一种 Mn – Ag 双活性组分脱氧剂及其制备方法

摘要

本发明涉及烯烃加工领域，具体涉及用于烯烃脱氧的 Mn – Ag 双活性组分脱氧剂及其制备方法和应用。本发明的脱氧剂是以 Mn₃O₄ 为主要活性组分，在其中所含少量 Ag₂O 的催化作用下，大幅度降低 Mn₃O₄ 还原成具有脱氧活性的低价 MnO 的温度和时间。本发明以铝酸钙为载体不添加其他粘合剂，进一步提高脱氧剂活性组分的含量和脱氧容量，并具有极高的抗压碎强度。本发明的脱氧剂可以在 80 ~ 160℃还原再生，室温下将乙烯、丙烯等中的微量氧化氢至 0.05ppm 以下。将本发明的脱氧剂用于聚烯烃工业生产中，可以延长脱氧剂再生周期，避免聚合催化剂中毒，降低生产成本，具有明显的经济效益。
1 一种 Mn-Ag 双活性组分脱氧剂，其特征是：
该脱氧剂由 Mn₃O₄ 组分、Ag₂O 组分、载体组成；
所述 Mn₃O₄ 组分是以锰的无水化合物或锰的含水化合物为原料焙烧后的分解产物；
所述 Ag₂O 组分是以银化合物为原料焙烧后的分解产物。

2 根据权利要求 1 所述的一种 Mn-Ag 双活性组分脱氧剂，其特征是：
所述 Mn₃O₄ 组分的重量含量为 40%～95%；
所述 Ag₂O 组分的重量含量为 0.05%～5%；
制备所述的 Mn₃O₄ 组分的原料为下列物质：碳酸锰、醋酸锰、甲酸锰、草酸锰、乙酰丙酮锰、磷酸锰、氯化锰、硝酸锰、二氧化锰、硫酸锰、氢氧化锰；
制备所述的 Ag₂O 组分的原料为下列物质：硝酸银、碳酸银、亚硝酸银、高锰酸银、氧化银、硫酸银。

3 根据权利要求 2 所述的一种 Mn-Ag 双活性组分脱氧剂，其特征是：
制备所述 Mn₃O₄ 组分的原料为重量百分含量大于 95%的下列物质之一：碳酸锰、草酸锰、醋酸锰、甲酸锰；
制备所述 Mn₃O₄ 组分的原料的粒度为 30 μm～140 μm；
制备所述 Ag₂O 组分的原料为硝酸银。

4 根据权利要求 3 所述的一种 Mn-Ag 双活性组分脱氧剂，其特征是：
制备所述 Mn₃O₄ 组分的原料的粒度为 30 μm～70 μm。
5 根据权利要求1所述的一种Mn-Ag双活性组分脱氧剂，其特征是：

所述的载体选自下列之一：

（1）铝酸钙、（2）铝酸钙和硅铝酸钙的混合物。

6 根据权利要求5所述的一种Mn-Ag双活性组分脱氧剂，其特征是：

所述载体是铝酸钙和硅铝酸钙的混合物，其重量百分比组分为：

Al₂O₃为50％～65％、CaO为30％～40％、SiO₂为4％～7.5％、其他杂质小于6％；

所述载体的比表面积为：0.1 M²/g～20 M²/g，

所述载体的粒度小于70 μm。

7 根据权利要求5所述的一种Mn-Ag双活性组分脱氧剂，其特征是：

所述载体是铝酸钙，其重量百分比组分为：Al₂O₃为65％～80％、CaO为20％～35％、SiO₂小于1％、其他杂质小于1％；

所述载体的比表面积为：0.1 M²/g～20 M²/g，

所述载体的粒度小于70 μm。

8 一种Mn-Ag双活性组分脱氧剂的制备方法，用于制备权利要求1至7之一所述的Mn-Ag双活性组分脱氧剂，其特征是，包括以下步骤：

第一步：根据载体的组成要求，称量出一定量的氧化铝或铝矾土、以及一定量的碳酸钙，顺序经过混合、煅烧、粉碎、过筛步骤制成载体；

第二步：根据所述脱氧剂的组成要求，分别称量出一定量Mn₃O₄组分的原料和一定量载体，并将所述原料和所述载体混合均匀；
第三步：根据第五步焙烧后脱氧剂中 Ag₂O 的重量百分比在 0.05～5% 来确定 AgNO₃ 溶液的体积和浓度，向第二步得到的混合物中加入上述 AgNO₃ 水溶液，然后顺序经过捏合、成型步骤；

第四步：将第三步成型的产物放置 6～48 小时晾干，然后在 80℃～150℃下干燥 3～12 小时；

第五步：将第四步得到的产物在 200℃～800℃下焙烧 2～20 小时，得到脱氧剂。

9 根据权利要求 8 所述的制备方法，其特征是：

第一步中所述的载体是铝酸钙和硅铝酸钙混合物；

该载体原料是：氧化铝重量百分含量大于 70% 的铝矾土，以及 CaO 重量百分含量大于 50% 的重质碳酸钙或石灰石；

将上述原料在 1150℃～1550℃温度下煅烧 3～8 小时，然后粉碎、过筛制成载体；

制成的载体其重量百分比组分为：Al₂O₃ 为 50%～65%、CaO 为 30%～40%、SiO₂ 为 4%～7.5%、其他杂质小于 6%；

制成的载体的比表面积为：0.1 m²/g～20 m²/g，

制成的载体的粒度小于 70 μm。

10 根据权利要求 8 所述的制备方法，其特征是：

第一步中所述的载体是铝酸钙；

该载体原料是：Al₂O₃ 重量百分含量大于 98% 的氧化铝或氢氧化铝，以及 CaO 重量百分含量大于 55% 的重质碳酸钙或石灰石；

将上述原料在 1200℃～1650℃温度下煅烧 3～8 小时，然后粉碎、过筛制成载体；
制成的载体其重量百分比组分为：Al_2O_3 为 65%～80%、CaO 为 20%～40%、SiO_2 小于 1%、其他杂质小于 1%；
所述载体的比表面积为：0.1 m^2/g～20 m^2/g，
所述载体的粒度小于 70 μm。

