Abstract:
The invention relates to hybrid rice seeds and plants produced by crossing the cultivar CL142-AR with another rice cultivar.
RICE CULTIVAR CL142-AR

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims priority under 35 U.S.C. § 119 to U.S. Application No. 12/564,212, filed September 22, 2009, which is hereby incorporated in its entirety.

BACKGROUND OF THE INVENTION

[0002] The present invention relates to a new and distinctive rice cultivar, designated CL142-AR. All publications cited in this application are herein incorporated by reference.

[0003] Rice is an ancient agricultural crop and is today one of the principal food crops of the world. There are two cultivated species of rice: Oryza sativa L., the Asian rice, and O. glaberrima Steud., the African rice. O. sativa L. constitutes virtually all of the world's cultivated rice and is the species grown in the United States. Three major rice producing regions exist in the United States: the Mississippi Delta (Arkansas, Mississippi, northeast Louisiana, southeast Missouri), the Gulf Coast (southwest Louisiana, southeast Texas), and the Central Valleys of California.

[0004] Rice is a semi-aquatic crop that benefits from flooded soil conditions during part or all of the growing season. In the United States, rice is grown on flooded soils to optimize grain yields. Heavy clay soils or silt loam soils with hard pan layers about 30 cm below the surface are typical rice-producing soils because they minimize water losses from soil percolation. Rice production in the United States can be broadly categorized as either dry-seeded or water-seeded. In the dry-seeded system, rice is sown into a well-prepared seed bed with a grain drill or by broadcasting the seed and incorporating it with a disk or harrow. Moisture for seed germination is from irrigation or rainfall. Another method of planting by the dry-seeded system is to broadcast the seed by airplane into a flooded field, then promptly drain the water from the field. For the dry-seeded system, when the plants have reached sufficient size (four-to five-leaf stage), a shallow permanent flood of water 5 cm to 16 cm deep is applied to the field for the remainder of the crop season.

[0005] In the water-seeded system, rice seed is soaked for 12 to 36 hours to initiate germination, and the seed is broadcast by airplane into a flooded field. The seedlings emerge through a shallow flood, or the water may be drained from the field for a short period of time to enhance seedling establishment. A shallow flood is maintained until the rice approaches maturity. For both the dry-seeded and water-seeded production systems, the fields are
drained when the crop is mature, and the rice is harvested 2 to 3 weeks later with large
combines. In rice breeding programs, breeders try to employ the production systems
predominant in their respective region. Thus, a drill-seeded breeding nursery is used by
breeders in a region where rice is drill-seeded and a water-seeded nursery is used in regions
where water-seeded is important.

Rice in the United States is classified into three primary market types by grain size,
shape, and chemical composition of the endosperm: long-grain, medium-grain and short-
grain. Typical U.S. long-grain cultivars cook dry and fluffy when steamed or boiled, whereas
medium and short-grain cultivars cook moist and sticky. Long-grain cultivars have been
traditionally grown in the southern states and generally receive higher market prices.

Although specific breeding objectives vary somewhat in the different regions,
increasing yield is a primary objective in all programs. Grain yield of rice is determined by
the number of panicles per unit area, the number of fertile florets per panicle, and grain
weight per floret. Increases in any or all of these yield components may provide a mechanism
to obtain higher yields. Heritable variation exists for all of these components, and breeders
may directly or indirectly select for increases in any of them.

There are numerous steps in the development of any novel, desirable plant germplasm.
Plant breeding begins with the analysis and definition of problems and weaknesses of the
current germplasm, the establishment of program goals, and the definition of specific
breeding objectives. The next step is selection of germplasm that possess the traits to meet
the program goals. The goal is to combine in a single variety an improved combination of
desirable traits from the parental germplasm. These important traits may include higher seed
yield, resistance to diseases and insects, better stems and roots, tolerance to low temperatures,
and better agronomic characteristics or grain quality.

Choice of breeding or selection methods depends on the mode of plant reproduction,
the heritability of the trait(s) being improved, and the type of cultivar used commercially (e.g.,
F1 hybrid cultivar, pureline cultivar, etc.). For highly heritable traits, a choice of superior
individual plants evaluated at a single location will be effective, whereas for traits with low
heritability, selection should be based on mean values obtained from replicated evaluations of
families of related plants. Popular selection methods commonly include pedigree selection,
modified pedigree selection, mass selection, and recurrent selection, or a combination of these
methods.
The complexity of inheritance influences choice of the breeding method. Backcross breeding is used to transfer one or a few favorable genes for a highly heritable trait into a desirable cultivar. This approach has been used extensively for breeding disease-resistant cultivars. Various recurrent selection techniques are used to improve quantitatively inherited traits controlled by numerous genes. The use of recurrent selection in self-pollinating crops depends on the ease of pollination, the frequency of successful hybrids from each pollination, and the number of hybrid offspring from each successful cross.

Each breeding program should include a periodic, objective evaluation of the efficiency of the breeding procedure. Evaluation criteria vary depending on the goal and objectives, but should include gain from selection per year based on comparisons to an appropriate standard, overall value of the advanced breeding lines, and number of successful cultivars produced per unit of input (e.g., per year, per dollar expended, etc.).

Promising advanced breeding lines are thoroughly tested and compared to appropriate standards in environments representative of the commercial target area(s) for three or more years. The best lines are candidates for new commercial cultivars; those still deficient in a few traits may be used as parents to produce new populations for further selection.

These processes, which lead to the final step of marketing and distribution, usually take from 8 to 12 years from the time the first cross is made and may rely on the development of improved breeding lines as precursors. Therefore, development of new cultivars is a time-consuming process that requires precise forward planning, efficient use of resources, and a minimum of changes in direction.

A most difficult task is the identification of individuals that are genetically superior, because for most traits the true genotypic value is masked by other confounding plant traits or environmental factors. One method of identifying a superior plant is to observe its performance relative to other experimental plants and to a widely grown standard cultivar. If a single observation is inconclusive, replicated observations provide a better estimate of its genetic worth.

The goal of rice plant breeding is to develop new, unique and superior rice cultivars and hybrids. The breeder initially selects and crosses two or more parental lines, followed by self-pollination and selection, producing many new genetic combinations. The breeder can theoretically generate billions of different genetic combinations via crossing, selling, and mutations. The breeder has no direct control at the cellular level. Therefore, two breeders will never develop the same line, or even very similar lines, having the same rice traits.
Each year, the plant breeder selects the germplasm to advance to the next generation. This germplasm is grown under unique and different geographical, climatic and soil conditions, and further selections are then made, during and at the end of the growing season. The cultivars which are developed are unpredictable. This unpredictability is because the breeder's selection occurs in unique environments, with no control at the DNA level (using conventional breeding procedures), and with millions of different possible genetic combinations being generated. A breeder of ordinary skill in the art cannot predict the final resulting lines he develops, except possibly in a very gross and general fashion. The same breeder cannot produce the same cultivar twice by using the exact same original parents and the same selection techniques. This unpredictability results in the expenditure of large amounts of research monies to develop superior new rice cultivars.

The development of new rice cultivars requires the development and selection of rice varieties, the crossing of these varieties and selection of superior crosses. The F1 seed is produced by manual crosses between selected male-fertile parents or by using male sterility systems. These F1s are selected for certain single gene traits such as semi-dwarf plant type, pubescence, awns, and apiculus color which indicate that the seed is truly a hybrid. Additional data on parental lines, as well as the phenotype of the F1, influence the breeder's decision whether to continue with the specific cross.

Pedigree breeding and recurrent selection breeding methods are used to develop cultivars from breeding populations. Breeding programs combine desirable traits from two or more cultivars or various broad-based sources into breeding pools from which cultivars are developed by selfing and selection of desired phenotypes. The new cultivars are evaluated to determine which have commercial potential.

Pedigree breeding is used commonly for the improvement of self-pollinating crops. Two parents which possess favorable, complementary traits are crossed to produce an F1. An F2 population is produced by selfing one or several F1's. Selection of the best individuals may begin in the F2 population; then, beginning in the F3, the best individuals in the best families are selected. Replicated testing of families can begin in the F4 generation to improve the effectiveness of selection for traits with low heritability. At an advanced stage of inbreeding (i.e., F6 and F7), the best lines or mixtures of phenotypically similar lines are tested for potential release as new cultivars.

Mass and recurrent selections can be used to improve populations of either self- or cross-pollinating crops. A genetically variable population of heterozygous individuals is
either identified or created by intercrossing several different parents. The best plants are selected based on individual superiority, outstanding progeny, or excellent combining ability. The selected plants are intercrossed to produce a new population in which further cycles of selection are continued.

[0021] Backcross breeding has been used to transfer genes for a simply inherited, highly heritable trait into a desirable homozygous cultivar or inbred line which is the recurrent parent. The source of the trait to be transferred is called the donor parent. The resulting plant is expected to have the attributes of the recurrent parent (e.g., cultivar) and the desirable trait transferred from the donor parent. After the initial cross, individuals possessing the phenotype of the donor parent are selected and repeatedly crossed (backcrossed) to the recurrent parent. The resulting plant is expected to have the attributes of the recurrent parent (e.g., cultivar) and the desirable trait transferred from the donor parent.

[0022] The single-seed descent procedure in the strict sense refers to planting a segregating population, harvesting a sample of one seed per plant, and using the one seed sample to plant the next generation. When the population has been advanced from the F$_2$ to the desired level of inbreeding, the plants from which lines are derived will each trace to different F$_2$ individuals. The number of plants in a population declines each generation due to failure of some seeds to germinate or some plants to produce at least one seed. As a result, not all of the F$_2$ plants originally sampled in the population will be represented by a progeny when generation advance is completed.

[0023] In a multiple-seed procedure, rice breeders commonly harvest one or more seeds from each plant in a population and thresh them together to form a bulk. Part of the bulk is used to plant the next generation and part is put in reserve. The procedure has been referred to as modified single-seed descent or the pod-bulk technique.

[0024] The multiple-seed procedure has been used to save labor at harvest. It is considerably faster to thresh panicles with a machine than to remove one seed from each by hand for the single-seed procedure. The multiple-seed procedure also makes it possible to plant the same number of seeds of a population each generation of inbreeding. Enough seeds are harvested to make up for those plants that did not germinate or produce seed.

[0025] Descriptions of other breeding methods that are commonly used for different traits and crops can be found in one of several reference books (e.g., Allard, 1960; Simmonds, 1979; Sneep, et. al, 1979; Fehr, 1987).
[0026] Proper testing should detect any major faults and establish the level of superiority or improvement over current cultivars. In addition to showing superior performance, there must be a demand for a new cultivar that is compatible with industry standards or which creates a new market. The introduction of a new cultivar will incur additional costs to the seed producer, the grower, processor and consumer; for special advertising and marketing, altered seed and commercial production practices, and new product utilization. The testing preceding release of a new cultivar should take into consideration research and development costs as well as technical superiority of the final cultivar. For seed-propagated cultivars, it must be feasible to produce seed easily and economically.

[0027] Rice, *Oryza sativa* L., is an important and valuable field crop. Thus, a continuing goal of plant breeders is to develop stable, high yielding rice cultivars that are agronomically sound. The reasons for this goal are obviously to maximize the amount of grain produced on the land used and to supply food for both animals and humans. To accomplish this goal, the rice breeder must select and develop rice plants that have the traits that result in superior cultivars.

[0028] The foregoing examples of the related art and limitations related therewith are intended to be illustrative and not exclusive. Other limitations of the related art will become apparent to those of skill in the art upon a reading of the specification.

SUMMARY OF THE INVENTION

[0029] The following embodiments and aspects thereof are described in conjunction with systems, tools and methods which are meant to be exemplary and illustrative, not limiting in scope. In various embodiments, one or more of the above described problems have been reduced or eliminated, while other embodiments are directed to other improvements.

[0030] According to the invention, there is provided a novel rice cultivar designated CL142-AR. This invention thus relates to the seeds of rice cultivar CL142-AR, to the plants of rice CL142-AR, and to methods for producing a rice plant produced by crossing rice CL142-AR with itself or another rice line.

[0031] Thus, any such methods using rice variety CL142-AR are part of this invention: selfing, backcrosses, hybrid production, crosses to populations, and the like. All plants produced using rice variety CL142-AR as a parent are within the scope of this invention. Advantageously, the rice variety could be used in crosses with other, different, rice plants to produce first generation (F1) rice hybrid seeds and plants with superior characteristics.
[0032] In another aspect, the present invention provides for single gene converted plants of CL142-AR. The single transferred gene may preferably be a dominant or recessive allele. Preferably, the single transferred gene will confer such traits as herbicide resistance, insect resistance, resistance for bacterial, fungal, or viral disease, male fertility, male sterility, enhanced nutritional quality, and industrial usage. The single gene may be a naturally occurring rice gene or a transgene introduced through genetic engineering techniques.

[0033] In another aspect, the present invention provides regenerable cells for use in tissue culture of rice plant CL142-AR. The tissue culture will preferably be capable of regenerating plants having the physiological and morphological characteristics of the foregoing rice plant, and of regenerating plants having substantially the same genotype as the foregoing rice plant. Preferably, the regenerable cells in such tissue cultures will be embryos, protoplasts, meristematic cells, callus, pollen, leaves, anthers, pistils, root tips, flowers, seeds, panicles, or stems. Still further, the present invention provides rice plants regenerated from the tissue cultures of the invention.

[0034] In one aspect, the present invention provides methods for controlling weeds or undesired vegetation in the vicinity of a plant of rice cultivar CL142-AR. One method comprises applying an effective amount of an acetohydroxyacid synthase (AHAS)-inhibiting herbicide, particularly an imidazolinone herbicide, to the weeds and to a plant of rice cultivar CL142-AR. Another method comprises contacting a seed of rice cultivar CL142-AR before sowing and/or after pregermination with an effective amount of an AHAS-inhibiting herbicide, particularly an imidazolinone herbicide. The present invention further provides seeds of rice cultivar CL142-AR treated with an effective amount of an AHAS-inhibiting herbicide, particularly an imidazolinone herbicide.

[0035] In other embodiments, the present invention provides a method for controlling weeds in the vicinity of rice. The method comprises contacting the rice with an herbicide, wherein said rice belongs to any of (a) variety CL142-AR or (b) a hybrid, derivative, or progeny of CL142-AR that expresses the imidazolinone herbicide resistance characteristics of CL142-AR.

[0036] In some embodiments, the herbicide is an herbicide imidazolinone, a sulfonylurea herbicide, or a combination thereof.

[0037] In one embodiment, the rice is a rice plant and said contacting comprises applying the herbicide in the vicinity of the rice plant.
In another embodiment, the herbicide is applied to weeds in the vicinity of the rice plant.

In still further embodiments, the rice is a rice seed and said contacting comprises applying the herbicide to the rice seed.

In some embodiments, the present invention provides a method for treating rice. The method comprises contacting the rice with an agronomically acceptable composition, wherein said rice belongs to any of (a) variety CL142-AR or (b) a hybrid, derivative, or progeny of CL142-AR that expresses the imidazolinone herbicide resistance characteristics of CL142-AR.

In one embodiment, the agronomically acceptable composition comprises at least one agronomically acceptable active ingredient.

In another embodiment, the agronomically acceptable active ingredient is selected from the group consisting of fungicides, insecticides, antibiotics, stress tolerance-enhancing compounds, growth promoters, herbicides, molluscicides, rodenticides, and animal repellants, and combinations thereof.

In addition to the exemplary aspects and embodiments described above, further aspects and embodiments will become apparent by study of the following descriptions.

DEFINITIONS

In the description and tables which follow, a number of terms are used. In order to provide a clear and consistent understanding of the specification and claims, including the scope to be given such terms, the following definitions are provided:

Alkali Spreading Value. Indicator of gelatinization temperature and an index that measures the extent of disintegration of milled rice kernel in contact with dilute alkali solution. Standard long grains have 3 to 5 Alkali Spreading Value (intermediate gelatinization temperature).

Allele. Allele is any of one or more alternative forms of a gene, all of which relate to one trait or characteristic. In a diploid cell or organism, the two alleles of a given gene occupy corresponding loci on a pair of homologous chromosomes.

Apparent Amylose Percent. The most important grain characteristic that describes cooking behavior in each grain class, or type, i.e., long-, medium- and short-grain. The percentage of the endosperm starch of milled rice that is amylose. Standard long grains contain 20% to 23% amylose. Rexmont type long grains contain 24% to 25% amylose. Short
and medium grains contain 16% to 19% amylose. Waxy rice contains 0% amylose. Amylose values will vary over environments.

[0048] **Backcrossing.** Backcrossing is a process in which a breeder repeatedly crosses hybrid progeny back to one of the parents, for example, a first generation hybrid \(F_1 \) with one of the parental genotypes of the \(F_1 \) hybrid.

[0049] **Days to 50% heading.** Average number of days from emergence to the day when 50% of all panicles are exerted at least partially through the leaf sheath. A measure of maturity.

[0050] **Essentially all the physiological and morphological characteristics.** A plant having essentially all the physiological and morphological characteristics means a plant having the physiological and morphological characteristics of the cultivar, except for the characteristics derived from the converted gene.

[0051] **Grain Length (L).** Length of a rice grain is measured as millimeters.

[0052] **Grain Width (W).** Width of a rice grain is measured as millimeters.

[0053] **Grain Yield.** Grain yield is measured in pounds per acre and at 12.0% moisture.

Grain yield of rice is determined by the number of panicles per unit area, the number of fertile florets per panicle, and grain weight per floret.

[0054] **Harvest Moisture.** The percent of moisture of the grain when harvested.

[0055] **Length/Width (L/W) Ratio.** This ratio is determined by dividing the average length (L) by the average width (W).

[0056] **Lodging Resistance (also called Straw Strength).** Lodging is measured as a subjective rating and is percentage of the plant stems leaning or fallen completely to the ground before harvest.

[0057] **1000 Grain Wt.** The weight of 1000 rice grains as measured in grams.

[0058] **Plant Height.** Plant height in centimeters is taken from soil surface to the tip of the extended panicle at harvest.

[0059] **Peak Viscosity.** The maximum viscosity attained during heating when a standardized instrument-specific protocol is applied to a defined rice flour-water slurry.

[0060] **Trough Viscosity.** The minimum viscosity after the peak, normally occurring when the sample starts to cool.

[0061] **Final Viscosity.** Viscosity at the end of the test or cold paste.

[0062] **Breakdown.** The peak viscosity minus the hot paste viscosity.

[0063] **Setback.** Setback 1 is the final viscosity minus trough viscosity. Setback 2 is the final viscosity minus peak viscosity.
RVA Viscosity. Rapid Visco Analyzer is a widely used laboratory instrument to examine paste viscosity, or thickening ability of milled rice during the cooking process.

Hot Paste Viscosity. Viscosity measure of rice flour/water slurry after being heated to 95°C. Lower values indicate softer and stickier cooking types of rice.

