
C. P. OLDHAM.
SEWING MACHINE TUCKER.
APPLICATION FILED MAY 8, 1905.

UNITED STATES PATENT OFFICE.

CARRICK PARK OLDHAM, OF NEWTON, KANSAS, ASSIGNOR OF ONE-THIRD TO GIDEON D. MITCHELL, OF NEWTON, KANSAS.

SEWING-MACHINE TUCKER.

No. 823,072.

Specification of Letters Patent.

Patented June 12, 1906.

Application filed May 8, 1905. Serial No. 259,470.

To all whom it may concern:

Be it known that I, Carrick Park Old-Ham, a citizen of the United States, residing at Newton, in the county of Harvey and State of Kansas, have invented a new and useful Sewing-Machine Tucker, of which the following is a specification.

This invention relates to sewing-machine

tuckers.

5c ing member

10 The object of the invention is provide a tucker adapted more particularly for use in tucking woolen goods or goods that will not crease or lie down flat, the construction and operation of the tucker being such that the 15 goods will be positively guided beneath the presser-foot of the machine and the crease formed and held until stitched.

A further object is to simplify the construction of such attachments, to reduce liability of damage to a minimum, and to adapt it for attachment to a machine already in use without requiring any extended change in the structural arrangement of the latter.

With the above and other objects in view, as will appear as the nature of the invention is better understood, the same consists in the novel construction and combination of parts of a tucker for sewing-machines, as will be hereinafter fully described and claimed.

In the accompanying drawings, forming a part of this specification, and in which like characters of reference indicate corresponding parts, Figure 1 is a view in perspective exhibiting the attachment of the present invention combined with a sewing-machine, the operative position of the tucker being indicated in full lines and its inoperative position by dotted lines. Fig. 2 is an inverted perspective view of a combined tuck-width gage 40 and fold-plate used in conjunction with the tucking member. Fig. 3 is a view in transverse section through a portion of the tucking member, exhibiting more particularly the means by which it may be held out of opera-45 tive position. Fig. 4 is a view in elevation showing more particularly a portion of the mechanism for locking the tucking member in operative position. Fig. 5 is a vertical transverse sectional view through the tuck-

Referring to the drawings, 1 designates the machine-head, which may be of the usual or any preferred construction and having the or-

dinary needle-bar 2 and presser-foot 3, the presser-foot bar being omitted, as it forms no 55

part of the present invention.

Secured to the face of the head is a bracket, from which is supported the tucking member. The bracket comprises a body portion 4, having an angular offset 5, which passes around 60 the side of the machine-head, a thumbscrew 6, passing through the bracket and into the machine-head, serving to hold the former rigidly in position. The bracket is furnished with a vertically-disposed extension 7, hav- 65 ing two outwardly-extending members 8, which are disposed in alinement and are perforated to receive one member 9 of a double-L arm 10, the other vertical member 11 of which carries the tucking member 12. The 70 member 9 is provided with a spiral groove 13, terminating at one end of a transversely-disposed orifice 14, which extends through the arm member 9, the groove and orifice being engaged by a curved stop member 15, that 75 extends from one edge of the extension 5, as clearly shown in Fig. 3. The stop member by coaction with the spiral groove will cause the tucking member 12 to be depressed when the arm is swung to the position shown in full 80 lines in Fig. 1 and to be raised to move the tucking member above the plane of the goods or of the sewing-machine table when swung in the opposite direction to the position shown in dotted lines in Fig. 1, it being ob- 85 served that the swinging movements of the arm cause it by means of the spiral groove and stop member to move in a spiral path. When the tucking member is in the last-named position, the stop engages with the wall of the 90 orifice 14, and thus positively prevents further turning of the tucking member to inoperative position. To lock the tucker in the position shown in full lines, the member 9 of the arm is provided with a locking-dog 16, 95 having a tooth 17, which is adapted to engage with a notch 18 of a locking-spring 19, pivoted or otherwise secured to the extension 7. When the tucking member is locked in position by the engagement of the tooth with the 100 notch 18, it will be held positively against movement during the operation of tucking; but when the tucking member is to be released it will be only necessary to press the spring toward the extension 7, whereupon 105 the tooth of the locking-dog will be free from

engagement with the locking-spring, thereby leaving the arm free to be swung to its inop-

erative position.

