Title: TREATMENT OF NEURODEGENERATIVE DISEASE THROUGH INTRACRANIAL DELIVERY OF siRNA

293H Cells Transfected with Anti-Ataxin1 Ribozyme (A1364A) and Anti-ataxin siRNA (AT0945)

(57) Abstract: The present invention provides devices, small interfering RNA, and methods for treating a neurodegenerative disorder comprising the steps of surgically implanting a catheter so that a discharge portion of the catheter lies adjacent to a predetermined infusion site in a brain, and discharging through the discharge portion of the catheter a predetermined dosage of at least one substance capable of inhibiting production of at least one neurodegenerative protein. The present invention also provides valuable small interfering RNA vectors, and methods for treating neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, Huntington's disease, Spino cerebellar Ataxia Type 1, Type 2, Type 3, and/or dentatonubral-pallidolysian atrophy.
Published:
— without international search report and to be republished upon receipt of that report
— with sequence listing part of description published separately in electronic form and available upon request from the International Bureau

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.
TREATMENT OF NEURODEGENERATIVE DISEASE THROUGH INTRACRANIAL DELIVERY OF siRNA

FIELD OF INVENTION

This invention relates to devices, systems, and methods for treating neurodegenerative disorders by brain infusion of small interfering RNA or vectors containing the DNA encoding for small interfering RNA.

BACKGROUND OF THE INVENTION

This invention provides novel devices, systems, and methods for delivering small interfering RNA to targeted sites in the brain to inhibit or arrest the development and progression of neurodegenerative disorders. For several neurodegenerative diseases, such as Parkinson’s disease, Alzheimer’s disease, Huntington’s disease, Spinocerebellar Ataxia Type 1, Type 2, and Type 3, and dentatorubral pallidoluysian atrophy (DRPLA), proteins involved in the overall pathogenic progression of the disease have been identified. There is currently no cure for these neurodegenerative diseases. These diseases are progressively debilitating and most are ultimately fatal.

Further problematic of these neurodegenerative diseases (especially Alzheimer’s disease and Parkinson’s disease) is that their prevalence continues to increase, thus creating a serious public health problem. Recent studies have pointed to alpha-synuclein (Parkinson’s disease), beta-amyloid-cleaving enzyme 1 (BACE1 (including variants thereof, e.g. variants A, B, C, and D)) (Alzheimer’s disease), huntingtin (Huntington’s disease), and ataxin 1 (Spinocerebellar Ataxia Type 1) as major factors in the pathogenesis of each of these diseases, respectively.

The neurodegenerative process in Parkinson’s disease and Alzheimer’s disease is characterized by extensive loss of selected neuronal cell populations accompanied by synaptic injury and astrogliosis. Pathological hallmarks of Alzheimer’s disease include formation of amyloid plaques, neurofibrillary tangles and neuropil thread formation; pathological hallmarks of Parkinson’s diseases include the formation of intraneuronal inclusions called Lewy bodies and the loss of dopaminergic neurons in the substantia
nigra. Although the mechanisms triggering cell dysfunction and death are unclear, the prevailing view is that neurodegeneration results from toxic effects subsequent to the accumulation of specific neuronal cell proteins, such as alpha-synuclein (Parkinson's disease) and amyloid precursor protein (APP) (Alzheimer's disease—processed into beta-amyloid by BACE1 (including variants thereof, e.g. variants A, B, C, and D)).

Alpha-synuclein has been implicated in Parkinson's disease because it is abundantly found in Lewy Bodies, its overexpression in transgenic mice leads to Parkinson's disease-like pathology, and mutations within this molecule are associated with familial Parkinson's disease. Alpha-synuclein, which belongs to a larger family of molecules including β and γ-synuclein, is a 140 amino acid non-amyloid synaptic protein which is a precursor of the 35 amino acid non-amyloid component protein found in amyloid plaques.

Alzheimer's disease is a progressive degenerative disorder of the brain characterized by mental deterioration, memory loss, confusion, and disorientation.

Among the cellular mechanisms contributing to this pathology are two types of fibrillar protein deposits in the brain: intracellular neurofibrillary tangles composed of polymerized tau protein, and abundant extracellular fibrils comprised largely of β-amyloid. Beta-amyloid, also known as Aβ, arises from the proteolytic processing of the amyloid precursor protein (APP) at the the β- and γ-secretase cleavage sites giving rise to the cellular toxicity and amyloid-forming capacity of the two major forms of Aβ (Aβ40 and Aβ42). Thus, preventing APP processing into plaque-producing forms of amyloid may critically influence the formation and progression of the disease making BACE1 (including variants thereof, e.g. variants A, B, C, and D) a clinical target for inhibiting or arresting this disease. Similar reports suggest presenilins are candidate targets for redirecting aberrant processing.

Huntington's disease is a fatal, hereditary neurodegenerative disorder characterized by involuntary "ballistic" movements, depression, and dementia. The cause has been established to be a mutation in a single gene consisting of an excessively long series of C, A, G, C, A, G, ..., C, A, G, nucleotides in the DNA. The CAG repeat is in the region of the gene that codes for the protein the gene produces. Thus, the resulting huntingtin
protein is also "expanded," containing an excessively long region made of the amino acid glutamine, for which "CAG" encodes. Shortly after this mutation was pinpointed as the cause of Huntington's disease, similar CAG repeat expansions in other genes were sought and found to be the cause of numerous other fatal, hereditary neurodegenerative diseases. The list of these so-called "polyglutamine" diseases now includes at least eleven more, including: spinocerebellar ataxia type 1, type 2, and type 3, spinobulbar muscular atrophy (SBMA or Kennedy's disease) and dentatorubral-pallidoluysian atrophy (DRPLA). Although the particular gene containing the expanded CAG repeat is different in each disease, it is the production of an expanded polyglutamine protein in the brain that causes each one. Symptoms typically emerge in early to middle-aged adulthood, with death ensuing 10 to 15 years later. No effective treatments for these fatal diseases currently exist.

There is considerable evidence suggesting that shutting off production of the abnormal protein in neurons will be therapeutic in polyglutamine diseases. The cause of these diseases is known to be the gain of a new function by the mutant protein, not the loss of the protein's original function. Mice harboring the human, expanded transgene for spinocerebellar ataxia type 1 (SCA1) become severely ataxic in young adulthood (Clark, H., et al., Journal of Neuroscience 17: 7385-7395 (1997)), but mice in which the corresponding mouse gene has been knocked out do not suffer ataxia or display other major abnormalities (Matilla, A., et al., Journal of Neuroscience 18: 5508-5516 (1998)). Transgenic mice for SCA1 in which the abnormal ataxin1 protein is produced but has been genetically engineered to be incapable of entering the cell's nucleus do not develop ataxia (Klement, I., et al., Cell 95: 41-53 (1998)). Finally, a transgenic mouse model of Huntington's disease has been made in which the mutant human transgene has been engineered in a way that it can be artificially "turned off" by administering tetracycline (Normally, in mice and humans, administration of this antibiotic would have no effect on the disease). After these mice have begun to develop symptoms, shutting off production of the abnormal protein production by chronic administration of tetracyclin leads to an improvement in their behavior (Yamamoto, A., et al., Cell 101: 57-66 (2000)). This suggests that reducing expression of the abnormal huntingtin protein in humans might not
only prevent Huntington's disease from progressing in newly diagnosed patients, but may improve the quality of life of patients already suffering from its symptoms.

Various groups have been recently studying the effectiveness of siRNAs. Caplen, et al. (Human Molecular Genetics, 11(2): 175-184 (2002)) assessed a variety of different double stranded RNAs for their ability to inhibit cell expression of mRNA transcripts of the human androgen receptor gene containing different CAG repeats. Their work found only gene-specific inhibition occurred where flanking sequences to the CAG repeats were present in the double stranded RNAs. They were also able to show that constructed double stranded RNAs were able to rescue induced caspase-3 activation. Xia, Haibin, et al. (Nature Biotechnology, 20: 1006-1010 (2002)) tested the inhibition of polyglutamine (CAG) expression of engineered neural PC12 clonal cell lines that express a fused polyglutamine-fluorescent protein using constructed recombinant adenovirus expressing siRNAs targeting the mRNA encoding green fluorescent protein.

The design and use of small interfering RNA complementary to mRNA targets that produce particular proteins is a recent tool employed by molecular biologist to prevent translation of specific mRNAs. Other tools used by molecular biologist interfere with translation involve cleavage of the mRNA sequences using ribozymes against therapeutic targets for Alzheimer's disease (see WO01/16312A2) and Parkinson's disease (see WO99/50300A1 and WO01/60794A2). However, none of the above aforementioned patents disclose methods for the specifically localized delivery of small interfering RNA vectors to targeted cells of the brain in a manner capable of local treatment of neurodegenerative diseases. The above patents do not disclose use of delivery devices or any method of delivery or infusion of small interfering RNA vectors to the brain. For example, the above patents do not disclose or suggest a method of delivery or infusion of small interfering RNA vectors to the brain by an intracranial delivery device.

Further, the foregoing prior art does not disclose any technique for infusing into the brain small interfering RNA vectors, nor does the prior art disclose whether small interfering RNA vectors, upon infusion into the brain, are capable of entering neurons and producing the desired small interfering RNA, which is then capable of reducing
production of at least one protein involved in the pathogenesis of neurodegenerative disorders.

The prior art describes direct systemic delivery of ribozymes. This approach for treatment of neurodegenerative disorders would appear neither possible nor desirable. First, interfering RNAs are distinctly different than ribozymes. Second, small RNA molecules delivered systemically will not persist in vivo long enough to reach the desired target, nor are they likely to cross the blood-brain barrier. Further, the approach taken by the prior art may be impractical because of the large quantity of small interfering RNA that might have to be administered by this method to achieve an effective quantity in the brain. Even when the blood-brain barrier is temporarily opened, the vast majority of oligonucleotide delivered via the bloodstream may be lost to other organ systems in the body, especially the liver.

U.S. Patent Nos. 5,735,814 and 6,042,579 disclose the use of drug infusion for the treatment of Huntington’s disease, but the drugs specifically identified in these patents pertain to agents capable of altering the level of excitation of neurons, and do not specifically identify agents intended to enter the cell and alter protein production within cells.

The present invention solves prior problems existing in the prior art relating to systemic delivery of nucleic acids by directly delivering small interfering RNA in the form of DNA encoding the small interfering RNA to target cells of the brain using viral vectors. Directed delivery of the small interfering RNA vectors to the affected region of the brain infusion overcomes previous obstacles related to delivery. Further, use of viral vectors allows for efficient entry into the targeted cells and for efficient short and long term production of the small interfering RNA agents by having the cells’ machinery direct the production of the small interfering RNA themselves. Finally, the present invention provides a unique targeting and selectivity profile by customizing the active small interfering RNA agents to specific sites in the mRNA coding sequences for the offending proteins.
SUMMARY OF THE INVENTION

The present invention provides devices, systems, methods for delivering small interfering RNA for the treatment of neurodegenerative disorders.

A first objective of the described therapies is to deliver specifically tailored small interfering RNA as therapeutic agents for treatment of Parkinson’s disease. Specifically tailored small interfering RNA for Parkinson’s disease target the mRNA for the alpha-synuclein protein in order to reduce the amount of alpha-synuclein protein produced in neurological cells. In a related embodiment the present invention provides devices that specifically access the substantia nigra for delivery of anti-alpha-synuclein small interfering RNA.

A second objective of the described therapies is to deliver specifically tailored small interfering RNA as therapeutic agents for treatment of Alzheimer’s disease. Specifically tailored small interfering RNA for Alzheimer’s disease target the mRNA for BACE1 (including variants thereof, e.g. variants A, B, C, and D) in order to reduce the amount of BACE1 (including variants thereof, e.g. variants A, B, C, and D) protein produced in neurological cells and thereby interfere with the production of beta-amyloid. In a related embodiment the present invention provides devices that specifically access the nucleus basalis of Meynart and the cerebral cortex for delivery of anti-BACE1 (including variants thereof, e.g. variants A, B, C, and D) small interfering RNA.

A third objective of the described therapies is to deliver specifically tailored small interfering RNA as therapeutic agents for treatment of Huntington’s disease. Specifically tailored small interfering RNA for Huntington’s disease target the mRNA for huntingtin protein to reduce the amount of huntingtin protein produced in neurological cells. In a related embodiment the present invention provides devices that specifically access the caudate nucleus and putamen (collectively known as the striatum) for delivery of anti-huntingtin small interfering RNA.

A fourth objective of the described therapies is to deliver specifically tailored small interfering RNA as therapeutic agents for treatment of Spinocerebellar Ataxia Type 1 (SCA1). Specifically tailored small interfering RNA for Spinocerebellar Ataxia Type 1
target the mRNA for ataxin1 protein to reduce the amount of ataxin1 protein produced in neurological cells. In a related embodiment the present invention provides devices that specifically access the dentate nucleus, eboliform nucleus, globus nucleus, and fastigial nucleus of the cerebellum, (collectively known as the deep cerebellar nuclei), for delivery of anti-ataxin-1 small interfering RNA.

A fifth objective of the described therapies is to deliver specifically tailored small interfering RNA as therapeutic agents for treatment of Spinocerebellar Ataxia Type 3 (SCA3), also known as Machado-Joseph’s Disease. Specifically tailored small interfering RNA for Spinocerebellar Ataxia Type 3 target the mRNA for ataxin3 protein to reduce the amount of ataxin3 protein produced in neurological cells. In a related embodiment the present invention provides devices that specifically access the dentate nucleus, eboliform nucleus, globus nucleus, and fastigial nucleus of the cerebellum, (collectively known as the deep cerebellar nuclei), the subthalamic region, and the substantia nigra for delivery of anti-ataxin-3 small interfering RNA.

A sixth objective of the described therapies is to deliver specifically tailored small interfering RNA as therapeutic agents for treatment of dentatorubral-pallidolysian atrophy (DRPLA). Specifically tailored small interfering RNA for DRPLA target the mRNA for atrophin-1 protein to reduce the amount of atrophin-1 protein produced in neurological cells. In a related embodiment the present invention provides devices that specifically access the dentate nucleus, eboliform nucleus, globus nucleus, and fastigial nucleus of the cerebellum, (collectively known as the deep cerebellar nuclei), the globus pallidus, and the red nucleus for delivery of anti-DRPLA small interfering RNA.

The present invention provides a delivery system for a small interfering RNA vector therapy for neurodegenerative diseases that permits targeted delivery of small interfering RNA or vectors containing DNA encoding for small interfering RNA (small interfering RNA vectors) to targeted sites in the brain for brief durations of time or over an extended period of care for the patient.

In a main embodiment of the present invention, small interfering RNA vectors are infused into targeted sites of the brain wherein the small interfering RNA vectors are taken up by neurons and transported to the nucleus of targeted cells. The small interfering RNA
vectors are then transcribed into RNA by the host cellular machinery to produce small interfering RNA that prevent production of the targeted neurodegenerative protein.

The present invention also provides methods of using neurosurgical devices to deliver therapeutic small interfering RNA vectors to selected regions of the brain. In particular, the present invention provides methods that use surgically implanted catheters for singular, repeated, or chronic delivery of small interfering RNA vectors to the brain. The small interfering RNA vectors introduced into the affected cells have the necessary DNA sequences for transcription of the required small interfering RNA by the cells, including a promoter sequence, the small interfering RNA sequence, and optionally flanking regions allowing defined ends of the therapeutic small interfering RNA to be produced, and optionally a polyadenylation signal sequence.

DESCRIPTION OF THE FIGURES

Figure 1 shows the assay (using a quantitative RT-PCR method known to those practiced in the art) of the ataxin1 mRNA obtained from HEK293H cells that have been transfected with plasmid containing an anti-ataxin1 ribozyme (top lanes in Figure 1) or with siRNA against ataxin1 (bottom lanes of Figure 1).

Figure 2 shows the assay (using the same quantitative RT-PCR method known to those practiced in the art) of the ataxin-1 mRNA obtained from HEK293H cells that have been transfected with anti-ataxin-1 small interfering RNA (bottom lanes) compared to the mRNA obtained from HEK293H cells that have been transfected with a control siRNA that targets the mRNA for glyceraldehyde-3-phosphate dehydrogenase (GAPDH).

Figure 3 shows the construction of the adeno-associated virus expression vector pAAV-siRNA.

Figure 4 illustrates an investigational device (by Medtronic, Inc. of Minneapolis, MN Model 8506), which can be implanted subcutaneously on the cranium, and provides an access port through which therapeutic agents may be delivered to the brain.
Figure 5 illustrates an investigational device (by Medtronic, Inc. of Minneapolis, MN - schematic of Model 8506), which can be implanted subcutaneously on the cranium, and provides an access port through which therapeutic agents may be delivered to the brain.

Figure 6 illustrates the relation of various neurodegenerative diseases described herein, and the location of treatment with small interfering RNA vectors directed to their intended targeted gene product.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present invention solves two problems in the prior art at the same time: (1) the problem of how to treat neurodegenerative diseases caused by the production in neurons of a protein that has pathogenic properties and (2) the problem of delivery of therapeutic small interfering RNA to affected neurons.

In order to better understand the present invention, a list of terms and the scope of understanding of those terms is provided below.

Terminology

By "alpha-synuclein, BACE1 (including variants thereof, e.g. variants A, B, C, and D), huntingtin, ataxin-1, ataxin-3, and/or atrophin-1 proteins" is meant, a protein or a mutant protein derivative thereof, comprising the amino-acid sequence expressed and/or encoded by alpha-synuclein (Parkinson’s disease), and beta-site APP-cleaving enzyme (BACE1 (including variants thereof, e.g. variants A, B, C, and D)) (Alzheimer’s disease), huntingtin (Huntington’s disease), and ataxin-1 (Spinocerebellar Ataxia Type 1), ataxin-3 (Spinocerebellar Ataxia Type 3 or Machado-Joseph’s Disease), and/or dentatorubral-pallidoluysian atrophy (DRPLA) genes and/or the human genomic DNA respectively.

As used herein "cell" is used in its usual biological sense, and does not refer to an entire multicellular organism. The cell may be present in an organism which may be a human but is preferably of mammalian origin, e.g., such as humans, cows, sheep, apes, monkeys, swine, dogs, cats, and the like. However, several steps of producing small
interfering RNA may require use of prokaryotic cells (e.g., bacterial cell) or eukaryotic cell (e.g., mammalian cell) and thereby are also included within the term “cell”.

By "complementarity" it is meant that a molecule comprised of one or more nucleic acids (DNA or RNA) can form hydrogen bond(s) with another molecule comprised of one or more nucleic acids by either traditional Watson-Crick pairing or other non-traditional types.