Cool Paste Viscosity. Viscosity measure of rice flour/water slurry after being heated to 95°C and uniformly cooled to 50°C (American Association of Cereal Chemist). Values less than 200 for cool paste indicate softer cooking types of rice.

Quantitative Trait Loci (QTL). Quantitative trait loci (QTL) refer to genetic loci that control to some degree numerically representable traits that are usually continuously distributed.

Regeneration. Regeneration refers to the development of a plant from tissue culture.

Single Gene Converted (Conversion). Single gene converted (conversion) plant refers to plants which are developed by a plant breeding technique called backcrossing wherein essentially all of the desired morphological and physiological characteristics of a variety are recovered in addition to the single gene transferred into the variety via the backcrossing technique or via genetic engineering.

DetaIed Description Of The InventIOn

CL142-AR originated from a cross made at in Crowley, Louisiana in winter 2002. Rice cultivar CL142-AR is a very high-yielding, short to mid-season, semi-dwarf, long-grain, Clearfield rice cultivar with maturity similar to rice cultivars 'Wells' and 'CL161'. Plants of rice cultivar CL142-AR have erect culms, green erect leaves and glabrous lemma, palea and leaf blades. The lemma and palea are straw-colored with both colorless and purple apiculi which tend to fade to straw at maturity and some short tip awns on the lemma at maturity. Kernels of rice cultivar CL142-AR are larger than kernels of 'Wells'. Individual milled kernel weights (in milligrams) of rice cultivar CL142-AR, 'CL171-AR', 'CL161', 'Francis', 'Wells', and 'Cocodrie' are 19.9, 17.1, 16.4, 17.3, 18.9, and 17.8, respectively, from the Arkansas Rice Performance Trials (ARPT) conducted from 2007 to 2008.

Rice cultivar CL142-AR has a straw strength similar to 'Francis', which is an indicator of lodging resistance. On a relative straw strength scale (0 = very strong straw, 9 = very weak straw), rice cultivars CL142-AR, 'Francis', 'Wells', 'LaGrue', 'Drew', 'CL161' and 'Cocodrie' rated 4, 4, 3, 5, 6, 4, and 2, respectively.

Rough rice grain yields of rice cultivar CL142-AR are very similar to rice cultivars 'Francis' and 'Wells' in the ARPT. In 10 ARPT tests conducted between 2007 to 2008,
CL142-AR, 'CL171-AR', 'CL161', 'Francis', 'Wells', and 'Cocodrie', averaged yields of 8719, 7610, 7510, 8921, 8820, and 7862 kg ha⁻¹ (120 g kg⁻¹ (12%) moisture), respectively. Milling yields (mg g⁻¹ whole kernelmg g⁻¹ total milled rice) at 120 mg g⁻¹ moisture from the ARPT conducted from 2007-2008 averaged 500:710, 570:720, 600:710, 570:710, 510:710, and 620:710, for CL142-AR, 'CL171-AR', 'CL161', 'Francis', 'Wells', and 'Cocodrie', respectively.

[0073] The cultivar has shown uniformity and stability as described in the following variety description information. It has been self-pollinated a sufficient number of generations with careful attention to uniformity of plant type. The variety has been increased with continued observation to enhance uniformity.

[0074] Rice cultivar CL142-AR has the following morphologic and other characteristics (based primarily on data collected in Stuttgart, Arkansas).

TABLE 1

VARIETY DESCRIPTION INFORMATION

[0075] **Plant:**
- Grain type: Long
- Days to maturity (50% heading): 90 (range is 84-95 days; average from 2007-2008 ARPT)
- Plant height: 112 cm (range is 99 cm-122 cm; average from 2007-2008 ARPT)
- Plant color (at booting): Green

[0076] **Culm:**
- Angle (degrees from perpendicular after flowering): Erect (less than 30°)

[0077] **Flag leaf (after heading):**
- Pubescence: Absent - glabrous
- Leaf angle (after heading): Erect to intermediate
- Blade color: Green

[0078] **Panicle:**
- Length: 24.0 cm (range is 19.2 cm to 35.4 cm)
- Type: Intermediate
- Exsertion (near maturity): 99% to 100%
- Axis: Droopy
- Shattering: Low, 1% to 5%
Grain (Spikelet):

Awns (after full heading): In general awns are absent can have tip awns under high fertility

Apiculus color (at maturity): Colorless or straw colored and some purple often fading to straw at maturity

Stigma color: In general white, but may look very, very light pink to purple

Lemma and palea color (at maturity): Straw

Lemma and palea pubescence: Glabrous

Grain (Seed):

Seed coat (bran) color: Light-brown

Endosperm type: Nonglutinous

Scent: Nonscented

Shape class (length/width ratio):

- Paddy: Long 3.44:1
- Brown: Long 3.06:1
- Milled: Long 3.04:1

Size: 20.4 mg/seed milled rice, 26.9 mg/seed rough rice

Starch amylose content: 21-23 \text{g kg}^{-1}

Alkali spreading value: 3 to 5 (17 \text{g kg}^{-1} \text{KOH Solution})

Gelatinization temperature type: Intermediate (70°C to 75°C)

Disease Resistance:

- Rice blast \((Pyricularia grisea\) (Cooke) Sacc)\): Susceptible
- Straighthead \((Oebalus pugnax)\): Moderately susceptible
- Narrow brown leaf spot \((Cercospora oryzae Miyake)\): Moderately susceptible
- Kernel smut \((Tilletia barclayana\) (Bref.) Sacc. & Syd. in Sacc)\): Susceptible
- Stem rot \((Sclerotium oryzae)\): Susceptible
- Sheath blight \((Rhizoctonia solani Kiinn)\): Moderately susceptible
- False smut \((Ustilaginoidea virens)\): Susceptible
- Crown (black) sheath rot: Susceptible
- Bacterial panicle blight: Susceptible

Herbicide Resistance: Imidazolinones

This invention also is directed to methods for producing a rice plant by crossing a first parent rice plant with a second parent rice plant wherein either the first or second parent rice
plant is a rice plant of the line CL142-AR. Further, both first and second parent rice plants can come from the rice cultivar CL142-AR. Still further, this invention also is directed to methods for producing a rice cultivar CL142-AR-derived rice plant by crossing rice cultivar CL142-AR with a second rice plant and growing the progeny seed, and repeating the crossing and growing steps with the rice cultivar CL142-AR-derived plant from 0 to 7 times. Thus, any such methods using the rice cultivar CL142-AR are part of this invention: selfing, backcrosses, hybrid production, crosses to populations, and the like. All plants produced using rice cultivar CL142-AR as a parent are within the scope of this invention, including plants derived from rice cultivar CL142-AR. Advantageously, the rice cultivar is used in crosses with other, different, rice cultivars to produce first generation (F1) rice seeds and plants with superior characteristics.

[0084] It should be understood that the cultivar can, through routine manipulation of cytoplasmic or other factors, be produced in a male-sterile form. Such embodiments are also contemplated within the scope of the present claims.

[0085] As used herein, the term plant includes plant cells, plant protoplasts, plant cell tissue cultures from which rice plants can be regenerated, plant calli, plant clumps and plant cells that are intact in plants or parts of plants, such as embryos, pollen, ovules, flowers, glumes, panicles, leaves, stems, roots, root tips, anthers, pistils, and the like.

FURTHER EMBODIMENTS OF THE INVENTION

Methods for Controlling Weeds Using the Present Invention:

[0086] The plants of rice cultivar CL142-AR have increased tolerance or resistance to AHAS-inhibiting herbicides, particularly imidazolinone herbicides. Thus, the plants of rice cultivar CL142-AR are herbicide-tolerant or herbicide-resistant rice plants. An "herbicide-tolerant" or a "herbicide-resistant" rice plant is a rice plant that is tolerant or resistant to at least one herbicide at a level that would normally kill, or inhibit the growth of, a normal or wild-type rice plant. For the present invention, the terms "herbicide-tolerant" and "herbicide-resistant" are used interchangeably and are intended to have an equivalent meaning and an equivalent scope. Similarly, the terms "herbicide-tolerance" and "herbicide-resistance" are used interchangeably and are intended to have an equivalent meaning and an equivalent scope. Likewise, the terms "imidazolinone-tolerant" and "imidazolinone-resistant" are used interchangeably and are intended to be of an equivalent meaning and an equivalent scope as the terms "imidazolinone-tolerance" and "imidazolinone-resistance", respectively.
[0087] The plants of rice cultivar CL142-AR have increased resistance to AHAS-inhibiting herbicides, particularly imidazolinone herbicides, and thus find use in methods for controlling weeds. Accordingly, the present invention provides a method for controlling weeds in the vicinity of a rice plant of the invention. The method comprises applying an effective amount of an herbicide to the weeds and to the rice plant of the present invention.

[0088] For the methods of the present invention, the preferred amount or concentration of the herbicide is an "effective amount" or "effective concentration." "Effective amount" and "effective concentration" is intended to be an amount and concentration, respectively, that is sufficient to kill or inhibit the growth of a similar, wild-type, rice plant, rice plant tissue, rice plant cell, or rice seed, but that said amount does not kill or inhibit as severely the growth of the herbicide-resistant plants, plant tissues, plant cells, and seeds of the present invention. Typically, the effective amount of an herbicide is an amount that is routinely used in agricultural production systems to kill weeds of interest. Such an amount is known to those of ordinary skill in the art.

[0089] By "similar, wild-type, plant, plant tissue, plant cell or seed" is intended to be a plant, plant tissue, plant cell, or seed, respectively, that lacks the herbicide-resistance characteristics and/or particular polynucleotide of the invention that are disclosed herein. The use of the term "wild-type" is not, therefore, intended to imply that a plant, plant tissue, plant cell, or other seed lacks recombinant DNA in its genome, and/or does not possess herbicide resistant characteristics that are different from those disclosed herein.

[0090] The present invention provides methods for controlling weeds or undesired vegetation in the vicinity of plants of rice cultivar CL142-AR. The methods involve applying an effective amount of at least one herbicide that interferes with the activity of the AHAS enzyme. Herbicides that are known to interfere with or inhibit the activity of the wild-type AHAS enzyme are known as AHAS-inhibiting herbicides, and include, for example, imidazolinone herbicides, sulfonylurea herbicides, triazolopyrimidine herbicides, pyrimidineoxybenzoate herbicides, sulfonylamino-carbonyltriazolinone herbicides, and mixtures thereof. Preferably, for the present invention, the AHAS-inhibiting herbicide is an imidazolinone herbicide, or a mixture of two or more imidazolinone herbicides.

[0091] For the present invention, the imidazolinone herbicides include, but are not limited to, PURSUIT (imazethapyr), CADRE (imazapic), RAPTOR (imazamox), SCEPTER (imazaquin), ASSERT (imazethabenz), ARSENAL (imazapyr), a derivative of any of the aforementioned herbicides, and a mixture of two or more of the aforementioned herbicides,
for example, imazapyr/imazamox (ODYSSEY). More specifically, the imidazolinone herbicide can be selected from, but is not limited to, 2- (4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl) -nicotinic acid, [2- (4-isopropyl)-4-] [methyl-5-oxo-2-imidazolin-2-yl]-3-quinolinecarboxylic acid, [5-ethyl-2- (4-isopropyl-) 4-methyl-5-oxo-2-imidazolin-2-yl] -nicotinic acid, 2- (4-isopropyl-4-methyl-5-oxo-2- imidazolin-2-yl)-5- (methoxymethyl)-nicotinic acid, [2- (4-isopropyl-4-methyl-5-oxo-2-] imidazolin-2-yl)-5-methylnicotinic acid, and a mixture of methyl [6- (4-isopropyl-4-] methyl-5-oxo-2-imidazolin-2-yl) -m-toluate and methyl [2- (4-isopropyl-4-methyl-5-] oxo-2-imidazolin-2-yl) -p-toluate. The use of 5-ethyl-2-(4-isopropyl-4-methyl-5-oxo- 2-imidazolin-2-yl) -nicotinic acid and [2- (4-isopropyl-4- methyl-5-oxo-2-imidazolin-2-) yl]-5- (methoxymethyl)-nicotinic acid is preferred. The use of [2- (4-isopropyl-4-] methyl-5-oxo-2-imidazolin-2-yl)-5- (methoxymethyl)-nicotinic acid is particularly preferred.

[0092] For the present invention, the sulfonylurea herbicides include, but are not limited to, chlorsulfuron, metsulfuron methyl, sulfometuron methyl, chlorimuron ethyl, thifensulfuron methyl, tribenuron methyl, bensulfuron methyl, nicosulfuron, ethamsulfuron methyl, rimsulfuron, triflusulfuron methyl, triasulfuron, primisulfuron methyl, cinosulfuron, amidosulfinuron, fluzasulfuron, imazosulfuron, pyrazosulfuron ethyl, halosulfuron, azimsulfuron, cyclosulfuron, ethoxysulfuron, flazasulfuron, flupyrsulfuron methyl, foramsulfuron, iodosulfuron, oxasulfuron, mesosulfuron, prosulfuron, sulfosulfuron, trifloxysulfuron, tritosulfuron, a derivative of any of the aforementioned herbicides, and a mixture of two or more of the aforementioned herbicides.

[0093] The triazolopyrimidine herbicides of the invention include, but are not limited to, cloransulam, diclosulam, florasulam, flumetsulam, metosulam, and penoxsulam.

[0094] The pyrimidinylxybenzoate herbicides of the invention include, but are not limited to, bispyribac, pyrithiobac, pyriminobac, pyribenoxim and pyriftalid. The sulfonylamino-carbonyltriazolinone herbicides include, but are not limited to, fiucarbazone and propoxycarbazone.

[0095] It is recognized that pyrimidinylxybenzoate herbicides are closely related to the pyrimidinylthiobenzoate herbicides and are generalized under the heading of the latter name by the Weed Science Society of America. Accordingly, the herbicides of the present invention further include pyrimidinylthiobenzoate herbicides, including, but not limited to, the pyrimidinylxybenzoate herbicides described above.
By providing rice plants having increased resistance to herbicides, particularly AHAS-inhibiting herbicides, a wide variety of formulations can be employed for protecting plants from weeds, so as to enhance plant growth and reduce competition for nutrients. An herbicide can be used by itself for pre-emergence, post-emergence, pre-planting and at planting to control weeds in areas surrounding the rice plants described herein, or an imidazolinone herbicide formulation can be used that contains other additives. The herbicide can also be used as a seed treatment. Additives found in an imidazolinone herbicide formulation include other herbicides, detergents, adjuvants, spreading agents, sticking agents, stabilizing agents, or the like. The herbicide formulation can be a wet or dry preparation and can include, but is not limited to, flowable powders, emulsifiable concentrates and liquid concentrates. The herbicide and herbicide formulations can be applied in accordance with conventional methods, for example, by spraying, irrigation, dusting, or the like.

The present invention provides methods that involve the use of at least one AHAS-inhibiting herbicide selected from the group consisting of imidazolinone herbicides, sulfonylurea herbicides, triazolopyrimidine herbicides, pyrimidinloxybenzoate herbicides, sulfonylamino-carbonyltriazolinone herbicides, and mixtures thereof. In these methods, the AHAS-inhibiting herbicide can be applied by any method known in the art including, but not limited to, seed treatment, soil treatment, and foliar treatment.

Prior to application, the AHAS-inhibiting herbicide can be converted into the customary formulations, for example solutions, emulsions, suspensions, dusts, powders, pastes and granules. The use form depends on the particular intended purpose; in each case, it should ensure a fine and even distribution of the compound according to the invention.

extending the active compound with auxiliaries suitable for the formulation of agrochemicals, such as solvents and/or carriers, if desired, emulsifiers, surfactants and dispersants, preservatives, antifoaming agents, anti-freezing agents, for seed treatment formulation, also optionally colorants and/or binders and/or gelling agents.

[0100] Examples of suitable solvents are water, aromatic solvents (for example, Solvesso products, xylene), paraffins (for example, mineral oil fractions), alcohols (for example, methanol, butanol, pentanol, benzyl alcohol), ketones (for example, cyclohexanone, gamma-butyrolactone), pyrrolidones (NMP, NOP), acetates (glycol diacetate), glycols, fatty acid diethylamides, fatty acids and fatty acid esters. In principle, solvent mixtures may also be used.

[0101] Examples of suitable carriers are ground natural minerals (for example, kaolins, clays, talc, chalk) and ground synthetic minerals (for example, highly disperse silica, silicates).

[0102] Suitable emulsifiers are nonionic and anionic emulsifiers (for example, polyoxyethylene fatty alcohol ethers, alkylsulfonates and arylsulfonates).

[0103] Examples of dispersants are lignin-sulfite waste liquors and methylcellulose.

[0104] Suitable surfactants used are alkali metal, alkaline earth metal and ammonium salts of lignosulfonic acid, naphthalenesulfonic acid, phenolsulfonic acid, dibutynaphthalenesulfonic acid, alkylaryl sulfonates, alkyl sulfates, alkylsulfonates, fatty alcohol sulfates, fatty acids and sulfated fatty alcohol glycol ethers, furthermore condensates of sulfonated naphthalene and naphthalene derivatives with formaldehyde, condensates of naphthalene or of naphthalenesulfonic acid with phenol and formaldehyde, polyoxyethylene octylphenol ether, ethoxylated isoctylphenol, octylphenol, nonylphenol, alkylphenol polyglycol ethers, tributylphenyl polyglycol ether, tristearylphenyl polyglycol ether, alkylaryl polyether alcohols, alcohol and fatty alcohol ethylene oxide condensates, ethoxylated castor oil, polyoxyethylene alkyl ethers, ethoxylated polyoxypropylene, lauryl alcohol polyglycol ether acetal, sorbitol esters, lignosulfite waste liquors and methylcellulose.

[0105] Substances which are suitable for the preparation of directly sprayable solutions, emulsions, pastes or oil dispersions are mineral oil fractions of medium to high boiling point, such as, kerosene or diesel oil, furthermore coal tar oils and oils of vegetable or animal origin, aliphatic, cyclic and aromatic hydrocarbons, for example, toluene, xylene, paraffin, tetrahydronaphthalene, alkylated naphthalenes or their derivatives, methanol, ethanol, propanol, butanol, cyclohexanol, cyclohexanone, isophorone, highly polar solvents, for example, dimethyl sulfoxide, N-methylpyrrolidone or water.
Also anti-freezing agents such as glycerin, ethylene glycol, propylene glycol and bactericides such as can be added to the formulation.

Suitable antifoaming agents are for example antifoaming agents based on silicon or magnesium stearate.

Suitable preservatives are for example Dichlorophen and enzylalkoholhemiformal.

Seed treatment formulations may additionally comprise binders and optionally colorants.

Binders can be added to improve the adhesion of the active materials on the seeds after treatment. Suitable binders are block copolymers EO/PO surfactants but also polyvinylalcohols, polyvinylpyrrolidones, polyacrylates, polymethacrylates, polybutenes, polyisobutylene, polystyrene, polyethyleneamines, polyethyleneamides, polyethyleneimines (LUPASOL, POLYMIN), polyethers, polyurethanes, polyvinylacetate, tylose and copolymers derived from these polymers.