11 根据权利要求 8 所述的制备方法，其特征是：
第五步中所述的熔烧是在空气中进行，熔烧温度为 300℃～600℃。

12 根据权利要求 11 所述的制备方法，其特征是：
第五步中所述的熔烧温度为 400℃～500℃。

13 一种 Mn-Ag 双活性组分脱氧剂的制备方法，用于制备权利要求 1 至 7 之一所述的 Mn-Ag 双活性组分脱氧剂，其特征是，包括以下步骤：
第一步：根据载体的组成要求，称量出一定量的氧化铝或铝矾土、以及一定量的碳酸钙；顺序经过混合、煅烧、粉碎、过筛步骤制成载体；
第二步：根据所述脱氧剂的组成要求，分别称量出一定量 Mn₃O₄ 组分的原料和一定量载体，并将所述原料和所述载体混合均匀；
第三步：向第二步得到的混合物中加入纯净水，然后捏合，成型；利用浸渍法负载 AgNO₃；根据干燥后银脱氧剂的吸水率，确定等体积浸渍负载 AgNO₃ 溶液的体积和浓度，使得第五步熔烧后脱氧剂中 Ag₂O 的重量百分比在 0.05%～5%；
第四步：将第三步成型的产物密闭放置 6～48 小时晾干，在 80℃～150℃下干燥 3～12 小时；
第五步：将第四步得到的产物在 200℃～800℃下熔烧 2～20 小时；
14 一种 Mn-Ag 双活性组分脱氧剂的制备方法，用于制备权利要求 1 至 7 之一所述的 Mn-Ag 双活性组分脱氧剂，其特征是，包括以下步骤：

第一步：根据载体的组成要求，称量出一定量的氧化铝或铝矾土、碳酸钙；顺序经过均匀混合、煅烧、粉碎、过筛步骤制成载体；

第二步：根据所述脱氧剂的组成要求，称量出载体，并称量出一定量的 Mn₃O₄ 组分的原料；

将上述原料在 300℃～600℃高温熔烧成 Mn₃O₄；

然后将得到的 Mn₃O₄ 和所述载体混合均匀；

第三步：根据第四步干燥后脱氧剂中 Ag₂O 的重量百分比在 0.05%～5% 来确定 AgNO₃ 溶液的体积和浓度，向第二步得到的混合物中加入上述 AgNO₃ 水溶液，然后捏合，成型；

第四步：将第三步成型的产物密闭放置 6～48 小时晾干，在 80℃～150℃下干燥 3～12 小时；得到脱氧剂。

15 一种 Mn-Ag 双活性组分脱氧剂的制备方法，用于制备权利要求 1 至 7 之一所述的 Mn-Ag 双活性组分脱氧剂，其特征是，包括以下步骤：

第一步：根据载体的组成要求，称量出一定量的氧化铝或铝矾土、碳酸钙；顺序经过均匀混合、煅烧、粉碎、过筛步骤制成载体；

第二步：根据所述脱氧剂的组成要求，称量出载体，并称量出一定量的 Mn₃O₄ 组分的原料；

将上述原料在 300℃～600℃高温熔烧成 Mn₃O₄；

然后将得到的 Mn₃O₄ 和所述载体混合均匀；

第三步：向第二步得到的混合物中加入纯净水，然后捏合，成型；
利用浸渍法负载 AgNO₃：根据干燥后无银脱氧剂的吸水率，确定等体积浸渍负载 AgNO₃溶液的体积和浓度，使得第四步干燥后脱氧剂中 Ag₂O 的重量百分比在 0.05%～5%；

第四步：将第三步成型的产物密闭放置 6～48 小时晾干，在 80℃～150℃下干燥 3～12 小时；得到脱氧剂。

16 一种 Mn-Ag 双活性组分脱氧剂在烯烃脱氢中的应用，其特征是：

先将权利要求 1 至 7 之一所述的脱氧剂置于脱氧塔的床层中；

再进行使用前的现场还原，还原条件：温度 60℃～200℃；还原气体为氢气、或氢氮混合气体；还原气体的体积空速为 50 h⁻¹～1000 h⁻¹；

脱氧时，将含有 1 ppm～2000 ppm 氧的原料通过所述 Mn-Ag 双活性组分脱氧剂的床层进行气相脱氧；

所述的原料为含有不超过 5 个碳原子的烷烃、烯烃、炔烃、惰性气体；以气相计，需要脱氧的物流的气相体积空速为 100 h⁻¹～10000 h⁻¹；

脱氧塔床层温度 20℃～150℃；脱氧塔压力为 0.1 MPa～10 MPa；

所述的脱氧剂在氧穿透后，在脱氧塔的床层中进行现场还原再生，再生温度 80℃～160℃。

17 根据权利要求 16 所述的脱氧剂的应用，其特征是：

使用前的现场还原条件为：温度 80℃～160℃；还原气体的体积空速为 100 h⁻¹～500 h⁻¹。

所述的含有不超过 5 个碳原子的烷烃是甲烷、乙烷或丙烷；所述的含有不超过 5 个碳原子的烯烃是乙烯或丙烯；

所述的惰性气体是氮气、氢气或氦气；

脱氧塔床层温度是 20℃～80℃。
一种 Mn-Ag 双活性组分脱氧剂及其制备方法和应用

技术领域

本发明涉及烯烃加工领域，具体涉及用于烯烃脱氧的 Mn-Ag 双活性组分脱氧剂及其制备方法和应用。

背景技术

乙烯和丙烯是重要的基本有机化工原料，其中普遍含有微量氧。按照乙烯原料国家标准 GB7715-87 和丙烯原料国家标准 GB7716-87，合格的聚合级乙烯、丙烯中氧含量为 \(\leq 5 \text{ ppm}(5 \times 10^{-6} \text{ V/V})\)。随着聚乙烯和聚丙烯技术的迅速发展，各种新型高效聚乙烯和聚丙烯催化剂，例如：UCAT-J、BCS01、BCG-1、SCG-1、BLC-S、SLC-G、TH-1L、茂金属催化剂等相继应用于工业生产。为避免这类高效聚烯烃催化剂中毒失活，在生产工艺中要求乙烯和丙烯中微量氧含量小于 0.1ppm。因此，研究开发能应用于乙烯和丙烯气相或液相的深度高效脱氧剂是很有必要的。