By "equivalent" DNA to alpha-synuclein, BACE1 (including variants thereof, e.g. variants A, B, C, and D), huntingtin, ataxin-1, ataxin-3, and/or atrophin-1 it is meant to include those naturally occurring DNA molecules having homology (partial or complete) to DNA encoding for alpha-synuclein, BACE1 (including variants thereof, e.g. variants A, B, C, and D), huntingtin, ataxin-1, ataxin-3 and/or atrophin-1 proteins or encoding for proteins with similar function as alpha-synuclein, BACE1 (including variants thereof, e.g. variants A, B, C, and D), huntingtin, ataxin-1, ataxin-3 and/or atrophin-1 in various organisms, including human, rodent, primate, rabbit, pig, and microorganisms. The equivalent DNA sequence also includes regions such as the 5'-untranslated region, the 3'-untranslated region, introns, intron-exon junctions, small interfering RNA targeted site and the like, optionally incorporated into the DNA of infective viruses, such as aden-associated virus (AAV).

The term “functional equivalent” refers to any derivative that is functionally similar to the reference sequence or protein. In particular the term “functional equivalent” includes derivatives in which the nucleotide bases(s) have been added, deleted, or replaced without a significant adverse effect on biological function.

By "gene" it is meant a region of DNA that controls the production of RNA. In context of producing functional small interfering RNA, this definition includes the necessary DNA sequence information encompassing the DNA sequences encoding the small interfering RNA, noncoding regulatory sequence and any included introns. The present definition does not exclude the possibility that additional genes encoding proteins may function in association or in tandem with the genes encoding small interfering RNA.

The term "vector" is commonly known in the art and defines a plasmid DNA, phage DNA, viral DNA and the like, which can serve as a DNA vehicle into which DNA
of the present invention can be inserted, and from which RNA can be transcribed. The term "vectors" refers to any of these nucleic acid and/or viral-based techniques used to deliver a desired nucleic acid. Numerous types of vectors exist and are well known in the art.

The term "expression" defines the process by which a gene is transcribed into RNA (transcription); the RNA may be further processed into the mature small interfering RNA.

The terminology "expression vector" defines a vector or vehicle as described above but designed to enable the expression of an inserted sequence following transformation into a host. The cloned gene (inserted sequence) is usually placed under the control of control element sequences such as promoter sequences. The placing of a cloned gene under such control sequences is often referred to as being operably linked to control elements or sequences.

"Promoter" refers to a DNA regulatory region capable of binding directly or indirectly to RNA polymerase in a cell and initiating transcription of a downstream (3' direction) coding sequence. For purposes of the present invention, the promoter is bound at its 3' terminus by the transcription initiation site and extends upstream (5' direction) to include the minimum number of bases or elements necessary to initiate transcription at levels detectable above background. Within the promoter will be found a transcription initiation site (conveniently defined by mapping with S1 nuclease), as well as protein binding domains (consensus sequences) responsible for the binding of RNA polymerase. Eukaryotic promoters will often, but not always, contain "TATA" boxes and "CCAT" boxes. Prokaryotic promoters contain -10 and -35 consensus sequences, which serve to initiate transcription.

By "homology" it is meant that the nucleotide sequence of two or more nucleic acid molecules is partially or completely identical.

By "highly conserved sequence region" it is meant that a nucleotide sequence of one or more regions in a target gene does not vary significantly from one generation to the other or from one biological system to the other.

By the term "inhibit" or "inhibitory" it is meant that the activity of the target genes or level of mRNAs or equivalent RNAs encoding target genes is reduced below that
observed in the absence of the provided small interfering RNA. Preferably the inhibition is at least 10% less, 25% less, 50% less, or 75% less, 85% less, or 95% less than in the absence of the small interfering RNA.

By "inhibited expression" it is meant that the reduction of alpha-synuclein, BACE1 (including variants thereof, e.g. variants A, B, C, and D), huntingtin, ataxin-1, ataxin-3 and/or atrophin-1 mRNA levels and thus reduction in the level of the respective protein to relieve, to some extent, the symptoms of the disease or condition.

By "RNA" is meant ribonucleic acid, a molecule consisting of ribonucleotides connected via a phosphate-ribose(sugar) backbone. By "ribonucleotide" is meant guanine, cytosine, uracil, or adenine or some a nucleotide with a hydroxyl group at the 2' position of a β-D-ribo-furanose moiety. As is well known in the art, the genetic code uses thymidine as a base in DNA sequences and uracil in RNA. One skilled in the art knows how to replace thymidine with uracil in a nucleic acid sequence to convert a DNA sequence into RNA, or vice versa.

By "patient" is meant an organism, which is a donor or recipient of explanted cells or the cells themselves. "Patient" also refers to an organism to which the nucleic acid molecules of the invention can be administered. Preferably, a patient is a mammal or mammalian cells, e.g., such as humans, cows, sheep, apes, monkeys, swine, dogs, cats, and the like, or cells of these animals used for transplantation. More preferably, a patient is a human or human cells.

The term “synuclein” may refer to alpha-synuclein (especially human or mouse) or beta-synuclein (especially human or mouse). The full nucleotide sequence encoding human alpha-synuclein is available under Accession No AF163864 (SEQ ID:7). Two variants of the human alpha-synuclein sequence are available under Accession No NM000345 (SEQ ID:14) and Accession No NM_007308 (SEQ ID:23). The mouse alpha-synuclein is available under Accession No. AF163865 (SEQ ID:10).

The term “BACE1” may refer to beta-site amyloid precursor protein cleaving enzyme type 1 (especially human or mouse). Several variants of BACE1 have been sequenced, including variants A, B, C, and D. In some scientific literature, BACE1 is also known as ASP2 and Memapsin2. The full nucleotide sequences encoding human BACE1,
and variants related thereto, are available under Accession No. NM_138971 (SEQ ID:20), Accession No. NM_138972 (SEQ ID:19), Accession No. NM_138973 (SEQ ID:21), and Accession No. NM_012104 (SEQ ID:18). The sequence for a mouse homolog is available under accession number NM_0111792 (SEQ ID:22).

The term “huntingtin” may refer to the protein product encoded by the Huntington’s Disease gene (IT-15) (especially human or mouse). The full nucleotide sequence encoding human IT-15 is available under Accession No AH003045 (SEQ ID:9). The mouse sequence is available under Accession No. U24233 (SEQ ID:12).

The term “ataxin-1” may refer to the protein product encoded by the Spinocerebellar Ataxia Type 1 gene (especially human or mouse). The full nucleotide sequence encoding human SCA1 is available under Accession No NM_000332 (SEQ ID:15). The mouse sca1 is available under Accession No. NM_009124 (SEQ ID:13).

The term “ataxin-3” may refer to the protein product encoded by the Spinocerebellar Ataxia Type 3 gene (especially human or mouse). The full nucleotide sequence encoding human SCA3 is available under Accession No NM_004993 (splice variant 1) (SEQ ID:16), and NM_030660 (splice variant 2) (SEQ ID:17). (The sequence for a mouse homolog is not yet available).

The term “atrophin-1” may refer to the protein product encoded by the dentatorubral-pallidolysian atrophy (DRPLA) gene (especially human or mouse). The full nucleotide sequence encoding human DRPLA is available under Accession No XM_032588 (SEQ ID:8). The mouse sequence is available under Accession No. XM_132846 (SEQ ID:11).

The term “modification” includes derivatives substantially similar to the reference sequence or protein.

By "nucleic acid molecule" as used herein is meant a molecule having nucleotides. The nucleic acid can be single, double, or multiple stranded and may comprise modified or unmodified nucleotides or non-nucleotides or various mixtures and combinations thereof. An example of a nucleic acid molecule according to the invention is a gene which encodes for a small interfering RNA, even though it does not necessarily have its more common meaning for encoding for the production of protein.
By "small interfering RNA" is meant a nucleic acid molecule which has complementarity in a substrate binding region to a specified gene target, and which acts to specifically guide enzymes in the host cell to cleave the target RNA. That is, the small interfering RNA by virtue of the specificity of its sequence and its homology to the RNA target, is able to cause cleavage of the RNA strand and thereby inactivate a target RNA molecule because it is no longer able to be transcribed. These complementary regions allow sufficient hybridization of the small interfering RNA to the target RNA and thus permit cleavage. One hundred percent complementarity often necessary for biological activity and therefore is preferred, but complementarity as low as 90% may also be useful in this invention. The specific small interfering RNA described in the present application are not meant to be limiting and those skilled in the art will recognize that all that is important in a small interfering RNA of this invention is that it have a specific substrate binding site which is complementary to one or more of the target nucleic acid regions.

Small interfering RNAs are double stranded RNA agents that have complementary to (i.e., able to base-pair with) a portion of the target RNA (generally messenger RNA). Generally, such complementarity is 100%, but can be less if desired, such as 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%. For example, 19 bases out of 21 bases may be base-paired. In some instances, where selection between various allelic variants is desired, 100% complementary to the target gene is required in order to effectively discern the target sequence from the other allelic sequence. When selecting between allelic targets, choice of length is also an important factor because it is the other factor involved in the percent complementary and the ability to differentiate between allelic differences.

The small interfering RNA sequence needs to be of sufficient length to bring the small interfering RNA and target RNA together through complementary base-pairing interactions. The small interfering RNA of the invention may be of varying lengths. The length of the small interfering RNA is preferably greater than or equal to ten nucleotides and of sufficient length to stably interact with the target RNA; specifically 15-30 nucleotides; more specifically any integer between 15 and 30 nucleotides, such as 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, and 30. By "sufficient length" is meant...
an oligonucleotide of greater than or equal to 15 nucleotides that is of a length great enough to provide the intended function under the expected condition. By "stably interact" is meant interaction of the small interfering RNA with target nucleic acid (e.g., by forming hydrogen bonds with complementary nucleotides in the target under physiological conditions).

By "comprising" is meant including, but not limited to, whatever follows the word "comprising". Thus, use of the term "comprising" indicates that the listed elements are required or mandatory, but that other elements are optional and may or may not be present.

By "consisting of" is meant including, and limited to, whatever follows the phrase "consisting of". Thus, the phrase "consisting of" indicates that the listed elements are required or mandatory, and that no other elements may be present.

By "consisting essentially of" is meant including any elements listed after the phrase, and limited to other elements that do not interfere with or contribute to the activity or action specified in the disclosure for the listed elements. Thus, the phrase "consisting essentially of" indicates that the listed elements are required or mandatory, but that other elements are optional and may or may not be present depending upon whether or not they affect the activity or action of the listed elements.

The present invention provides the means and tools for treating polyglutamine diseases (such as Huntington's disease and spinocerebellar ataxia type 1), Parkinson's disease, and Alzheimer's disease by intracranial delivery of vectors encoding small interfering RNAs designed to silence the expression of disease-causing or disease-worsening proteins, delivered through one or more implanted intraparenchymal catheters. In particular, the invention is (1) a method to treat Huntington's disease by the intracranial delivery of a vector encoding a small interfering RNA designed to silence expression of huntingtin protein; (2) a method to treat spinocerebellar ataxia type 1 by the intracranial delivery of a vector encoding a small interfering RNA designed to silence expression of ataxin1 protein; (3) a method to treat Parkinson's disease by the intracranial delivery of a vector encoding a small interfering RNA designed to silence expression of alpha-synuclein protein, and (4) a method to treat Alzheimer's disease by the intracranial delivery of a
vector encoding a small interfering RNA designed to silence expression of beta-amyloid cleaving enzyme 1 (BACE1).

As previously indicated, the small interfering RNA (or siRNA) described herein, is a segment of double stranded RNA that is from 15 to 30 nucleotides in length. It is used to trigger a cellular reaction known as RNA interference. In RNA interference, double-stranded RNA is digested by an intracellular enzyme known as Dicer, producing siRNA duplexes. The siRNA duplexes bind to another intracellular enzyme complex which is thereby activated to target whatever mRNA molecules are homologous (or complementary) to the siRNA sequence. The activated enzyme complex cleaves the targeted mRNA, destroying it and preventing it from being used to direct the synthesis of its corresponding protein product. By means that are not yet fully understood, the RNA interference process appears to be self-amplifying. Recent evidence suggests that RNA interference is an ancient, innate mechanism for not only defense against viral infection (many viruses introduce foreign RNA into cells) but also gene regulation at very fundamental levels. RNA interference has been found to occur in plants, insects, lower animals, and mammals, and has been found to be dramatically more effective than other gene silencing technologies, such as antisense or ribozymes. Used as a biotechnology, siRNA involves introducing into cells (or causing cells to produce) short, double-stranded molecules of RNA similar to those that would be produced by the Dicer enzyme from an invading double-stranded RNA virus. The artificially-triggered RNA interference process then continues from that point.

To deliver a small interfering RNA to a patient's brain, the preferred method will be to introduce the DNA encoding for the siRNA, rather than the siRNA molecules themselves, into the cells of the brain. The DNA sequence encoding for the particular therapeutic siRNA can be specified upon knowing (a) the sequence for a small and accessible portion of the target mRNA (available in public human genome databases), and (b) well-known scientific rules for how to specify DNA that will result in production of a corresponding RNA sequence when the DNA is transcribed by cells. The DNA sequence, once specified, can be constructed in the laboratory from synthetic molecules ordered from
a laboratory supplier, and inserted using standard molecular biology methods into one of several alternative "vectors" for delivery of DNA to cells. Once delivered into the neurons of the patient's brain, those neurons will themselves produce the RNA that becomes the therapeutic siRNA, by transcribing the inserted DNA into RNA. The result will be that the cells themselves produce the siRNA that will silence the targeted gene. The result will be a reduction of the amount of the targeted protein produced by the cell.

Small interfering RNA and Small interfering RNA Vectors

In accordance with the present invention, small interfering RNA against specific mRNAs produced in the affected cells prevent the production of the disease related proteins in neurons. In accordance with the present invention is the use of specifically tailored vectors designed to deliver small interfering RNA to targeted cells. The success of the designed small interfering RNA is predicated on their successful delivery to the targeted cells of the brain to treat the neurodegenerative diseases.

Small interfering RNA have been shown to be capable of targeting specific mRNA molecules in human cells. Small interfering RNA vectors can be constructed to transfect human cells and produce small interfering RNA that cause the cleavage of the target RNA and thereby interrupt production of the encoded protein.

A small interfering RNA vector of the present invention will prevent production of the pathogenic protein by suppressing production of the neuropathogenic protein itself or by suppressing production of a protein involved in the production or processing of the neuropathogenic protein. Repeated administration of the therapeutic agent to the patient may be required to accomplish the change in a large enough number of neurons to improve the patient's quality of life. Within an individual neuron, however, the change is longstanding enough to provide a therapeutic benefit. The desperate situation of many patients suffering from neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, or Spinocerebellar Ataxia Type 1 provides a strong likelihood that the benefit from the therapy will outweigh the risks of the therapy delivery and administration. While it may be possible to accomplish some reduction in the production of neuropathogenic proteins with other therapeutic agents and routes of
administration, development of successful therapies involving direct in vivo transfection of neurons may provide the best approach based on delivery of small interfering RNA vectors to targeted cells.

The preferred vector for delivery of foreign DNA to neurons in the brain is adeno-associated virus (AAV), such as recombinant adeno-associated virus serotype 2 or recombinant adeno-associated virus serotype 5. Alternatively, other viral vectors, such as herpes simplex virus, may be used for delivery of foreign DNA to central nervous system neurons. It is also possible that non-viral vectors, such as plasmid DNA delivered alone or complexed with liposomal compounds or polyethyleneamine, may be used to deliver foreign DNA to neurons in the brain.

It is important to note that the anti-ataxin-1 small interfering RNA illustrated here, as well as the other small interfering RNAs for treating neurodegenerative disorders, are just but some examples of the embodiment of the invention. Experimentation using neurosurgical methods with animals, known to those practiced in neuroscience, can be used to identify the candidate small interfering RNAs. The target cleavage site and small interfering RNA identified by these empirical methods will be the one that will lead to the greatest therapeutic effect when administered to patients with the subject neurodegenerative disease.

In reference to the nucleic molecules of the present invention, the small interfering RNA are targeted to complementary sequences in the mRNA sequence coding for the production of the target protein, either within the actual protein coding sequence, or in the 5' untranslated region or the 3' untranslated region. After hybridization, the host enzymes are capable of cleavage of the mRNA sequence. Perfect or a very high degree of complementarity is needed for the small interfering RNA to be effective. A percent complementarity indicates the percentage of contiguous residues in a nucleic acid molecule that can form hydrogen bonds (e.g., Watson-Crick base pairing) with a second nucleic acid sequence (e.g., 5, 6, 7, 8, 9, 10 out of 10 being 50%, 60%, 70%, 80%, 90%, and 100% complementary). "Perfectly complementary" means that all the contiguous residues of a nucleic acid sequence will hydrogen bond with the same number of contiguous residues in a second nucleic acid sequence. However, it should be noted that
single mismatches, or base-substitutions, within the siRNA sequence can substantially reduce the gene silencing activity of a small interfering RNA.

The small interfering RNA that target the specified sites in alpha-synuclein, BACE1 (including variants thereof, e.g. variants A, B, C, and D), huntingtin, ataxin-1, ataxin-3 and/or atrophin-1 RNAs represent a novel therapeutic approach to treat Parkinson’s disease, Alzheimer’s disease, Huntington’s disease, Spinocerebellar 1, Spinocerebellar Ataxia Type 3, and/or dentatorubral-pallidoluysian atrophy in a cell or tissue.

In preferred embodiments of the present invention, a small interfering RNA is 15 to 30 nucleotides in length. In particular embodiments, the nucleic acid molecule is 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 nucleotides in length. In preferred embodiments the length of the siRNA sequence can be between 19-30 base pairs, and more preferably between 21 and 25 base pairs, and more preferably between 21 and 23 basepairs.

In a preferred embodiment, the invention provides a method for producing a class of nucleic acid-based gene inhibiting agents that exhibit a high degree of specificity for the RNA of a desired target. For example, the small interfering RNA is preferably targeted to a highly conserved sequence region of target RNAs encoding alpha-synuclein, BACE1 (including variants thereof, e.g. variants A, B, C, and D), huntingtin, ataxin-1, ataxin-3 and/or atrophin-1 RNA such that specific treatment of a disease or condition can be provided with either one or several nucleic acid molecules of the invention. Further, generally, interfering RNA sequences are selected by identifying regions in the target sequence that begin with a pair of adenine bases (AA)(see Examples). SiRNAs can be constructed in vitro or in vivo using appropriate transcription enzymes or expression vectors.

SiRNAs can be constructed in vitro using DNA oligonucleotides. These oligonucleotides can be constructed to include an 8 base sequence complementary to the 5' end of the T7 promoter primer included in the Silencer siRNA (Ambion Construction Kit 1620). Each gene specific oligonucleotide is annealed to a supplied T7 promoter primer, and a fill-in reaction with Klenow fragment generates a full-length DNA template for
transcription into RNA. Two in vitro transcribed RNAs (one the antisense to the other) are generated by in vitro transcription reactions then hybridized to each other to make double-stranded RNA. The double-stranded RNA product is treated with DNase (to remove the DNA transcription templates) and RNase (to polish the ends of the double-stranded RNA), and column purified to provide the siRNA that can be delivered and tested in cells.