Optionally, colorants can be included in the formulation. Suitable colorants or dyes for seed treatment formulations are Rhodamin B, C.I. Pigment Red 112, C.I. Solvent Red 1, pigment blue 15:4, pigment blue 15:3, pigment blue 15:2, pigment blue 15:1, pigment blue 80, pigment yellow 1, pigment yellow 13, pigment red 112, pigment red 48:2, pigment red 48:1, pigment red 57:1, pigment red 53:1, pigment orange 43, pigment orange 34, pigment orange 5, pigment green 36, pigment green 7, pigment white 6, pigment brown 25, basic violet 10, basic violet 49, acid red 51, acid red 52, acid red 14, acid blue 9, acid yellow 23, basic red 10, basic red 108.

An example of a suitable gelling agent is carrageen (SATIAGEL).

Powders, materials for spreading, and dustable products can be prepared by mixing or concomitantly grinding the active substances with a solid carrier.

Granules, for example, coated granules, impregnated granules and homogeneous granules, can be prepared by binding the active compounds to solid carriers. Examples of solid carriers are mineral earths such as silica gels, silicates, talc, kaolin, attacray, limestone, lime, chalk, bole, loess, clay, dolomite, diatomaceous earth, calcium sulfate, magnesium sulfate, magnesium oxide, ground synthetic materials, fertilizers, such as, for example, ammonium sulfate, ammonium phosphate, ammonium nitrate, ureas, and products of vegetable origin, such as cereal meal, tree bark meal, wood meal and nutshell meal, cellulose powders and other solid carriers.
[0115] In general, the formulations comprise from 0.01% to 95% by weight, preferably from 0.1 to 90% by weight, of the AHAS-inhibiting herbicide. In this case, the AHAS-inhibiting herbicides are employed in a purity of 90% to 100% by weight, preferably 95% to 100% by weight (according to NMR spectrum). For seed treatment purposes, respective formulations can be diluted 2-10 fold leading to concentrations in the ready to use preparations of 0.01% to 60% by weight active compound by weight, preferably 0.1 to 40% by weight.

[0116] The AHAS-inhibiting herbicide can be used as such, in the form of their formulations or the use forms prepared therefrom, for example, in the form of directly sprayable solutions, powders, suspensions or dispersions, emulsions, oil dispersions, pastes, dustable products, materials for spreading, or granules, by means of spraying, atomizing, dusting, spreading or pouring. The use forms depend entirely on the intended purposes; they are intended to ensure in each case the finest possible distribution of the AHAS-inhibiting herbicide according to the invention.

[0117] Aqueous use forms can be prepared from emulsion concentrates, pastes or wettable powders (sprayable powders, oil dispersions) by adding water. To prepare emulsions, pastes or oil dispersions, the substances, as such or dissolved in an oil or solvent, can be homogenized in water by means of a wetter, tackifier, dispersant or emulsifier. However, it is also possible to prepare concentrates composed of active substance, wetter, tackifier, dispersant or emulsifier and, if appropriate, solvent or oil, and such concentrates are suitable for dilution with water.

[0118] The active compound concentrations in the ready-to-use preparations can be varied within relatively wide ranges. In general, they are from 0.0001% to 10%, preferably from 0.01% to 1% per weight.

[0119] The AHAS-inhibiting herbicide may also be used successfully in the ultra-low-volume process (ULV), it being possible to apply formulations comprising over 95% by weight of active compound, or even to apply the active compound without additives.

[0120] The following are examples of formulations:

1. **Products for dilution with water for foliar applications.** For seed treatment purposes, such products may be applied to the seed diluted or undiluted.

[0121] A. **Water-soluble concentrates (SL, LS).** Ten parts by weight of the AHAS-inhibiting herbicide are dissolved in 90 parts by weight of water or a water-soluble solvent. As an alternative, wetters or other auxiliaries are added. The AHAS-inhibiting herbicide dissolves
upon dilution with water, whereby a formulation with 10% (w/w) of AHAS-inhibiting herbicide is obtained.

[0122] B. Dispersible concentrates (DC). Twenty parts by weight of the AHAS-inhibiting herbicide are dissolved in 70 parts by weight of cyclohexanone with addition of 10 parts by weight of a dispersant, for example polyvinylpyrrolidone. Dilution with water gives a dispersion, whereby a formulation with 20% (w/w) of AHAS-inhibiting herbicide is obtained.

[0123] C. Emulsifiable concentrates (EC). Fifteen parts by weight of the AHAS-inhibiting herbicide are dissolved in 7 parts by weight of xylene with addition of calcium dodecylbenzenesulfonate and castor oil ethoxylate (in each case 5 parts by weight). Dilution with water gives an emulsion, whereby a formulation with 15% (w/w) of AHAS-inhibiting herbicide is obtained.

[0124] D. Emulsions (EW, EO, ES). Twenty-five parts by weight of the AHAS-inhibiting herbicide are dissolved in 35 parts by weight of xylene with addition of calcium dodecylbenzenesulfonate and castor oil ethoxylate (in each case 5 parts by weight). This mixture is introduced into 30 parts by weight of water by means of an emulsifier machine (e.g., Ultraturrax) and made into a homogeneous emulsion. Dilution with water gives an emulsion, whereby a formulation with 25% (w/w) of AHAS-inhibiting herbicide is obtained.

[0125] E. Suspensions (SC, OD, FS). In an agitated ball mill, 20 parts by weight of the AHAS-inhibiting herbicide are comminuted with addition of 10 parts by weight of dispersants, wetters and 70 parts by weight of water or of an organic solvent to give a fine AHAS-inhibiting herbicide suspension. Dilution with water gives a stable suspension of the AHAS-inhibiting herbicide, whereby a formulation with 20% (w/w) of AHAS-inhibiting herbicide is obtained.

[0126] F. Water-dispersible granules and water-soluble granules (WG, SG). Fifty parts by weight of the AHAS-inhibiting herbicide are ground finely with addition of 50 parts by weight of dispersants and wetters and made as water-dispersible or water-soluble granules by means of technical appliances (for example, extrusion, spray tower, fluidized bed). Dilution with water gives a stable dispersion or solution of the AHAS-inhibiting herbicide, whereby a formulation with 50% (w/w) of AHAS-inhibiting herbicide is obtained.

[0127] G. Water-dispersible powders and water-soluble powders (WP, SP, SS, WS). Seventy-five parts by weight of the AHAS-inhibiting herbicide are ground in a rotor-stator mill with addition of 25 parts by weight of dispersants, wetters and silica gel. Dilution with
water gives a stable dispersion or solution of the AHAS-inhibiting herbicide, whereby a formulation with 75% (w/w) of AHAS-inhibiting herbicide is obtained.

[0128] H. Gel-Formulation (GF). In an agitated ball mill, 20 parts by weight of the AHAS-inhibiting herbicide are comminuted with addition of 10 parts by weight of dispersants, 1 part by weight of a gelling agent wetters and 70 parts by weight of water or of an organic solvent to give a fine AHAS-inhibiting herbicide suspension. Dilution with water gives a stable suspension of the AHAS-inhibiting herbicide, whereby a formulation with 20% (w/w) of AHAS-inhibiting herbicide is obtained. This gel formulation is suitable for use as a seed treatment.

2. Products to be applied undiluted for foliar applications. For seed treatment purposes, such products may be applied to the seed diluted.

[0129] A. Dustable powders (DP, DS). Five parts by weight of the AHAS-inhibiting herbicide are ground finely and mixed intimately with 95 parts by weight of finely divided kaolin. This gives a dustable product having 5% (w/w) of AHAS-inhibiting herbicide.

[0130] B. Granules (GR, FG, GG, MG). One-half part by weight of the AHAS-inhibiting herbicide is ground finely and associated with 95.5 parts by weight of carriers, whereby a formulation with 0.5% (w/w) of AHAS-inhibiting herbicide is obtained. Current methods are extrusion, spray-drying or the fluidized bed. This gives granules to be applied undiluted for foliar use.

[0131] Conventional seed treatment formulations include, for example, flowable concentrates FS, solutions LS, powders for dry treatment DS, water dispersible powders for slurry treatment WS, water-soluble powders SS and emulsion ES and EC and gel formulation GF. These formulations can be applied to the seed diluted or undiluted. Application to the seeds is carried out before sowing, either directly on the seeds.

[0132] In a preferred embodiment a FS formulation is used for seed treatment. Typically, a FS formulation may comprise 1-800 g/l of active ingredient, 1-200 g/l Surfactant, 0 to 200 g/l antifreezing agent, 0 to 400 g/l of binder, 0 to 200 g/l of a pigment and up to 1 liter of a solvent, preferably water.

[0133] For seed treatment, seeds of the rice plants of the present invention are treated with herbicides, preferably herbicides selected from the group consisting of AHAS-inhibiting herbicides, such as, amidosulfuron, azimsulfuron, bensulfuron, chlorimuron, chlorsulfuron, cinosulfuron, cyclosulfamuron, ethametsulfuron, ethoxysulfuron, flazasulfuron, flupyrutsulfuron, foramsulfuron, halosulfuron, imazosulfuron, iodosulfuron, mesosulfuron,
metsulfuron, nicosulfuron, oxasulfuron, primisulfuron, prosulfuron, pyrazosulfuron, rimsulfuron, sulfometuron, sulfosulfuron, thifensulfuron, triasulfuron, tribenuron, trifloxysulfuron, triflusulfuron, tritosulfuron, imazamethabenz, imazamox, imazapic, imazapyr, imazaquin, imazethapyr, cloransulam, diclosulam, florasulam, flumetsulam, metosulam, penoxsulam, bispyribac, pyriminobac, propoxycarbazone, flucarbazone, pyribenzoxim, pyriftalid, pyrithiobac, and mixtures thereof, or with a formulation comprising an AHAS-inhibiting herbicide.

[0134] The term seed treatment comprises all suitable seed treatment techniques known in the art, such as, seed dressing, seed coating, seed dusting, seed soaking, and seed pelleting.

[0135] In accordance with one variant of the present invention, a further subject of the invention is a method of treating soil by the application, in particular into the seed drill: either of a granular formulation containing the AHAS-inhibiting herbicide as a composition/formulation (e.g., a granular formulation, with optionally one or more solid or liquid, agriculturally acceptable carriers and/or optionally with one or more agriculturally acceptable surfactants.

[0136] The present invention also comprises seeds coated with or containing with a seed treatment formulation comprising at least one AHAS-inhibiting herbicide selected from the group consisting of amidosulfuron, azimsulfuron, bensulfuron, chlorimuron, chlorsulfuron, cinosulfuron, cyclosulfamuron, ethametsulfuron, ethoxysulfuron, flazasulfuron, flupyr sulfuron, foramsulfuron, halosulfuron, imazosulfuron, iodosulfuron, mesosulfuron, metsulfuron, nicosulfuron, oxasulfuron, primisulfuron, prosulfuron, pyrazosulfuron, rimsulfuron, sulfometuron, sulfosulfuron, thifensulfuron, triasulfuron, tribenuron, trifloxysulfuron, triflusulfuron, tritosulfuron, imazamethabenz, imazamox, imazapic, imazapyr, imazaquin, imazethapyr, cloransulam, diclosulam, florasulam, flumetsulam, metosulam, penoxsulam, bispyribac, pyriminobac, propoxycarbazone, flucarbazone, pyribenzoxim, pyriftalid, and pyrithiobac.

[0137] The term seed embraces seeds and plant propagules of all kinds including, but not limited to, true seeds, seed pieces, suckers, corms, bulbs, fruit, tubers, grains, cuttings, cut shoots and the like and means in a preferred embodiment true seeds.

[0138] The term "coated with and/or containing" generally signifies that the active ingredient is for the most part on the surface of the propagation product at the time of application, although a greater or lesser part of the ingredient may penetrate into the propagation product,
depending on the method of application. When the said propagation product is (re)planted, it may absorb the active ingredient.

[0139] The seed treatment application with the AHAS-inhibiting herbicide or with a formulation comprising the AHAS-inhibiting herbicide is carried out by spraying or dusting the seeds before sowing of the plants and before emergence of the plants.

[0140] In the treatment of seeds, the corresponding formulations are applied by treating the seeds with an effective amount of the AHAS-inhibiting herbicide or a formulation comprising the AHAS-inhibiting herbicide. Herein, the application rates are generally from 0.1 g to 10 kg of the a.i. (or of the mixture of a.i. or of the formulation) per 100 kg of seed, preferably from 1 g to 5 kg per 100 kg of seed, in particular from 1 g to 2.5 kg per 100 kg of seed.

[0141] The present invention provides a method for combating undesired vegetation or controlling weeds comprising contacting the seeds of the rice plants according to the present invention before sowing and/or after pre-germination with an AHAS-inhibiting herbicide. The method can further comprise sowing the seeds, for example, in soil in a field or in a potting medium in greenhouse. The method finds particular use in combating undesired vegetation or controlling weeds in the immediate vicinity of the seed.

[0142] The control of undesired vegetation is understood as meaning the killing of weeds and/or otherwise retarding or inhibiting the normal growth of the weeds. Weeds, in the broadest sense, are understood as meaning all those plants which grow in locations where they are undesired.

[0143] The weeds may include, for example, dicotyledonous and monocotyledonous weeds. Dicotyledonous weeds include, but are not limited to, weeds of the genera: Sinapis, Lepidium, Galium, Stellaria, Matricaria, Anthemis, Galinsoga, Chenopodium, Urtica, Senecio, Amaranthus, Portulaca, Xanthium, Convolvulus, Ipomoea, Polygonum, Sesbania, Ambrosia, Cirsium, Carduus, Sonchus, Solanum, Rorippa, Rotala, Lindernia, Lamium, Veronica, Abutilon, Emex, Datura, Viola, Galeopsis, Papaver, Centaurea, Trifolium, Ranunculus, and Taraxacum. Monocotyledonous weeds include, but are not limited to, weeds of the genera: Echinochloa, Setaria, Panicum, Digitaria, Phleum, Poa, Festuca, Eleusine, Brachiaria, Lolium, Bromus, Avena, Cyperus, Sorghum, Agropyron, Cynodon, Monochoria, Fimbristylis, Sagittaria, Eleocharis, Scirpus, Paspalum, Ischaemum, Sphenoclea, Dactyloctenium, Agrostis, Alopecurus, and Apera.

[0144] In addition, the weeds of the present invention can include, for example, crop plants that are growing in an undesired location. For example, a volunteer soybean plant that is in a
field that predominantly comprises rice plants can be considered a weed, if the soybean plant is undesired in the field of rice plants. Another example of a weed of the present invention is red rice which is the same species as cultivated rice.

Transformation Techniques:

[0145] With the advent of molecular biological techniques that have allowed the isolation and characterization of genes that encode specific protein products, scientists in the field of plant biology developed a strong interest in engineering the genome of plants to contain and express foreign genes, or additional, or modified versions of native, or endogenous, genes (perhaps driven by different promoters) in order to alter the traits of a plant in a specific manner. Such foreign additional and/or modified genes are referred to herein collectively as "transgenes." Over the last fifteen to twenty years, several methods for producing transgenic plants have been developed, and the present invention, in particular embodiments, also relates to transformed versions of the claimed cultivar.

[0146] Culture for expressing desired structural genes and cultured cells are known in the art. Also as known in the art, rice is transformable and regenerable such that whole plants containing and expressing desired genes under regulatory control may be obtained. General descriptions of plant expression vectors and reporter genes and transformation protocols can be found in Gruber, et al., "Vectors for Plant Transformation," in Methods in Plant Molecular Biology and Biotechnology, Glick and Thompson Eds., CRC Press, Inc., Boca Raton, pp. 89-119 (1993)). Moreover GUS expression vectors and GUS gene cassettes are available from Clone Tech Laboritories, Inc. (Palo Alto, California), while luciferase expression vectors and luciferase gene cassettes are available from Pro Mega Corp. (Madison, Wisconsin). General methods of culturing plant tissues are provided for example by Miki, et al., "Procedures for Introducing Foreign DNA into Plants" in Methods in Plant Molecular Biology and Biotechnology, Glick and Thompson Eds., CRC Press, Inc., Boca Raton, pp. 67-88 (1993)); and by Phillips, et al., "Cell-Tissue Culture and In-Vitro Manipulation" in Corn & Corn Improvement, 3rd Edition, Sprague, et al., (Eds., pp. 345 387, American Society of Agronomy Inc. (1988)). Methods of introducing expression vectors into plant tissue include the direct infection or co-cultivation of plant cells with Agrobacterium tumefaciens, described for example by Horsch, et al., Science, 227:1229 (1985). Descriptions of Agrobacterium vector systems and methods for Agrobacterium-mediated gene transfer are provided by Gruber, et al., supra.
[0147] Useful methods include but are not limited to expression vectors introduced into plant tissues using a direct gene transfer method such as microprojectile-mediated delivery, DNA injection, electroporation and the like. More preferably expression vectors are introduced into plant tissues using a microprojectile media delivery system with a biolistic device or using Agrobacterium-mediated transformation. Transformant plants obtained with the protoplasm of the invention are intended to be within the scope of this invention.

[0148] Plant transformation involves the construction of an expression vector which will function in plant cells. Such a vector comprises DNA comprising a gene under control of or operatively linked to a regulatory element (for example, a promoter). The expression vector may contain one or more such operably linked gene/regulatory element combinations. The vector(s) may be in the form of a plasmid, and can be used alone or in combination with other plasmids, to provide transformed rice plants, using transformation methods as described below to incorporate transgenes into the genetic material of the rice plant(s).

Expression Vectors for Transformation: Marker Genes

[0149] Expression vectors include at least one genetic marker, operably linked to a regulatory element (a promoter, for example) that allows transformed cells containing the marker to be either recovered by negative selection, i.e., inhibiting growth of cells that do not contain the selectable marker gene, or by positive selection, i.e., screening for the product encoded by the genetic marker. Many commonly used selectable marker genes for plant transformation are well known in the transformation arts, and include, for example, genes that code for enzymes that metabolically detoxify a selective chemical agent which may be an antibiotic or an herbicide, or genes that encode an altered target which is insensitive to the inhibitor. A few positive selection methods are also known in the art.

In vivo methods for visualizing GUS activity that do not require destruction of plant tissue are available. Molecular Probes Publication 2908, IMAGENE GREEN, pp. 1-4 (1993) and Naleway, et al., J. Cell Biol, 115:151a (1991). However, these in vivo methods for visualizing GUS activity have not proven useful for recovery of transformed cells because of low sensitivity, high fluorescent backgrounds and limitations associated with the use of luciferase genes as selectable markers.

More recently, a gene encoding Green Fluorescent Protein (GFP) has been utilized as a marker for gene expression in prokaryotic and eukaryotic cells. Chalfie, et al., Science, 263:802 (1994). GFP and mutants of GFP may be used as screenable markers.

Expression Vectors for Transformation: Promoters

Genes included in expression vectors must be driven by nucleotide sequence comprising a regulatory element, for example, a promoter. Several types of promoters are
now well known in the transformation arts, as are other regulatory elements that can be used alone or in combination with promoters.