目前，相关专利文献和工业生产中应用的脱氧剂分为不配氢脱氧和配氢脱氧两大类。不配氢脱氧是利用氧与脱氧剂发生氧化反应的原理达到脱氧的净化效果。该类脱氧剂因为脱氧容量有限，为防止频繁还原再生，影响正常工业生产，主要适用于气体中氧含量小于 500ppm，特别是小于 50ppm 的脱氧工艺。本发明就属于这种不配氢脱氧剂类型。

中国专利 CN1246383 公开了一种 Mn 含量为 24%～44%，支撑单体为高铝水泥、硅藻土、Al\(_2\)O\(_3\) 的 Mn/MnO\(_2\) 脱氧剂。利用此发明制备的脱氧剂用于乙烯脱氧，其脱氧容量仅为 5.3 ml/g，如 CN1246383 中实例 6 的数据，
用于丙烯脱氧活化再生温度达 350℃。

中国专利 CN110249 公开了一种负载型脱氧剂，利用浸渍法在 Al₂O₃载体上负载 Mn(NO₃)₂·Ni(NO₃)₂ 和 Ca(NO₃)₂（该专利的实例 1）或 Mg(NO₃)₂（该专利的实例 2）而制备不配氢脱氧剂。利用该发明制备的脱氧剂在高温焙烧时由于硝酸盐分解释放出大量有毒 NOₓ，并且会将 Al₂O₃炸裂。该脱氧剂适用于氮气中微量氧的脱除。

中国专利 CN1342516 公开了一种双金属氧化物 MnO 和 CuO 为活性组分的脱氧剂，并加入 Al₂O₃载体加工成型，可用于烯烃脱氧。

中国专利 200510116710.1 公开了一种以 MnO-Mn₃O₄ 为活性组分，加入活性促进剂碱土金属氧化物和氧化铝的脱氧剂，用于乙烯丙烯等烯烃中微量氧的净化。具有高脱氧容量和在室温下使用的特点。但是，其主要活性组分 Mn₃O₄ 即使在 CaO 的促进下，还原成具有脱氧活性能与氧直接反应的 MnO 仍需要在较高的温度（280℃以上）下进行。并且，为提高这种脱氧剂的机械压碎强度需加入少量粘合剂。

综合分析现有技术，MnO-Mn₃O₄ 等锰系脱氧剂具有氧容量大的优点，但是，用于烯烃脱氧时的还原再生温度比较高，不适用于现有聚烯烃装置中常用的 100～160℃的加热还原条件。

因此，需要发明一种可用于现有聚烯烃装置烯烃介质的加热还原条件，还原再生温度低于 160℃，机械压碎强度大于 50 牛顿，并且脱氧容量和选择性优于现有技术水平，能在室温下使用的脱氧剂。

发明内容

本发明要解决的技术问题是：

为了克服现有 MnO-Mn₃O₄ 脱氧剂存在的还原再生温度高于 280℃，且需要加入粘合剂提高脱氧剂机械压碎强度的缺陷，本发明提供一种 Mn-Ag
双活性组分脱氧剂，能够将还原温度降低，不需添加粘合剂，可以进一步提高 MnO-Mn₃O₄ 脱氧剂活性组分的含量，增加脱氧容量。

本发明的技术方案是：

一种 Mn-Ag 双活性组分脱氧剂；该脱氧剂由 Mn₃O₄ 组分、Ag₂O 组分、载体组成；

所述 Mn₃O₄ 组分是以锰的无水化合物或锰的含水化合物为原料焙烧后的分解产物；所述 Ag₂O 组分是以银化合物为原料焙烧后的分解产物。与所用原料的种类无关。

通常，所述 Mn₃O₄ 组分的重量含量为 40%～95%；所述 Ag₂O 组分的重量含量为 0.05%～5%；

通常，制备所述的 Mn₃O₄ 组分的原料为下列物质之一：碳酸锰、醋酸锰、甲酸锰、草酸锰、乙酰丙酮锰、磷酸锰、氯化锰、硝酸锰、二氧化锰、硫酸锰、氢氧化锰。制备所述的 Ag₂O 组分的原料为下列物质之一：硝酸银、碳酸银、亚硝酸银、高锰酸银、氧化银、硫酸银。优选易溶于水的硝酸银。

进一步优选：

制备所述 Mn₃O₄ 组分的原料为重量百分含量大于 95%的下列物质之一：碳酸锰、草酸锰、醋酸锰、甲酸锰。

制备所述 Mn₃O₄ 组分的原料的粒度为 30 μm～140 μm；

制备所述 Ag₂O 组分的原料为硝酸银。

制备所述的 Mn₃O₄ 组分的原料的粒度还可以优选为 30 μm～70 μm。

所述的载体选自下列之一：

（1）铝酸钙，包括两种晶型：CaAl₂O₄ 和 CaAl₄O₇，也可以记作 CaO·Al₂O₃ 和 CaO·2Al₂O₃；

10
（2）铝酸钙和硅铝酸钙的混合物，其中硅铝酸钙即 Ca₂Al₂SiO₇，也可以记作 CaO·2Al₂O₃·SiO₂。

更进一步可选择：所述载体是铝酸钙和硅铝酸钙的混合物，其重量百分比组分为：Al₂O₃ 为 50%～65%、CaO 为 30%～40%、SiO₂ 为 4%～7.5%、其他杂质小于 6%；所述载体的比表面积为：0.1 m²/g～20 m²/g，所述载体的粒度小于 70 μm。