Construction of siRNA vectors that express siRNAs within mammalian cells typically use an RNA polymerase III promoter to drive expression of a short hairpin RNA that mimics the structure of an siRNA. The insert that encodes this hairpin is designed to have two inverted repeats separated by a short spacer sequence. One inverted repeat is complementary to the mRNA to which the siRNA is targeted. A string of thymidines added to the 3' end serves as a pol III transcription termination site. Once inside the cell, the vector constitutively expresses the hairpin RNA. The hairpin RNA is processed into an siRNA which induces silencing of the expression of the target gene, which is called RNA interference (RNAi).

In most siRNA expression vectors described to date, one of three different RNA polymerase III (pol III) promoters is used to drive the expression of a small hairpin siRNA (1-5). These promoters include the well-characterized human and mouse U6 promoters and the human H1 promoter. RNA pol III was chosen to drive siRNA expression because it expresses relatively large amounts of small RNAs in mammalian cells and it terminates transcription upon incorporating a string of 3–6 uridines.

The constructed nucleic acid molecules can be delivered exogenously to specific tissue or cellular targets as required. Alternatively, the nucleic acid molecules (e.g., small interfering RNA) can be expressed from DNA plasmid, DNA viral vectors, and/or RNA retroviral vectors that are delivered to specific cells.

The delivered small nuclear RNA sequences delivered to the targeted cells or tissues are nucleic acid-based inhibitors of alpha-synuclein, BACE1 (including variants thereof, e.g. variants A, B, C, and D), huntingtin, ataxin-1, ataxin-3 and/or atrophin-1 expression (e.g. translational inhibitors) are useful for the prevention of the
neurodegenerative diseases including Parkinson's disease, Alzheimer's disease, Huntington's disease, Spinocerebellar Ataxia Type 1, Spinocerebellar Ataxia Type 3, and DRPLA and any other condition related to the level of alpha-synuclein, BACE1 (including variants thereof, e.g. variants A, B, C, and D), huntingtin, ataxin-1, ataxin-3 and/or atrophin-1 in a cell or tissue, and any other diseases or conditions that are related to the levels of alpha-synuclein, beta-amyloid, huntingtin, ataxin-1, ataxin-3 or atrophin-1 in a cell or tissue.

The nucleic acid-based inhibitors of the invention are added directly, or can be complexed with cationic lipids, packaged within liposomes, packaged within viral vectors, or otherwise delivered to target cells or tissues. The nucleic acid or nucleic acid complexes can be locally administered to relevant tissues ex vivo, or in vivo through injection, infusion pump or stent, with or without their incorporation in biopolymers. In preferred embodiments, the nucleic acid inhibitors comprise sequences which are a sufficient length and/or stably interact with their complementary substrate sequences identified in SEQ ID NOS: 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, or 23. Examples of such small interfering RNA also are shown in SEQ IDS NOS: 1, 2, 3, 4, for SEQ IDS relating to Ataxin1.

In another aspect, the invention provides mammalian cells containing one or more nucleic acid molecules and/or expression vectors of this invention. The one or more nucleic acid molecules may independently be targeted to the same or different sites.

In another aspect of the invention, small interfering RNA molecules that interact with target RNA molecules and inhibit alpha-synuclein, BACE1 (including variants thereof, e.g. variants A, B, C, and D), huntingtin, ataxin-1, ataxin-3 and/or atrophin-1 RNA activity are expressed from transcription units inserted into DNA or RNA vectors. The recombinant vectors are preferably DNA plasmids or viral vectors. Small interfering RNA expressed from viral vectors could be constructed based on, but not limited to, the vector sequences of adeno-associated virus, retrovirus, or adenovirus. Preferably, the recombinant vectors capable of expressing the small interfering RNA are delivered as described above, and persist in target cells. Alternatively, viral vectors may be used that provide for transient expression of small interfering RNA. Such vectors might be
repeatedly administered as necessary. Once expressed, the small interfering RNA bind to
the target RNA and through use of the host machinery inhibit its expression and thereby its
function. Delivery of small interfering RNA expressing vectors, or the small interfering
RNA themselves, is by use of intracranial access devices.

The nucleic acid molecules of the instant invention, individually, or in combination
or in conjunction with other drugs, can be used to treat diseases or conditions discussed
above. For example, to treat a disease or condition associated with alpha-synuclein
(Parkinson’s Disease), and beta-site APP-cleaving enzyme (Alzheimer’s Disease),
huntingtin (Huntington’s Disease), and Ataxin 1 (Spinocerebellar Ataxia), the patient may
be treated, or other appropriate cells may be treated, as is evident to those skilled in the art,
individually or in combination with one or more drugs under conditions suitable for the
treatment.

In a further embodiment, the described small interfering RNA can be used in
combination with other known treatments to treat conditions or diseases discussed above.

In another preferred embodiment, the invention provides nucleic acid- based
inhibitors (e.g., small interfering RNA) and methods for their use to downregulate or
inhibit the expression of RNA (e.g., alpha-synuclein, BACE1 (including variants thereof,
(e.g. variants A, B, C, and D), huntingtin, ataxin-1, ataxin-3 and/or atrophin-1) coding for
proteins involved in the progression and/or maintenance of Parkinson’s disease,
Alzheimer’s disease, Huntington’s disease, Spinocerebellar Ataxia Type 1,
Spinocerebellar Ataxia Type 3, and dentatorubral-pallidoluysian atrophy.

The present invention also provides nucleic acid molecules that can be expressed
within cells from known eukaryotic promoters (e.g., Izant and Weintraub, 1985, Science,
-229, 345; McGarry and Lindquist, 1986, Proc. Natl. Acad. Sci. USA 83, 399; Scanlon et
et al., 1992, Nucleic Acids Res., 20, 4581-9; Sarver et al., 1990 Science, 247, 1222-1225;
Thompson et al., 1995, Nucleic Acids Res., 23, 2259; Good et al., 1997, Gene Therapy, 4,
45; all of these references are hereby incorporated herein, in their totalities, by reference).
Those skilled in the art realize that any nucleic acid can be expressed in eukaryotic cells from the appropriate DNA/RNA vector. The activity of such nucleic acids can be augmented by their release from the primary transcript by ribozymes (Draper et al., PCT WO 93/23569, and Sullivan et al., PCT WO 94/02595; Ohkawa et al., 1992, Nucleic Acids Symp. Ser., 27, 15-6; Taira et al., 1991, Nucleic Acids Res., 19, 5125-30; Ventura et al., 1993, Nucleic Acids Res., 21, 3249-55; Chowrira et al., 1994, J Biol. Chem., 269, 25856; all of these references are hereby incorporated in their totality by reference herein).

In another aspect of the invention, RNA molecules of the present invention are preferably expressed from transcription units (see, for example, Couture et al., 1996, TIG., 12, 510) inserted into DNA or RNA vectors. The recombinant vectors are preferably DNA plasmids or viral vectors. Small interfering RNA expressing viral vectors could be constructed based on, but not limited to, adeno-associated virus, retrovirus, adenovirus, or alphavirus.

Preferably, the recombinant vectors capable of expressing the nucleic acid molecules are delivered as described above, and persist in target cells. Alternatively, viral vectors may be used that provide for transient expression of nucleic acid molecules. Such vectors might be repeatedly administered as necessary. Once expressed, the nucleic acid molecule binds to the target mRNA. Delivery of nucleic acid molecule expressing vectors could be by singular, multiple, or chronic delivery by use of the described intracranial access devices.

In one aspect, the invention features an expression vector comprising a nucleic acid sequence encoding at least one functional segment of the nucleic acid molecules of the instant invention. The nucleic acid sequence encoding the nucleic acid molecule of the instant invention is operably linked in a manner which allows expression of that nucleic acid molecule.

In another aspect the invention features an expression vector comprising: a) a transcription initiation region (e.g., eukaryotic pol I, II or III initiation region); b) a nucleic acid sequence encoding at least one of the nucleic acid agents of the instant invention; and c) a transcription termination region (e.g., eukaryotic pol I, II or III termination region);
wherein said sequence is operably linked to said initiation region and said termination region, in a manner which allows expression and/or delivery of said nucleic acid molecule.

Transcription of the nucleic acid molecule sequences are driven from a promoter for eukaryotic RNA polymerase I (pol I), RNA polymerase II (pol II), or RNA polymerase III (pol III) as is known and appreciated in the art. All of these references are incorporated by reference herein. Several investigators have demonstrated that RNA molecules can be expressed from such promoters can function in mammalian cells (e.g. Kashani-Sabet et al., 1992, Antisense Res. Dev., 2, 3-15; Ojwang et al., 1992, Proc. Natl Acad Sci. USA, 89, 10802-6; Chen et al., 1992, Nucleic Acids Res., 20, 4581-9; Yu et al., 1993, Proc. Natl. Acad Sci. U S A, 90, 6340-4; L'Huillier et al., 1992, EMBO J, 11, 4411-8; Lisziewicz et al., 1993, Proc. Natl. Acad. Sci. U. S. A, 90, 8000-4; Thompson et al., 1995, Nucleic Acids Res., 23, 2259; Sullenger & Cech, 1993, Science, 262, 1566). More specifically, transcription units such as the ones derived from genes encoding U6 small nuclear (snRNA), transfer RNA (tRNA) and adenovirus VA RNA are useful in generating high concentrations of desired RNA molecules such as small interfering RNA in cells (Thompson et al., supra; Couture and Stinchcomb, 1996, supra; Noonberg et al., 1994, Nucleic Acid Res., 22, 2830; Noonberg et al., US Patent No. 5,624,803; Good et al., 1997, Gene Ther., 4, 45; Beigelman et al., International PCT Publication No. WO 96118736; all of these publications are incorporated by reference herein). The above small interfering RNA transcription units can be incorporated into a variety of vectors for introduction into mammalian cells, including but not restricted to, plasmid DNA vectors, viral DNA vectors (such as adenovirus or adeno-associated virus vectors), or viral RNA vectors (such as retroviral or alphavirus vectors) (for a review see Couture and Stinchcomb, 1996, supra).

It is also important to note that the targeting of ataxin1 mRNA for reduction using a small interfering RNA-based therapy for the disease Spinocerebellar Ataxia Type 1 is but one embodiment of the invention. Other embodiments include the use of an anti-huntingtin small interfering RNA administered to the striatum of the human brain, for the treatment of Huntington's disease, and the use of an anti-alpha-synuclein small interfering RNA administered to the substantia nigra of the human brain, for the treatment of Parkinson's disease.
It should be noted that the exemplified methods for constructing the small interfering RNA to be used as the therapeutic agents in the invention (that is, in vitro transcription from DNA templates and assembly into double-stranded RNA, or cloning the DNA coding for a hairpin structure of RNA into an adeno-associated viral expression vector) are only two possible means for making the therapeutic small interfering RNA. Other larger scale, more efficient methods for manufacturing small interfering RNA may be used to produce the clinical grade and clinical quantities used for treating human patients, without altering the essence of the invention.

In a preferred embodiment of the present invention, the composition comprising the siRNA agent or precursors or or derivatives thereof is formulated in accordance with standard procedure as a pharmaceutical composition adapted for delivered administration to human beings and other mammals. Typically, compositions for intravenous administration are solutions in sterile isotonic aqueous buffer.

Where necessary, the composition may also include a solubilizing agent and a local anesthetic to ameliorate any pain at the site of the injection. Generally, the ingredients are supplied either separately or mixed together in unit dosage form, for example, as a dry lyophilized powder or water free concentrate in a hermetically sealed container such as an ampule or sachette indicating the quantity of active agent. Where the composition is to be administered by infusion, it can be dispensed with an infusion bottle containing sterile pharmaceutical grade water or saline. Where the composition is administered by injection, an ampule of sterile water for injection or saline can be provided so that the ingredients may be mixed prior to administration.

In cases other than intravenous administration, the composition can contain minor amounts of wetting or emulsifying agents, or pH buffering agents. The composition can be a liquid solution, suspension, emulsion, gel, polymer, or sustained release formulation.
The composition can be formulated with traditional binders and carriers, as would be known in the art. Formulations can include standard carriers such as pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharide, cellulose, magnesium carbonate, etc., inert carriers having well established functionality in the manufacture of pharmaceuticals. Various delivery systems are known and can be used to administer a therapeutic of the present invention including encapsulation in liposomes, microparticles, microcapsules and the like.

In yet another preferred embodiment, therapeutics containing small interfering RNA or precursors or derivatives thereof can be formulated as neutral or salt forms. Pharmaceutically acceptable salts include those formed with free amino groups such as those derived from hydrochloric, phosphoric, acetic, oxalic, tartaric acids and the like, and those formed with free carboxyl groups such as those derived from sodium, potassium, ammonium, calcium, ferric hydroxides, isopropylamine, triethyramine, 2-ethylamino ethanol, histidine, procaine or similar.

The amount of the therapeutic of the present invention which will be effective in the treatment of a particular disorder or condition will depend on the nature of the disorder or condition, and can be determined by standard clinical techniques, well established in the administration of therapeutics. The precise dose to be employed in the formulation will also depend on the route of administration, and the seriousness of the disease or disorder, and should be decided according to the judgment of the practitioner and the patient's needs. Suitable dose ranges for intracranial administration are generally about \(10^3\) to \(10^{15}\) infectious units of viral vector per microliter delivered in 1 to 3000 microliters of single injection volume. Addition amounts of infections units of vector per micro liter would generally contain about \(10^4\), \(10^5\), \(10^6\), \(10^7\), \(10^8\), \(10^9\), \(10^{10}\), \(10^{11}\), \(10^{12}\), \(10^{13}\), \(10^{14}\) infectious units of viral vector delivered in about 10, 50, 100, 200, 500, 1000, or 2000 microliters. Effective doses may be extrapolated from dose-responsive curves derived from in vitro or in vivo test systems.

For the small interfering RNA vector therapy for neurodegenerative disease of the present invention, multiple catheters having access ports can be implanted in a given patient for a complete therapy. In a preferred embodiment, there is one port and catheter
system per cerebral or cerebellar hemisphere, and perhaps several. Once the implantations are performed by a neurosurgeon, the patient’s neurologist can perform a course of therapy consisting of repeated bolus injections of small interfering RNA expression vectors over a period of weeks to months, along with monitoring for therapeutic effect over time. The devices can remain implanted for several months or years for a full course of therapy. After confirmation of therapeutic efficacy, the access ports might optionally be explanted, and the catheters can be sealed and abandoned, or explanted as well. The device material should not interfere with magnetic resonance imaging, and, of course, the small interfering RNA preparations must be compatible with the access port and catheter materials and any surface coatings.

Unless defined otherwise, the scientific and technological terms and nomenclature used herein have the same meaning as commonly understood by a person of ordinary skill to which this invention pertains. Generally, the procedures for cell cultures, infection, molecular biology methods and the like are common methods used in the art. Such standard techniques can be found in reference manuals such as for example Sambrook et al. (1989, Molecular Cloning - A Laboratory Manual, Cold Spring Harbor Laboratories) and Ausubel et al. (1994, Current Protocols in Molecular Biology, Wiley, New York).

The polymerase chain reaction (PCR) used in the construction of siRNA expression plasmids and/or viral vectors is carried out in accordance with known techniques. See, e.g., U.S. Pat. Nos. 4,683,195; 4,683,202; 4,800,159; and 4,965,188 (the disclosures of all three U.S. Patent are incorporated herein by reference). In general, PCR involves a treatment of a nucleic acid sample (e.g., in the presence of a heat stable DNA polymerase) under hybridizing conditions, with one oligonucleotide primer for each strand of the specific sequence to be detected. An extension product of each primer which is synthesized is complementary to each of the two nucleic acid strands, with the primers sufficiently complementary to each strand of the specific sequence to hybridize therewith. The extension product synthesized from each primer can also serve as a template for further synthesis of extension products using the same primers. Following a sufficient number of rounds of synthesis of extension products, the sample is analyzed to assess whether the sequence or sequences to be detected are present. Detection of the amplified
sequence may be carried out by visualization following EtBr staining of the DNA following gel electrophores, or using a detectable label in accordance with known techniques, and the like. For a review on PCR techniques (see PCR Protocols, A Guide to Methods and Amplifications, Michael et al. Eds, Acad. Press, 1990).

Devices

Using the small interfering RNA vectors previously described, the present invention also provides devices, systems, and methods for delivery of small interfering RNA to target locations of the brain. The envisioned route of delivery is through the use of implanted, indwelling, intraparenchymal catheters that provide a means for injecting small volumes of fluid containing AAV or other vectors directly into local brain tissue. The proximal end of these catheters may be connected to an implanted, intracerebral access port surgically affixed to the patient’s cranium, or to an implanted drug pump located in the patient’s torso.

Examples of the delivery devices within the scope of the present invention include the Model 8506 investigational device (by Medtronic, Inc. of Minneapolis, MN), which can be implanted subcutaneously on the cranium, and provides an access port through which therapeutic agents may be delivered to the brain. Delivery occurs through a stereotactically implanted polyurethane catheter. The Model 8506 is schematically depicted in Figures 4 and 5. Two models of catheters that can function with the Model 8506 access port include the Model 8770 ventricular catheter by Medtronic, Inc., for delivery to the intracerebral ventricles, which is disclosed in U.S. Patent No. 6,093,180, incorporated herein by reference, and the IPA1 catheter by Medtronic, Inc., for delivery to the brain tissue itself (i.e., intraparenchymal delivery), disclosed in U.S. Serial Nos. 09/540,444 and 09/625,751, which are incorporated herein by reference. The latter catheter has multiple outlets on its distal end to deliver the therapeutic agent to multiple sites along the catheter path. In addition to the aforementioned device, the delivery of the small interfering RNA vectors in accordance with the present invention can be accomplished with a wide variety of devices, including but not limited to U.S. Patent Nos. 5,735,814, 5,814,014, and 6,042,579, all of which are incorporated herein by reference.

Using the teachings of the present invention and those of skill in the art will recognize that
these and other devices and systems may be suitable for delivery of small interfering RNA vectors for the treatment of neurodegenerative diseases in accordance with the present invention.

In one preferred embodiment, the method further comprises the steps of implanting a pump outside the brain, the pump coupled to a proximal end of the catheter, and operating the pump to deliver the predetermined dosage of the at least one small interfering RNA or small interfering RNA vector through the discharge portion of the catheter. A further embodiment comprises the further step of periodically refreshing a supply of the at least one small interfering RNA or small interfering RNA vector to the pump outside said brain.

Thus, the present invention includes the delivery of small interfering RNA vectors using an implantable pump and catheter, like that taught in U.S. Patent No. 5,735,814 and 6,042,579, and further using a sensor as part of the infusion system to regulate the amount of small interfering RNA vectors delivered to the brain, like that taught in U.S. Patent No. 5,814,014. Other devices and systems can be used in accordance with the method of the present invention, for example, the devices and systems disclosed in U.S. Serial Nos. 09/872,698 (filed June 1, 2001) and 09/864,646 (filed May 23, 2001), which are incorporated herein by reference.

To summarize, the present invention provides methods to deliver small interfering RNA vectors to the human central nervous system, and thus treat neurodegenerative diseases by reducing the production of a pathogenic protein within neurons.

The present invention is directed for use as a treatment for neurodegenerative disorders and/or diseases, comprising Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, Spinocerebellar type 1, type 2, and type 3, and/or any neurodegenerative disease caused or aggravated by the production of a pathogenic protein, or any other neurogenerative disease caused by the gain of a new, pathogenic function by a mutant protein.
Examples

Example 1: Construction of a small interfering RNA targeting human ataxin1 mRNA.

