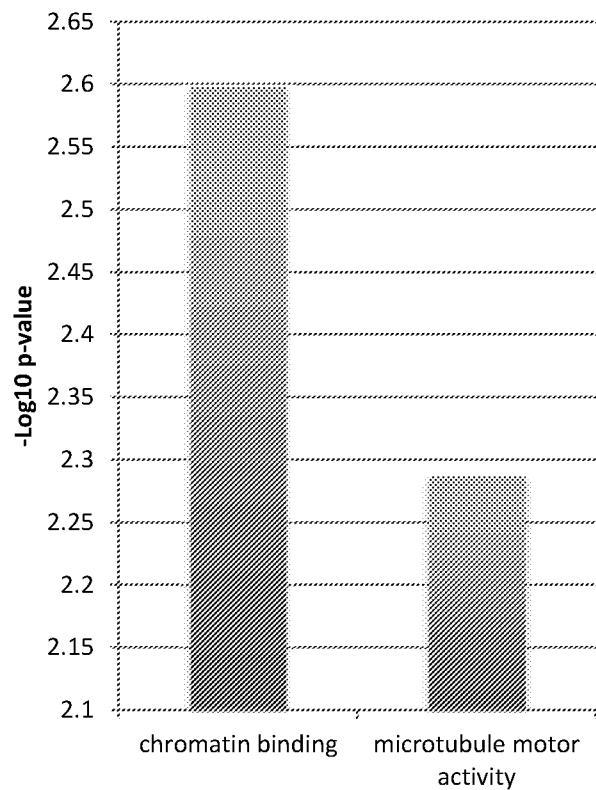


Figure 6B

8/8

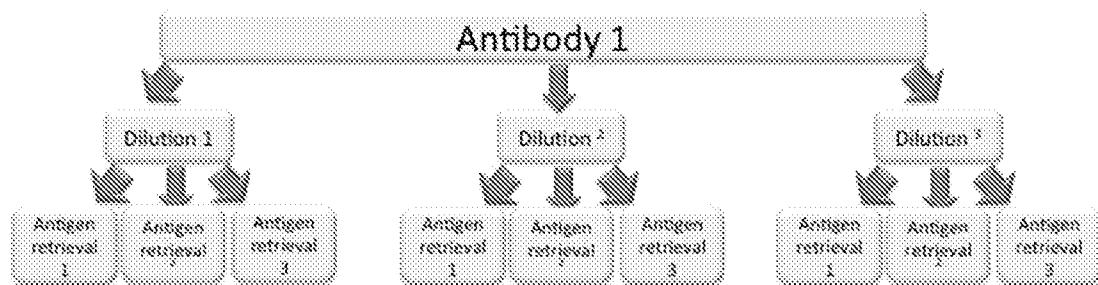


Figure 7