也可以选择：所述载体是铝酸钙，其重量百分比组分为：Al₂O₃ 为 65%～80%、CaO 为 20%～35%、SiO₂ 小于 1%、其他杂质小于 1%；所述载体的比表面积为：0.1 m²/g～20 m²/g，所述载体的粒度小于 70 μm。

上述的 Mn-Ag 双活性组分脱氧剂的第一种制备方法如下：

一种 Mn-Ag 双活性组分脱氧剂的制备方法，包括以下步骤：

第一步：根据载体的组成要求，称量出一定量的氧化铝或铝矾土，以及一定量的碳酸钙；顺序经过混合、煅烧、粉碎、过筛步骤制成载体；

第二步：根据所述脱氧剂的组成要求，分别称量出一定量 Mn₃O₄ 组分的原料和一定量载体，并将所述原料和所述载体混合均匀；

第三步：根据第五步焙烧后脱氧剂中 Ag₂O 的重量百分比在 0.05～5%来确定 AgNO₃ 溶液的体积和浓度，向第二步得到的混合物中加入上述 AgNO₃ 水溶液，然后顺序经过捏合、成型步骤；

第四步：将第三步成型的产物放置 6～48 小时晾干，然后在 80℃～150℃下干燥 3～12 小时；

第五步：将第四步得到的产物在 200℃～800℃下焙烧 2～20 小时，得到脱氧剂。

在所述的第一种制备方法中，第一步中所述的载体可以是铝酸钙和硅
铝酸钙混合物:

该载体原料是：氧化铝重量百分含量大于 70%的铝矾土，以及 CaO 重量百分含量大于 50%的重质碳酸钙或石灰石；

将铝矾土和上述另一种原料在 1150℃～1550℃温度下煅烧 3～8 小时，然后粉碎、过筛制成载体；

制成的载体其重量百分比组分为：Al₂O₃ 为 50%～65%、CaO 为 30%～40%、SiO₂ 为 4%～7.5%、其他杂质小于 6%；制成的载体的比表面积为：0.1 m²/g～20 m²/g，制成的载体的粒度小于 70 μm。

在所述的第一种制备方法中，第一步中所述的载体还可以是铝酸钙；

该载体原料是：Al₂O₃ 重量百分含量大于 98%的氧化铝或氢氧化铝，以及 CaO 重量百分含量大于 55%的重质碳酸钙或石灰石；

将上述原料在 1200℃～1650℃温度下煅烧 3～8 小时，然后粉碎、过筛制成载体；

制成的载体其重量百分比组分为：Al₂O₃ 为 65%～80%、CaO 为 20%～40%、SiO₂ 小于 1%、其他杂质小于 1%；所述载体的比表面积为：0.1 m²/g～20 m²/g，所述载体的粒度小于 70 μm。

第五步中所述的烧烧是在空气中进行，烧烧温度为 300℃～600℃，优选烧烧温度为 400℃～500℃。

上述的 Mn-Ag 双活性组分脱氧剂的第二种制备方法如下：

一种 Mn-Ag 双活性组分脱氧剂的制备方法，包括以下步骤：

第一步：根据载体的组成要求，称量出一定量的氧化铝或铝矾土、以及一定量的碳酸钙；经过混合、煅烧、粉碎、过筛步骤制成载体；

第二步：根据所述脱氧剂的组成要求，分别称量出一定量 Mn₃O₄ 组分
的原料和一定量载体，并将所述原料和所述载体混合均匀；

第三步：向第二步得到的混合物中加入纯净水，然后捏合，成型；利用浸渍法负载 AgNO₃：根据干燥后无氧脱氧剂的吸水率，确定等体积浸渍负载 AgNO₃ 溶液的体积和浓度，使得第五步焙烧后脱氧剂中 Ag₂O 的重量百分比在 0.05%～5%；

第四步：将第三步成型的产物密闭放置 6～48 小时晾干，在 80℃～150℃下干燥 3～12 小时；

第五步：将第四步得到的产物在 200℃～800℃下焙烧 2～20 小时，得到脱氧剂。

上述的 Mn-Ag 双活性组分脱氧剂的第三种制备方法如下：

一种 Mn-Ag 双活性组分脱氧剂的制备方法，包括以下步骤：

第一步：根据载体的组成要求，称量出一定量的氧化铝或铝矾土、碳酸钙；顺序经过均匀混合、煅烧、粉碎、过筛步骤制成载体；

第二步：根据所述脱氧剂的组成要求，称量出载体，并称量出一定量的 Mn₃O₄ 组分的原料；将上述原料在 300℃～600℃高温焙烧成 Mn₃O₄；然后将得到的 Mn₃O₄ 和所述载体混合均匀；

第三步：根据第四步干燥后脱氧剂中 Ag₂O 的重量百分比在 0.05%～5%来确定 AgNO₃ 溶液的体积和浓度，向第二步得到的混合物中加入上述 AgNO₃ 水溶液，然后捏合，成型；

第四步：将第三步成型的产物密闭放置 6～48 小时晾干，在 80℃～150℃下干燥 3～12 小时；得到脱氧剂。

上述的 Mn-Ag 双活性组分脱氧剂的第四种制备方法如下：

一种 Mn-Ag 双活性组分脱氧剂的制备方法，包括以下步骤：
第一步：根据载体的组成要求，称量出一定量的氧化铝或铝矾土、碳酸钙；顺序经过均匀混合、煅烧、粉碎、过筛步骤制成载体；

第二步：根据所述脱氧剂的组成要求，称量出载体，并称量出一定量的Mn₃O₄组分的原料；将上述原料在300℃～600℃高温焙烧成Mn₃O₄；然后将得到的Mn₃O₄和所述载体混合均匀；

第三步：向第二步得到的混合物中加入纯净水，然后捏合，成型；利用浸渍法负载AgNO₃：根据干燥后无银脱氧剂的吸水率，确定等体积浸渍负载AgNO₃溶液的体积和浓度，使得第四步干燥后脱氧剂中Ag₂O的重量百分比在0.05%～5%；