As an example of the embodiments of the invention, we have made a small interfering RNA that targets the mRNA for human ataxin1. This small interfering RNA reduces the amount of mRNA for human ataxin1 in human cells, in cell cultures. As a therapy for Spinocerebellar Ataxia Type 1 (SCA1), this same small interfering RNA or a similar small interfering RNA will be delivered to the cells of the cerebellum in the patient’s brain, using implanted access ports and catheters. The result will be a reduction in the amount of ataxin1 protein in these cells, thereby slowing or arresting the progression of the patient’s SCA1 disease.

The small interfering RNA against human ataxin1 was been constructed from the nucleotide sequence for human ataxin1. The sequence from human ataxin 1 was retrieved from the publicly-accessible nucleotide database provided by NCBI, retrievable as NCBI accession number NM_000332 (SEQ ID:15). A portion of the human mRNA sequence for ataxin1 was identified as a potential site for small interfering RNA cleavage and also predicted to be single-stranded by MFOLD analysis. In accession NM_000332 (SEQ ID:15), three pairs of anti ataxin1 siRNA targets were constructed:

1. Anti-ataxin1 siRNA targeting the mRNA sequence at sites numbered 945 through 965:

 SEQ ID:1 5’ - AACCAAGAGCGGAGCAACGAA - 3’
 SEQ ID:2 3’ - GGTTCCTGCCTCGTTGCTTAA - 5’

2. Anti-ataxin1 siRNA targeting the mRNA sequence at sites numbered 1671 through 1691:

 SEQ ID:3 5’ - AACCAAGAGCGGAGCAACGAA - 3’
 SEQ ID:4 3’ - GGTTCCTGCCTCGTTGCTTAA - 5’
3. Anti-ataxin1 siRNA targeting the mRNA sequence at sites numbered 2750 - through 2770:

SEQ ID:4 5' - AACCAGTGACGTCCACATTCC - 3'
SEQ ID:6 3' - GGTCATGCAGGTGTAAGGAA - 5'

A series of six deoxyoligonucleotide fragments were designed, ordered and purchased from the MWG Biotech, Inc., custom oligonucleotide synthesis service to provide the six fragments making up the three target sites. Additionally, these oligonucleotides were constructed to include an 8 base sequence complementary to the 5' end of the T7 promoter primer included in an siRNA construction kit (Ambion, Inc. catalog number 1620). Each specific oligonucleotide was annealed to the supplied T7 promoter primer, and filled-in with Klenow fragment to generate a full-length DNA template for transcription into RNA. Two in vitro transcribed RNAs (one the antisense to the other) were generated by in vitro transcription reactions then hybridized to each other to make double-stranded RNA. The double-stranded RNA product was treated with DNase (to remove the DNA transcription templates) and RNase (to polish the ends of the double-stranded RNA), and column purified to provide the three siRNAs that were delivered and tested in cells.

Example 2: Delivery of a small interfering RNA targeting human ataxin1 mRNA.

The constructed siRNA molecules 1-3 described in Example 1 were transfected into HEK293 cells. The RNA produced by the transfected cells was harvested and assayed to measure the amount of human ataxin1 mRNA.

Figure 1 shows the results of a quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) assay for the amount of ataxin1 messenger RNA (mRNA) per microgram of total RNA from cultures of HEK 293H cells. Four cell populations were
assayed. The first were 293H cells that had been transiently transfected with siRNA against GAPDH, a “housekeeping gene” with no known relationship to ataxin1 mRNA expression. (The siRNA against GAPDH was supplied as a standard control by Ambion, Inc., in their commercially-available kit for making and testing siRNA). The second were 293H cells that had been transiently transfected with siRNA against ataxin1 mRNA at location 1671 in the ataxin1 mRNA sequence. The third were 293H cells transiently transfected with a plasmid containing a ribozyme against ataxin1 mRNA (which cleaves ataxin1 mRNA at position 1364 in the ataxin1 mRNA sequence). The fourth were 293H cells transiently transfected with siRNA against ataxin1 mRNA at location 0945. All cell populations were harvested concurrently for total cellular RNA, at a time point 48 hours after transfection.

On the gels pictured, the amplified DNA products of the RT-PCR reaction were separated by molecular size, using gel electrophoresis, and are visible as bands of varying intensity. Each cell population described was assayed using a series of parallel reactions, shown as a set of lanes at the top or bottom of each gel. Each set of lanes contains two bands per lane. The top band is the DNA product amplified from a known quantity of DNA added to the reaction to compete with the endogenous cDNA reverse transcribed from the cellular mRNA. If the bands in a given lane are of the same intensity, then the amount of cellular mRNA in the original cell sample can be inferred to be equivalent to the amount of known quantity of DNA added to the reaction tube. From left to right across the lanes, the amount of known DNA standard added was decreased, in the picogram amounts shown. The assay is interpreted by looking for the set of lanes for which the intensity of the bands “crosses over” from being brightest for the DNA standard, to being brightest for the cellular product below it, indicating that the amount of DNA standard is now lower than the amount of cellular mRNA.

On the gel shown in Figure 1, the top set of lanes is from the cells transfected with the ribozyme against ataxin1 mRNA. The comparison of the bands from this cellular sample to the bands from the DNA standards indicates that the amount of ataxin1 mRNA in these cells is between .505 and .303 picograms per microgram of total cellular RNA.

The bottom set of lanes is from the cells transfected with siRNA against ataxin1 at
position 0945. Analysis of these lanes indicates that the amount of ataxin1 mRNA in these cells is between .303 and .202 picograms per microgram of total cellular RNA.

On the gel shown in Figure 2, the top set of lanes is from the cells transfected with a control siRNA against GAPDH. Analysis of these lanes indicates that the amount of ataxin1 mRNA in these cells is between .711 and .400 picograms per microgram of total cellular RNA. Finally, the bottom set of lanes is from cells transfected with another siRNA against ataxin1, at position 1671. These lanes indicate that the amount of ataxin1 mRNA in these cells is between 0.404 and 0.303 picograms per microgram of total cellular RNA.

In summary, the results of this particular analysis were:

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Amount of ataxin1 mRNA (picograms per microgram total cellular RNA)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lower bound</td>
</tr>
<tr>
<td>Control (GAPDH)</td>
<td>0.400</td>
</tr>
<tr>
<td>Ribozyme (A1364A)</td>
<td>0.303</td>
</tr>
<tr>
<td>siRNA (AT1671)</td>
<td>0.303</td>
</tr>
<tr>
<td>siRNA (AT0945)</td>
<td>0.202</td>
</tr>
</tbody>
</table>

These data indicate that both the AT1671 and AT0945 siRNA against ataxin1 were effective at reducing the amount of ataxin1 mRNA in these cells within 48 hours after transfection, and that the siRNA were more effective at the reduction of ataxin1 mRNA than was this anti-ataxin1 ribozyme.

It should be noted that the exemplified method for constructing the small interfering RNA to be used as the therapeutic agents in the invention (that is, assembly from oligonucleotides using in vitro transcription and hybridization) is only one possible means for making the therapeutic small interfering RNA. Other larger scale, more efficient methods for manufacturing small interfering RNA may be used to produce the clinical grade and clinical quantities used for treating human patients, without altering the essence of the invention or departing from the spirit and scope of this invention, as set
forth in the appended claims.

Example 3: Allele-Specific Reduction of Ataxin1 Expression Using Small, Interfering RNA

In heterozygous patients, if a single nucleotide polymorphism (SNP) were to differ between the mutant and normal length allele, an appropriate siRNA might selectively reduce expression of only the mutant allele. We have tested 293, DAOY, SK-N-SH, and HeLa cells using allele-specific RT-PCR for a SNP at position +927 downstream from the SCA1 start codon (see Accession NT_007592). HeLa cells express a 927C but no 927T allele, while 293 cells express a 927T but no 927C allele. DAOY and SK-N-SH cells express both allelic variants. We have created allele-specific siRNA centered at this site. Results of assays for allele-specific suppression of endogenous SCA1 mRNA by these siRNA variants will be presented.

Example 4: Construction of Small, Interfering RNA Viral Vectors

A selectable reporter plasmid, pAAV-U6-Tracer is constructed for cloning siRNA. (See Figure 3). The plasmid pAAV-U6-Tracer is constructed to contain the inverted terminal repeats (ITR) of adeno-associated virus, flanking the U6 RNA polymerase III promoter from pSilencer (Ambion), and the EF1a promoter, green fluorescence protein, Zeocin resistance, and SV40 poly A from pTracer (Invitrogen). The gene segments are cloned as shown in Figure 3. Oligonucleotides for expressing siRNA are cloned into the multiple cloning region just downstream in the 3' direction from the U6 RNA polymerase III promoter.

HEK293 Cells are cotransfected with pAAV-siRNA, pHelper, and pAAV-RC to make viral producer cells, where the pAAV-RC and pHelper plasmids are part of the three plasmid AAV production system Avigen, Inc.). The producer 293 cells are grown in culture are used to isolate recombinant viruses, which is used to transfet secondary cells: HeLa Cells, DAOY cells, and SK-N-SH cells.
WE CLAIM:

1. A medical system for treating a neurodegenerative disorder comprising:
 a. an intracranial access device;
 b. a mapping means for locating a predetermined location in the brain;
 c. a deliverable amount of a small interfering RNA or vector encoding said small interfering RNA; and
 d. a delivery means for delivering said small interfering RNA or vector encoding said small interfering RNA to said location of the brain from said intracranial access device.

2. A medical system of claim 1 wherein said neurodegenerative disorder is Parkinson’s disease.

3. A medical system of claim 1 wherein said neurodegenerative disorder is Alzheimer’s disease.

4. A medical system of claim 1 wherein said neurodegenerative disorder is Huntington’s disease.

5. A medical system of claim 1 wherein said neurodegenerative disorder is spinocerebellar ataxia type 1.

6. A medical system of claim 1 wherein said neurodegenerative disorder is spinocerebellar ataxia type 2.

7. A medical system of claim 1 wherein said neurodegenerative disorder is spinocerebellar ataxia type 3, also known as Machado-Joseph disease.

8. A medical system of claim 1 wherein said neurodegenerative disorder is dentatorubral-pallidoluysian atrophy, also known as DRPLA.

9. A medical system of claim 1 wherein said intracranial access device is an intracranial catheter.

10. A medical system of claim 1 wherein said intracranial access device is an intracranial access port.
11. A medical system of claim 1 wherein said predetermined location is the substantia nigra.

12. A medical system of claim 1 wherein said predetermined location is the nucleus basalis of Meynert or the cerebral cortex.

13. A medical system of claim 1 wherein said predetermined location is the caudate nucleus, the putamen, or the striatum.

14. A medical system of claim 1 wherein said predetermined location is the dentate nucleus, emboliform nucleus, the globose nucleus, the fastigial nucleus of the cerebellum (collectively the deep cerebellar nuclei), or the cerebellar cortex.

15. A medical system of claim 1 wherein said predetermined location is the subthalamic nucleus.

16. A medical system of claim 1 wherein said small interfering RNA is complementary to the mRNA for alpha-synuclein.

17. A medical system of claim 1 wherein said small interfering RNA is complementary to the mRNA for beta amyloid cleaving enzyme type 1, or BACE1.

18. A medical system of claim 1 wherein said small interfering RNA is complementary to the mRNA transcript from the IT15 gene, including the code for the huntingtin protein.

19. A medical system of claim 1 wherein said small interfering RNA is complementary to the mRNA transcript from the SCA1 gene, including the code for the ataxin1 protein.

20. A medical system of claim 1 wherein said small interfering RNA is complementary to the mRNA transcript from the SCA2 gene, including the code for the ataxin2 protein.

21. A medical system of claim 1 wherein said small interfering RNA is complementary to the mRNA transcript from the SCA3 gene, including the code for the ataxin3 protein, also known as the Machado-Joseph protein.

22. A medical system of claim 1 wherein said small interfering RNA is complementary to the mRNA transcript from the DRLPA gene, including the code for the atrophin1 protein.

23. A medical system of claim 1 wherein said small interfering RNA is substantially provided for in any one of SEQ ID Nos: 1-44.
24. A medical system of claim 1 wherein said delivery means is injection from an external syringe into an intracranial access port.

25. A medical system of claim 1 wherein said delivery means is an infusion pump.

26. An infusion pump of claim 25 wherein the said infusion pump is an electromechanical pump.

27. An infusion pump of claim 25 wherein the said infusion pump is an osmotic pump.

28. A method for treating a neurodegenerative disorder comprised of modulating the expression or production of a protein in neurons by intracranial delivery of a small interfering RNA that reduces said expression of production of said protein, in a pharmacologically acceptable carrier.

29. A method of delivering a small interfering RNA to a location in the brain comprising the steps of:
 a. surgically implanting an intracranial access delivery device; and
 b. infusing a small interfering RNA and/or a vector encoding said small interfering RNA at a predetermined site in the brain.

30. A method of delivering a small interfering RNA to a location in the brain comprising the steps of:
 a. surgically implanting an intracranial access delivery device; and
 b. infusing a small interfering RNA and/or a vector encoding said small interfering RNA at a predetermined site in the brain; wherein at least one attribute of said neurodegenerative diseases is reduced or its progression slowed or arrested.

31. The method of claim 30, wherein said step of implanting the catheter is performed after said neurodegenerative disorder is diagnosed.

32. The method of claim 31, wherein said step of implanting the catheter is performed after said neurodegenerative disorder is diagnosed and before the symptoms of the said neurodegenerative disorder are manifest.

33. The method of claim 31, wherein said step of implanting the catheter is performed after said neurodegenerative disorder is diagnosed and after the symptoms of the said neurodegenerative disorder are manifest.
34. The method of any one of claims 29, 30, or 31, wherein said intracranial access delivery device is an intracranial access port coupled to the proximal end of an intracranial catheter.

35. The method of any one of claims 29, 30, or 31, further comprising the steps of: implanting a pump outside the brain, the pump coupled to the proximal end of an intracranial catheter.

36. The method of claim 35 comprising operating the pump to deliver a predetermined dosage of the said small interfering RNA or vector encoding said small interfering RNA from the pump through the discharge portion of the said intracranial catheter.

37. The method of claim 35 further comprising the step of periodically refreshing the pump with at least one substance.

38. The method of claim 35 wherein said pump is an infusion pump.

39. The method of claim 38 wherein said infusion pump is an electromechanical pump.

40. The method of claim 38 wherein said infusion pump is an osmotic pump.

41. A method of claims 28 or 30, wherein said neurodegenerative disorder is Parkinson’s disease.

42. A method of claims 28 or 30 wherein said neurodegenerative disorder is Alzheimer’s disease.

43. A method of claims 28 or 30, wherein said neurodegenerative disorder is Huntington’s disease.

44. A method of claims 28, or 30 wherein said neurodegenerative disorder is spinocerebellar ataxia type 1.

45. A method of claims 28 or 30, wherein said neurodegenerative disorder is spinocerebellar ataxia type 2.

46. A method of claims 28 or 30, wherein said neurodegenerative disorder is spinocerebellar ataxia type 3, also known as Machado-Joseph disease.

47. A method of claims 28 or 30, wherein said neurodegenerative disorder is dentatorubral-pallidoluysian atrophy, also known as DRPLA.

48. A method of claims 29 or 30, wherein the said predetermined site in the brain is the substantia nigra.
49. A method of claims 29 or 30, wherein the said predetermined site in the brain is the nucleus basalis of Meynert or the cerebral cortex.

50. A method of claims 29 or 30, wherein the said predetermined site in the brain is the caudate nucleus, the putamen, or the striatum.

51. A method of claims 29 or 30, wherein the said predetermined site in the brain is the dentate nucleus, emboliform nucleus, the globose nucleus, the fastigial nucleus of the cerebellum (collectively the deep cerebellar nuclei), or the cerebellar cortex.

52. A method of claims 29 or 30, wherein the said predetermined site in the brain is the subthalamic nucleus.

53. A method of claims 28, 29, or 30, wherein said small interfering RNA is complementary to the mRNA for alpha-synuclein.

54. A method of claims 28, 29, or 30 wherein said small interfering RNA is complementary to the mRNA for beta amyloid cleaving enzyme type 1, or BACE1.

55. A method of claims 28, 29 or 30 wherein said small interfering RNA is complementary to the mRNA transcript from the IT15 gene, including the code for the huntingtin protein.

56. A method of claims 28, 29, or 30 wherein said small interfering RNA is complementary to the mRNA transcript from the SCA1 gene, including the code for the ataxin1 protein.

57. A method of claims 28, 29, or 30 wherein said small interfering RNA is complementary to the mRNA transcript from the SCA2 gene, including the code for the ataxin2 protein.

58. A method of claims 28, 29, or 30 wherein said small interfering RNA is complementary to the mRNA transcript from the SCA3 gene, including the code for the ataxin3 protein, also known as the Machado-Joseph protein.

59. A method of claims 28, 29 or 30 wherein said small interfering RNA is complementary to the mRNA transcript from the DRLPA gene, including the code for the atrophin1 protein.

60. A method of claims 28, 29, or 30 wherein said small interfering RNA is delivered by a delivery vector.
61. A method of claim 60 wherein the delivery vector is adeno-associated virus, or AAV.
62. A method of claim 60 wherein the delivery vector is adenovirus.
63. A method of claim 60 wherein the delivery vector is herpes simplex virus, or HSV.
64. A method of claim 60 wherein the delivery vector is lentivirus.
65. A method of claim 60 wherein the delivery vector is a DNA plasmid.
66. A method of claim 65 wherein the said DNA plasmid is complexed with a liposomal compound.
67. A method of claim 65 wherein the said DNA plasmid is complexed with polyethylenimine (PEI).
68. A small interfering RNA containing sequences according to SEQ ID Nos 1-4-, or a partial sequence thereof, or a base sequence hybridizable to a complementary strand of RNA encoding a protein associated with a neurodegenerative disease.
69. A small interfering RNA comprising an RNA sequence hybridizable to the RNA sequence encoding a protein associated with a neurodegenerative disease to cause cleavage of said protein-encoding RNA sequence.
70. A small interfering RNA expression sequence comprising the DNA sequence encoding an RNA sequence hybridizable to the RNA sequence encoding a protein associated with a neurodegenerative disease to cause cleavage of said protein-encoding RNA sequence.
71. A small interfering RNA of any of claims 68, 69, or 70 wherein said neurodegenerative disease is Parkinson’s disease.
72. A small interfering RNA of any of claims 68, 69, or 70 wherein said neurodegenerative disease is Alzheimer’s disease.
73. A small interfering RNA of any of claims 68, 69, or 70 wherein said neurodegenerative disease is Huntington’s disease.
74. A small interfering RNA of any of claims 68, 69, or 70 wherein said neurodegenerative disease is spinocerebellar ataxia type 1.
75. A small interfering RNA of any of claims 68, 69, or 70 wherein said neurodegenerative disease is spinocerebellar ataxia type 2.
76. A small interfering RNA of any of claims 68, 69, or 70 wherein said neurodegenerative disease is spinocerebellar ataxia type 3, also known as Machado-Joseph disease.