As used herein, "promoter" includes reference to a region of DNA upstream from the start of transcription and involved in recognition and binding of RNA polymerase and other proteins to initiate transcription. A "plant promoter" is a promoter capable of initiating transcription in plant cells. Examples of promotors under developmental control include promotors that preferentially initiate transcription in certain tissues, such as leaves, roots, seeds, fibers, xylem vessels, tracheids, or sclerenchyma. Such promotors are referred to as "tissue-preferred." Promotors which initiate transcription only in certain tissue are referred to as "tissue-specific." A "cell type" specific promoter primarily drives expression in certain cell types in one or more organs, for example, vascular cells in roots or leaves. An "inducible" promoter is a promotor which is under environmental control. Examples of environmental conditions that may effect transcription by inducible promotors include anaerobic conditions or the presence of light. Tissue-specific, tissue-preferred, cell type specific, and inducible promotors constitute the class of "non-constitutive" promotors. A "constitutive" promotor is a promotor which is active under most environmental conditions.

A. Inducible Promotors - An inducible promotor is operably linked to a gene for expression in rice. Optionally, the inducible promotor is operably linked to a nucleotide sequence encoding a signal sequence which is operably linked to a gene for expression in rice. With an inducible promotor the rate of transcription increases in response to an inducing agent.

B. Constitutive Promoters - A constitutive promoter is operably linked to a gene for expression in rice or the constitutive promoter is operably linked to a nucleotide sequence encoding a signal sequence which is operably linked to a gene for expression in rice.

The ALS promoter, Xbal/Ncol fragment 5' to the *Brassica napus* ALS3 structural gene (or a nucleotide sequence similarity to said Xbal/Ncol fragment), represents a particularly useful constitutive promoter. See, PCT Appl. No. WO 96/30530.

C. Tissue-specific or Tissue-preferred Promoters - A tissue-specific promoter is operably linked to a gene for expression in rice. Optionally, the tissue-specific promoter is operably linked to a nucleotide sequence encoding a signal sequence which is operably linked to a gene for expression in rice. Plants transformed with a gene of interest operably linked to a tissue-specific promoter produce the protein product of the transgene exclusively, or preferentially, in a specific tissue.

Signal Sequences for Targeting Proteins to Sub-cellular Compartments

[0165] Transport of protein produced by transgenes to a subcellular compartment such as the chloroplast, vacuole, peroxisome, glyoxysome, cell wall, or mitochondrion, or for secretion into the apoplast, is accomplished by means of operably linking the nucleotide sequence encoding a signal sequence to the 5' and/or 3' region of a gene encoding the protein of interest. Targeting sequences at the 5' and/or 3' end of the structural gene may determine, during protein synthesis and processing, where the encoded protein is ultimately compartmentalized.

Foreign Protein Genes and Agronomic Genes

[0167] With transgenic plants according to the present invention, a foreign protein can be produced in commercial quantities. Thus, techniques for the selection and propagation of transformed plants, which are well understood in the art, yield a plurality of transgenic plants which are harvested in a conventional manner, and a foreign protein then can be extracted from a tissue of interest or from total biomass. Protein extraction from plant biomass can be accomplished by known methods which are discussed, for example, by Heney and Orr, *Anal. Biochem.*, 114:92-6 (1981).

[0168] According to a preferred embodiment, the transgenic plant provided for commercial production of foreign protein is rice. In another preferred embodiment, the biomass of interest is seed. For the relatively small number of transgenic plants that show higher levels of expression, a genetic map can be generated, primarily via conventional RFLP, PCR, and SSR analysis, which identifies the approximate chromosomal location of the integrated DNA molecule. For exemplary methodologies in this regard, see *Methods in Plant Molecular Biology and Biotechnology*, Glick and Thompson Eds., CRC Press, Inc., Boca Raton, pp. 269-284 (1993)). Map information concerning chromosomal location is useful for proprietary protection of a subject transgenic plant. If unauthorized propagation is undertaken and
crosses made with other germplasm, the map of the integration region can be compared to
similar maps for suspect plants, to determine if the latter have a common parentage with the
subject plant. Map comparisons would involve hybridizations, RFLP, PCR, SSR, and
sequencing, all of which are conventional techniques.

[0169] Through the transformation of rice, the expression of genes can be altered to enhance
disease resistance, insect resistance, herbicide resistance, agronomic quality and other traits.
Transformation can also be used to insert DNA sequences which control or help control
male-sterility. DNA sequences native to rice as well as non-native DNA sequences can be
transformed into rice and used to alter levels of native or non-native proteins. Various
promoters, targeting sequences, enhancing sequences, and other DNA sequences can be
inserted into the genome for the purpose of altering the expression of proteins. Reduction of
the activity of specific genes (also known as gene silencing, or gene suppression) is desirable
for several aspects of genetic engineering in plants.

[0170] Many techniques for gene silencing are well-known to one of skill in the art,
including, but not limited to, knock-outs (such as by insertion of a transposable element such
as mu (Vicki Chandler, The Maize Handbook, ch. 118, Springer-Verlag (1994)) or other
genetic elements such as a FRT, Lox, or other site specific integration site, antisense
technology (see, e.g., Sheehy, et al., PNAS USA, 85:8805-8809 (1988); and U.S. Pat. Nos.
5,107,065; 5,453,566; and 5,759,829); co-suppression (e.g., Taylor, Plant Cell, 9:1245
(1997); Jorgensen, Trends Biotech., 8(12):340-344 (1990); Flavell, PNAS USA, 91:3490-
3496 (1994); Finnegan, et al., Bio/Technology, 12: 883-888 (1994); and Neuhuber, et al.,
289 (1990); U.S. Pat. No. 5,034,323; Sharp, Genes Dev., 13:139-141 (1999); Zamore, et al.,
Cell, 101:25-33 (2000); and Montgomery, et al., PNAS USA, 95:15502-15507 (1998)); virus-
induced gene silencing (Burton, et al., Plant Cell, 12:691-705 (2000); and Baulcombe, Curr.
99/53050; and WO 98/53083); MicroRNA (Aukerman & Sakai, Plant Cell, 15:2730-2741
(2003)); ribozymes (Steinecke, et al., EMBOJ., 11:1525 (1992); and Perriman, et al.,
Antisense Res. Dev., 3:253 (1993)); oligonucleotide mediated targeted modification (e.g.,
PCT Publication Nos. WO 03/076574 and WO 99/25853); Zn-fmger targeted molecules (e.g.,
PCT Publication Nos. WO 01/52620; WO 03/048345; and WO 00/42219); and other methods
or combinations of the above methods known to those of skill in the art.
Likewise, by means of the present invention, agronomic genes can be expressed in transformed plants. More particularly, plants can be genetically engineered to express various phenotypes of agronomic interest. Exemplary genes implicated in this regard include, but are not limited to, those categorized below:

1. Genes That Confer Resistance to Pests or Disease and That Encode:

 B. A Bacillus thuringiensis protein, a derivative thereof or a synthetic polypeptide modeled thereon. See, for example, Geiser, et al., Gene, 48:109 (1986), who disclose the cloning and nucleotide sequence of a Bt δ-endotoxin gene. Moreover, DNA molecules encoding δ-endotoxin genes can be purchased from American Type Culture Collection, Manassas, Virginia, for example, under ATCC Accession Nos. 40098, 67136, 31995, and 31998.

 C. A lectin. See, for example, the disclosure by Van Damme, et al., Plant Molec. Biol, 24:25 (1994), who disclose the nucleotide sequences of several Clivia miniata mannose-binding lectin genes.

 D. A vitamin-binding protein such as avidin. See, PCT Appl. No. US 93/06487. The application teaches the use of avidin and avidin homologues as larvicides against insect pests.

[0177] F. An insect-specific hormone or pheromone such as an ecdysteroid and juvenile hormone, a variant thereof, a mimetic based thereon, or an antagonist or agonist thereof. See, for example, the disclosure by Hammock, et al., *Nature*, 344:458 (1990), of baculovirus expression of cloned juvenile hormone esterase, an inactivator of juvenile hormone.

[0179] H. An insect-specific venom produced in nature by a snake, a wasp, etc. For example, see Pang, et al., *Gene*, 116:165 (1992), for disclosure of heterologous expression in plants of a gene coding for a scorpion insectotoxic peptide.

[0180] I. An enzyme responsible for a hyper-accumulation of a monoterpene, a sesquiterpene, a steroid, a hydroxamic acid, a phenylpropanoid derivative or another non-protein molecule with insecticidal activity.

[0181] J. An enzyme involved in the modification, including the post-translational modification, of a biologically active molecule; for example, a glycolytic enzyme, a proteolytic enzyme, a lipolytic enzyme, a nuclease, a cyclase, a transaminase, an esterase, a hydrolase, a phosphatase, a kinase, a phosphorylase, a polymerase, an elastase, a chitinase, and a glucanase, whether natural or synthetic. See, PCT Publication No. WO 93/02197 in the name of Scott, et al., which discloses the nucleotide sequence of a callase gene. DNA molecules which contain chitinase-encoding sequences can be obtained, for example, from the ATCC under Accession Nos. 39637 and 67152. See also, Kramer, et al., *Insect Biochem. Molec. Biol.*, 23:691 (1993), who teach the nucleotide sequence of a cDNA encoding tobacco hornworm chitinase, and Kawalleck, et al., *Plant Molec. Biol.*, 21:673 (1993), who provide the nucleotide sequence of the parsley ubi4-2 polyubiquitin gene.

[0183] L. A hydrophobic moment peptide. See, PCT Publication No. WO 95/16776 (disclosure of peptide derivatives of Tachyplesin which inhibit fungal plant pathogens) and
PCT Publication No. WO 95/18855 (teaches synthetic antimicrobial peptides that confer disease resistance), the respective contents of which are hereby incorporated by reference.

M. A membrane permease, a channel former or a channel blocker. For example, see the disclosure of Jaynes, et al., Plant Sci, 89:43 (1993), of heterologous expression of a cecropin-β, lytic peptide analog to render transgenic tobacco plants resistant to Pseudomonas solanacearum.

N. A viral-invasive protein or a complex toxin derived therefrom. For example, the accumulation of viral coat proteins in transformed plant cells imparts resistance to viral infection and/or disease development effected by the virus from which the coat protein gene is derived, as well as by related viruses. See, Beachy, et al., Ann. Rev. Phytopathol, 28:451 (1990). Coat protein-mediated resistance has been conferred upon transformed plants against alfalfa mosaic virus, cucumber mosaic virus, tobacco streak virus, potato virus X, potato virus Y, tobacco etch virus, tobacco rattle virus, and tobacco mosaic virus. Id.

O. An insect-specific antibody or an immunotoxin derived therefrom. Thus, an antibody targeted to a critical metabolic function in the insect gut would inactivate an affected enzyme, killing the insect. Cf. Taylor, et al., Abstract #497, Seventh International Symposium on Molecular Plant-Microbe Interactions (Edinburgh, Scotland (1994)) (enzymatic inactivation in transgenic tobacco via production of single-chain antibody fragments).

P. A virus-specific antibody. See, for example, Tavladoraki, et al., Nature, 366:469 (1993), who show that transgenic plants expressing recombinant antibody genes are protected from virus attack.

Q. A developmental-arrestive protein produced in nature by a pathogen or a parasite. Thus, fungal endo-a-1, 4-D-polygalacturonases facilitate fungal colonization and plant nutrient release by solubilizing plant cell wall homo-a-1,4-D-galacturonase. See, Lamb, et al., Bio/Technology, 10:1436 (1992). The cloning and characterization of a gene which encodes a bean endopolygalacturonase-inhibiting protein is described by Toubart, et al., Plant J, 2:367 (1992).

R. A developmental-arrestive protein produced in nature by a plant. For example, Logemann, et al., Bio/Technology, 10:305 (1992), have shown that transgenic plants expressing the barley ribosome-inactivating gene have an increased resistance to fungal disease.

U. Detoxification genes, such as for fumonisin, beauvericin, moniliformin, and zearalenone, and their structurally related derivatives. For example, see U.S. Pat. No. 5,792,931.

V. Cystatin and cysteine proteinase inhibitors. See U.S. Pat. No. 7,205,453.

2. Genes That Confer Resistance to an Herbicide, for example:

A. An herbicide that inhibits the growing point or meristem, such as an imidazolinone or a sulfonylurea. Exemplary genes in this category code for mutant ALS and AHAS enzyme as described, for example, by Lee, et al., EMBO J., 7:1241 (1988) and Miki, et al., Theor. Appl. Genet., 80:449 (1990), respectively.

B. Glyphosate (resistance conferred by mutant 5-enolpyruvshikimate-3-phosphate synthase (EPSP) and aroA genes, respectively) and other phosphono compounds such as glufosinate (phosphinothricin acetyl transferase (PAT) and Streptomyces hygroscopicus PAT, bar, genes), and pyridinoxy or phenoxy propionic acids and cyclohexones (ACCase inhibitor-encoding genes). See, for example, U.S. Pat. No. 4,940,835 to Shah, et al., which discloses the nucleotide sequence of a form of EPSP which can confer glyphosate resistance. A DNA molecule encoding a mutant aroA gene can be obtained under ATCC Accession No. 39256, and the nucleotide sequence of the mutant gene is disclosed in U.S. Pat. No. 4,769,061 to Comai. European Pat. Appl. No. 0 333 033 to Kumada, et al. and U.S. Pat. No. 4,975,374 to Goodman, et al., disclose nucleotide sequences of glutamine synthetase genes which confer resistance to herbicides such as L-phosphinothricin. The nucleotide sequence of a PAT gene is provided in European Pat. Appl. No. 0 242 246 to Leemans, et al. DeGreef, et al., Bio/Technology, 7:61 (1989), describe the production of transgenic plants that express chimeric bar genes coding for PAT activity. Exemplary of genes conferring resistance to phenoxy propionic acids and cyclohexones, such as sethoxydim and haloxyfop are the Accl-

C. An herbicide that inhibits photosynthesis, such as a triazine (psbA and gs+ genes) or a benzonitrile (nitrilase gene). Przibilla, et al., Plant Cell, 3:169 (1991), describe the transformation of *Chlamydomonas* with plasmids encoding mutant psbA genes. Nucleotide sequences for nitrilase genes are disclosed in U.S. Pat. No. 4,810,648 to Stalker, and DNA molecules containing these genes are available under ATCC Accession Nos. 53435, 67441, and 67442. Cloning and expression of DNA coding for a glutathione S-transferase is described by Hayes, et al., Biochem. J., 285:173 (1992).

3. Genes That Confer or Contribute to a Value-Added Trait, such as:

B. Decreased phytate content. 1) Introduction of a phytase-encoding gene would enhance breakdown of phytate, adding more free phosphate to the transformed plant. For example, see, Van Hartingsveldt, et al., Gene, 127:87 (1993), for a disclosure of the nucleotide sequence of an *Aspergillus niger* phytase gene; 2) A gene could be introduced that reduced phytate content. In maize, this, for example, could be accomplished by cloning and then reintroducing DNA associated with the single allele which is responsible for maize mutants characterized by low levels of phytic acid. See, Raboy, et al., Maydica, 35:383 (1990).

4. Genes That Control Male Sterility:

[0201] There are several available methods of conferring genetic male sterility available, such as multiple mutant genes at separate locations within the genome that confer male sterility, as disclosed in U.S. Pat. Nos. 4,654,465 and 4,727,219 to Brar, et al., and chromosomal translocations as described by Patterson in U.S. Pat. Nos. 3,861,709 and 3,710,511. In addition to these methods, Albertsen, et al., U.S. Pat. No. 5,432,068, describes a system of nuclear male sterility which includes: identifying a gene which is critical to male fertility; silencing this native gene which is critical to male fertility; removing the native promoter from the essential male fertility gene and replacing it with an inducible promoter; inserting this genetically engineered gene back into the plant; and thus creating a plant that is male sterile because the inducible promoter is not "on" resulting in the male fertility gene not being transcribed. Fertility is restored by inducing, or turning "on," the promoter, which in turn allows the gene that confers male fertility to be transcribed.

Introduction of a deacetylase gene under the control of a tapetum-specific promoter and with the application of the chemical N-Ac-PPT. See PCT Publication No. WO 01/29237.

[0205] For additional examples of nuclear male and female sterility systems and genes, see also, U.S. Pat. Nos. 5,859,341, 6,297,426, 5,478,369, 5,824,524, 5,850,014, and 6,265,640. See also, Hanson, Maureen R., et. al., "Interactions of Mitochondrial and Nuclear Genes That Affect Male Gametophyte Development," *Plant Cell*, 16:S154-S169 (2004), all of which are hereby incorporated by reference.

5. Genes That Create a Site for Site Specific DNA Integration:

[0206] This includes the introduction of FRT sites that may be used in the FLP/FRT system and/or Lox sites that may be used in the Cre/Loxp system. For example, see, Lyznik, et al., Site-Specific Recombination for Genetic Engineering in Plants, *Plant Cell Rep.*, 21:925-932.

6. Genes That Affect Abiotic Stress Resistance:

Other genes and transcription factors that affect plant growth and agronomic traits such as yield, flowering, plant growth, and/or plant structure, can be introduced or introgressed into plants, see, e.g., PCT Publication Nos. WO 97/49811 (LHY), WO 98/56918 (ESD4), WO 97/10339, WO 96/14414 (CON), WO 96/38560, WO 01/21822 (VRN1), WO 00/44918 (VRN2), WO 99/49064 (GI), WO 00/46358 (FRI), WO 97/29123, WO 99/09174 (D8 and Rht), and U.S. Pat. Nos. 6,573,430 (TFL), 6,713,663 (FT), 6,794,560, 6,307,126 (GAT), and PCT Publication Nos. WO 2004/076638 and WO 2004/031349 (transcription factors).

Methods for Rice Transformation

Numerous methods for plant transformation have been developed, including biological and physical plant transformation protocols. See, for example, Miki, et al., "Procedures for Introducing Foreign DNA into Plants," in Methods in Plant Molecular Biology and Biotechnology, Glick and Thompson Eds., CRC Press, Inc., Boca Raton, pp. 67-88 (1993). In addition, expression vectors and in vitro culture methods for plant cell or tissue transformation and regeneration of plants are available. See, for example, Gruber, et al., "Vectors for Plant Transformation," in Methods in Plant Molecular Biology and Biotechnology, Glick and Thompson Eds., CRC Press, Inc., Boca Raton, pp. 89-119 (1993).

B. Direct Gene Transfer - Despite the fact the host range for Agrobacterium-mediated transformation is broad, some major cereal crop species and gymnosperms have generally been recalcitrant to this mode of gene transfer, even though some success has recently been achieved in rice and corn. Hiei, et al., The Plant Journal, 6:271-282 (1994) and U.S. Pat. No. 5,591,616, issued January 7, 1997. Several methods of plant transformation, collectively referred to as direct gene transfer, have been developed as an alternative to Agrobacterium-mediated transformation.