第四步：将第三步成型的产物密闭放置6～48小时晾干，在80℃～150℃下干燥3～12小时；得到脱氧剂。

在本发明提供的制备方法中，可以将脱氧剂加工成条形、球形或片状等各种形状，脱氧剂的大小、形状对本发明的脱氧剂的活性没有本质的影响。

按上述四种方法制备的脱氧剂经XRD（X射线衍射法）分析，锰的主要形态为Mn₃O₄，制备Mn₃O₄组分的原料已全部分解。

上述的Mn-Ag双活性组分脱氧剂在烯烃脱氧中的应用：

先将所述的脱氧剂置于脱氧塔的床层中；

再进行使用前的现场还原，还原条件：温度60℃～200℃，优选80℃～160℃；还原气体为氢气、或氢氮混合气体；还原气体的体积空速为50 h⁻¹～1000 h⁻¹，优选100 h⁻¹～500 h⁻¹。将Mn和Ag的高价氧化物Mn₃O₄和Ag₂O还原成活性组分MnO和Ag。

当还原气中水含量在还原前后无变化时，即表明锰的氧化物还原完
全。具体还原时间与脱氧剂装填量有关，一般在 1～24 小时。本领域的技术人员可以根据常识很容易确定出适当的还原时间。

脱氧时，将含有 1 ppm～2000 ppm 氧的物料通过所述 Mn-Ag 双活性组分脱氧剂的床层进行气相脱氧；

所述的物料为含有不超过 5 个碳原子的烷烃、烯烃、炔烃、惰性气体；可以是上述物料中的一种单一物料，也可以是其中多种物料的混合物。

一般烷烃是甲烷、乙烷或丙烷，烯烃是乙烯或丙烯；惰性气体是氮气、氩气或氦气。

以气相计算，需要脱氧的物料流的气相体积空速为 100 h⁻¹ ～ 10000 h⁻¹；脱氧塔床层温度 20℃～150℃；优选在室温下脱氧；当出口氧浓度大于要求，例如 0.1ppm 后，再逐渐提高反应温度至 80℃～100℃。

脱氧塔压力为 0.1 MPa～10 MPa；MnO 与氧反应是体积收缩过程，增加反应压力有利于脱氧过程。但是，单纯为脱氧净化过程提高压力将增大设备投资和能耗。优选在现有系统压力下进行。

本发明的脱氧剂脱氧深度可达 <0.05ppm（微氧分析仪精度为 ±0.003ppm）。

本发明的脱氧剂在压碎强度大于 75 牛顿，160℃还原 6 小时，入口原料乙烯氧含量为 1000ppm，空速 1500h⁻¹ 条件下，出口氧浓度小于 0.1ppm，温度为 22℃和 80℃时，脱氧量分别可达 10.6 ml/g 和 17.1 ml/g。若降低脱氧剂压碎强度指标，进一步提高的 Mn₃O₄ 含量，其脱氧量还可更大。本领域的技术人员可以根据压碎强度要求很容易确定出适当的载体和活性组分 Mn₃O₄ 的比例。

所述的脱氧剂在氧穿透后，在脱氧塔的床层中进行现场还原再生，再生温度 80℃～160℃。
本发明的脱氧原理为脱氧剂中 MnO 与烯烃中的微量氧反应生成高价锰的氧化物 Mn₃O₄ 而达到脱氧目的。使用前需用含氢气体将 Mn₃O₄ 还原成低价能与氧直接反应的 MnO。

理论上，只有在高于一定的还原温度（280℃）时才能将 Mn₃O₄ 还原成能与氧直接反应的低价态 MnO。还原温度越高，还原速度越快，并无温度上限限制。本发明的脱氧剂中加入 0.05%～5% Ag₂O 的主要作用是：在银的催化（或促进）作用下，大幅度降低 Mn₃O₄ 还原成具有脱氧活性的低价 MnO 的反应温度，使 Mn₃O₄ 在 80℃以上即可被还原成 MnO。银催化 Mn₃O₄ 低温还原成 MnO 与所选载体的种类没有本质的影响。Mn₃O₄ 还原成 MnO 的温度从 280℃以上降低为 80℃即可，下降了约 200℃。同时，还原时间也可大幅缩短。以 50ml 装填量为例，还原时间从 12 小时下降至 3 小时。

另外，虽然加入大于 5% 的 Ag₂O，由于 Ag 的氧化反应还可以提高脱氧剂的脱氧容量，但是将提高脱氧剂的制备成本。

本发明的脱氧剂选用铝酸钙或铝酸钙的混合物为载体，具有良好的机械抗压碎强度，不需要另外加入其他粘合剂提高脱氧剂的强度。

本发明的脱氧剂 Mn₃O₄ 含量越高，其脱氧容量越大。但是，载体用量减少将降低脱氧剂的机械抗压碎强度。本领域的技术人员可以根据脱氧剂的装填量确定压碎强度，进一步确定出 Mn₃O₄ 含量。

本发明的有益效果是：

（1）本发明的脱氧剂中加入少量氧化银作为助催化剂或活性促进剂，由于 Mn-Ag 的相互作用和 Ag 的催化作用，极大地降低了脱氧剂的主要活性组分 Mn₃O₄ 还原成 MnO 的温度和还原时间。
（2）本发明的脱氧剂中加入少量氧化银的第二个作用是 Ag 本身也是脱氧剂的活性组分。在室温下，高度分散的 Ag 也可以与原料中的微量氧化物、发生氧化反应生成 Ag₂O 而起到脱除氧的作用。因此本发明的脱氧剂的理论脱氧容量增大，在室温和 100°C 下的脱氧容量明显高于现有技术水平，延长了脱氧剂再生循环周期，减少了能量消耗，降低了生产成本。

（3）本发明的脱氧剂由于还原温度可以低于 150°C，且室温下的氧容量很大，因此特别适用于乙烯、丙烯等烯烃介质的室温脱氧工艺。进一步降低了升温（80°C 以上）脱氧工艺的能耗。