77. A small interfering RNA of any of claims 68, 69, or 70 wherein said neurodegenerative is dentatorubral-pallidoluysian atrophy, also known as DRPLA.

78. A small interfering RNA of any of claims 68, 69, or 70 wherein said small interfering RNA is complementary to the mRNA for alpha-synuclein.

79. A small interfering RNA of any of claims 68, 69, or 70 wherein said small interfering RNA is complementary to the mRNA for beta amyloid cleaving enzyme type 1, or BACE1.

80. A small interfering RNA of any of claims 68, 69, or 70 wherein said small interfering RNA is complementary to the mRNA transcript from the IT15 gene, including the code for the huntingtin protein.

81. A small interfering RNA of any of claims 68, 69, or 70 wherein said small interfering RNA is complementary to the mRNA transcript from the SCA1 gene, including the code for the ataxin1 protein.

82. A small interfering RNA of any of claims 68, 69, or 70 wherein said small interfering RNA is complementary to the mRNA transcript from the SCA2 gene, including the code for the ataxin2 protein.

83. A small interfering RNA of any of claims 68, 69, or 70 wherein said small interfering RNA is complementary to the mRNA transcript from the SCA3 gene, including the code for the ataxin3 protein, also known as the Machado-Joseph protein.

84. A small interfering RNA of any of claims 68, 69, or 70 wherein said small interfering RNA is complementary to the mRNA transcript from the DRLPA gene, including the code for the atrophin1 protein.
293H Cells Transfected with
Anti-Ataxin1 Ribozyme (A1364A)
and Anti-ataxin siRNA (AT0945)

Fig. 1
293H Cells Transfected with Control siRNA (GAPDH) and Anti-ataxin siRNA (AT1671)

Fig. 2
DNA coding for siRNA expression
Figure 4
<table>
<thead>
<tr>
<th>Gene Product</th>
<th>Location</th>
<th>Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beta-Synuclein</td>
<td>Substantia Nigra</td>
<td>Parkinson's Disease</td>
</tr>
<tr>
<td>BACE1 (including Variants A, B, C, and D)</td>
<td>Nucleus Basalis of Meynert</td>
<td>Alzheimer's Disease</td>
</tr>
<tr>
<td>Protein isoform of the</td>
<td>Cerebral Cortex</td>
<td>Alzheimer's Disease</td>
</tr>
<tr>
<td>Variants of the</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Huntington's Disease</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deep Cerebellar Nuclei:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type 3 (Machado-Joseph)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deep Nucleus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emboliform Nucleus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLObose Nucleus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Putamen Nucleus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cerebellar Cortex</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Achromat 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Achromat 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Achromat 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red Nucleus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Globus Pallidus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dentatorubral-Pallidolysian Atrophy</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
<110> Medtronic, Inc.
Kaemmerer, William F.

<120> Treatment of Neurodegenerative Disease Through Intracranial Delivery of siRNA

<130> P11089.00

<160> 23

<170> PatentIn version 3.1

<210> 1
<211> 21
<212> DNA
<213> Homo sapiens

<400> 1
aaccaagagc ggaagacga a

<210> 2
<211> 21
<212> DNA
<213> Homo sapiens

<400> 2
aattcgattgctccgctcttg g

<210> 3
<211> 21
<212> DNA
<213> Homo sapiens

<400> 3
aaccaagagc ggaagacga a

<210> 4
<211> 21
<212> DNA
<213> Homo sapiens

<400> 4
aattcgattgctccgctcttg g

<210> 5
<211> 21
<212> DNA
<213> Homo sapiens

<400> 5
aaccagtcag tccaccttc c

<210> 6
<211> 21
<212> DNA
<213> Homo sapiens

<400> 6
aaggaatgt gcgcgtacttg g
p11089.ST25.txt

<210> 7
<211> 145606
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1) (145606)
<223> LOCUS AF163864 145606 bp DNA linear P
RI 24-JAN-2001
DEFINITION Homo sapiens SNCA isoform (SNCA) gene, ...
ACCESSION AF163864

<300>
<308> AF163864
<309> 2001-01-24
<313> (1) (145606)

<400> 7
aatatttcttt gaaaaacata gatgtccagt tctatctctc atatatttttc ttttcataga
60
gatatggcac tttaggatta attttaagctg caaacagcag aaaaagcag aataacagtg
120
gcttaaatga aatagaataa ttttatctct tgaaaaagtt ctgataaaga cagtcaaatg
180
tcagaagggc aacctgttttc cagaaaggt tcagagagcc aggctacctc taacccactg
240
ctctgccatc tctaatattc gttctgtatgc ctcaggtgctc acaatggcag taagaagcgt
300
ctcctcatct tctgttttct aaatagtaga agtgggagaga agagagaagagaagagcatt
360
aacagagtgg ccagaagctg ccatttgaca cttctgtaaa catttaattg gccaagatctt
420
aatctcatat cgacataagct gtaagagatg ctggaaaaact tatattgttctc cactctacat
480
ggacattact agagattttc tcaacagaga ggtctatgtga ataataagaa aagatgaagag
540
tggacacaa ccctgctcttt tacctttcag tagaagtaaa aatgctatat taatatattatc
600
tcctctcttc tctctctctctc tctctcttt gttgtcctgg ctaattttgg ctaaaacctg
660
taaatggtcg tggaaatcatc tctcaagcag atgctatatt acatatttct tcttcatctc
720
atatggtgag atgttgtgtgat ttttttcaca cttcccaataa talatgtttaa accatatat
780
 tttaaaat tggcctgagg tttgcctaat gaccagagta taaaggcaca tttttttcct
840
agtggccaa aacacagttt tgacaatttt gacaagtttt tgtgatattg taattatatt
900
gattaattt cac gattttttt ttaaatagaa aatagctatgtagctgagtctg
960
ttaacagga aatattaaa tttgaatttt cttgggtgaa ctacattgac tttttccccttt
1020
caatcacta acagaataaa tacatcattc cactgaaatc gagcctcatt taaaagagtt
1080
ccatgacaa atgcagtgctc actagttat taaagtaacc tataaaacttt gttctgtctc
1140
attgtccaca aatattaca acctgtcatt tggaaaaacc atttggttcca tggatgtcagc
1200
atatgtcagc tgtaattattg tgaatagttg gccaatattta ttttttgtaa ttcctttttttcct
1260
tataattttc gatttttttct gtttatttttttt ctaaaaca taattttttt gggaaaactg
cattgaaat
1320
taatatatat gtgccatagtt agcacaatat cttaatatgcttg gggaaaactg cattgaaat
1380
pl1089.st25.txt

atcccccttg ggatataacc cggtaatgga ggtgctggatc caaatggcatc tctagctctta 7500
gatccccctgag gattgcaacc actgctttcct caaatgggttg aactagttta cagtccccac 7560
agcacagataa ggtgtctttc atttctcacc cctcttcccc gcacctgttg tttcttcgaat 7620
tttaagatcc accattctaa tttgggtgag ataataatctc gtgggtggttt tgttttgcatt 7680
tttctgtgat gcctagttgatg atgaccccttt tttcactgtgt ctgctgctgctg cttataatgc 7740
ttttttttgaag agtgctgccg tccatatctt tttgctttaat tattcagatc ttttttttgt 7800
tttttgttaa atttattttgct atttttttgta gattcctggc atttactgctt attttgtcactt 7860
gtagattgca aaatttttct cccattcttg agttattcctg ttccactctgag ttgtgatttc 7920
tttttttgtg cgagagattc tttattttaat tagatctctat tggataatttt tgttttggttt 7980
tgtcattgct tcctggttttt tagacagtaa gttcttgacc atggctatgtg cttgataatggtt 8040
gttgcctaggg tttttctcctta gggttatttt ggttatttgaata atcaacattg aagcttttttaat 8100
ccatctggaaatttatttttctataaggtgtg aaggaagggta cctacgttctaca gctttttca 8160
ttgcaggtac ggtttcttttc gcacaccttg gttaaataggg acctctttcttc caaatatttttg 8220
tttttttgtca gtttttgctag agatcagatc attttgtattgtg tgttttgatattc tcattgggt 8280
cctttttgggtc ctattgcttc atctttctcctttctgtcct cttttgatggttct tttttgcttt 8340
tttttttttgtaggttcttgag cttttttttctt gttttttctt
p11089.ST25.txt

tttttttta agtaaacact gatgctaat gcagtcgcgc ttctcctttg ccatatttgg 11520
aatattcaag ctttgcctctt ttgggagagg ttgaatggtg aaataaaaat ggctcataat 11580
taaaaaaatt taataacctaa acaacctcaag acatggctca agactttttta aagttcaagg 11640
gttgctcaat aaataataaa gaatcttttg ttgcttttac aagggacagc aaggtatgtg 11700
taataaatc ttcaacctctt atatagtgctc ctaaaataag ctttaagaaa 11760
cataagatct acatatttaat atttatgact gttttcgttaaa aggataatgag ttaaatactt 11820
tcccaacagt tgaatatataa caaaatgtttt gcctcaacaa aaacaagaa aatctaattgt 11880
aatattaatt aataagatgtg aactcatatt atatgccaat taaaaataata aagggaaacc 11940
tgggggattgt gtctattttaa aacagttagt cttggcctgtt gcatggctta 12000
atccagcagc ttgtggagggc caagttggtgc gcctacccgct tattgagag 12060
gcctgaccaaa catgggaaac ccttggctttt tgcataaat acaaaatag ctggggctgg 12120
tgtgtcgtgc ctataatccct aagcttacctg gaagactaag gcggagagag ccttggag 12180
tggtgagcact cagttggtgtg gaggccagat gcacctccag tcctccacttg tgggcaaaaa 12240
gagtctgctttt tcggatagag aagttgatga aattgtggct 12300
gttgttaata atggtagctg gtctaatgtgt tttactacga aaggttgtaca cacacgtata 12360
daataaagtc gtaatattac taaatggtaa aaaaattataa aagccttgtaa aacgcaactt 12420
caacccctttt caagtatttaa atgcgaaccatt tggaaataatg aagggaaagag aaaaataaga 12480
agttggagag gagctgctggg aaaaagagaa gaagatagag aaaaataagc cttggataaa 12540
caacgtgata aagttggttcag ttgggaaaaag aagttggtgag agagactagtaa acacattgg 12600
aatggaagctt tatttacct aagagtttaa gctggggggtt taatgctgaa ggggcaaaaa 12660
gatggctattt catgcggatt aagttgctttt caagctcatttc 12720
acacatagttt aagactcctct aagactcctaa tttcttttatt tttcagtaaa gaggcgagaa 12780
agttgctcatt atttttcaat aagagtttaa gttggggggtt taatgctgaa ggggcaaaaa 12840
acacatagttt tgcctacaatt tttgcttaaaaa aatattgtttt cttttttcttc tcaatggag 12900
aggtgctagg ctttttaacttt tttgtgcttttt ttcttctttata ggcagagaaa 12960
aggtgctagg ctttttaacttt tttgtgcttttt ttcttctttata ggcagagaaa 13020
tttctccag tctgtatattgc agatagttc gattgtctgtt gatggctttaa 13080
gagtctgata taatataagata ttctgatct gttctgagtt attttctgatcg 13140
taatattatat acaccccttttt ctatttctgat gatgcgttta gttccaaatttt tttgatttagt 13200
tatttctgatt agaactaaatt ttgctttttt tcctacattc acttgaaatcattttgcgca 13260
ttattttctgatt taattttatttg aattttctgat gttccaaagttt actctgttaa 13320
aatcttcttt tacctcaacct tgtttttatcgc gttcttaagga actctttttgta aactgtcctta 13380
aatattttact gcctaatattc cagatagttc ttaatttattagtt aacatccaaaaa cactgagttt 13440
p11089.st25.txt

tggagtcaaa ggagatcatt ttgagccttt aagattgagc tgccccactg gatccagac 15540
ttgcatgaggg ccctgtaacct tttttttttt gccaatgtgt ccctttgaga atggttatat 15600
ttactcaatg ccctgtaacct catgtgtatc aggaagtaac taaccttgcct ttgatattat 15660
cataggttgt actcataggtg gaaaggactt ggccatttctt agatgatatt ttgagcttgtg 15720
gacttttgaa ttaatgtgtaa aatgagttaa gactttgggg gactgagaaa acatgggattg 15780
atatgttaatg ttaagacatg agatttggga ggggctcaggg gtgaagatagc atgggtttgctc 15840
gcttgtctcc acacccaaatt ttatctttgta ttccccataaa ttccccacggt tttggtggagg 15900
gacctgatgg gagataatctt aatcatgagga gttggctcct tctgtgcgctg tctctgatag 15960
atggaatagag tttcatagagac tctgatgtgg ttaaaaaatttg ggttttttcct gcacaagcct 16020
tctctctttg ccttgctgca tccatagcat gcctctgctct gcctttcccacc atgattggtgt 16080
ggcctccccca ggcacatgtaa gactgtaaggc cattaaacttt tctgctttttg taaaatgccc 16140	
tatctcagct attgtctttct cagcacgcatt agaataagatt aacacagagc aataagaatt 16200
gttctggag acatggaagag aatgttaaag ctcgggaacc tttgctgcta tgggaacaaa 16260
gagatgtggtt ggaagtcggtgccg cggcactacgc agtacaattg atcaaatag aagatcagg 16320
cgctttttct cccgccttcttt acctgtctctct aatgtactttta attgagcagac tacatgagaa 16380
agccagatcgg tagacagaca tcattattgta acctttagccc cagtgccagac gagacagggg 16440

aaaaataatc atctaaagagc caatggcttct gtaactagcatactgacatttggtgaaattttcgt 16600
agaaaaacctt tattttatca gtttttgtcct gcataatacc acatatggatt attaataagct 16560
gttttttatg tataacatgtaa atctttcacc tataaaaattg tttatatata cagagagaca 16620
taataatcgtgc taataatattt catttcaagt ttaaagttctt ttttaattaat acagagacac 16680
gtgcagacttc atcatacattca taactgtattg caacttattggt gtaaaacaccg 16740
aatatatctt cagaaagtttat cttttctttt caaactcttaat atatatcagcataaagcatac 16800
tctttttctg aacacccatt aatgatattta aattttatcata ctgataaatattcgt 16860
attctgtgctg tttttaattttaa aacagagagtc ttcattatcctg tgaatcagtatcagttataa 16920
tctctctgttt ctcattggtccatgtttcagacaattttg gttgattacca agccattaataat 16980
tttttttttttt gtaaattttttt gctctgttctt cgg><![endif]]></div>
p11089.st25.txt

tgatatatat gtgaggtaag tcttcaggtg tttcataggt atagtaccag ttggttaatc 19560
ttggtccaggt catgtagctt ccatacaacct taggttcttct ggacaaagca gtaataata 19620
ttcattatgtg agcttgcgca aaacaaaaag caaataaaag aaagttccta cctagagcaa 19680
aagagaaattt atatatatatg caaatatata acagcttttat atacaaatat 19740
aaatatcacc ctgatgtagt agtttgctag gatgccccata acaaaatgtc acagactgtg 19800
tggttaaaca acaagaaattt attttctcatt aatctctgaa gctgagaagtc tgagatcaat 19860
gtacagcgg ggttgtgtttc tttctaggcct ttctcctcttg gcttgctgatg ggctgtcttc 19920
tccagttgtc tttatattgtt cttctgtgtg tgtgtgtcag tgttctaatac tgtgtcttttct 19980
ataaaatatc cagtcagatt agggttcact ccaaggttaag aacgtgaaag catgtcttctt 20040
tctttgtatgg ggacaaatgg cttcatcact acataaagct ttggagacagc gctttctcaga 20100
tgctgacctct ttctcaactag gagagacgcc atggcatggtc ctgcttaaggt actctctcgtg 20160
cattctgcta ggacggttcct aggccccctaac aataaataaac gtagacccct actctctcttt 20220
ggataagcttct ctctgctattg tgcaaatatc aagaaacacttt ttttggtcgtg attgtaaag 20280
gaggagaaaca ctggcaaat ttcgagccta gatctctcact tccctaggaag aacactggtct 20340
atatatatata aatctctacgt gttataatta cattatatataa aagattatac acaacataat 20400
tgtacatattt aaacacagagtt tcaactatattt caacagttagc ctcccaagatg 20460
gaacctgact gtactgtatag aatcttgattg atttttatat ggagctttctt taacacaaact 20520
atatatatattt gtatgaggaac agaagaaatat gtatggagagga agagctgttgta tattgttttc 20580
aaatatatatttt gtctctggacct aaaaatgtgg cttttctagt tgttttcaaa tttttcacact 20640
tggggtaaattc ctttcttgctctct ctagctagtgt ttttttttatttt tctttgacttt gttttgtgtg 20700
atttctgacct gtactggtatcg atctctgattt gttttttttatg aagactttttg aatcagaact 20760
ctctctgtgctc catagctttaggatt aaaatccctggt attttttttgatttt ttttttttctctttttgatgataattttttattt
p11089.ST25.txt