A generally applicable method of plant transformation is microprojectile-mediated transformation wherein DNA is carried on the surface of microprojectiles measuring 1 to 4 \(\mu m \). The expression vector is introduced into plant tissues with a biolistic device that accelerates the microprojectiles to speeds of 300 to 600 m/s which is sufficient to penetrate plant cell walls and membranes. Sanford, et al., Part. Sci. Technol, 5:27 (1987); Sanford, J.C., Trends Biotech, 6:299 (1988); Klein, et al., Bio/Technology, 6:559-563 (1988); Sanford, J.C., Physiol Plant, 7:206 (1990); Klein, et al., Biotechnology, 10:268 (1992). In corn, several target tissues can be bombarded with DNA-coated microprojectiles in order to produce transgenic plants, including, for example, callus (Type I or Type II), immature embryos, and meristematic tissue.

Following transformation of rice target tissues, expression of the above-described selectable marker genes allows for preferential selection of transformed cells, tissues, and/or plants using regeneration and selection methods now well known in the art.

Genetic Marker Profile Through SSR and First Generation Progeny

In addition to phenotypic observations, a plant can also be identified by its genotype. The genotype of a plant can be characterized through a genetic marker profile which can
identify plants of the same variety or a related variety or be used to determine or validate a pedigree. Genetic marker profiles can be obtained by techniques such as Isozyme Electrophoresis, Restriction Fragment Length Polymorphisms (RFLPs), Randomly Amplified Polymorphic DNAs (RAPDs), Arbitrarily Primed Polymerase Chain Reaction (AP-PCR), DNA Amplification Fingerprinting (DAF), Sequence Characterized Amplified Regions (SCARs), Amplified Fragment Length Polymorphisms (AFLPs), Simple Sequence Repeats (SSRs), which are also referred to as Microsatellites, and Single Nucleotide Polymorphisms (SNPs). For example, see, Cregan et. al, "An Integrated Genetic Linkage Map of the Soybean Genome," *Crop Science*, 39:1464-1490 (1999), and Berry, et al., "Assessing Probability of Ancestry Using Simple Sequence Repeat Profiles: Applications to Maize Inbred Lines and Soybean Varieties," *Genetics*, 165:331-342 (2003), each of which are incorporated by reference herein in their entirety.

[0216] Particular markers used for these purposes are not limited to any particular set of markers, but are envisioned to include any type of marker and marker profile which provides a means of distinguishing varieties. One method of comparison is to use only homozygous loci for rice cultivar CL142-AR.

[0217] Primers and PCR protocols for assaying these and other markers are widely known in the art. In addition to being used for identification of rice cultivar CL142-AR and plant parts and plant cells of rice cultivar CL142-AR, the genetic profile may be used to identify a rice plant produced through the use of rice cultivar CL142-AR or to verify a pedigree for progeny plants produced through the use of rice cultivar CL142-AR. The genetic marker profile is also useful in breeding and developing backcross conversions.

[0218] The present invention comprises a rice cultivar plant characterized by molecular and physiological data obtained from the representative sample of said cultivar deposited with the American Type Culture Collection (ATCC). Further provided by the invention is a rice hybrid plant formed by the combination of the disclosed rice plant or plant cell with another rice plant or cell.

[0219] Means of performing genetic marker profiles using SSR polymorphisms are well known in the art. SSRs are genetic markers based on polymorphisms in repeated nucleotide sequences, such as microsatellites. A marker system based on SSRs can be highly informative in linkage analysis relative to other marker systems in that multiple alleles may be present. Another advantage of this type of marker is that, through use of flanking primers, detection of SSRs can be achieved, for example, by the polymerase chain reaction (PCR),
thereby eliminating the need for labor-intensive Southern hybridization. The PCR detection is done by use of two oligonucleotide primers flanking the polymorphic segment of repetitive DNA. Repeated cycles of heat denaturation of the DNA followed by annealing of the primers to their complementary sequences at low temperatures, and extension of the annealed primers with DNA polymerase, comprise the major part of the methodology.

Following amplification, markers can be scored by electrophoresis of the amplification products. Scoring of marker genotype is based on the size of the amplified fragment, which may be measured by the number of base pairs of the fragment. While variation in the primer used or in laboratory procedures can affect the reported fragment size, relative values should remain constant regardless of the specific primer or laboratory used. When comparing hybrids or varieties it is preferable if all SSR profiles are performed in the same lab.

Primers used are publicly available and may be found in for example in U.S. Pat. Nos. 7,232,940, 7,217,003, 7,250,556, 7,214,851, 7,195,887, and 7,192,774.

In addition, plants and plant parts substantially benefiting from the use of rice cultivar CL142-AR in their development, such as rice cultivar CL142-AR comprising a backcross conversion, transgene, or genetic sterility factor, may be identified by having a molecular marker profile with a high percent identity to rice cultivar CL142-AR. Such a percent identity might be 95%, 96%, 97%, 98%, 99%, 99.5%, or 99.9% identical to rice cultivar CL142-AR.

The SSR profile of rice cultivar CL142-AR also can be used to identify essentially derived varieties and other progeny varieties developed using rice cultivar CL142-AR, as well as cells and other plant parts thereof. Such plants may be developed using the markers identified in international Publication No. WO 00/31964, U.S. Pat. No. 6,162,967, and U.S. Appl. Ser. No. 09/954,773. Progeny plants and plant parts produced using rice cultivar CL142-AR may be identified by having a molecular marker profile of at least 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 99.5% genetic contribution from a rice hybrid or variety, as measured by either percent identity or percent similarity. Such progeny may be further characterized as being within a pedigree distance of rice cultivar CL142-AR, such as within 1, 2, 3, 4, or 5 or fewer cross-pollinations to a rice plant other than rice cultivar CL142-AR or a plant that has rice
cultivar CL142-AR as a progenitor. Unique molecular profiles may be identified with other molecular tools such as SNPs and RFLPs.

[0224] While determining the SSR genetic marker profile of the plants described supra, several unique SSR profiles may also be identified which did not appear in either parent of such rice plant. Such unique SSR profiles may arise during the breeding process from recombination or mutation. A combination of several unique alleles provides a means of identifying a plant variety, an F₁ progeny produced from such variety, and progeny produced from such rice plan.

[0225] The foregoing methods for transformation would typically be used for producing a transgenic cultivar. The transgenic cultivar could then be crossed, with another (non-transformed or transformed) cultivar, in order to produce a new transgenic cultivar. Alternatively, a genetic trait which has been engineered into a particular rice cultivar using the foregoing transformation techniques could be moved into another cultivar using traditional backcrossing techniques that are well known in the plant breeding arts. For example, a backcrossing approach could be used to move an engineered trait from a public, non-elite cultivar into an elite cultivar, or from a cultivar containing a foreign gene in its genome into a cultivar which does not contain that gene. As used herein, "crossing" can refer to a simple X by Y cross, or the process of backcrossing, depending on the context.

Gene Conversion

[0226] When the term "rice plant" is used in the context of the present invention, this also includes any gene conversions of that cultivar. The term gene converted plant as used herein refers to those rice plants which are developed by a plant breeding technique called backcrossing wherein essentially all of the desired morphological and physiological characteristics of a cultivar are recovered in addition to the one or more genes transferred into the cultivar via the backcrossing technique. Backcrossing methods can be used with the present invention to improve or introduce a characteristic into the cultivar. The term backcrossing as used herein refers to the repeated crossing of a hybrid progeny back to one of the parental rice plants, the recurrent parent, for that cultivar, i.e., backcrossing 1, 2, 3, 4, 5, 6, 7, 8, 9, or more times to the recurrent parent. The parental rice plant which contributes the gene for the desired characteristic is termed the nonrecurrent or donor parent. This terminology refers to the fact that the nonrecurrent parent is used one time in the backcross protocol and therefore does not recur. The parental rice plant to which the gene or genes from the nonrecurrent parent are transferred is known as the recurrent parent as it is used for
several rounds in the backcrossing protocol (Poehlman & Sleper (1994); Fehr (1987)). In a
typical backcross protocol, the original cultivar of interest (recurrent parent) is crossed to a
second cultivar (nonrecurrent parent) that carries the single gene or genes of interest to be
transferred. The resulting progeny from this cross are then crossed again to the-recurrent
parent and the process is repeated until a rice plant is obtained wherein essentially all of the
desired morphological and physiological characteristics of the recurrent parent are recovered
in the converted plant, in addition to one or more transferred genes from the nonrecurrent
parent as determined at the 5% significance level when grown in the same environmental
conditions.

[0227] The selection of a suitable recurrent parent is an important step for a successful
backcrossing procedure. The goal of a backcross protocol is to alter or substitute a single trait
or characteristic in the original cultivar. To accomplish this, one or more genes of the
recurrent cultivar is modified or substituted with the desired gene or genes from the
nonrecurrent parent, while retaining essentially all of the rest of the desired genetic, and
therefore the desired physiological and morphological, constitution of the original cultivar.
The choice of the particular nonrecurrent parent will depend on the purpose of the backcross;
one of the major purposes is to add some commercially desirable, agronomically important
trait to the plant. The exact backcrossing protocol will depend on the characteristic or trait
being altered to determine an appropriate testing protocol. Although backcrossing methods
are simplified when the characteristic being transferred is a dominant allele, a recessive allele
may also be transferred. In this instance it may be necessary to introduce a test of the progeny
to determine if the desired characteristic has been successfully transferred.

[0228] Many single gene traits have been identified that are not regularly selected for in the
development of a new cultivar but that can be improved by backcrossing techniques. Single
gene traits may or may not be transgenic. Examples of these traits include but are not limited
to, male sterility, waxy starch, herbicide resistance, resistance for bacterial, fungal, or viral
disease, insect resistance, male fertility, enhanced nutritional quality, industrial usage, yield
stability and yield enhancement. These genes are generally inherited through the nucleus.
Some known exceptions to this are the genes for male sterility, some of which are inherited
cytoplasmically, but still act as single gene traits. Several of these single gene traits are
described in U.S. Pat. Nos. 5,777,196, 5,948,957, and 5,969,212, the disclosures of which are
specifically hereby incorporated by reference.
Introduction of a New Trait or Locus into Rice Cultivar CL142-AR

Rice cultivar CL142-AR represents a new base genetic hybrid into which a new locus or trait may be introgressed. Direct transformation and backcrossing represent two important methods that can be used to accomplish such an introgression. The term backcross conversion and single locus conversion are used interchangeably to designate the product of a backcrossing program.

Backcross Conversions of Rice Cultivar CL142-AR

A backcross conversion of rice cultivar CL142-AR occurs when DNA sequences are introduced through backcrossing (Hallauer, et al., "Corn Breeding," Corn and Corn Improvements, No. 18, pp. 463-481 (1988)), with rice cultivar CL142-AR utilized as the recurrent parent. Both naturally occurring and transgenic DNA sequences may be introduced through backcrossing techniques. A backcross conversion may produce a plant with a trait or locus conversion in at least two or more backcrosses, including at least 2 crosses, at least 3 crosses, at least 4 crosses, at least 5 crosses, and the like. Molecular marker assisted breeding or selection may be utilized to reduce the number of backcrosses necessary to achieve the backcross conversion. For example, see, Openshaw, S.J., et al., Marker-assisted Selection in Backcross Breeding, in: Proceedings Symposium of the Analysis of Molecular Data, Crop Science Society of America, Corvallis, Oregon (August 1994), where it is demonstrated that a backcross conversion can be made in as few as two backcrosses.

The complexity of the backcross conversion method depends on the type of trait being transferred (single genes or closely linked genes as vs. unlinked genes), the level of expression of the trait, the type of inheritance (cytoplasmic or nuclear) and the types of parents included in the cross. It is understood by those of ordinary skill in the art that for single gene traits that are relatively easy to classify, the backcross method is effective and relatively easy to manage. (See, Hallauer, et al., in Corn and Corn Improvement, Sprague and Dudley, Third Ed. (1998)). Desired traits that may be transferred through backcross conversion include, but are not limited to, sterility (nuclear and cytoplasmic), fertility restoration, nutritional enhancements, drought tolerance, nitrogen utilization, altered fatty acid profile, low phytate, industrial enhancements, disease resistance (bacterial, fungal or viral), insect resistance, and herbicide resistance. In addition, an introgression site itself, such as an FRT site, Lox site, or other site specific integration site, may be inserted by backcrossing and utilized for direct insertion of one or more genes of interest into a specific plant variety. In some embodiments of the invention, the number of loci that may be
backcrossed into rice cultivar CL142-AR is at least 1, 2, 3, 4, or 5, and/or no more than 6, 5, 4, 3, or 2. A single locus may contain several transgenes, such as a transgene for disease resistance that, in the same expression vector, also contains a transgene for herbicide resistance. The gene for herbicide resistance may be used as a selectable marker and/or as a phenotypic trait. A single locus conversion of a site specific integration system allows for the integration of multiple genes at the converted loci.

Tissue Culture

As used herein, the term "tissue culture" indicates a composition comprising isolated cells of the same or a different type or a collection of such cells organized into parts of a plant. Exemplary types of tissue cultures are protoplasts, calli, plant clumps, and plant cells that can generate tissue culture that are intact in plants or parts of plants, such as embryos, pollen, flowers, seeds, pods, leaves, stems, roots, root tips, anthers, and the like. Means for preparing and maintaining plant tissue culture are well known in the art. By way of example, a tissue culture comprising organs has been used to produce regenerated plants. U.S. Pat. Nos. 5,959,185; 5,973,234, and 5,977,445 describe certain techniques, the disclosures of which are incorporated herein by reference.

As used herein, the term "plant" includes plant cells, plant protoplasts, plant cells of tissue culture from which rice plants can be regenerated, plant calli, plant clumps, and plant cells that are intact in plants or parts of plants, such as pollen, flowers, embryos, ovules, seeds, pods, leaves, stems, pistils, anthers, and the like. Thus, another aspect of this invention is to provide for cells which upon growth and differentiation produce a cultivar having essentially all of the physiological and morphological characteristics of CL142-AR.
The present invention contemplates a rice plant regenerated from a tissue culture of a variety (e.g., CL142-AR) or hybrid plant of the present invention. As is well known in the art, tissue culture of rice can be used for the in vitro regeneration of a rice plant. Tissue culture of various tissues of rice and regeneration of plants therefrom is well known and widely published. For example, reference may be had to Chu, Q. R., et al., "Use of bridging parents with high anther culturability to improve plant regeneration and breeding value in rice," Rice Biotechnology Quarterly, 38:25-26 (1999); Chu, Q. R., et al., "A novel plant regeneration medium for rice anther culture of Southern U.S. crosses," Rice Biotechnology Quarterly, 35:15-16 (1998); Chu, Q. R., et al., "A novel basal medium for embryogenic callus induction of Southern US crosses," Rice Biotechnology Quarterly, 32:19-20 (1997); and Oono, K., "Broadening the Genetic Variability By Tissue Culture Methods," Jap. J. Breed., 33 (Suppl.2), 306-307, illus. 1983. Thus, another aspect of this invention is to provide cells which upon growth and differentiation produce rice plants having the physiological and morphological characteristics of variety CL142-AR.

Duncan, et al., Planta, 165:322-332 (1985), reflects that 97% of the plants cultured that produced callus were capable of plant regeneration. Subsequent experiments with both cultivars and hybrids produced 91% regenerable callus that produced plants. In a further study in 1988, Songstad, et al., Plant Cell Reports, 7:262-265 (1988), reports several media additions that enhance regenerability of callus of two cultivars. Other published reports also indicated that "non-traditional" tissues are capable of producing somatic embryogenesis and plant regeneration. K. P. Rao, et al., Maize Genetics Cooperation Newsletter, 60:64-65 (1986), refers to somatic embryogenesis from glume callus cultures and B. V. Conger, et al., Plant Cell Reports, 6:345-347 (1987), indicates somatic embryogenesis from the tissue cultures of corn leaf segments. Thus, it is clear from the literature that the state of the art is such that these methods of obtaining plants are routinely used and have a very high rate of success.

Tissue culture of corn is described in European Patent Application Publication 160,390. Corn tissue culture procedures are also described in Green and Rhodes. "Plant Regeneration in Tissue Culture of Maize," Maizefor Biological Research, Plant Molecular Biology Association, Charlottesville, VA, 367-372 (1982), and in Duncan, et al., "The Production of Callus Capable of Plant Regeneration from Immature Embryos of Numerous Zea Mays Genotypes," 165 Planta, 322:332 (1985). Thus, another aspect of this invention is
to provide cells which upon growth and differentiation produce corn plants having the physiological and morphological characteristics of rice cultivar CL142-AR.

[0238] The utility of rice cultivar CL142-AR also extends to crosses with other species. Commonly, suitable species will be of the family Graminaceae, and especially of the genera *Zea, Tripsacum, Croix, Schlerachne, Polytoca, Chionachne, and Trilobachne*, of the tribe Maydeae.

[0239] This invention also is directed to methods for producing a rice plant by crossing a first parent rice plant with a second parent rice plant wherein the first or second parent rice plant is a rice plant of the variety CL142-AR. Further, both first and second parent rice plants can come from the rice variety CL142-AR. Thus, any such methods using the rice variety CL142-AR are part of this invention: selfing, backcrosses, hybrid production, crosses to populations, and the like. All plants produced using rice variety CL142-AR as a parent are within the scope of this invention, including those developed from varieties derived from rice variety CL142-AR. Advantageously, the rice variety could be used in crosses with other, different, rice plants to produce the first generation (F1) rice hybrid seeds and plants with superior characteristics. The variety of the invention can also be used for transformation where exogenous genes are introduced and expressed by the variety of the invention. Genetic variants created either through traditional breeding methods using variety CL142-AR or through transformation of CL142-AR by any of a number of protocols known to those of skill in the art are intended to be within the scope of this invention.

[0240] The following describes breeding methods that may be used with cultivar CL142-AR in the development of further rice plants. One such embodiment is a method for developing a CL142-AR progeny rice plant in a rice plant breeding program comprising: obtaining the rice plant, or a part thereof, of cultivar CL142-AR utilizing said plant or plant part as a source of breeding material and selecting a CL142-AR progeny plant with molecular markers in common with CL142-AR and/or with morphological and/or physiological characteristics selected from the characteristics listed in Tables 2 or 3. Breeding steps that may be used in the rice plant breeding program include pedigree breeding, back crossing, mutation breeding, and recurrent selection. In conjunction with these steps, techniques such as RFLP-enhanced selection, genetic marker enhanced selection (for example SSR markers) and the making of double haploids may be utilized.

[0241] Another method involves producing a population of cultivar CL142-AR progeny rice plants, comprising crossing cultivar CL142-AR with another rice plant, thereby producing a
population of rice plants, which, on average, derive 50% of their alleles from cultivar CL142-AR. A plant of this population may be selected and repeatedly selfed or sibbed with a rice cultivar resulting from these successive filial generations. One embodiment of this invention is the rice cultivar produced by this method and that has obtained at least 50% of its alleles from cultivar CL142-AR.