The fucking member 12 is a disk of metal 5 and is provided with a central orifice, through which projects the reduced terminal 20 of the member 11, a screw 21, countersunk in the disk and engaging the end of the member, serving to hold the disk in position for free 10 revoluble movement. The combined tuckwidth gage and fold-plate referred to embodies a base 22, secured to which and extending at right angles thereto is a workguide 23, the under side of the base being 15 provided with studs or legs 24, which are of a height equal to that of the work-guide, whereby when the attachment is disposed upon the table of a sewing-machine it will occupy a horizontal position. The tuck-width gage and fold-plate 25 rests upon the upper face of the base and is held adjustably combined therewith by a pair of tongues 26, formed by slitting the opposite edges of the work-plate and turning the metal thus freed 25 under to form guides, as clearly shown in Fig. 2. The fold-plate and base are held combined with the sewing-machine table by means of a thumb-screw 27, which projects through a longitudinal slot 28 in the fold-30 plate and through an orifice 29 in the base and engages a suitable threaded opening in the machine-table. One edge of the foldplate, as usual, is provided with graduationmarks 30, which by coaction with the work-35 guide 23 will determine the width of the tuck to be made.

In the use of the attachment when the same is positioned upon the machine in the manner shown the rotary tucking member 40 is moved to the position shown by dotted lines in Fig. 1. The tuck-width gage having been adjusted to give the tucker the proper width, the goods are laid thereon, and the arm 10 is then swung around, causing the tucking 45 member to press the goods tightly against the work-guide and under the tuck-width gage, and when the parts are in this position the tooth of the locking-dog will engage with the notch of the locking-spring, and thus hold 50 the parts properly combined. When a tuck has been completed, the spring 19 is operated to release the locking-dog 16, whereupon the tucking member is moved to inoperative position, a fresh tuck arranged, and 55 the operation again repeated.

It will be seen from the foregoing description that by the movement of the revoluble

tucking member positive tucking of goods otherwise difficult to operate will be positively secured, that any drawing of the goods 60 will be obviated, owing to the fact that the tucking member rotates in the direction of the movement of the goods, and thereby obviates strain, and, further, that by the rolling feature of the tucking member goods cut upon 65 the bias may be tucked equally, as well as those cut transversely or longitudinally of the goods.

Having thus described the invention, what

is claimed is—

1. A tucker embodying a double-L-shaped support adapted for swinging movements and provided with a spiral groove, a revoluble tucking element carried by one member of the support, and a locking device engaging 75 the groove and operating to convert the swinging movements into spiral movements when the support is moved to operative and inoperative positions.

2. A tucker embodying a double-L-shaped supporting-arm one member of which is provided with a locking-dog and with a spiral groove terminating in an orifice, a rotary tucking element combined with the other member, a bracket in which the first-named member is journaled, a locking-spring carried by the bracket to engage the locking-dog to hold the tucking element in operative position, and a stop carried by the bracket and engaging the groove and orifice to raise the positicing member and to hold it in inoperative position.

3. A tucker embodying a double-L-shaped support adapted for swinging movements and provided with a spiral groove, a revoluble tucking element carried by one member of the support, a locking device engaging the groove and operating to convert the swinging movements into spiral movements when the support is moved to operative and inoperative positions, a base carrying a workguide, and a combined tuck-width gage and fold-plate adjustable longitudinal of the base and having one end disposed over the tucking member when the latter is in operative position.

In testimony that I claim the foregoing as my own I have hereto affixed my signature in the presence of two witnesses.

CARRICK PARK OLDHAM.

Witnesses:

H. M. JUELKINS, WILLIAM OLL.