actgcacact tagggagaga aagagatgtt tgtagatttt ttaattaatg atccctatca 23580
atgcctctgtt agctctccca ccttatctt cccacaactc catccccggt tggaatptttt 23640
ttgctttacc atataaagtg agagattttg atggggaaggc atcagatatc tcacggtgtt 23700
tgcgtggtgg atggggact gtcggagatttg gaaaccaggtg gaaatctact gcaatgaaa 23760
aaaaaaaag cagctctcag gacaccccaaa acatggaggg tagataataa caataagctac 23820
ttgtaactgag aagttccact ctggtcgtcct ctttgcctatg agccacatata ctcaaaccttt 23880
acaacaatca aacaagacaa gtataaatctc atgcctcatt tttaatgtaga aacatagaga 23940
ttttagaggt tatagataact tgctctggagt cactagtaat gatagtaga gcttttaaata 24000
gtccctgtaatt taggttggta ttctagactaatt tcacctcctag aagttcctatc tgcctacccag 24060
agttgacagag ctggctgtatat ttctttggtct cattatgtg ttttttttttt ttctaaacta 24120
aagttcatttg aactttttag attttaaatat cttttctctac tggtccttaac 24180
atccttaatctttt tgggaatctct gcagctccccct atatatcttac gaccagccaa ccacaggaat 24240
attttaaaatttt atatatctgtg gaaacaataatt gaattttggcctt atggggtcata attagagaat 24300
cpgaataacta tgctttctcttg atagttcact tcccttttctc tcaagagattac cttctttttcc 24360
catctcgtcc tccccccctt tcacaaataacta ctaataatgatc tctcctccac gggatcattta 24420
gcttctttctt actctcaccct ctatgaaattt acacacacag cctatggccta tttctactact 24480
tcgtctctctt cagactgtaa cagaaggttgat gaggaaggtagcagatagagata ataaagagct 24540
ggcattctcca gcatacaactg ctacactacc cttgtgttctca caacaaatata ggaattttattt 24600
ccaaagaataa taacagttgtt atttttttttt cttaaacaacta tttaatctcgt ctctctcttttt 24660
atcacttggatt aatgggccac actttttatttt ttctgacctt ttacttctgtct tctctttgtct 24720
tagcacaagtg ttaccacata ccatacctaat aatcctagtttt gttctattggt ggaacacaa 24780
gttagtggta agcatatattat ttatcatatgac gcaaaaattata gaattataatttt 24840
ccagataaaa gaatctcatttt atgggtctttgtaa aatattttta tattttacctt agcaaaagaga 24900
aaacaaaaactc tgaatattgtt agtattgaac agaaaatagcga tggtaatgatttg gttccaaac 24960
atgttaaccttt ttctttcttttt attagagttctag aagcattcactattt tcatttttaaac 25020
gttatattcaa gagaggctttaa agatattactgaa agaccaagtgca gtctctcataac taatgaaaaag 25080
aaaaaatataa aaaaaatctttt tttaaactctc gtgcctcttcct ttggtacttgtagacgcttttc 25140
ccctcttaag aatcagagact tagaaactatat gcaatcactc tataatcattt atgtgttaattt 25200
aaaaagttcatctggtgttttatttggtttaaggggttttactagggcttaac gagtttaaaca 25260
tatagttgta atctcaaagt acaacagataatttttatttttgattaggtatgtgtag 25320
daagaaatctg ctctctccctcctgaggtaatc ccaataagataaaagggctaatatatctctatccattt 25380
gaggtatgttgcttcataaatag atcttttcactttctcttttt tctcttcaggagtttcaactcagcctctcc 25440
gagggctatttctcaacacag ctggagttctacttttttcttctcactcttt tacccacaccctcctttttct 25500
<table>
<thead>
<tr>
<th>p11089.st25.txt</th>
<th>31620</th>
</tr>
</thead>
<tbody>
<tr>
<td>cacacagaat ttaagataaa aatgaccac tgaagacac aatagttatag tccagggatt</td>
<td></td>
</tr>
<tr>
<td>ggccaaattt tgggttaagga atcagatagc acgttatatta agccatgaga tctatgtctt</td>
<td>31680</td>
</tr>
<tr>
<td>ggccaggtgc cgtggctcag gtttttatact ccaagcacttt gagagccccga ggctgttgga</td>
<td>31740</td>
</tr>
<tr>
<td>tcacttgac ccaggaggtttt gagaccagcc tgggccacag gttgaacctc tggcttctaca</td>
<td>31800</td>
</tr>
<tr>
<td>aacaacgcga aaatagcccg ggtagtttag catgcagcgtg tattgcacgc taccacgagg</td>
<td>31860</td>
</tr>
<tr>
<td>gctgaggtag gagagttgtct taggctacat agcctactgc agaggtgtaa gttgacggaag</td>
<td>31920</td>
</tr>
<tr>
<td>atcgagccac tgcactccag cctgggtggc agagtttata cctgtcttaa aaaaaaaaga</td>
<td>31980</td>
</tr>
<tr>
<td>aaaaaaadat catatgtctca attctgctgt taagaggtaa agttatgcatc aacaacaaaa</td>
<td>32040</td>
</tr>
<tr>
<td>taggtgtggtgcc gtgtctccaat aaacaccttcat ttatcaaaaaaagcgtgtgcgg ccaggtatggg</td>
<td>32100</td>
</tr>
<tr>
<td>ctttcttacctg actactgtcag agaatgtaa gcaacacgca taacactacaa ccaggttgaataaggt</td>
<td>32160</td>
</tr>
<tr>
<td>aaccaagatt tcaggttaga atctacatctc tatacactctt cagaggttgg ggaagcttcc</td>
<td>32260</td>
</tr>
<tr>
<td>ttacacttctcctgacact cttctgtgatt ttatgtaaaat ttctctacag ggataacttc</td>
<td>32280</td>
</tr>
<tr>
<td>ttcataagca aagtaatctc atctcttttt aaagataatac ttttaaacac tacttttttaa</td>
<td>32340</td>
</tr>
<tr>
<td>tttgcaccaac gcttttccata tgttcttttcat cacatcattg tttgaaaggtt</td>
<td>32460</td>
</tr>
<tr>
<td>tgaggccagac caaagacaccttattt ctctcactgc cggagagtttggtgtaagagc</td>
<td>32520</td>
</tr>
<tr>
<td>cttcataagaca aagtaatctc atctctttttt aagataataac ttttaaacac taaaatttttaa</td>
<td>32580</td>
</tr>
<tr>
<td>tccatgttgc aactacgctta atgatcagtt ttatattttttaatgggtttcttt cccctccattt</td>
<td>32640</td>
</tr>
<tr>
<td>ttgattatgct ctcatacacttt caaaccacatat cttctctttc ctaatcattc ccgagatagt</td>
<td>32700</td>
</tr>
<tr>
<td>ttcaataaggg aacatcataa ttagtaattt cattccaaag cagaaagatt tattttctttt</td>
<td>32760</td>
</tr>
<tr>
<td>tatataatgc tcaagataata attagagatat cttccaaaag cagaaagatt taattttctttt</td>
<td>32760</td>
</tr>
<tr>
<td>tttaaatgc cttcataaat cttctcaaat ctgagaggtggtt gtaagattttag atagcaggcag</td>
<td>32820</td>
</tr>
<tr>
<td>tccaattccc acctgctgtaca atacagcagcagcctgagctg cttccacttgtgatagagc</td>
<td>32880</td>
</tr>
<tr>
<td>tcaagtacataa atgtgcttcca cctctcaactg ctcagagtaac ccataacata ctcagacag</td>
<td>32940</td>
</tr>
<tr>
<td>ggataactgca gttcctcaaaaa cttctcggtta ttctctctctg ctctctctctg cactctgtgc</td>
<td>33000</td>
</tr>
<tr>
<td>tcttttgagg tggagagagaccagagagatgttgatggga cacctcctcgtt cagggagacgt</td>
<td>33060</td>
</tr>
<tr>
<td>atacagctgta tgtcctcactg cgcattttata cttctcaagt cacataacat cttcgccacctc</td>
<td>33120</td>
</tr>
<tr>
<td>atctatttt cttgattttt cattccatata attaaggtct aacatcacaatcataaaa</td>
<td>33180</td>
</tr>
<tr>
<td>ttcagattata tagttaataataa ttagtacctc aaagaacacagc tggatgggtttc gatacatggtt</td>
<td>33240</td>
</tr>
<tr>
<td>aacccctagga ggcctctcaca ttaaccatagt attataatcata ctcaaaagc ttttttaaggg</td>
<td>33300</td>
</tr>
<tr>
<td>ttcgacataa aataatatata atagttgcac ttaagattttt ataaaaatata tagatatttata</td>
<td>33360</td>
</tr>
<tr>
<td>aagttctttt cttgagctttg ctgcattcttc ctttttttttctg taagataggtc</td>
<td>33420</td>
</tr>
<tr>
<td>tcaatctgcctc acctccacccagggtagtaccgctg cctgcagctgcaggtgtaagc</td>
<td>33480</td>
</tr>
<tr>
<td>tccgcctcagt gttctccagt actctacccagcctcagttt atctcaggtct gaaattacag</td>
<td>33540</td>
</tr>
</tbody>
</table>
p11089.ST25.txt

tcttcacgcct tcaaatcatt acataaataa cagaaaccca ttataacagtg acataaaacc 35640
acagcacttc ttccaaagct tttttggagattg tttttaccttc acatctgtta tgcagcttcct 35700
acagacagca atggccggac atgttgtggtgcc acattgtcctc ccaagttgta gcccatgtga 35760
tggttccacaa aatagcgcga ccaaaagagg aaaaactgcca gcaaagatga aagtgatgag 35820
aaaaaagaa cggagagcttctggaagctt aaattgaactt accatataagt tagttgatactac 35880
aggaagtgac cacccctgagg atgttgtcctcg agctgcaacttgtgct ctaaaatgtga 35940
gtccagggata gctaggtgtaa cgtataatgg gggaaagaggt tggataaagctg 36000
agttgaaggctt ccaggagccag agcagatgggtcc aaaaaatcacact aaggtttgct 36060
agtatatcat gacatttaag tgamcttctgtaaacgt gccctgtcctc cccataaaat ctaatctggt 36120
agggatagttg ctaatttctgta acactccgca tttccataaat tatccaaatgt 36180
gaaattacact gaaaaatcaca caacctgaga gatgatgatgtaaata ccattttttttt 36240
tttttataatacacaaccatatctgatatgatgtaaatggctgataggttgcagcttacgatggttttttt 36300
aalattcataa tatcattgatatgagataggttttctgataggtatgccctgttcgccctttttt 36360
tgtatgtagc ctaaaattctat ctaatctgaga ggttttcagtttt 36420
cataatatatact ctaattgagttctagataggttttctaattgataggttctgataggtttttttt 36480
gttttttgtt tt
p11089.ST25.txt

tcttttacct atttcttttat agtgacatca tctctttatta aatgggcatat ctgcatatta 43680
cataacagtt cattgccaaca tacatatgag tgggaatgga gagacttaaaa atacatacaca 43740
accagagata tagtttttgg tagttttattaa aaattcttagag aagaatttttg actgaaaattt 43800
rttgtcaacac atgggacagc aataagattta taccaagatattataacttt ctcattttttaa 43860
tatggactata atacagatag aggtctcaac aacgctgaagg ttctcacaac atcaccacaa 43920
cagcaaaata atttttgccct ttttttcctgcac aacaatgacct cttgctattct cttggtaaataa 43980
atcaagcata cccctgtccct gagacgtcttt tggggaggcc tgccctaatct tatataaatat 44040
tggagccatt cttcttcactt ctggtatcccc cagtttctccc actttttttacttttttctttctttct 44100
tttttttttt ttttcttttttttt cttttctttccc ttttttttttt cttttttttttt 44160
rttttttttttt ttttttttttttt cttttttcttttt ctttttttttttt ttttttttttttt 44220
rtttttttttttt tttttttttttttt ctttttttttttttt cttttttttttttttt ctttttttttttttt 44280
rtttttttttttttt tt
p11089.st25.txt

tgatbtcaca aacaacgcac ggtcacagcc aacatttcag atttttttga aagaagccac 47700
apaggtcaca ggctactaatc taaaatattt ttttacattac aatagtaataa gaaatttgtag 47760
gactggagaa atataattt taatagtaac aatctcccctt aagtgctact taattgtttaa 47820
tataataactc tgcctcaaat aataaaggct ttggtttcttg tcccctgtctg tcactctcaca 47880
agataacacct cttccatgta ggtatattta cacctaataa aaaaaaatgg agacacaagt 47940
aatgtccgtg aataattttt tggctcggggt gcgacatata atactccaatc atactaacat 48000
agattaaggct atactgtgatc tattaaagaa aataattaaga ttgatatgtt ttttaaaggtta 48060
tgtaacagct acatatatgc atgctgtgatat taaaagttgg aatctcttcac tcatatgaga 48120
gcccaactttt ggtacacataa ctgctttcccctt tagagaaacac aatttatattt gctctttctt 48180
gatcaaca aataattcact cggctgccaatag tggatatgattta atgattctctta atgcacccctc 48240
atcctgtgaag gccatgtggtt ggagagactct ctgtaattat tatttattat ttttaaattat 48300
tagcatctact tgtatgttttt catttactaat catttactaata tgtgacacag 48360
acctcgacct gcaccctgag aatataaaacatcgacaaatgcatgccttc tctctgccttc 48420
agagaatgcg caggtcagcc cggagactct acaatataac cctgggaaaag aaggagacag 48480
tggtgtctct gccagaaataa tgggtttgtt taagctattata tctcctacg aaataaaaagag 48540
atttatctttt gaaatagagac ggcgcttagtg gctcttataatc atacttctcctta 48600
attttgtatggt ataactatatata ttagctatcata cacagagcatc atagctggtttgata 48660
gctgtttttaa tagatgagaca aataacttccata cccaaatcttt aatggctgatct gtatattttc 48720
tgtagcttata acacatccca acaatagactgc tgaacttacata tccaaatattt atataaatcccc 48780
aacaggtgta gcgtgtatgtt ttgctttgtc aagaaatgtt aatgattctgta atgtttgctgat 48840
aacagtctga cctgtcactgt aaataactgta tttttattt aatgtgtaaaccag ctcttcttccctt 48900
cctcataaat tgcataaataa cctgtgagct caagctgaca gacagtaccc 48960
acactcttgcct gcaccccatcatt tcttggtcgt ctatctcctttt ttttatatatc atataataagtatgtc 49020
tgtgagataag tagtgcaata tttttttag gacagctgtgttat cttataatatatatcactcctt 49080
atgatcttca aattttgtgt aattttatat attttattat tttattttatac tctgttagctg 49140
agcagatgtg tgtgatcattta tttttatatat atataatatata ccaacctgtataaatgatatagactg 49200
taaaagcgagac aagacgaggtt aatcataccat cttcctttcttg cttttttttc 49260

Page 26
agttttaggg agacatgtat gatgctatttt gtcttatcag ggaaattgag tcgggaaa 49680
ttttttgatt ctcaaacatg cttaaagtatt taaaaatcag gacaattat gcgttatgta 49740
tattcaaggg tacagataag gcattaaatg gatggcaatt gtatgggtca tgaatattat 49800
taatattggt tattgagttt agatgataca tgtctcataat ttaatgttct tttcacaagg 49860
gaaaaatgga caatgtgtca atctcttgtat gaagtaatatt ttaaagagaatt tattaattaa 49920
actttttaaaca acatactggtt ttttaagttg caaatttaaat ttccctctct accagggtat 49980
tcttgtgaaata ctaagcagtct acctgtggcta atcccaagagtt agcatttaat ttcttatatt 50040
gcatatgta acaactaatgc aaagaattac tggcaccagaatt ttatgtgtgt gtaaataata 50100
gattattaatgtagacaatgagttttaaatg tgaataatactaa algacattat atatttttcat 50160
ttcctctgctta tcggtgggatg tcgagtcttttt cttctgttgg tttcacaacaa caatatgatata 50220
aatctaatggtg aatccagttt cataggaattg aattctagtta cattatgatggtgtagaatt 50280
agtgctcatat ttaaatattaa tgaatctcaca tagattttttaa actatctgtgc tatcagatgg 50340
gtgcataagct gcgtgatctcc tctaataatac aagcagactt catcacaactc atatacatcac 50400
 ttlttttctat ttgctttgttc cctaacatac caaattggcctc ttcaccagatg 50460
 gttcagtgat gttcccacg acagattttttgac tgcgtttgtga cattacacggattgtag 50520
ttcgcattttt gtcgataagg atgtatctctgtata cattatctct caaatagggacctatgc 50580
tgcttcctac ttatgtctcag tatactttcgg attaatgtaa tttcctctaca aagcataatag 50640
agatagataaatc acctctctatattactgacaatcttaataac ttaattaatgtgcatatatcttcctct 50700
agtcctcctca caaaggttata tcaaacatttta tagaattttttaa gcaagcggtaa atcaacagcgc 50760
ttctgttctac gatggtgctat atctggtgttt tggctagtca ctgatcagctgtgcatgctgctg 50820
tgctggagtgc ggcctgcttgc ttaaagctgac tatttttttattaggtgataatgtaaatgtgcttttttaatgctttaa 50880
tggagatgtgtggtcttcctaatgtattgca tggcagctgctgcttgc ttttttattatggttataaatgtaaatgtgcttttttaatgctttaa 50940
tcactctctctac gatgagtgaatgcttcctaatgtattgca tggcagctgctgcttgc ttttttattatggttataaatgtaaatgtgcttttttaatgctttaa 51000
taagcataatgtttaaatggtcagacatcagtgcgtgctgtgatgatcagagctgctgcttgc ttttttattatggttataaatgtaaatgtgcttttttaatgctttaa 51060
accatgctatactctgtaaagctgtcagcaccactgtcaggctggtttgagtgttgaatgcata tttaaatggtcagacatcagtgcgtgctgtgatgatcagagctgctgcttgc ttttttattatggttataaatgtaaatgtgcttttttaatgctttaa 51120
ccatgctatactctgtaaagctgtcagcaccactgtcaggctggtttgagtgttgaatgcata tttaaatggtcagacatcagtgcgtgctgtgatgatcagagctgctgcttgc ttttttattatggttataaatgtaaatgtgcttttttaatgctttaa 51180
ccatgctatactctgtaaagctgtcagcaccactgtcaggctggtttgagtgttgaatgcata tttaaatggtcagacatcagtgcgtgctgtgatgatcagagctgctgcttgc ttttttattatggttataaatgtaaatgtgcttttttaatgctttaa 51240
ccatgctatactctgtaaagctgtcagcaccactgtcaggctggtttgagtgttgaatgcata tttaaatggtcagacatcagtgcgtgctgtgatgatcagagctgctgcttgc ttttttattatggttataaatgtaaatgtgcttttttaatgctttaa 51300
catgctatactctgtaaagctgtcagcaccactgtcaggctggtttgagtgttgaatgcata tttaaatggtcagacatcagtgcgtgctgtgatgatcagagctgctgcttgc ttttttattatggttataaatgtaaatgtgcttttttaatgctttaa 51360
ccatgctatactctgtaaagctgtcagcaccactgtcaggctggtttgagtgttgaatgcata tttaaatggtcagacatcagtgcgtgctgtgatgatcagagctgctgcttgc ttttttattatggttataaatgtaaatgtgcttttttaatgctttaa 51420
ccatgctatactctgtaaagctgtcagcaccactgtcaggctggtttgagtgttgaatgcata tttaaatggtcagacatcagtgcgtgctgtgatgatcagagctgctgcttgc ttttttattatggttataaatgtaaatgtgcttttttaatgctttaa 51480
ccatgctatactctgtaaagctgtcagcaccactgtcaggctggtttgagtgttgaatgcata tttaaatggtcagacatcagtgcgtgctgtgatgatcagagctgctgcttgc ttttttattatggttataaatgtaaatgtgcttttttaatgctttaa 51540
ccatgctatactctgtaaagctgtcagcaccactgtcaggctggtttgagtgttgaatgcata tttaaatggtcagacatcagtgcgtgctgtgatgatcagagctgctgcttgc ttttttattatggttataaatgtaaatgtgcttttttaatgctttaa 51600
ccatgctatactctgtaaagctgtcagcaccactgtcaggctggtttgagtgttgaatgcata tttaaatggtcagacatcagtgcgtgctgtgatgatcagagctgctgcttgc ttttttattatggttataaatgtaaatgtgcttttttaatgctttaa 51660