[0242] One of ordinary skill in the art of plant breeding would know how to evaluate the traits of two plant varieties to determine if there is no significant difference between the two traits expressed by those varieties. For example, see, Fehr and Walt, Principles of Cultivar Development, pp. 261-286 (1987). Thus the invention includes rice cultivar CL142-AR progeny rice plants comprising a combination of at least two CL142-AR traits selected from the group consisting of those listed in the Tables herein, or the CL142-AR combination of traits listed in the Summary of the Invention, so that said progeny rice plant is not significantly different for said traits than rice cultivar CL142-AR as determined at the 5% significance level when grown in the same environment. Using techniques described herein, molecular markers may be used to identify said progeny plant as a CL142-AR progeny plant. Mean trait values may be used to determine whether trait differences are significant, and preferably the traits are measured on plants grown under the same environmental conditions. Once such a variety is developed its value is substantial since it is important to advance the germplasm base as a whole in order to maintain or improve traits such as yield, disease resistance, pest resistance, and plant performance in extreme environmental conditions.

[0243] Progeny of rice cultivar CL142-AR may also be characterized through their filial relationship with rice cultivar CL142-AR, as for example, being within a certain number of breeding crosses of rice cultivar CL142-AR. A breeding cross is a cross made to introduce new genetics into the progeny, and is distinguished from a cross, such as a self or a sib cross, made to select among existing genetic alleles. The lower the number of breeding crosses in the pedigree, the closer the relationship between rice cultivar CL142-AR and its progeny. For example, progeny produced by the methods described herein may be within 1, 2, 3, 4, or 5 breeding crosses of rice cultivar CL142-AR.

Pedigree Breeding

[0244] Pedigree breeding starts with the crossing of two genotypes, such as rice cultivar CL142-AR and another rice plant having one or more desirable characteristics that is lacking or which complements rice cultivar CL142-AR. If the two original parents do not provide all the desired characteristics, other sources can be included in the breeding population. In the
pedigree method, superior plants are selfed and selected in successive filial generations. In
the succeeding filial generations the heterozygous condition gives way to homogeneous
varieties as a result of self-pollination and selection. Typically in the pedigree method of
breeding, five or more successive filial generations of selfing and selection is practiced: F1 to
F2; F2 to F3; F3 to F4; F4 to F5; etc. After a sufficient amount of inbreeding, successive filial
generations will serve to increase seed of the developed variety. Preferably, the developed
variety comprises homozygous alleles at about 95% or more of its loci.

[0245] In addition to being used to create a backcross conversion, backcrossing can also be
used in combination with pedigree breeding. As discussed previously, backcrossing can be
used to transfer one or more specifically desirable traits from one variety, the donor parent, to
a developed variety called the recurrent parent, which has overall good agronomic
characteristics yet lacks that desirable trait or traits. However, the same procedure can be
used to move the progeny toward the genotype of the recurrent parent but at the same time
retain many components of the nonrecurrent parent by stopping the backcrossing at an early
stage and proceeding with selfing and selection. For example, a rice variety may be crossed
with another rice variety to produce a first generation progeny plant. The first generation
progeny plant may then be backcrossed to one of its parent varieties to create a BC1 or BC2.
Progeny are selfed and selected so that the newly developed variety has many of the attributes
of the recurrent parent and yet several of the desired attributes of the nonrecurrent parent.
This approach leverages the value and strengths of the recurrent parent for use in new rice
varieties.

[0246] Therefore, an embodiment of this invention is a method of making a backcross
conversion of rice cultivar CL142-AR, comprising the steps of crossing a plant of rice
cultivar CL142-AR with a donor plant comprising a desired trait, selecting an F1 progeny
plant comprising the desired trait, and backcrossing the selected F1 progeny plant to a plant of
rice cultivar CL142-AR. This method may further comprise the step of obtaining a molecular
marker profile of rice cultivar CL142-AR and using the molecular marker profile to select for
a progeny plant with the desired trait and the molecular marker profile of rice cultivar CL142-
AR. In one embodiment the desired trait is a mutant gene or transgene present in the donor
parent.

Recurrent Selection and Mass Selection

[0247] Recurrent selection is a method used in a plant breeding program to improve a
population of plants. Rice cultivar CL142-AR is suitable for use in a recurrent selection
program. The method entails individual plants cross pollinating with each other to form progeny. The progeny are grown and the superior progeny selected by any number of selection methods, which include individual plant, half-sib progeny, full-sib progeny and selfed progeny. The selected progeny are cross pollinated with each other to form progeny for another population. This population is planted and again superior plants are selected to cross pollinate with each other. Recurrent selection is a cyclical process and therefore can be repeated as many times as desired. The objective of recurrent selection is to improve the traits of a population. The improved population can then be used as a source of breeding material to obtain new varieties for commercial or breeding use, including the production of a synthetic cultivar. A synthetic cultivar is the resultant progeny formed by the inter-crossing of several selected varieties.

[0248] Mass selection is a useful technique when used in conjunction with molecular marker enhanced selection. In mass selection seeds from individuals are selected based on phenotype or genotype. These selected seeds are then bulked and used to grow the next generation. Bulk selection requires growing a population of plants in a bulk plot, allowing the plants to self-pollinate, harvesting the seed in bulk and then using a sample of the seed harvested in bulk to plant the next generation. Also, instead of self-pollination, directed pollination could be used as part of the breeding program.

Mutation Breeding

[0249] Mutation breeding is another method of introducing new traits into rice cultivar CL142-AR. Mutations that occur spontaneously or are artificially induced can be useful sources of variability for a plant breeder. The goal of artificial mutagenesis is to increase the rate of mutation for a desired characteristic. Mutation rates can be increased by many different means including temperature, long-term seed storage, tissue culture conditions, radiation; such as X-rays, Gamma rays (e.g., cobalt 60 or cesium 137), neutrons (product of nuclear fission by uranium 235 in an atomic reactor), Beta radiation (emitted from radioisotopes such as phosphorus 32 or carbon 14), or ultraviolet radiation (preferably from 2500 to 2900 nm), or chemical mutagens (such as base analogues (5-bromo-uracil), related compounds (8-ethoxy caffeine), antibiotics (streptonigrin), alkylating agents (sulfur mustards, nitrogen mustards, epoxides, ethylenamines, sulfates, sulfonates, sulfones, lactones), azide, hydroxylamine, nitrous acid, or acridines. Once a desired trait is observed through mutagenesis the trait may then be incorporated into existing germplasm by traditional breeding techniques. Details of mutation breeding can be found in "Principles of Cultivar
Development,” Fehr, Macmillan Publishing Company (1983). In addition, mutations created in other rice plants may be used to produce a backcross conversion of rice cultivar CL142-AR that comprises such mutation.

Breeding with Molecular Markers

[0250] Molecular markers may be used in plant breeding methods utilizing rice cultivar CL142-AR.

retaining that unique genetic composition. Various molecular marker techniques may be used in combination to enhance overall resolution.

[0254] One use of molecular markers is Quantitative Trait Loci (QTL) mapping. QTL mapping is the use of markers, which are known to be closely linked to alleles that have measurable effects on a quantitative trait. Selection in the breeding process is based upon the accumulation of markers linked to the positive effecting alleles and/or the elimination of the markers linked to the negative effecting alleles from the plant's genome.

[0255] Molecular markers can also be used during the breeding process for the selection of qualitative traits. For example, markers closely linked to alleles or markers containing sequences within the actual alleles of interest can be used to select plants that contain the alleles of interest during a backcrossing breeding program. The markers can also be used to select for the genome of the recurrent parent and against the genome of the donor parent. Using this procedure can minimize the amount of genome from the donor parent that remains in the selected plants. It can also be used to reduce the number of crosses back to the recurrent parent needed in a backcrossing program. The use of molecular markers in the selection process is often called genetic marker enhanced selection. Molecular markers may also be used to identify and exclude certain sources of germplasm as parental varieties or ancestors of a plant by providing a means of tracking genetic profiles through crosses.

Production of Double Haploids

[0256] The production of double haploids can also be used for the development of plants with a homozygous phenotype in the breeding program. For example, a rice plant for which rice cultivar CL142-AR is a parent can be used to produce double haploid plants. Double haploids are produced by the doubling of a set of chromosomes (IN) from a heterozygous

[0258] Descriptions of other breeding methods that are commonly used for different traits and crops can be found in one of several reference books (e.g., Allard (1960); Simmonds (1979); Sneep, et al. (1979); Fehr (1987)).

[0259] The seed of rice cultivar CL142-AR, the plant produced from the cultivar seed, the hybrid rice plant produced from the crossing of the cultivar, hybrid seed, and various parts of the hybrid rice plant and transgenic versions of the foregoing, can be utilized for human food, livestock feed, and as a raw material in industry.

[0260] The present invention provides methods for producing an herbicide-resistant rice plant through conventional plant breeding involving sexual reproduction. The methods comprise crossing a first rice plant that is a plant of rice cultivar CL142-AR to a second rice plant that is not resistant to an herbicide. The methods of the invention can further involve one or more generations of backcrossing the progeny rice plants of the first cross to a rice plant of the same line or genotype as either the first or second rice plant. Alternatively, the progeny of the first cross or any subsequent cross can be crossed to a third rice plant that is of a different line or genotype than either the first or second rice plant. The methods of the invention can additionally involve selecting rice plants that comprise the herbicide tolerance characteristics of the first rice plant.

[0261] The present invention further provides methods for increasing the herbicide-resistance of a rice plant, particularly an herbicide-resistant rice plant, through conventional plant breeding involving sexual reproduction. The methods comprise crossing a first rice plant that is a plant of rice cultivar CL142-AR to a second rice plant that may or may not be resistant to
the same herbicides as the plant of rice cultivar CL142-AR or may be resistant to different herbicide or herbicides than the first rice plant. The progeny rice plants produced by this method of the present invention have increased resistance to an herbicide when compared to either the first or second rice plant or both. When the first and second rice plants are resistant to different herbicides, the progeny plants will have the combined herbicide tolerance characteristics of the first and second rice plants. The methods of the invention can further involve one or more generations of backcrossing the progeny rice plants of the first cross to a rice plant of the same line or genotype as either the first or second rice plant. Alternatively, the progeny of the first cross or any subsequent cross can be crossed to a third plant that is of a different line or genotype than either the first or second plant. The methods of the invention can additionally involve selecting rice plants that comprise the herbicide tolerance characteristics of the first rice plant, the second rice plant, or both the first and the second rice plants.

TABLES

In Table 2, agronomic characteristics are shown for rice cultivar CL142-AR and for six other rice cultivars. These data are the result of the Arkansas Rice Performance Trials (ARPT) conducted in 2007. (Stuttgart, Rice Research and Extension Center (RREC); Keiser, Northeast Research and Extension Center (NEREC); Rohwer, Southeast Research and Extension Center (SEREC-RD); Clay Co. and Jackson Co.). Column one shows the variety, column two shows the yield in bushels per acre, column three shows the plant height in inches, column four shows the maturity in days at 50% heading, column five shows the kernel weight in milligrams and column six shows the milling percent head rice (or whole kernel rice) as compared to the percent of total milled rice.
In Table 3, agronomic characteristics are shown for rice cultivar CL142-AR and for seven other rice cultivars. These data are the result of the Arkansas Rice Performance Trials (ARPT) conducted in 2008 (Stuttgart, RREC; Keiser, NEREC; Rohwer, SEREC-RD; Clay Co. and Jackson Co.). Column one shows the variety, column two shows the yield in bushels per acre, column three shows the plant height in inches, column four shows the maturity in days at 50% heading, column five shows the kernel weight in milligrams, and column six shows the milling percent head rice (or whole kernel rice) as compared to the percent of total milled rice.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Yield (BU/AC)</th>
<th>Height (IN.)</th>
<th>Maturity (50% HD)</th>
<th>Kernel weight (mg)</th>
<th>Milling HR:TOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CL142-AR</td>
<td>191</td>
<td>44</td>
<td>89</td>
<td>19.7</td>
<td>46:70</td>
</tr>
<tr>
<td>CL 181-AR</td>
<td>162</td>
<td>32</td>
<td>89</td>
<td>18.1</td>
<td>55:69</td>
</tr>
<tr>
<td>CL171-AR</td>
<td>167</td>
<td>39</td>
<td>90</td>
<td>16.7</td>
<td>57:71</td>
</tr>
<tr>
<td>CL161</td>
<td>155</td>
<td>38</td>
<td>89</td>
<td>16.7</td>
<td>61:70</td>
</tr>
<tr>
<td>Francis</td>
<td>185</td>
<td>38</td>
<td>87</td>
<td>17.2</td>
<td>53:70</td>
</tr>
<tr>
<td>Wells</td>
<td>185</td>
<td>41</td>
<td>88</td>
<td>18.7</td>
<td>48:70</td>
</tr>
<tr>
<td>Cocodrie</td>
<td>163</td>
<td>36</td>
<td>88</td>
<td>17.9</td>
<td>61:70</td>
</tr>
<tr>
<td>C.V. 65</td>
<td>10.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
In Table 4, agronomic characteristics are shown for rice cultivar CL142-AR and five other rice cultivars. These data are the result of trials at the Arkansas Rice Performance Trials (ARPT) from 2007 to 2008. Column one shows the variety; column two gives the yield for each variety in bushels per acre; column three shows the height in inches for the varieties; column four shows the maturity at 50% heading in days; column five gives the milled kernel weight in milligrams, and column six gives the milling percent head rice (or whole kernel rice) as compared to the percent of total milled rice.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Yield (BU/AC)</th>
<th>Height (IN.)</th>
<th>Maturity (50% HD)</th>
<th>Kernel weight (mg)</th>
<th>Milling HR:TOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CL142-AR</td>
<td>155</td>
<td>44</td>
<td>90</td>
<td>20.0</td>
<td>55:71</td>
</tr>
<tr>
<td>CL181-AR</td>
<td>152</td>
<td>35</td>
<td>92</td>
<td>18.8</td>
<td>59:71</td>
</tr>
<tr>
<td>CL171-AR</td>
<td>136</td>
<td>39</td>
<td>91</td>
<td>17.4</td>
<td>57:72</td>
</tr>
<tr>
<td>CL161</td>
<td>142</td>
<td>38</td>
<td>91</td>
<td>16.1</td>
<td>60:71</td>
</tr>
<tr>
<td>CL131</td>
<td>138</td>
<td>33</td>
<td>87</td>
<td>17.5</td>
<td>63:73</td>
</tr>
<tr>
<td>Francis</td>
<td>170</td>
<td>39</td>
<td>90</td>
<td>17.4</td>
<td>62:72</td>
</tr>
<tr>
<td>Wells</td>
<td>165</td>
<td>40</td>
<td>92</td>
<td>19.0</td>
<td>56:72</td>
</tr>
<tr>
<td>Cocodrie</td>
<td>148</td>
<td>36</td>
<td>88</td>
<td>17.7</td>
<td>63:72</td>
</tr>
<tr>
<td>C.V. 05</td>
<td>12.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[0264]
TABLE 4

<table>
<thead>
<tr>
<th>Variety</th>
<th>Yield (BU/AC)</th>
<th>Height (IN.)</th>
<th>Maturity (50% HD)</th>
<th>Kernel weight (mg)</th>
<th>Milling HR:TOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CL142-AR</td>
<td>173</td>
<td>44</td>
<td>90</td>
<td>19.9</td>
<td>50:71</td>
</tr>
<tr>
<td>CL 181-AR</td>
<td>157</td>
<td>34</td>
<td>91</td>
<td>18.5</td>
<td>57:70</td>
</tr>
<tr>
<td>CL171-AR</td>
<td>151</td>
<td>39</td>
<td>91</td>
<td>17.1</td>
<td>57:72</td>
</tr>
<tr>
<td>CL161</td>
<td>149</td>
<td>38</td>
<td>90</td>
<td>16.4</td>
<td>60:71</td>
</tr>
<tr>
<td>Francis</td>
<td>177</td>
<td>39</td>
<td>89</td>
<td>17.3</td>
<td>57:71</td>
</tr>
<tr>
<td>Wells</td>
<td>175</td>
<td>41</td>
<td>90</td>
<td>18.9</td>
<td>51:71</td>
</tr>
<tr>
<td>Cocodrie</td>
<td>156</td>
<td>36</td>
<td>88</td>
<td>17.8</td>
<td>62:71</td>
</tr>
</tbody>
</table>

[0265] In Table 5, agronomic characteristics are shown for rice cultivar CL142-AR and six other rice cultivars. The data are the result of trials at the Arkansas Rice Performance Trials (ARPT) from 2007. Column one shows the variety, columns two to six give the average grain yield for each of 5 different locations for each variety in bushels per acre, column eight gives the average grain yield for the 5 locations, columns eight to eleven show the average head rice (%) to total rice (%) ratio for each of 4 different locations and column twelve shows the average head rice (%) to total rice (%) ratio for the 4 locations.
<table>
<thead>
<tr>
<th>Variety</th>
<th>Grain Yield (BU/AC)</th>
<th>Head Rice(%)</th>
<th>Total Rice(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RREC</td>
<td>NEREC</td>
<td>SEREC-RD</td>
</tr>
<tr>
<td>CL142-AR</td>
<td>171</td>
<td>182</td>
<td>150</td>
</tr>
<tr>
<td>CL 161</td>
<td>140</td>
<td>122</td>
<td>113</td>
</tr>
<tr>
<td>Wells</td>
<td>172</td>
<td>168</td>
<td>150</td>
</tr>
<tr>
<td>Cocodrie</td>
<td>176</td>
<td>144</td>
<td>95</td>
</tr>
<tr>
<td>CV. .05</td>
<td>5.3</td>
<td>16.2</td>
<td>13.6</td>
</tr>
</tbody>
</table>

^007 consisted of five locations: Rice Research and Extension Center (RREC), Stuttgart, AR; Northeast Research and Extension Center (NEREC), Keiser, AR; Southeast Research and Extension Center Rohwer Division (SEREC-RD), Rohwer, AR; Clay County producer field (CC); and Jackson County producer field (JC).

^b Milling figures are head rice : total milled rice.
In Table 6, agronomic characteristics are shown for the present invention, CL142-AR and seven other rice cultivars. The data are the result of trials at the Arkansas Rice Performance Trials (ARPT) from 2008. Column one shows the variety, columns two to six give the average grain yield for each of 5 different locations for each variety in bushels per acre, column seven shows the average grain yield for the 5 locations, columns eight to ten show the average head rice (%) to total rice (%) ratio for each of 3 different locations and column eleven shows the average head rice (%) to total rice (%) ratio for the 3 locations.
TABLE 6

<table>
<thead>
<tr>
<th>Variety</th>
<th>Grain Yield (BU/AC)</th>
<th>Head Rice(%):Total Rice(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RREC</td>
<td>PTES</td>
</tr>
<tr>
<td>CL 181-AR</td>
<td>152</td>
<td>152</td>
</tr>
<tr>
<td>CL171-AR</td>
<td>160</td>
<td>121</td>
</tr>
<tr>
<td>CL161</td>
<td>176</td>
<td>117</td>
</tr>
<tr>
<td>CL131</td>
<td>138</td>
<td>130</td>
</tr>
<tr>
<td>Wells</td>
<td>194</td>
<td>177</td>
</tr>
<tr>
<td>C.V. .05</td>
<td>5.4</td>
<td>7.7</td>
</tr>
</tbody>
</table>

*a*2008 consisted of five locations: Rice Research and Extension Center (RREC), Stuttgart; Pine Tree Experiment Station (PTES), Colt, AR; Northeast Research and Extension Center (NEREC), Keiser, AR; Southeast Research and Extension Center Rohwer Division (SEREC-RD), Rohwer, AR; and Jackson County producer field (JC).