（4）本发明的脱氧剂使用铝酸钙和硅铝酸钙的混合物或纯铝酸钙为载体，由于铝酸钙兼具有粘合剂的作用，因此本发明的脱氧剂的机械压碎强度高于现有脱氧剂技术水平。

具体实施方式

下面结合实施例进一步描述本发明。本发明的范围不受这些实施例的限制，本发明的范围在权利要求书中提出。

在下述实施例和对比例中，脱氧剂脱氧容量的测定条件如下：取 50ml 脱氧剂装入 Φ25mm 的不锈钢反应器中。在氢气气速 300h⁻¹ 以及实施例和对比例所述的还原温度和还原时间条件下还原脱氧剂。降温后，在压力 0.4MPa 和一定温度下，通入乙烯。测定脱氧剂在乙烯气相空速为 1500h⁻¹，入口乙烯中氧含量 1000ppm，出口乙烯中氧浓度达到 0.1ppm 时脱除的氧气体积（毫升数），除以脱氧剂的重量，即得脱氧剂在该反应温度下的脱氧容量（ml/g）。脱氧深度是指在脱氧容量测定过程中，净化后出口乙烯中的氧含量。

对比例 1～2:

称取 140g MnCO₃ 细粉末、20g 水浸水铝石粉、20g CaO 细粉末，将三
者充分混合均匀。加入适量的蒸馏水，充分捏合。然后用挤条机制备成 \(\Phi 3.5\text{mm} \) 的条状；放置 24 小时以上，晾干；120℃烘干 3 小时；冷却后切成 3～5mm 的小段。在 450℃空气中焙烧 4 小时。制备成 \(\text{Mn}_3\text{O}_4/\text{Al}_2\text{O}_3-\text{CaO} \) 脱氧剂。测定压碎强度为 25 牛顿。分别在 160℃（对比例 1）和 280℃（对比例 2）通 \(\text{H}_2 \) 还原 12 小时。降温后，按上述条件测定其脱氧容量，结果见表 1。

表 1 对比例 1～2 的脱氧剂性能

<table>
<thead>
<tr>
<th>对比例</th>
<th>还原温度 (℃)</th>
<th>22℃</th>
<th>80℃</th>
<th>脱氧深度 (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>160</td>
<td>1.1</td>
<td>1.8</td>
<td><0.05</td>
</tr>
<tr>
<td>2</td>
<td>280</td>
<td>6.6</td>
<td>11.2</td>
<td><0.05</td>
</tr>
</tbody>
</table>

由于对比例 1 和 2 脱氧剂中不含银助剂，在 160℃下还原 12 小时后的脱氧容量只有 1.1 ml/g 和 1.8 ml/g，是 280℃下还原 12 小时后的脱氧容量的六分之一左右。说明不含银助剂的脱氧剂的还原再生温度必须大于 280 ℃。该对比例还说明，不加入粘合剂，此种 \(\text{Mn}_3\text{O}_4/\text{Al}_2\text{O}_3-\text{CaO} \) 脱氧剂的压碎强度小于 50 牛顿。

实施例 1 铝酸钙和硅铝酸钙复合载体的制备

称取氧化铝重量百分比含量 74.2%的高铝矾土 5.50kg 和 \(\text{CaO} \) 重量百分比含量 53.3%的碳酸钙 4.50kg，粉碎至 70 μm 以下，并且充分混合均匀，在 1350～1450℃高温煅烧 4 小时出料，降温、粉碎，70 μm 过筛。制备出本发明所用的载体。其重量百分比组分为：\(\text{Al}_2\text{O}_3 \) 53.9%、\(\text{CaO} \) 33.9%、\(\text{SiO}_2 \) 5.84%、\(\text{TiO}_2 \) 2.75%、\(\text{Fe}_2\text{O}_3 \) 2.0%、\(\text{MgO} \) 0.55%。比表面积 0.38 M²/g，粒度小于 70 μm。XRD 衍射结果表明该载体主要成分为铝酸钙 CaAl₂O₄、CaAl₄O₇，以及少量硅铝酸钙 Ca₂Al₂SiO₇ 混合物。
实施例 2 铁酸钙载体的制备
称取 Al₂O₃ 重量百分比含量 98.5% 的工业氧化铝 6.90kg 和 CaO 重量百分比含量 55.3% 的重质碳酸钙 5.40kg，粉碎至 70 μm 以下，并且充分混合均匀，在 1550～1650°C 高温煅烧 5h 出料，降温、粉碎，70 μm 过筛。制备成本表明所用铝酸钙载体。其重量百分比组分为：Al₂O₃ 68.5%、CaO 30.2%、SiO₂ 0.53%、Fe₂O₃ 0.5%。比表面积 0.48 M²/g，粒度小于 70 μm。XRD 衍射结果表明该载体主要成分为铝酸钙 Ca₃Al₂O₆ 和 Ca₆Al₄O₁₇。

实施例 3
称取粒度在 100 μm 以下、锰重量百分比含量为 44.1% 的 MnCO₃ 25 kg 和实施例 1 方法制备的 70 μm 以下的铝酸钙和硅铝酸钙混合物 14 kg，将两者充分混合均匀。在糖衣机中，喷适量纯净水，加工成直径 4mm～5mm 的球体；放置 24 小时以上，晾干；120°C 烘干 8 小时，制备成一种无负载银的脱氧剂半成品。

对比例 3～4
取实施例 3 的无负载银的脱氧剂半成品 50ml。450°C 空气氛围下焙烧 4 小时，制备成无负载银脱氧剂成品。分别在 160°C（对比例 3）和 280°C 下（对比例 4）通 H₂ 还原 12 小时。降温后，测定其脱氧容量，结果见表 2

<table>
<thead>
<tr>
<th>对比例</th>
<th>还原温度（℃）</th>
<th>脱氧容量（ml/g）</th>
<th>脱氧深度（ppm）</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>160</td>
<td>0.95</td>
<td>0.95</td>
</tr>
<tr>
<td>4</td>
<td>280</td>
<td>7.97</td>
<td>7.97</td>
</tr>
</tbody>
</table>