aaagagtt tatttaattg acctacacgt cagcagtggt gaggaggctt cagaaagctt 61740
ataatcatgg tggaagagaca agggggaac aggcacactac ttccacaagtt gacaggaagg 61800
agaatgaaatg cagggagaaac tcaacaaacat ataaaacacat tagcctcttg aagactcact 61860
tcgattatc gagacacagca tgggggaaac agctctctctg atctagttac tccacacttg 61920
tctccctctt gccatgtgagg gatttggggg atattaatta aatagatgat tgggtgtgggg 61980
acacaaagcc taacacatatc accatatgac ccaaaatctac gctacatag attcaccacc 62040
aggaatgta aacgtgttcc acacaaacat ctgcacatgc acgtttttag cagctttttatt 62100
cataatggcc aaaaacctggg acgaaccaag atgctccttca ataggtgatt gaaacaaaaag 62160
actggcagcat gtactctaattg gatattattg cagttgataac aaggaattatg ctaatcaagcc 62220
acaaaaacam atggagaaaaa cttgtgctagc taagccagtt ttgaaaggttg cattctatat 62280
gatcacaata taatcacttc tggaaagacgg caaattctttg agacagttaa aagatcagtgg 62340
attgccttggg gcctctgagag aatgatgctg gtagatgtggt tgaagcactat gcatgtttta 62400
ggacagtgaat acatattctct atgatctctat cagttggttac attcaccacgt atccctttttgt 62460	
taaacctcag aatatttacca tacagagtga attctaatat aaaaaattgag ctttagatgtg 62520
aatgatgat cacatcttttt taataatgta ccaacactat gcnaattattg 62580
aatatatggc aatggggtggg aaggtqatgg gaatgtaaag gatgacagt tattcatcagt 62640
acaaaaatatc caacacactca aacaaataattg aagcattattcag caggtgattg 62700
ggactattctc agtcttcctag cagctctctg ggaacagcttc ccatgacccac 62760
aacataacttga cacactgagg ccaaaatgatt gaaacactgcttt ctactactaa aataacaaaaag 62820
aaaaaaaga aagaaagaaa aagaaagaaag aacagaaagaga aagaaagaaa atgaaagaaa 62880
aaagaagaaa aagaaagaaa aagaaagaaag aagaaagaaa aacagaaaga aacagaaaga 62940
agaaagaaaa aagaaagaaa aagaaagaaa aagaaagaaa gatgcggttg 63000
ctgcttttctt taactcagag ctactcgggtag actagggcctttaggag aagatcagcc 63060
agttgagagt tcagataggg tgaggacttgc cacttgctct cagctctctggt tcagagagca 63120
aggctctgtc tcaaaaaaattttaaaaaa atatagatgctac tcaagtcatac 63180
tacatcacaac gtatattagg aaacctttttt cactctgtctt ccaatattat gtttgtggtcc 63240
actgtagtttta aactcagaaac ccaatatggtg gaaatggaag tttatgggga aattattatttg 63300
atttcctaatg aatgcagattt gctctctaattg agccagatta aagacagtta 63360
atgctctctt ctattcatgta taatgatagcc cagagaactaca attaggaact 63420
gggagagggg tggttttcata ataacttcaca cagacatttga ctgcttcctttttcg 63480
tcaaatctca tttttaacaaa atatattttgt gagcctattta tagatactcttg 63540
cgtacgtgcatc gagggacatt gcttttggtc tccagtgatt tacacttttaa atctctcctttt 63600
cacatcataac cctctctgtttttctcag tctttcggtt gtaaatttttaa cctcagattc 63660
agacattttta ttctacccctac agatcactgac acatacgatg ccttcaaaaaa 63720
p11089.st25.txt

agattaatgg aagcataatg tcatacaatg acctgtacag aattttcac gatagcatta 67800
cctcttatag ctcctaacttg tacaacaaca aataatcatc aacaatttgg ctgtatcat 67860
acacgcaaat actacctagc acaaaaatgg gatggacta ctgataacct caacaacatg 67920
gatgaatcct aaaactatca tgcgtgtgta tgcctagccac aatatcgtac atactataat 67980
tccagaaaaac acaatggtca tccagagatc cattgtgtct ggaggttaga 68040
gcacatggtc acctttcagc gaggtgtcttg ccaagatgtt gttgagaaat caacatccca 68100
caatagatatt attgagcagca atagctatag aaggttagaag gagaaacgga gaaaaaccag 68160
gaagaagaaaccacatggt agtgtgtgata tcactttcaaa gggagggcag aaggaaggaga 68220
attgggtagg aattgacgac cattacagtg cagttcactg aatgcccttgg ccaccacac 68280
agttacttgg ttggaggagtc atgctattag cagcactgtc ctggctgtatg ttctttctgtc 68340
gctccagttc attggctggga ggcctagcttg ggtctctgttg cttggtgtgga ccttcattgtc 68400
gtcaccagc gaggccccata gcaccccttgg cagctataatg gagagaaaaa aatcataagg 68460
tgtacattcctc tgcgtaccccat gctgggtgtcg ggtgtggagg ggagagaag gagaggaat 68520
taatagagaa aagcagcaaga gggcataggt ggactttggat gattatatgatt gattttctca 68580
ttgtggtggt cgttctacatg gtttatataat gctcattcaac tcaagagatg tacattttaa 68640
attgagttcat atgttctgta cctcactatg gtttatattt taaaatttt ctaaatttc 68700
agttttcttt atattttatatg cagcagatac aaccctagac accctctcacc ttccaaactct 68760
aattaccttg tgcattcagac agcagaaagtt acttttgtatg atataggtag agagatggaa 68820
gctttgtgac attaacaaga ggacagggaaa tgtgacctttg tcctatgcct cccaaactgca 68880
aaaaatatcata ctacaagagc tattctacat tacatttttc aaggggtta caatatattgc 68940
cctactataac atttttgatcg tggaaagggg ttaaattttct tgtgcagggg aataaactattc 69000
aaaaagactc taaagagccc agagaagtaa aataggaagtg gttttcttgg tagaggagat 69060
atttaacctc cacaagatcgt gattaacttattgtatgct tattatatg cttttcctcccc 69120
tctacattgag tcctttctctt gtaattattt gtttttctctc tcttcttcttc 69180
tctttctttg cctttctcgtg cttgtcacatc agcaaatgctct aacaaagttgc tttcatgcct 69240
ccttatattg gcaatctctc tcttagatcc aaatatattata tatatatattttttttag 69300
atggagtcttc gcccttgtgc cccaggtgga gttgcctgtgt gccaatctctc cccagcagcag 69360
ccttctgacac cccagctccac gcgattttccct tagttcagcc tctttgtgtagatg ccggttttac 69420
agggctctgc cccagcacgt gcgtattaattt ttgtatatctttagtgagatg gttttcgcgc 69480
tgcttggcag cctgcttttg aacctcttggg cttcggtgag ccacccgcggc caggctcctcc 69540
agttgagttg aattacagggg tgcggccttg cttccagctct aaaaatcttt aagtagagaa 69600
tggcagactct atattctttgt tttctttcttc agcagctcttt ctaattttactc cttccacgcg 69660
gacagagtgtg ttcctgtgctt cagattcatg acctggtctct gtttctccagc tcaggtttctc 69720
p11089.ST25.txt

tctgaaagt gaatcctgag aaaaacaaca caaaaacacc atcatataag tgggcacagc 71820
tggtggttgt agataaacat tccccagcttt acttttcact atctattatg tattaattta 71880
gcaaactattt ttgatcgctcc tataaaaaa caggacacttat ttggtgatg agaagactag 71940
aggcagaagaca taacaagagct gcctctgggtg aacaatattg gaaataagta aaaaagaaag 72000
aaccaagaaaa gcaaattggt atatatcgcgt gtgtcttataa aaacaaatat ggcctatttta 72060
atatatatata atatatataa ataatatacat attgtgtggat acactatgt actggatatt 72120
tatagacata atccagcatta atccctaaaaa tggcatgttg atatacaatc cccagctttta 72180
catatgacac ttaatgtggtg tgcataatcc cccctccgatta caaaaatata tagatcataaa 72240
aaccttttgcc tcattcaatta ataatcaattc tggtgtgctag tattcttttattt ggtctccgca 72300
tcatctttaag gcacctttgtg atagagttga acaaaaatgaa aacaacctcc gtcttcaaat 72360
aatataatatt tcacagaggt taggcacgtaa ataattcagaa aataagattta acaagtatag 72420
tgacctatca tcagctacac acacagcagc atcatgactc tgggaagacg aagagacgac 72480
atcttttacc atagcttcacc aaaaaaaaaa tggacacctt atttaagggtta 72540
gtggagccccc ttgtgacatt cagacttcaata atccccacatt taataataatt ggttggtatt 72600
cagcagcagcag gccgcacatg gtaaatccgtg atcctcctatttaaacaataaacttttaaatg 72660
aatggtatat gtacacatata atacctacaa aaatgctgtag aatgcctggcc aataatgttg 72720
ttctaagccat ttccatgctaat gcgtgttcaag tgaatattaa aatacccttaa gtaatatggctg 72780
cattaccaaat attaggggcct tcatcaataat gatgtgatcgct taagcagacttg taagaaatatt 72840
tctcttgctga aagaggtgtta taataaggtg atataacaatg aataacatga attcctgcttaa 72900
agcttaaacta aatgtatttttt tggattatata aataatatataa aaaaattcgagtttctttgcttctctcaataaataatacatg 73020
cagcagcagcag gccgcacatg gtaaatccgtg atcctcctatttaaacaataaacttttaaatg 73080
aatagctgtg gcctgtttgct gcgttctgtgtagg caccctcgat attgctgtgtgctgtggaggtgg cttaggcaag 73140
agaatcaactt gaacataacca ggaatggtggt ggtcgagctgta gccaagattg tgcctagcttatttttgtttag agaagactagc 73200
tccatcggcttg gacaagactgt gataaagtctgcctaatg gffggcgattg gatgtgtctctatgaatcataagaaagat 73260
aaccaaaaaa ctgtggagactc atggagcactgt tatttacagaggg aagaaaatgaggttatggttgg 73320
tttagacact gatgtaatcata tggtaaaaaa taagagcaggt atgaagatgtaa caagagatgg gctgttcatatc 73380
agatgtactt ttggtatcag tgggactgtgctgaag ggtacattggttcatgtagtacacctggactaatg 73440
cataaggtgtg cggaggactga atcccaaggg atgggttccattttggcgattgtgtattgtttaaatg 73500
attagatcctc tactaacatg cgtgttcattg ttagaaaggt gttgttagacct ctatctgctaaatg 73560
gtagatcattg aagagaatgtaaagattg ggccttaaatg acccctgtgtg acctccctagtggtaaagagataaatg 73620
tatggattag gcaagactgtc tctactcagta acacccattatttt cccccattttgtt aaataagaggatttc 73680
atgttgttact ctaagacatct tcaagactgct ttcgatttattg taaatttctgc atcctgccacatg 73740
tttttaggct ttattgatta gagggtgatt aataatgcag tggataatgt tcatgacata 75840
acgaataaaa aagttcattt ggcaagttgcc ttttcatctc cttaggacga aagacgtat 75900
 Tataaatgac ttgttgtttgga gataataagg tttttttcag gcaaagagtg tgcataccca 75960
tctgtgggaag aacattaana aactagggag agactgtctc atatcttat ttggcaacc 76020
tggttttgc ttaataaatg attagttttt tttatatctct tcattttgcg tgggctttttt 76080
tagcccccaatt taataatatt atgctagata tttgatgaaaa cttttactctt cccttttaattt 76140
catcaaaagta cttggataaaa ttatttcatac gtatcattata ttgaggggttt tattagatt 76200
aatatatata atatctgat gtggaaatta ttttaaactt gaatatatttg tgtattaagtg 76260
aggacactta atacagttaa ctggtctctgt ttttatttttg agcttgctgat ttggcagag 76320
catttggaa tatccagggaa aggaattgta tttttttcag catttatttta ccctcctatac 76380
agaaatgaag cattttgataa cacatccatg aaacaataatg tttttcatatg tgtactatac 76440
actgcttata agccctaattt ccctcgtgac tatatttttg agaaaaactt ggacctttgag 76500
aaaaaattt cattgtcggacctatatatat tttataacta ccgactgttt tggtttgatg 76600
aaagggactca aaattataataa aatgtcagcc acacagtaagt aagccttttg ctgacatgg 76620
agtttatgca ctggataatc ctttttgaaca ttccagtttct tcaagttgtcc tctagactgttg 76680
tcaagcctta ggaagttttat ataaaaagaa caaatataaga aagggacatg tccagatattta 76740
ttcagttgaat tttgatcctt tttatctgta tttttgagag cagcccaaaag 76800
atgcggtctca gcaagggagaa ttgtaagttg ggcagcccaac ttgtattctt caacctcttaa 76860
gctttttctt taataatcga atattttatg aattttaatg tccatattgct gtagacttttg 76920
ggagatgtttt taccaattct ctctcattgatt ttttttgggc ttttttttcttcattgaca 76980
atatataaaa aatgaaatctt ttttttgcatt tttttttctgc gcaactaacttt ttttttttca 77040
ctttttcttct cttctttccct ctggttggttc gcctggtgggaa cagggagaattc cttggggagag 77100
aaggttgtcg aaggggtttactt gaaagaggtgc ctaagaagag gctgatggca atgtgcccag 77160
cagccttagga agtagggagg aaaaagcagag gagacagagaga gttgtggatg aagagaagac 77220
cagggatctt atgtgtgttt aatgtcatttt catgtctgac accaaagttg gcaacccata 77280
agcacaataa aatttaaatc tttctctgtgct tggatggcag tttttctttt cagacttttttt 77340
ctgggtgtgtg acagtctttact atgtggagagt tagagagatcag ttctttcatt tctcattgcttt 77400
atatcaagt acttgggttt aatgcacatt atgtggtgaa aagagatcgc cactcactcgc 77460
acacacacac acacacacac tcaacacag gcacacacaac atccatgtgt taggccagg 77520
agaccaatgta ggtaaattgt atataaatag gaattctggg tgaagttgtg aggaggacctc 77580
ttgactgttt cttgaaaaattct tctcatttag tcagtgatgaatatcctt cagaaaaatctca 77640
aactcacaat aatcattcata ttttagtgca atctactgaa cattgtatat tttaatatgtg 77700
ttaaatgaat gttcaattaaaa atgcgtcaca gacagtagagg tttgatctcctc tcatcataag 77760
p11089.ST25.txt

gcagtcttca aacctctggct tttatgttga tccgccctgcc tggcctccca aagtgctgcgg 87900
attacaggtg tggaccaacca cactaagact catttttatt tattctttatt tggatttttgcg 87960
ttttttttttt tcccttgccttg gttttgttgttg tgggcttccctc aacgggctaagagagag 88020
gtggtaaga cttaaattttct ttgggtttgttgttg ttggctcctgctg cagtgccttattag 88080
attaactttt tcagttttttt tgggtttttgttg tgggcttttct ggttctgctcgc 88120
attatatagc tgggcctttgctt cttttttgtg tcccttttctgctg cgtgtgtctgctg 88140
cccaaccttc atctttttttct ccccttttttactgttctgctctt tgggctttcctgctg 88200
ctctttttggct ttttttttttttttctt ccttttttttttctt tgggcttttttttctt
p11089.st25.txt

ataataaat aagggccaggg atgggtggttc atggcttataa tcagination tttgaggagtc 95940
aagttgcaag gatcactgta ggacagggga tagagacaag cctagccacac atgtgtgaac 96000
ccatctctac taaaataaca gaaataagct ggtggtgtgtg atggggcgtggt gtaatccgag 96060
tactcaaga aactgaagca ggagaaaggc tttgaaccggg aagctggggc tgcagtgacg 96120
cagatgctcg cactgctactc gacagtgggt gacagagaga gacccggtct caaaaaaaaaa 96180
aaaaaaaaagta taaatatata ttccaaacac aagttcgttta agataaaagc tagacaggga 96240
tttggatgta tgtgctgtca tgtgctgtac attttagtag tcaattaata tttttagtttaa 96480
ttt tatccccat aactaatactc cagagtagtaa tggaaataaat aatggaaaaa ttttattttac 96540
aaaaacagat tcgaagacctc tggctatccac ttatgggaat attttgatatta 96620
ggagggtgtt tcagggccct cctgtggtata aaaaagtgcg aagatggcctaa gcccctgtgta 96660
taaaatgtcct tagatattacta atataaactct gacactatct ctcataatct gccaatcagg 96720
gtgcccaac ccagggccca tgacacagtac tgatccctag cctgttaggc tggccagatc 96780
caggtgcagc acgcaagagct cagctctcctt ctcgtgtcagc tcagttggttg ctagtaggtg 96840
ccataggcgc acgacagctt ataattgaacctg cacatgttgg ggtcttgtgtgctt cccattcagg 96900
ttttataatc ataaagctgtaa tggtaatagg gtatcaatcat cccaaaaccac tccctctcc 96960
ccccccactc cctgtctctgt gaaacatttt tccacagaaa caagcctccttg gtgccagaaa 97020
ggtgggagc tcgtctttta aataatcctc atataatgcag atagttcatc aataattgatg 97080
atctatatgta aattgttgcctt atataatgagat gtttagagaa taatgaaaaa aaaaagtctaa 97140
catgttcatg ttaagttggtgt taagttggtgt agagaaaaag gcagcctttg acatttgttg 97200
tggaaattaat gattttggtca tgcatttttg acaatgtagc ggagggttctt aaaggaatta 97260
aaatttagaat taccaataagg cacgagactcc cttcctctgga tgtacccaaa ggaataaaaa 97320
tcatcacttc ataaagaatat actgctgtgcct atatccatag ccctacctggt tacagagtg 97380
acacagatga acacccctagt atagttgttgtgt gcgtaggaat ggataaaaaa acaacgtttg 97440
tatgtataata cattacctt cttttaaggg aagaacccct ctcattttggc 97500
acaacagactgcg tggacaggtgg gagatattaag ggtgtggagaa taaggtccacac acacccctc 97560
acacacatca gtaaatactgc atataatagtgt ggaatctttta aagaagaggt tcaatttataa 97620
agtaggaat aacacgttggc taccgcgggt atgggggtgtc tcagccccgtt acacccctag 97680
ccttggggca cagggggcctc ggtggaacctt tggcatcagcag aggcttgacac aaaaaatcc 97740
acatgctcgg atctctcttctt tactaaatgt aacaataaat ccaacaggaa gacccggcata tgtgccagttg 97800
cctgtaatcctc cagactctcta ggagtcttgg aagggagaa tcttgaactt caggagcag 97860
aggttgcagt gagccgagat ggcgcactt cactcaggct cgggcaaaaag agcaaaactc 97920
tgtctcaaa aaaataaca aaaaaacag tccacacact ggttaccatt agttgggtgg 97980
caggagag attgggagat gtagatctaa ggataacaag tagcagatat gtagagagaa 98040
caaaaagct gacatgcagg atgacaacta tagttagtaa tagttgatttg tattcaggat 98100
tttgctaat ttagtagatt atagctgcttc ttggcaccag ggaagaagtg gtgaactagc 98160
tgagatagac aatggagatgt tataatttct tactataaat aaccttttca ccatatacat 98220
tcatcttata acagcatgct gtttactgta aatatataca ataataat tttttaataa 98280
tctgagatag attggagatgt ttgtgaaat agatggaatt ataataat tttaatgtaag 98340
ttaatgtta tagaaagaga acaagaaaga cattacacac agaaagttcg tctgaaggat 98400
tttggttttc tccacaaata caagtgttca ttgattcaga ggttgattat gagatagac 98460
cataaaca aatattcag ggaaatatat ttattcataa gaaatattct ccaacaactc 98520
gttatagtgc agtaaacactt aataacaggt catatctatt atatatttca 98580
ttcaagaga gacatactta gagatgctat tagatcaact tctaatttca aagattttcta 98640
agatatggaa cagttactcc ttatacaaat taaaaagca aatgctgaag aaattcagct 98700
acatggtacat accatgaggt ggaaagatgc tccataactt ttagtttaac tgcactaat 98760
acacataaaa ggaaatgttt ccatcttacct gtaattggga aaccaaaaga agaaagactt 98820
gaattttatat cactgtttaa agagttgcg tatctgttct aagtttaaga cagaggcaaa 98880
agttttttaa ttcattttgc tgcacaggtt tagaaatata atctcaacac ctttttaattt 98940
tttttaagaa taaaaacactc agttcaagga aagtcttttaa gttttcattta taagttgatc 99000
acgtgtcttag aagtttaataa ttttttttaa aagttttagt tctgtattcg caacagttct 99060
agtttttaaa caaaaaccaac caacaaacaa tacattctca acctggagtt taaggtgaa 99120
gaaacaaat acgtggttgg ggaaatgcac acctttctcc ctttttttaa aaaaaatttt 99180
aalccagagac agaaattgta tggatttagt tgaagtcttg ggaactcaca aagtgcagta 99240
tttcacctcc ctcacatctct tgtagcaaat aacttgaatg agatctcag tagcttacaagc 99300
aatcgtggtc tctgtagagt ggtttaaaaatt tattttggtg aagcgcgttt gtctggagga 99360
gaactaatct cgacgcatatt tttgccagaca actacaaat ttttctgtct tagcacaac 99420
gcaccagctgt cgcccttcag atagattcct gcaaaattgc caggatctct ctgtctcctga 99480
cctacagatct ctattcaca aatgacaggg gcaagaggtc ctccctcactt tcaagaagaca 99540
ggctcctttgc tttctttagtc aatgtagga aacacctttg gtttttccct gccatcataa 99600
atagtttaagg cgattctactc ataagaaggt gctctgttgta tattggtgctt tagacaagc 99660
atagtttaacc actggagaat ttttggaagt agtacaaacc ttttaatgtc aagtagagtt 99720
gggaaaaagg gagttttcaca cacctctctc ccgtggcggt ctccttggtg atctgcattt 99780
ttaaatgttt aaaaaatgttt aaaaagtttg gcttaacact taattttggtg attgttgcctg 99840
ttacacagcc aacctctgtaa ccacccccag ataataaaata atcttgagaag tgaagtttctg 99900
Page 51
gctgctacc tgtataaact gctacatga a ccctgtcagaa tcttgacgaa tagncttagg tagccgcata 105960