*b*Milling figures are head rice : total milled rice.
In Table 7, agronomic characteristics are shown for rice cultivar CL142-AR, and six other rice cultivars. The data are the result of an average of the trials at the Arkansas Rice Performance Trials (ARPT) from 2007 to 2008. Column one shows the variety, columns two to seven give the average grain yield for each of 6 different locations for each variety in bushels per acre, column eight shows the average grain yield for the 6 locations, columns nine to twelve show the average head rice (%) to total rice (%) ratio for each of 4 different locations and column thirteen shows the average head rice (%) to total rice (%) ratio for the 4 locations.
<table>
<thead>
<tr>
<th>Variety</th>
<th>RREC</th>
<th>PTES</th>
<th>NEREC</th>
<th>SEREC-RD</th>
<th>c</th>
<th>c</th>
<th>JC</th>
<th>AVE</th>
<th>RREC</th>
<th>NEREC</th>
<th>CC</th>
<th>JC</th>
<th>AVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CL142-AR</td>
<td>171</td>
<td>134</td>
<td>183</td>
<td>150</td>
<td>204</td>
<td>193</td>
<td>173</td>
<td></td>
<td>56:71</td>
<td>45:70</td>
<td>58:71</td>
<td>46:72</td>
<td>50:71</td>
</tr>
<tr>
<td>CL181-AR</td>
<td>147</td>
<td>152</td>
<td>184</td>
<td>100</td>
<td>187</td>
<td>186</td>
<td>157</td>
<td></td>
<td>63:70</td>
<td>51:68</td>
<td>57:70</td>
<td>60:73</td>
<td>57:70</td>
</tr>
<tr>
<td>CL171-AR</td>
<td>151</td>
<td>121</td>
<td>171</td>
<td>105</td>
<td>197</td>
<td>170</td>
<td>151</td>
<td></td>
<td>64:72</td>
<td>58:71</td>
<td>56:72</td>
<td>53:72</td>
<td>57:72</td>
</tr>
<tr>
<td>CL161</td>
<td>158</td>
<td>117</td>
<td>134</td>
<td>116</td>
<td>189</td>
<td>183</td>
<td>149</td>
<td></td>
<td>66:72</td>
<td>58:70</td>
<td>64:71</td>
<td>57:71</td>
<td>60:71</td>
</tr>
<tr>
<td>Francis</td>
<td>197</td>
<td>167</td>
<td>140</td>
<td>151</td>
<td>218</td>
<td>206</td>
<td>177</td>
<td></td>
<td>63:71</td>
<td>51:69</td>
<td>57:71</td>
<td>60:73</td>
<td>57:71</td>
</tr>
<tr>
<td>Wells</td>
<td>183</td>
<td>177</td>
<td>170</td>
<td>151</td>
<td>203</td>
<td>182</td>
<td>175</td>
<td></td>
<td>60:73</td>
<td>46:69</td>
<td>52:72</td>
<td>49:72</td>
<td>51:71</td>
</tr>
</tbody>
</table>

*2007 consisted of six locations: Rice Research and Extension Center (RREC), Stuttgart, AR; Northeast Research and Extension Center (NEREC), Keiser, AR; Southeast Research and Extension Center Rohwer Division (SEREC-RD), Rohwer, AR; Clay County producer field (CC); and Jackson County producer field (JC); and 2008 RREC, Pine Tree Experiment Station (PTES), Colt, AR; NEREC, SEREC-RD, and JC.

Milling figures are head rice : total milled rice.
In Table 8, agronomic characteristics are shown for rice cultivar CL142-AR and 5 other rice cultivars. The data are results of trials from the Clearfield Arkansas Rice Performance Trials (ARPT) conducted in 2007. Column one shows the variety, columns two to three show the grain yield in bushels per acre for 2 locations, column four shows the average grain yield for the 2 locations, column five shows the height in inches, column six shows the maturity in number of days from emergence to 50% heading, columns seven to eight show the percent lodging for 2 locations, column nine shows the average % lodging for the 2 locations, columns ten to eleven show the head rice (%) to total rice (%) ratio for 2 locations and column twelve shows the average head rice (%) to total rice (%) ratio for the 2 locations.
<table>
<thead>
<tr>
<th>Variety</th>
<th>Grain Yield (BU/AC)</th>
<th>MAT.</th>
<th>%Lodging</th>
<th>Milling (HR:TOT)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RREC</td>
<td>NEREC</td>
<td>AVE</td>
<td>RREC</td>
</tr>
<tr>
<td>CL142-AR</td>
<td>122</td>
<td>165</td>
<td>143</td>
<td>47</td>
</tr>
<tr>
<td>CL181-AR</td>
<td>155</td>
<td>210</td>
<td>182</td>
<td>37</td>
</tr>
<tr>
<td>CL171-AR</td>
<td>130</td>
<td>177</td>
<td>153</td>
<td>41</td>
</tr>
<tr>
<td>CL161</td>
<td>99</td>
<td>101</td>
<td>100</td>
<td>40</td>
</tr>
<tr>
<td>CLXL729</td>
<td>124</td>
<td>87</td>
<td>105</td>
<td>42</td>
</tr>
<tr>
<td>CLXL730</td>
<td>93</td>
<td>85</td>
<td>89</td>
<td>44</td>
</tr>
</tbody>
</table>

*Rice Research and Extension Center (RREC), Stuttgart, AR and Northeast Research and Extension Center (NEREC), Keiser, AR.

bRREC was planted mid May and rain and wind caused delayed harvest and lodging; shattering was a problem for hybrids.

cHGT is height in inches.

dMAT is maturity number of days from emergence to 50% heading.

^ERECC was planted on April 30 and could not be harvested on time due to rains and a storm caused tremendous lodging. Shattering was a problem for the hybrid lines.

fMilling figures are head rice : total milled rice ratio.
In Table 9, agronomic characteristics are shown for rice cultivar CL142-AR and 5 other rice cultivars. The data are results of trials from the Clearfield Arkansas Rice Performance Trials (ARPT) conducted in 2008. Column one shows the variety, columns two to three show the grain yield in bushels per acre for 2 locations, column four shows the average grain yield for the 2 locations, column five shows the height in inches, column six shows the maturity in number of days from emergence to 50% heading, columns seven to eight show the percent lodging for 2 locations, column nine shows the average % lodging for the 2 locations, columns ten to eleven show the head rice (%) to total rice (%) ratio for 2 locations and column twelve shows the average head rice (%) to total rice (%) ratio for the 2 locations.
<table>
<thead>
<tr>
<th>Variety</th>
<th>Grain Yield (BU/AC)</th>
<th>HGT (IN.)</th>
<th>MAT. (50% HD)</th>
<th>%Lodging</th>
<th>Milling (HR:TOT)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RREC</td>
<td>LK</td>
<td>AVE</td>
<td>RREC</td>
<td>PC</td>
</tr>
<tr>
<td>CL142-AR</td>
<td>178</td>
<td>103</td>
<td>140</td>
<td>40</td>
<td>94</td>
</tr>
<tr>
<td>CL181-AR</td>
<td>190</td>
<td>113</td>
<td>152</td>
<td>34</td>
<td>95</td>
</tr>
<tr>
<td>CL171-AR</td>
<td>155</td>
<td>99</td>
<td>127</td>
<td>38</td>
<td>96</td>
</tr>
<tr>
<td>CL161</td>
<td>177</td>
<td>106</td>
<td>142</td>
<td>39</td>
<td>95</td>
</tr>
<tr>
<td>CL131</td>
<td>170</td>
<td>111</td>
<td>141</td>
<td>34</td>
<td>92</td>
</tr>
<tr>
<td>CL151</td>
<td>195</td>
<td>109</td>
<td>152</td>
<td>36</td>
<td>93</td>
</tr>
</tbody>
</table>

* aRice Research and Extension Center (RREC), Stuttgart, AR and University of Arkansas Pine Bluff Farm (LK), Lonoke, AR.

*bLK was planted late on June 5, 2008.

*cHGT is height in inches.

*dMAT is maturity number of days from emergence to 50% heading.

*eMilling figures are head rice : total milled rice ratio.
In Table 10, agronomic characteristics are shown for rice cultivar CL142-AR and 3 other rice cultivars. The data are averages of results from the Clearfield Arkansas Rice Performance Trials (ARPT) conducted from 2007 to 2008. Column one shows the variety, columns two to four show the grain yield in bushels per acre for 3 locations, column five shows the average grain yield for the 3 locations, column six shows the height in inches, column seven shows the maturity in number of days from emergence to 50% heading, columns eight to ten show the head rice (%) to total rice (%) ratio for 3 locations and column eleven shows the average head rice (%) to total rice (%) ratio for the 3 locations.
<table>
<thead>
<tr>
<th>Variety</th>
<th>Grain Yield (BU/AC)(^a)</th>
<th>HGT(^b) (IN.)</th>
<th>MAT.(^c) (50% HD)</th>
<th>Milling (HR:TOT)(^d)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RREC</td>
<td>NEREC</td>
<td>LK</td>
<td>AVE</td>
</tr>
<tr>
<td>CL142-AR</td>
<td>150</td>
<td>165</td>
<td>103</td>
<td>142</td>
</tr>
<tr>
<td>CL 181-AR</td>
<td>173</td>
<td>210</td>
<td>113</td>
<td>167</td>
</tr>
<tr>
<td>CL171-AR</td>
<td>143</td>
<td>177</td>
<td>99</td>
<td>140</td>
</tr>
<tr>
<td>CL161</td>
<td>138</td>
<td>101</td>
<td>106</td>
<td>121</td>
</tr>
</tbody>
</table>

\(^a\)Rice Research and Extension Center (RREC), Stuttgart, AR (2007-2008); Northeast Research and Extension Center (NEREC), Keiser, AR (2007); and University of Arkansas Pine Bluff Farm (LK), Lonoke, AR (2008).

\(^b\)HGT is height in inches.

\(^c\)MAT is maturity number of days from emergence to 50% heading.

\(^d\)Milling figures are head rice : total milled rice ratio.
In Table 11, kernel characteristics are shown for rice cultivars CL142-AR and CL181-AR. The data are averages of the following trials, 2005 IMI SIT RREC, 2006 IMI SIT, RREC, 2007 ARPT and IMI ARPT, RREC, 2008 ARPT and IMI ARPT and 2008 Breeder Head Row Seed RREC. Column 1 shows the variety, column 2 shows the class, column 3 shows the length in millimeters, column 4 shows the width in millimeters, column 5 shows the thickness in millimeters, column 6 shows the length to width ratio and column 7 shows the kernel weight in milligrams. The numbers in the tables are averages for the tests listed. Rice cultivar CL142-AR had a range of 25.5 to 29.5 mg/kernel in these tests and CL181-AR had a range of 22.0 to 26.5 mg/kernel for the same tests.

TABLE 11

<table>
<thead>
<tr>
<th>Variety</th>
<th>Class</th>
<th>Length</th>
<th>Width</th>
<th>Thickness</th>
<th>LAV</th>
<th>Kernel</th>
</tr>
</thead>
<tbody>
<tr>
<td>CL142-AR</td>
<td>Rough</td>
<td>9.08</td>
<td>2.64</td>
<td>2.01</td>
<td>3.44</td>
<td>26.9</td>
</tr>
<tr>
<td>CL181-AR</td>
<td>Rough</td>
<td>8.96</td>
<td>2.47</td>
<td>1.97</td>
<td>3.63</td>
<td>24.2</td>
</tr>
<tr>
<td>CL142-AR</td>
<td>Brown</td>
<td>7.28</td>
<td>2.38</td>
<td>1.76</td>
<td>3.06</td>
<td>23.3</td>
</tr>
<tr>
<td>CL181-AR</td>
<td>Brown</td>
<td>7.08</td>
<td>2.29</td>
<td>1.73</td>
<td>3.09</td>
<td>19.6</td>
</tr>
<tr>
<td>CL142-AR</td>
<td>Milled</td>
<td>6.80</td>
<td>2.24</td>
<td>1.70</td>
<td>3.04</td>
<td>20.4</td>
</tr>
<tr>
<td>CL181-AR</td>
<td>Milled</td>
<td>6.68</td>
<td>2.14</td>
<td>1.67</td>
<td>3.12</td>
<td>17.9</td>
</tr>
</tbody>
</table>

Disease Evaluations for Rice Cultivar CL142-AR

Greenhouse Blast Tests

Rice diseases are usually rated visually on a 0-9 scale to estimate degree of severity. Numerical data is often converted to this scale. A rating of zero indicates complete disease immunity. A rating of one to three indicates resistance where little loss occurs and in the case of rice blast pathogen growth is restricted considerably. Conversely, a nine rating indicates maximum disease susceptibility, which typically results in complete plant death and/or yield loss. Depending upon the disease in question, a disease rating of four to six is usually indicative of acceptable disease resistance under conditions slightly favoring the pathogen. Numerical ratings are sometimes converted to letter symbols where 0-3 = R (resistant), 3-4 = MR (moderately
resistant), 5-6 = MS (moderately susceptible) 7 = S (susceptible) and 8-9 VS (very susceptible). Exceptions to established ratings do occur unexpectedly as disease situations change.

Greenhouse blast tests are the primary means of screening large number of entries for varietal reaction to the many blast races occurring in the production areas. Although results are quite variable and testing conditions tends to overwhelm any field resistance present in the entry, this test provides an accurate definition of the fungus-variety genetics. Blast field nurseries, utilizing both natural and lab produced inoculum, are established in an effort to better define blast susceptibility under field conditions. Since field nursery is also quite variable, new techniques are currently being developed and evaluated to better estimate cultivar field resistance to blast.

Tables 12 and 13 are summaries of available leaf blast rating data from CL142-AR and seven comparison plants inoculated with the indicated race using standard greenhouse techniques. Data were taken from 2007 to 2008.

For Table 12, column one shows the variety and columns two to nine show leaf blast rating data of each race for each variety.

For Table 13, column one shows the variety name, columns two to three shows the leaf blast rating data, column four shows the panicle blast rating data and column five shows the sheath blight data.
TABLE 12

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CL142-AR</td>
<td>5.8</td>
<td>7.8</td>
<td>8.0</td>
<td>5.0</td>
<td>0.8</td>
<td>0.3</td>
<td>6.3</td>
<td>6.7</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>VS</td>
<td>VS</td>
<td>MS</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>CL181-AR</td>
<td>5.5</td>
<td>7.7</td>
<td>7.7</td>
<td>3.7</td>
<td>5.7</td>
<td>0.7</td>
<td>6.7</td>
<td>6.3</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>VS</td>
<td>VS</td>
<td>MR</td>
<td>S</td>
<td>R</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>CL131</td>
<td>0.0</td>
<td>0.0</td>
<td>1.3</td>
<td>0.0</td>
<td>0.3</td>
<td>0.7</td>
<td>4.3</td>
<td>6.3</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>CL161</td>
<td>6.5</td>
<td>8.0</td>
<td>8.0</td>
<td>3.8</td>
<td>1.2</td>
<td>0.7</td>
<td>6.0</td>
<td>7.7</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>VS</td>
<td>VS</td>
<td>MR</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>VS</td>
</tr>
<tr>
<td>CL171-AR</td>
<td>6.3</td>
<td>7.5</td>
<td>8.0</td>
<td>3.7</td>
<td>0.5</td>
<td>0.0</td>
<td>7.7</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>VS</td>
<td>VS</td>
<td>MR</td>
<td>R</td>
<td>R</td>
<td>VS</td>
<td>S</td>
</tr>
<tr>
<td>Cybonnet</td>
<td>0.9</td>
<td>0.2</td>
<td>0.7</td>
<td>0.1</td>
<td>0.1</td>
<td>0.0</td>
<td>7.0</td>
<td>6.2</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>Francis</td>
<td>6.5</td>
<td>7.8</td>
<td>7.8</td>
<td>4.7</td>
<td>6.8</td>
<td>1.1</td>
<td>7.3</td>
<td>7.3</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>VS</td>
<td>VS</td>
<td>MS</td>
<td>S</td>
<td>R</td>
<td>VS</td>
<td>VS</td>
</tr>
<tr>
<td>Wells</td>
<td>6.0</td>
<td>7.7</td>
<td>8.1</td>
<td>4.7</td>
<td>2.1</td>
<td>0.1</td>
<td>5.2</td>
<td>7.7</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>VS</td>
<td>VS</td>
<td>MS</td>
<td>R</td>
<td>S</td>
<td>VS</td>
<td>S</td>
</tr>
</tbody>
</table>

2008/07 Greenhouse Blast Race Leaf Assays

Assays: Ave. = Average assay

- **S** = Susceptible
- **V** = Very Susceptible
- **M** = Moderately Susceptible
- **R** = Resistant
- **F** = Fungal
- **0** = Zero
- **FL9** = Fungal Leaf Assay
- **74L2** = Fungal Leaf Assay

Assays: Ave. = Average assay

- **S** = Susceptible
- **V** = Very Susceptible
- **M** = Moderately Susceptible
- **R** = Resistant
- **F** = Fungal
- **0** = Zero
- **FL9** = Fungal Leaf Assay
- **74L2** = Fungal Leaf Assay
<table>
<thead>
<tr>
<th>Variety</th>
<th>2008/07 PTES Leaf Blast Average</th>
<th>2008 PTES PD2* Leaf Blast Average</th>
<th>2008/07 PTES Panicle Blast Average</th>
<th>2008/07 Sheath Blight Average</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL142-AR</td>
<td>4.6</td>
<td>7.3</td>
<td>7.2</td>
<td>5.7</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>S-VS</td>
<td>S-VS</td>
<td>MS</td>
</tr>
<tr>
<td>CL 181-AR</td>
<td>4.0</td>
<td>6.5</td>
<td>6.6</td>
<td>7.4</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>S-VS</td>
<td>S-VS</td>
<td>VS</td>
</tr>
<tr>
<td>CL131</td>
<td>1.0</td>
<td>2.3</td>
<td>0.0</td>
<td>8.3</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>VS</td>
</tr>
<tr>
<td>CL161</td>
<td>4.3</td>
<td>6.8</td>
<td>5.6</td>
<td>7.3</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>S-VS</td>
<td>S</td>
<td>VS</td>
</tr>
<tr>
<td>CL171-AR</td>
<td>4.6</td>
<td>7.0</td>
<td>5.9</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>S-VS</td>
<td>S-VS</td>
<td>S-VS</td>
</tr>
<tr>
<td>Cybonnet</td>
<td>1.0</td>
<td>3.3</td>
<td>2.5</td>
<td>7.1</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>S-VS</td>
</tr>
<tr>
<td>Francis</td>
<td>5.4</td>
<td>7.0</td>
<td>7.0</td>
<td>6.7</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>S-VS</td>
<td>S-VS</td>
<td>S</td>
</tr>
<tr>
<td>Wells</td>
<td>4.5</td>
<td>6.5</td>
<td>5.5</td>
<td>6.3</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>S-VS</td>
<td>S</td>
<td>S</td>
</tr>
</tbody>
</table>
Physiological Evaluations for Rice Cultivar CL142-AR

Straighthead

[0277] Straighthead is a physiological disorder which appears to be effected by the oxygen potential of the soil. Under certain conditions, arsenic levels can increase in these soils or on soils where cotton has been grown and MSMA or other arsenical pesticides have been applied. Straighthead may also occur in soils high in organic matter. Symptoms can only be detected after panicle emergence and fail to produce grain. Foliage tends to remain dark green. Rice grains may be distorted especially on long-grain varieties forming a parrot-beak on the end of the hull. Floral parts may also be missing and under severe conditions panicle fail to emerge from the boot.