表 2 对比例 3～4 的脱氧剂性能
实施例 4～8

取五份实施例 3 的无负载铝的脱氧剂半成品各 110g。按其吸水率采用等体积浸渍法负载银。分别浸渍于 AgNO₃ 重量百分比浓度为 0.37%、0.73%、1.83%、3.66%、7.3% 的 30ml 水溶液中。10 分钟内 AgNO₃ 水溶液完全被吸入脱氧剂中。将上述五份制品在 120℃烘干 3 小时，450℃空气气氛下焙烧 4 小时，制备成脱氧剂成品。其中银的重量百分比含量以 Ag₂O 计分别为：0.085%、0.17%、0.43%、0.85%、1.7%。

各取 50ml 脱氧剂成品，分别在 160℃通 H₂ 还原 12 小时。降温后，测定其脱氧容量，结果见表 3。

表 3 实施例 4～8 的脱氧剂性能

<table>
<thead>
<tr>
<th>实施例</th>
<th>还原温度 (℃)</th>
<th>脱氧容量 (ml/g)</th>
<th>脱氧深度 (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>22℃</td>
<td>80℃</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>160</td>
<td>4.5</td>
<td>6.95</td>
</tr>
<tr>
<td>5</td>
<td>160</td>
<td>5.70</td>
<td>7.89</td>
</tr>
<tr>
<td>6</td>
<td>160</td>
<td>7.45</td>
<td>10.4</td>
</tr>
<tr>
<td>7</td>
<td>160</td>
<td>8.31</td>
<td>11.4</td>
</tr>
<tr>
<td>8</td>
<td>160</td>
<td>9.45</td>
<td>11.9</td>
</tr>
</tbody>
</table>

表 3 数据显示，MnO-Mn₃O₄ 脱氧剂中加入少量助剂银可以显著降低脱氧剂的还原温度，提高室温下 Mn-Ag 脱氧剂的脱氧容量。测量该脱氧剂的压碎强度为 59 牛顿。这说明用本发明所制备铝酸钙为主要成分（含少量硅酸铝钙）的载体制备的脱氧剂不添加任何粘合剂即可达到工业装置应用所要求的 50 牛顿以上的指标。

实施例 9

称取粒度在 100 μm 以下、锰重量百分比含量为 44.8% 的 MnCO₃ 2.50kg 和实施例 1 方法制备的 70 μm 的铝酸钙和硅酸铝钙混合物载体 1.43kg，将
两者充分混合均匀。各加入 AgNO₃ 重量百分比浓度为 8.0%的水溶液 1000ml，充分捏合均匀，然后用挤条机制备成 Φ3.5mm 的条状，切成长 3～5mm 的小段；放置 24 小时以上，晾干；120℃烘干 3 小时；然后在 450℃空气氛围下烘焙 4 小时。制备成银的重量百分比含量（以 Ag₂O 计）为 0.17%的脱氧剂成品。测量该脱氧剂的径向压碎强度为 81 牛顿。

实施例 10～15

取实施例 9 制备的脱氧剂成品六份，每份 50ml，分别在 60℃、80℃、100℃、120℃、140℃和 160℃还原脱氧剂 12 小时。按照相同的条件测定脱氧剂脱氧容量和脱氧深度，结果见表 4。

<table>
<thead>
<tr>
<th>实施例</th>
<th>还原温度(℃)</th>
<th>脱氧容量（ml/g）</th>
<th>22℃</th>
<th>80℃</th>
<th>脱氧深度（ppm）</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>60</td>
<td></td>
<td>0.31</td>
<td>0.69</td>
<td><0.05</td>
</tr>
<tr>
<td>11</td>
<td>80</td>
<td></td>
<td>5.45</td>
<td>8.14</td>
<td><0.05</td>
</tr>
<tr>
<td>12</td>
<td>100</td>
<td></td>
<td>7.43</td>
<td>11.7</td>
<td><0.05</td>
</tr>
<tr>
<td>13</td>
<td>120</td>
<td></td>
<td>7.80</td>
<td>12.3</td>
<td><0.05</td>
</tr>
<tr>
<td>14</td>
<td>140</td>
<td></td>
<td>8.05</td>
<td>12.2</td>
<td><0.05</td>
</tr>
<tr>
<td>15</td>
<td>160</td>
<td></td>
<td>8.00</td>
<td>13.1</td>
<td><0.05</td>
</tr>
</tbody>
</table>

表 4 数据显示，MnO·Mn₃O₄ 脱氧剂中加入少量助剂银后，在 80℃下还原脱氧剂，其中的 Mn₃O₄ 大部分被还原；当还原温度为 100～160℃时，其脱氧容量就可以达到 280℃下还原 12 小时无银 MnO·Mn₃O₄ 脱氧剂的脱氧容量（对比例 4）。

实施例 16

取实施例 9 制备的脱氧剂 50ml，在 160℃还原脱氧剂 3 小时，80℃下的脱氧容量为 13.6 ml/g。与实施例 15 相比较可见，含银 MnO·Mn₃O₄ 脱氧
剂还原3小时即可达到12小时的效果。与对比例5相比较可知，MnO-Mn₃O₄脱氧剂中加入少量助剂银后，还可以缩短脱氧剂的还原时间。

对比例5

用纯净水代替AgNO₃水溶液，按照实施例9～14相同的条件制备脱氧剂50ml。在280℃还原脱氧剂3小时，80℃下的脱氧容量为9.3ml/g，小于还原12小时的脱氧容量（对比例4）。这说明在280℃还原无银催化的脱氧剂3小时不能将Mn₃O₄还原完全。

实施例17和18

称取两份粒度在100µm以下、锰重量百分比含量为45.8%的MnCO₃粉末，分别加入实施例2方法制备的70µm的铝酸钙载体1.07kg（实施例16）和1.79kg（实施例17），将两者充分混合均匀。分别加入AgNO₃重量百分比浓度为8.0%的水溶液870ml、1100ml。充分捏合均匀，然后用挤条机制备成Φ3.5mm的条状，切成长3～5mm的小段；放置过夜，晾干；120℃烘干3小时，然后在450℃空气气氛下焙烧4小时。制备成银的重量百分比含量（以Ag₂O计）为0.17%的脱氧剂成品。

各取50ml脱氧剂成品，分别在160℃还原脱氧剂6小时。测定脱氧剂的脱氧容量和径向压碎强度，结果见表5。利用气相色谱检测脱氧后乙烯组成，乙烯在室温至80℃下脱氧后，未发现生成新的微量杂质，说明该脱氧剂具有良好的选择性。

<table>
<thead>
<tr>
<th>实施例</th>
<th>Mn₃O₄(% wt)</th>
<th>脱氧容量(ml/g)</th>
<th>22℃</th>
<th>80℃</th>
<th>径向压碎强度（牛顿）</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>61.1</td>
<td>10.6</td>
<td>17.1</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>48.5</td>
<td>8.27</td>
<td>12.4</td>
<td>160</td>
<td></td>
</tr>
</tbody>
</table>

22
实施例 17 和 18 说明脱氧剂中 Mn₃O₄ 的含量越高脱氧容量越大。具体优选的 Mn₃O₄ 和载体的含量与脱氧剂的强度相关联。

实施例 19

称取 280g MnCO₃ 细粉末、20g 硅铝粉石粉、20g CaO 细粉末，将三者充分混合均匀。各加入 AgNO₃ 重量百分比浓度为 1.8% 的水溶液 100ml，充分捏合均匀，加入适量的蒸馏水，充分捏合。然后用挤条机制备成 Φ3.5mm，长 3～5mm 的条状；放置 24 小时以上，晾干；120℃烘干 3 小时；然后在 450℃ 空气气氛下焙烧 4 小时。制备成银的重量百分比含量（以 Ag₂O 计）为 0.47% 的脱氧剂成品。取 50ml 脱氧剂成品，在 160℃ 还原脱氧剂 6 小时，测定脱氧容量为 7.82 ml/g（室温 22℃）和 12.1 ml/g（80℃）。这说明银催化降低 Mn₃O₄ 还原温度和时间与载体无本质关系。

实施例 20

称取锰重量百分比含量为 45.8% 的 MnCO₃ 3.50kg，用球磨机将 MnCO₃ 研磨 6 小时以上，粒度达到 60 μm 筛余小于 5.0%。加入实施例 1 方法制备的 60 μm 筛余小于 5.0% 的载体 2.00kg，将两者充分混合均匀。加入 AgNO₃ 重量百分比浓度为 8.0% 的水溶液 1500ml。充分捏合均匀，然后用挤条机制备成 Φ3.5mm 的条状，切成长 3～5mm 的小段；放置 24 小时以上，晾干；120℃烘干 3 小时；然后在 450℃ 空气气氛下焙烧 8 小时。制备成银的重量百分比含量（以 Ag₂O 计）为 0.18% 的脱氧剂成品。测定脱氧剂的径向压碎强度为 142 牛顿。在 160℃ 还原脱氧剂 6 小时，测得 22℃、80℃ 和 100℃ 下的脱氧容量分别为 10.9 ml/g、15.7 ml/g 和 17.2 ml/g。由此可见，减小原料粒度可以提高脱氧剂的强度和脱氧容量。
实施例 21

称取锰重量百分比含量为 30.1%，粒度达到 60 μm 筛余小于 5.0%的草酸锰（MnC₂O₄·2H₂O）0.533kg。加入实施例 2 方法制备的 60 μm 筛余小于 5.0%的载体 0.200kg，将两者充分混合均匀。加入 AgNO₃ 重量百分比浓度为 8.0%的水溶液 200ml。充分捏合均匀，然后用挤条机制备成 Φ3.5mm 的条状，切成长 3～5mm 的小段；放置 24 小时以上，晾干；120℃烘干 3 小时；然后在 400℃空气中下焙烧 8 小时。制备成银的重量百分比含量（以 Ag₂O 计）为 0.24%的脱氧剂成品。测定脱氧剂的径向压碎强度为 105 公斤。在 150℃还原脱氧剂 3 小时，测定 22℃、80℃下的脱氧容量分别为 9.03 ml/g 和 13.9 ml/g。

实施例 22

称取锰重量百分比含量为 22.2%，粒度达到 45 μm 筛余小于 5.0%的醋酸锰（Mn(CH₃COO)₂·4H₂O）0.715kg。加入实施例 2 方法制备的 60 μm 筛余小于 5.0%的载体 0.200kg，将两者充分混合均匀。加入 AgNO₃ 重量百分比浓度为 1.25%的水溶液 200ml。充分捏合均匀，然后用挤条机制备成 Φ3.5mm 的条状，切成长 3～5mm 的小段；放置 24 小时以上，晾干；120℃烘干 3 小时；然后在 420℃空气中下焙烧 6 小时。制备成银的重量百分比含量（以 Ag₂O 计）为 0.38%的脱氧剂成品。测定脱氧剂的径向压碎强度为 75 公斤。在 120℃还原脱氧剂 6 小时，测定 22℃、80℃下的脱氧容量分别为 9.76 ml/g 和 13.8 ml/g。

实施例 23

取 50ml 实施例 20 所制备的脱氧剂成品，加入实施例 20 所制备的脱氧剂成品，在 150℃还原脱氧剂 6 小时。在室温、0.4MPa、6000h⁻¹气相空速条件下，通入氧含量为 1ppm～5ppm
聚合级乙烯，连续运行 2000 小时，净化后乙烯中的氧含量始终小于 0.05ppm，超过聚乙烯生产装置上新型聚合催化剂对氧含量小于 0.1ppm 的要求。另外，在进行上述 2000 小时稳定性考核之后，测定该脱氧剂在室温、80℃和 100℃下的残余氧含量分别为：4.9 ml/g、8.2 ml/g 和 10.4 ml/g。可见该脱氧剂还有很高的脱氧容量，其使用周期将大大超过目前聚乙烯装置上使用的现有脱氧剂 3 个月的再生周期。