[0278] In Table 14, the reaction of CL142-AR to Straighthead is compared to various rice cultivars in three separate trials from 2007 and 2008 in Stuttgart, Arkansas. Column one shows the variety, column two shows the rating from 2007, column three shows the rating from 2008 and column four shows the rating taken as an average from 2007 to 2008.
<table>
<thead>
<tr>
<th>Variety</th>
<th>2007</th>
<th>2008</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>CL142-AR</td>
<td>5.0</td>
<td>5.7</td>
<td>5.4</td>
</tr>
<tr>
<td>CL181-AR</td>
<td>3.3</td>
<td>4.0</td>
<td>3.7</td>
</tr>
<tr>
<td>CL171-AR</td>
<td>5.3</td>
<td>6.0</td>
<td>5.7</td>
</tr>
<tr>
<td>CL161</td>
<td>5.3</td>
<td>5.3</td>
<td>5.3</td>
</tr>
<tr>
<td>CL131</td>
<td></td>
<td>7.0</td>
<td></td>
</tr>
<tr>
<td>Francis</td>
<td>4.7</td>
<td>4.7</td>
<td>4.7</td>
</tr>
<tr>
<td>Wells</td>
<td>6.3</td>
<td>6.7</td>
<td>6.5</td>
</tr>
<tr>
<td>LaGrue</td>
<td>6.3</td>
<td>6.0</td>
<td>6.2</td>
</tr>
<tr>
<td>Cybonnet</td>
<td>3.7</td>
<td>4.7</td>
<td>4.2</td>
</tr>
<tr>
<td>Cocodrie</td>
<td>7.0</td>
<td>7.3</td>
<td>7.2</td>
</tr>
</tbody>
</table>

1Based on a scale of 0 to 9 where 0 = no symptoms and 9 = no grain formation.

Rating Scale:

0 = no damage
1 = 81-90% grain develop
2 = 71-80% grain develop and 96-100% panicles broken from vertical
3 = 61-80% grain develop and 91-95% panicles broken from vertical
4 = 41-60% grain develop and 61-90% panicles broken from vertical
5 = 21-40% grain develop and 31-60% panicles broken from vertical - initial appearance of parrot-beak distortion
6 = 11-20% grain develop and 10-30% panicles broken from vertical
7 = panicles emerged but totally upright; only 0-10% grain develop
8 = 0-10% panicle emergence, no seed produced
9 = no panicles

2Average of 3 repetitions.

Clearfield Disease Evaluations
[0279] Tables 15 and 16 provide rough rice grain yield in bushels per acre from 2007 to 2007 from the Disease Monitoring Plots treated with the herbicide NEWPATH, and located in four Arkansas counties.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Locations</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Jackson</td>
<td>Lincoln</td>
<td>Phillips</td>
<td>Prairie</td>
<td>Mean</td>
</tr>
<tr>
<td>CL142-AR</td>
<td></td>
<td>100</td>
<td>170</td>
<td>141</td>
<td>137</td>
<td>137</td>
</tr>
<tr>
<td>CL 181-AR</td>
<td></td>
<td>93</td>
<td>148</td>
<td>158</td>
<td>137</td>
<td>134</td>
</tr>
<tr>
<td>CL161</td>
<td></td>
<td>91</td>
<td>148</td>
<td>132</td>
<td>123</td>
<td>123</td>
</tr>
<tr>
<td>CL171-AR</td>
<td></td>
<td>100</td>
<td>153</td>
<td>131</td>
<td>115</td>
<td>125</td>
</tr>
<tr>
<td>RT CLXL729</td>
<td></td>
<td>151</td>
<td>192</td>
<td>204</td>
<td>191</td>
<td>185</td>
</tr>
<tr>
<td>RT CLXL730</td>
<td></td>
<td>153</td>
<td>180</td>
<td>144</td>
<td>175</td>
<td>163</td>
</tr>
<tr>
<td>RT CLXP745</td>
<td></td>
<td>150</td>
<td>150</td>
<td>172</td>
<td>170</td>
<td>161</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>96</td>
<td>147</td>
<td>119</td>
<td>125</td>
<td>122</td>
</tr>
<tr>
<td>LSD</td>
<td></td>
<td>16</td>
<td>15.7</td>
<td>20.1</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>C.V.</td>
<td></td>
<td>9.8</td>
<td>6.3</td>
<td>9.2</td>
<td>7.2</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 15 - 2007
<table>
<thead>
<tr>
<th>Variety</th>
<th>Locations</th>
<th></th>
<th></th>
<th>Mean</th>
<th>C.V.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Craighead</td>
<td>Lincoln</td>
<td>Poinsett</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL142-AR</td>
<td>178</td>
<td>206</td>
<td>197</td>
<td>194</td>
<td>7.2</td>
</tr>
<tr>
<td>CL 181-AR</td>
<td>176</td>
<td>194</td>
<td>190</td>
<td>187</td>
<td>5.0</td>
</tr>
<tr>
<td>CL131</td>
<td>178</td>
<td>179</td>
<td>160</td>
<td>172</td>
<td>6.0</td>
</tr>
<tr>
<td>CL151</td>
<td>172</td>
<td>190</td>
<td>171</td>
<td>178</td>
<td>6.2</td>
</tr>
<tr>
<td>CL161</td>
<td>168</td>
<td>196</td>
<td>174</td>
<td>180</td>
<td>8.1</td>
</tr>
<tr>
<td>CL171-AR</td>
<td>156</td>
<td>186</td>
<td>166</td>
<td>169</td>
<td>8.9</td>
</tr>
<tr>
<td>RT CLXL729</td>
<td>213</td>
<td>223</td>
<td>218</td>
<td>218</td>
<td>2.3</td>
</tr>
<tr>
<td>RT CLXL730</td>
<td>182</td>
<td>204</td>
<td>188</td>
<td>192</td>
<td>6.0</td>
</tr>
<tr>
<td>RT CLXL745</td>
<td>207</td>
<td>220</td>
<td>190</td>
<td>206</td>
<td>7.1</td>
</tr>
<tr>
<td>RT CLXP746</td>
<td>212</td>
<td>220</td>
<td>182</td>
<td>205</td>
<td>9.9</td>
</tr>
<tr>
<td>Mean</td>
<td>167</td>
<td>191</td>
<td>183</td>
<td>181</td>
<td></td>
</tr>
<tr>
<td>LSD</td>
<td>43.7</td>
<td>19.7</td>
<td>27.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.V.</td>
<td>15.8</td>
<td>6.3</td>
<td>9.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A deposit of the University of Arkansas, Rice Research and Extension Center, 2900 Hwy. 130 E., Stuttgart, Arkansas 72160, proprietary rice cultivar CL142-AR disclosed above and recited in the appended claims has been made with the American Type Culture Collection (ATCC), 10801 University Boulevard, Manassas, Virginia 20110. The date of deposit was May 12, 2010. The deposit of 2,500 seeds was taken from the same deposit maintained by the University of Arkansas, Rice Research and Extension Center since prior to the filing date of this application. All restrictions upon the deposit will be removed upon granting of a patent, and the deposit is intended to meet all of the requirements of 37 C.F.R. §§1.801-1.809. The ATCC accession number is PTA-10947. The deposit will be maintained in the depository for a period of 30 years, or 5 years after the last request, or for the effective life of the patent, whichever is longer, and will be replaced as necessary during that period.

While a number of exemplary aspects and embodiments have been discussed above, those of skill in the art will recognize certain modifications, permutations, additions and sub-combinations thereof. It is therefore intended that the following appended claims and claims hereafter introduced are interpreted to include all such modifications, permutations, additions and sub-combinations as are within their true spirit and scope.
CLAIMS

WHAT IS Claims IS:

1. A seed of rice cultivar CL142-AR, wherein a representative sample of seed of said cultivar was deposited under ATCC Accession No. PTA-10947.
2. A rice plant, or a part thereof, produced by growing the seed of claim 1.
3. A tissue culture of cells produced from the plant of claim 2, wherein said cells of the tissue culture are produced from a plant part selected from the group consisting of leaves, pollen, embryos, cotyledon, hypocotyl, meristematic cells, roots, root tips, pistils, anthers, flowers, stems, glumes and panicles.
4. A protoplast produced from the plant of claim 2.
5. A protoplast produced from the tissue culture of claim 3.
6. A rice plant regenerated from the tissue culture of claim 3, wherein the plant has all the morphological and physiological characteristics of cultivar CL142-AR.
7. A method for producing an F₁ hybrid rice seed, wherein the method comprises crossing the plant of claim 2 with a different rice plant and harvesting the resultant F₁ hybrid rice seed.
9. A hybrid rice plant, or a part thereof, produced by growing said hybrid seed of claim 8.
10. A method of producing an herbicide resistant rice plant wherein the method comprises transforming the rice plant of claim 2 with a transgene wherein the transgene confers resistance to an herbicide selected from the group consisting of imidazolinone, sulfonylurea, glyphosate, glufosinate, L-phosphinothricin, triazine and benzonitrile.
12. A method of producing an insect resistant rice plant wherein the method comprises transforming the rice plant of claim 2 with a transgene that confers insect resistance.
14. The rice plant of claim 13, wherein the transgene encodes a Bacillus thuringiensis endotoxin.
15. A method of producing a disease resistant rice plant wherein the method comprises transforming the rice plant of claim 2 with a transgene that confers disease resistance.

17. A method of producing a rice plant with modified fatty acid metabolism or modified carbohydrate metabolism wherein the method comprises transforming the rice plant of claim 2 with a transgene encoding a protein selected from the group consisting of fructosyltransferase, levansucrase, alpha-amylase, invertase and starch branching enzyme or encoding an antisense of stearyl-ACP desaturase.

18. A rice plant having modified fatty acid metabolism or modified carbohydrate metabolism produced by the method of claim 17.

19. A method of introducing a desired trait into rice cultivar CL142-AR wherein the method comprises:

(a) crossing a CL142-AR plant, wherein a representative sample of seed was deposited under ATCC Accession No. PTA-10947, with a plant of another rice cultivar that comprises a desired trait to produce progeny plants wherein the desired trait is selected from the group consisting of male sterility, herbicide resistance, insect resistance, modified fatty acid metabolism, modified carbohydrate metabolism and resistance to bacterial disease, fungal disease or viral disease;

(b) selecting one or more progeny plants that have the desired trait to produce selected progeny plants;

(c) crossing the selected progeny plants with the CL142-AR plants to produce backcross progeny plants;

(d) selecting for backcross progeny plants that have the desired trait and the physiological and morphological characteristics of rice cultivar CL142-AR to produce selected backcross progeny plants; and

(e) repeating steps (c) and (d) three times to produce selected fourth or higher backcross progeny plants that comprise the desired trait and all of the physiological and morphological characteristics of rice cultivar CL142-AR as listed in Table 1.
20. A plant produced by the method of claim 19, wherein the plant has the desired trait and all of the physiological and morphological characteristics of rice cultivar CL142-AR as listed in Table 1.

21. The plant of claim 20, wherein the desired trait is herbicide resistance and the resistance is conferred to an herbicide selected from the group consisting of imidazolinone, sulfonylurea, glyphosate, glufosinate, L-phosphinothricin, triazine and benzonitrile.

22. The plant of claim 20, wherein the desired trait is insect resistance and the insect resistance is conferred by a transgene encoding a *Bacillus thuringiensis* endotoxin.

23. The plant of claim 20, wherein the desired trait is modified fatty acid metabolism or modified carbohydrate metabolism and said desired trait is conferred by a nucleic acid encoding a protein selected from the group consisting of fructosyltransferase, levansucrase, alpha-amylase, invertase and starch branching enzyme or encoding an antisense of steryl-ACP desaturase.

24. A method for controlling weeds in the vicinity of a rice plant of rice cultivar CL142-AR, said method comprising applying an effective amount of at least one acetohydroxyacid synthase (AHAS)-inhibiting herbicide to the weeds and to the rice plant, wherein a representative sample of seed of said cultivar was deposited under ATCC Accession No. PTA-10947.

25. The method of claim 24, wherein said AHAS-inhibiting herbicide is selected from the group consisting of an imidazolinone herbicide, a sulfonylurea herbicide, a triazolopyrimidine herbicide, a pyrimidinyloxybenzoate herbicide, a sulfonylamino-carbonyltriazolinone herbicide, and a mixture thereof.

26. The method of claim 25, wherein said imidazolinone herbicide is selected from the group consisting of: [2- (4-isopropyl-4-methyl-5-oxo-2-) imidazolin-2-yl]-nicotinic acid, 2- (4-isopropyl)-4-methyl-5-oxo-2- imidazolin-2-yl) -3-quinolinecarboxylic acid, [5-ethyl-2- (4-isopropyl-4-methyl-) 5-oxo-2-imidazolin-2-yl) -nicotinic acid, 2- (4-isopropyl-4-methyl-5-oxo-2- imidazolin-2-yl)-5- (methoxymethyl)-nicotinic acid, 2- (4-isopropyl-4-methyl- 5-oxo-2-imidazolin-2-yl)-5-methylnicotinic acid, and a mixture of methyl 6- (4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl) -m-toluate, methyl [2- (4-] isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)-p-toluate, and mixture thereof.
27. The method of claim 24, wherein said AHAS-inhibiting herbicide is an imidazolinone herbicide or a mixture of two or more imidazolinone herbicides.

28. A seed of a rice plant of rice cultivar CL142-AR, wherein said seed is treated with an AHAS-inhibiting herbicide, and wherein a representative sample of seed of said cultivar was deposited under ATCC Accession No. PTA-10947.

29. The seed of claim 28, wherein said AHAS-inhibiting herbicide is selected from the group consisting of an imidazolinone herbicide, a sulfonyleurea herbicide, a triazolopyrimidine herbicide, a pyrimidinyloxybenzoate herbicide, and a sulfonlamino-carbonyltriazolinone herbicide, or mixture thereof.

30. The seed of claim 28, wherein said AHAS-inhibiting herbicide is an imidazolinone herbicide or a mixture of two or more imidazolinone herbicides.

31. A method for combating undesired vegetation comprising contacting a seed of a rice plant of rice cultivar CL142-AR before sowing and/or after pregermination with an AHAS-inhibiting herbicide, wherein a representative sample of seed of said cultivar was deposited under ATCC Accession No. PTA-10947.

32. The method of claim 31, wherein said AHAS-inhibiting herbicide is selected from the group consisting of an imidazolinone herbicide, a sulfonyleurea herbicide, a triazolopyrimidine herbicide, a pyrimidinyloxybenzoate herbicide, and a sulfonlamino-carbonyltriazolinone herbicide, or mixture thereof.

33. The seed of claim 31, wherein said AHAS-inhibiting herbicide is an imidazolinone herbicide or a mixture of two or more imidazolinone herbicides.

34. A method for producing an herbicide-resistant rice plant comprising crossing a first rice plant that is a rice plant of rice cultivar CL142-AR with a second rice plant that is not resistant to an herbicide, wherein a representative sample of seed of said cultivar was deposited under ATCC Accession No. PTA-10947.

35. The method of claim 34 further comprising selecting for a progeny rice plant that is resistant to at least one AHAS-inhibiting herbicide.

36. The method of claim 35, wherein said AHAS-inhibiting herbicide is an imidazolinone herbicide or a mixture of two or more imidazolinone herbicides.

37. An herbicide-resistant rice plant produced by the method of claim 34.
38. A seed of the plant of claim 37, wherein said seed comprises the herbicide resistant characteristics of the first rice plant.

39. A method for increasing the herbicide-resistance of a plant comprising crossing a first rice plant that is a rice plant of rice cultivar CL142-AR with a second rice plant, wherein a representative sample of seed of said cultivar was deposited under ATCC Accession No. PTA-10947.

40. The method of claim 39 further comprising selecting for a progeny rice plant that comprises increased herbicide resistance to at least one AHAS-inhibiting herbicide when compared to the herbicide resistance of said second rice plant.

41. The method of claim 40, wherein said AHAS-inhibiting herbicide is an imidazolinone herbicide or a mixture of two or more imidazolinone herbicides.

42. A plant produced by the method of claim 39.

43. A seed of the plant of claim 42, wherein said seed comprises the increased herbicide resistance.

44. A method for controlling weeds in the vicinity of rice, comprising contacting the rice with an herbicide, wherein said rice belongs to any of (a) variety CL142-AR or (b) a hybrid, derivative, or progeny of CL142-AR that expresses the imidazolinone herbicide resistance characteristics of CL142-AR.

45. The method according to Claim 44, wherein the herbicide is an herbicide imidazolinone, a sulfonylurea herbicide, or a combination thereof.

46. The method according to Claim 44, wherein the rice is a rice plant and said contacting comprises applying the herbicide in the vicinity of the rice plant.

47. The method according to Claim 46, wherein said herbicide is applied to weeds in the vicinity of the rice plant.

48. The method according to Claim 44, wherein the rice is a rice seed and said contacting comprises applying the herbicide to the rice seed.

49. A method for treating rice, comprising contacting the rice with an agronomically acceptable composition, wherein said rice belongs to any of (a) variety CL142-AR or (b) a hybrid, derivative, or progeny of CL142-AR that expresses the imidazolinone herbicide resistance characteristics of CL142-AR.
50. The method according to Claim 49, wherein the agronomically acceptable composition comprises at least one agronomically acceptable active ingredient.

51. The method according to Claim 50, wherein the agronomically acceptable active ingredient is selected from the group consisting of fungicides, insecticides, antibiotics, stress tolerance-enhancing compounds, growth promoters, herbicides, molluscicides, rodenticides, and animal repellants, and combinations thereof.