cctctgtcgt cattgtggtt aattccttcc atttctcatta gtgattttct gacgtttga 106020

attctctaggg taacctgagat ataagaacata ttatatcata tggaaaaacag aataataagat 106080

gtacataaa atatagatgt cttcttgccatt ttatgtaagc agaagatgaatg tattggaata 106140

attaaagcgt atgctcagac atatgctcat tttttagctg gaaataattca agatttatagt 106200

acttttggct tgagaagaaaa atggaggtt ata ttttttattgc actgacatct cttttttttttt 106260

cccccttgtgaa gagctctcttt ccgaaatgat ggtatctga taagatattgag 106320

agatttttccc gaccaggtctc ttaaatataa gatactatttt cagaagtgcc caataccttg 106380

acctttttgct ccaagcctaa tcaagcaca catctagctct acttttctact ctccccattct 106440

gccactatga caactattcat cagataaaaac cccattctact ccactattatg 106500

acactcagct tggattgagtct acctggtgggtg tatcactgtct ttatccttgg ttgatccatta 106560

tttatggtttt gtgaaagaga gcacaaattttc taggttaagt gtatgagga cagaaatcc 106620

accaggcaacc caactgtacc ctcctccttct gcaactactc ctctgactcgc 106680

tccagccca gcacagccact aagttgtgggtt ttctctctcttttcttctt ttgattttc 106740

gattccatat cgtgctatttt gtgatattggt gggcagtaaac ttgtagattt gatgaaatgt 106800

atccacacat gccccttaaat atgtgcacta atgtgctatct atcattacaa aaaaatttaat 106860

ctcttttttaa aaaggtcagttt gtagctcctct tgttagttaaat aacaacagt 106920

gcaaaaaagattt ttgcttgctttc tttctctcat gctgtagat tttattttaca 106980

tattcatta atgcataaataa taaatttacta aaaaaactc agcattatttt attctcaggg 107040

gcacttcctta aaataaatcct ctctccttaaattt cccaaacaaaaac aaaccaatgtc 107100

tcactgcgtgac aaattgacg ccagtgaagcct ttgtgctatttt ttgatcctaat 107160

catttagaaat gatgtcgaat ggtacgaaca aacctctata ataaagggcca ggccggctggtgg 107220

tccacaccctg tagatctccgc atttttggtgag gcccaaggtggg gcacatcagttg 107280

atcgagacca ttctctgataa cacataaaaaac ccagttcttttc actcactaatataa 107340

gccacagcggtg ggtggtgggaa tctctgtgactc ccagctactct ggaggtgca gggctgggaa 107400

tggcatgaccc cccaggagcgc gattttgggc ttagcctact cctcagccttg aacgcagcag 107460

cggacccca ccttcacaaataa aataaatagat ttatataaat aaaaatct 107520

tgtaaagaata cttagtctca aacaataattag gtgatgctggtg gaaatgagatg 107580

gactaagcctt ttgagccgacca cccttctttct accacaatac tggctcagttt atgccatatgt 107640

tgtgctgaatt ccataattgggc tctcttggtgca tagtatagatgtctttcttc ggtaatgaga 107700

ttgctcgtcct ttagttgattc ctattggtct aacagacagcc attgatgattgtt 107760

ttagctctcttgcttattaatact ctaaagatgctctttcttctcatt taagatcagctct 107820

agtacagctga gacacgagacc atagttgcataa tccagctgac aaaatctaatgaa aggagttctta 107880

attgaagggctc attttattgtt cctcagttat aatacatcttttt aaaaaacacc tgcacatctg 107940
gatctgtaac tgctataaat tgccgactgt gaccatccca gaggccatttt acttaacccca 112020
gttatccag acctgacag ccgaggataa acacgatttcc cctccatcac taactctatc 112080
tgacgggcct aacgcctctt cacagtctct ccaaatgtttt atggccactc ccaaggttat 112140
tctacatgct tgaagaacaa aatctgtcata cttttcatctg cttggggtttt ccttttgaa 112200
tctgtgcttt taataatct aagggagagg tcatgctgtc tgctacccctt gccagtgcacc 112260
ttgcagtttg ttgcctgttt gttcacaatta ccacaaatcca aacagaagctg tttgcaagtta 112320
tggcagtgtct cttgctggtgt atgtcaggg tgactcagag agccaggttgt ggaagacggc 112380
atttccactc ttttctcttc gcaaaaggggc ttccatgttcc cgttaacgaga cttccaccttc 112440
tccatttttcc cccagacagac atcagcataa ttagagagca tgtaacaaggg aagaaaaatc 112500
attagcactt ttggttcagtt cagacaagcc agctctagtttta aagttttattt aagagatgct 112560
catttcaatt gagatcagga ggtggaaaggg tctccaggtgt gtgtatgagag agaagatgtt 112620
cgggaattgtg gaacagaggt atccaaagcga gaaacaacttc gtatataggg gccttaaggag 112680
tgtgcacaaat ccagatatttt gtttaaatc agaatcaccac ccacggccctt cagacacaaac 112740
tgtggagagc ggtgagggct cggatagga aaaaattttt cagatcattt tttatgttct 112800
agaaagtttg catattatct atagactttgt ggagatggtg gttagtttttgt aagagaagga 112860
ittaacattt tttatattgt cttatatata cttataaaaa ccaaatgcgc agataacaaca 112920
aaacaaaaa taataataat aataataaga agaagaaaca caacagcaat ggaactgttag 112980
tgatggtttt cttcacaagaa tgcagataata tctatatattt cacaagcata aataatcatc 113040
attttccaat ttttacatata atgtggtgtt gcatgagcttt gaaatcttgg aagtttattg 113100
GGGAATATTg TTTATTTTTG GGCAGCTTTT GGTTATTATTG 113160
GAAATATATG TGTTTTTTTT TATTATATAT 113220
TGCTACATAAA AGTTTCTTGG ACTGATGATG AAGATCATTCT 113280
AAACAAATTTTTTTT TTTTACAATTTTTAAGAATGATGATG 113340
CAGAAGACTTGT CAGGATATG ATGATGATG 113400
AAATAATATTG ATGATGATG 113460
TTCGAAATTG TTTTCAATTTTTTTG TTTTCAATTTTTTT 113520
ATCGAAATTG TTTTCAATTTTTTTT TTTTCAATTTTTTT 113580
TTTTCCTTTCT TTTTCAATTCTG CCCTGGAATTG 113640
TATTGGAGG TTTTCAATTTTTTTG TTTTCAATTTTTTT 113700
AAACTTATTG AAATACATTCTCATTATTG AAATACATTCTCATTATTG 113760
TATTGGAGG TTTTCAATTTTTTTG TTTTCAATTTTTTT 113820
TGTATGATG AGGATGATG 113880
AGGATGATG AGGATGATG 113940
pl1089.st25.txt
tgtaaccttg aatattggcc aggcgcgggtg gacacctgta atccagcact ttgggagggc 116040
agggccgggtg gatgcagcta ggtcaggaggt tcatgaccag cctgtcccaac atgggttaaac 116100
ccattctcta ccaaaaaatc aaaaatattg ggggtggtgg gcaggatcct gtaatcccaag 116160
cactacgaga ggctgagggca ggagaattgc ttaaacctag gaggccggagg ttgcagtgag 116220
cgagacagc gccatgtcac tagtacgctag gcgataagag tgaagacttca tctaaaaaa 116280
aaaaagaaa gaaaaaccttg aatattttct gtaacattgcc tacacaatc gcaatcagcaag 116320
agtttacccc tagctgctttc acataaaatag tactcctgaa atatacagag agatgataca 116400
gactattaat gaccttccact aaatttttaa ttggtttaagaa atatacaataa ttttctattt 116460
tttctggaat tccagccacct aatgttaaacc atgggttttca acataaaaaa cacactggca 116520
tgcacatacg ctaagagcatg ggcctcccaac catacagaca ttctgaaaga ccaactttata 116580
aaaatattca gtacccgata ttgctgtcatt cttcttttatt cacatctctta agctgtcgcaga 116640
agcatccccat tgataacacc agtaataaaag gattggaacca tcagtaagta gatttggaag 116670
cccccttttgc aagaaagtaag ggacataagag gtggaaactca cttctgtcttta cagctcatag 116760
gatggggcct tttctgctag tggaggggcc ttgctgtcctt caggggaagtc tgctttttttta 116820
agaaaaagcct tttttctgctg aaaagaagatg atgcatactca atgcatactgta aaatattctaa 116880
acagcagata aaacacatcactattactt cttctgcacacaa gaagatatag tgaaaaaaatc 116940
tcctaatgtc tctctttggtg ttcttttttt atatatataaa gcagtttatacct ttagctgcat 117000
gagaatccacc tgaagacctt atttttttaaa ttcagattctc tgtcaggtctc cttcccaaga 117060
ttcgcgttca gtgtatattgacac gacacagcctg gaaatgtgtga attttacatc aacacctcag 117120
gtgcagatcc tgcagtttctta taataccttct caacatcactt gcataaaaag gaagataaaag 117180
tttttttaat tctaggaattgtgtactgag ttaatactagc ataattataaca tttttactta 117240
ttgtaacaaaa ataatattagctc tcttctggtctc acactgattct tttttttttgga ctctagaacc 117300
taatataggct gagttgatgtctc tggaggtctcctc tttctcataa acaatattag gggttgatgc 117360
gttttttttaa ttaactttctg atttttctgtc tttttcattc ggctatctcct aaaaatattat 117420
cattcatttt tcccttttcc acttggcactt attttgtttaga cagttgcacaag aagaactataa 117480
gaaagttagag aaggtgttgtg tttgttcctcg tctcttgagg cttcttagattct cgcacacttgacccaggagc 117540
attcgcctcttt aacaacactc tcaaaaaatgtg caagttttagc ttcagactcct ccaatgggca 117600
gagccttttga ctgacagcata agggagagac gttagcccttg ttagaaggtctataa ccaacagag 117660
aatcctttgag aagggcttagag cttatccattg aatattttgcg ccacctttcat tgtgtagctcata 117720
tgtgcactaat gatccaagtt ggggtggtcttg aagaaaccag cttcccttttc tctctagtggaa 117780
catgcagctt ggcctaaaaaa aaaaaacgta ctgggaatattt ggaataagggactagcactac 117840
tcgggtattt tattatcact attgtttatttc gtttttttggc gtatttttcctt ctttgacacacag 117900
cagtcgcattc tcttacgcag tcttccaaag tgaagagatgg ggttgaataac actttaggtg 117960
p11089.st25.txt

cacctgagta actgggacata caggtgcgtg caacactgcc tggctaattt ttgtatatttt 120060
agttagagatg gggtttcacc atggtgcccc caaatcctctg caatcaagtga 120120
tccgccgttc tggccctccc aaggtgcctgg gattacagcc gttgagccacc gcgcgcggc 120180
acaanaactga agatctcaacg ttctagtttag atgctccacta aatgtctgttt tgtcaaatacc 120240
tgactgttaac tggcaggaat agttttgaaag aagtctcaatt ttcagaggtat gcaagatgaa 120300
tatatgaggca ttatctacta tgctaaatatta taatgattta tcagtgccac atgagaagtcg 120360
cctcacatatt ctttaatcatt gtataatatcgtatagtcagc cacttttttaa tggtaatatgt 120420
tttatcctttt ctttagatgtg aaagctcata cagttgagttc tttacattcact 120480
tcaagaaagcg ctatgagtttc ctttgagttg ctcctagagg ctcgccccagg gagaagaggg 120540
gttgtagaca ggaatgatgct caaattctttct tattttttttct atattatattta 120600
aaggaatttt ttttactctactt agatagatgac agtgacgggtt ggtggtcatg tgaataaagc 120660
gtttaaataa tagatagttgc aatatctgctgg cggataattg atactgttttt gatctttttat 120720
cttagaggaag cgctcattgct cttattttttct ttttttttttt ctttttttttttt 120780
attggcctaa gagaactcag cagagctcag cttctctttt caggtttaaat ttttttttttt 120840
tgactattagtaa tggcaagcatt tcagttgtttc aatctgtttg gcagcgccttc 120900
ttgaggaaca aagarataggct tagagacactc tcaaaatattttta aacataacgc 120960
caccttttgtt cttgctacgct cttcacttata aagataagat acctggtctac tgcacacaca 121020
attataaatg gagatctctaa aatatgggata ggggaacccag agctccacaaa ccaaataactc 121080
agcacttgaga aagatagagaac tagtaagacat gatcacttct ctagactttta aattcagaga 121140
tatcataaat aagaagaagagc aggaggaata aaaaaaagg tgaagccaaat caataataagt 121200
ttgtagatgc agaggttatata aagacaatctc aatattttttc aaaaaaatataa 121260
gattacacta acattttgtttt taatctcaaa gatccaaatattt ctcattttttc 121320
aaccctatag cagacctccta tttatatata tccagttgggt tgcacaagtgta cttttttttttttt 121380
gtttccaaat acaggataatttt ttttattttttt ttaggaatatt gaaagcagaac 121440
cagtggcac acacatatagtt tattatatgtg tttttttagtt ctttttattttt 121500
acagtacgac gccacactgagtt tatttttttta aacaaactagc tgtgagagccag cctggagggg 121560
gaaaccctgac aacatatttt cttgcaagtctt ttatatttttt atctatatagg tgtgagctca 121620
ttttgctgtct ctaaagactcagtctagttacctaa gaaacagctaa aataacttctttgta 121680
cctgttaaaagaatcctgag cagttggactccttttttta atatgattttt tttttttttttttttt 121740
agatctctgtt ttggttcatc gtccctcagct gttgtttttg tttttttttatttttatatttttttttt 121800
tatatattcag aacatcatcttt ctacttcctttt cttacaattcaca cacaacaaca 121860
caccaataatacagctttttt gacgtaagaagtaaagtttctttttttttttaa 121920
gaatatttttttttttttttcttgaggttaa aacacactgtg acacatatagtt cttttttttttt 121980
p11089.ST25.txt

agattatagg tgtgagccct cgttccccgc caaaaagttc catttttttaaatagttgggt 124080
ttttagtttc gattttttccc aaaaaaaggt tttctaaaaa aaataaatc agcaataaga 124140
tgaatatata caacaatata actttattaa gacaatatat gatatacatt tatcaaaata 124200
catatatttt ctaaaagtgct taaataaatac tagcacaatag tagatgctca gtaaatattt 124260
gatattagta ctgtgctaggg gttcattatag gctacttttat gatatcatt tcattttagta 124320
cacaactact ctaaagaaatg ttttatgtgt accgtttttgc agttgaaaca tttctggtgc 124380
tcaagatctc actggtacca tctactatta ggtcagtgctg ccaccaaatc tcatgctctt 124440
aaatgcccct ttttctgtga gcttccaaca aatatggtac tcgtatatata tgcgtgaaag 124500
aggggactgt cagacaaaaat attagagtgt aatgtgtgac cacaatattc caatccctcaac 124560
aaagtgaata aattaggaat cattcctcaat atatatcttt ccaacacaca cacaacaca 124620
ccacacacaca cacaacacaca cccactgtaa gcaccccccacc cacaacatgc 124680
aaccataag acaattcgac cattaatatac agaattatc ctgtgtgtgtt gtttctgctt 124740
ccccctgcta caaataatcg aatccctact caataaaccg caaagggaga tacaatgaa 124800
ccaaattaaa gaagggaaaa atgtggaaaaa atattatatac agaactgtg attgtattat 124860
tgagagttca cattatgctaat cagagaaataa tggattgcctt aaagaatttt aaaaaagatgc 124920
aaataaacatt ttatgtccaa ttaaagaaaaa agaataacaca cattagacaa aataaaagat 124980
attcatttga tgcaagtgagg aaataatctt ttattctcttt ttaaatctttc tgtggaataa 125040
ggtcatggtta taatataaata aacatcctgcc ccatggacatt tgcattgtgct 125100
tgcgataattc atatatgaat tgtggggagg gattagttatc tctagtgttaa tgctaaagaa 125160
gataaagcct tgtgccccaggc aaagcttttc ttggtgttgtc aaaaagtttg aagacattttc 125220
aaactattcct aaacaaacaacaacagc acaaaacaaaa acataacaatg cttttgcacac 125280
atatatttga aacaaataag atcaatatttt tcacgacaaacc tcattgctctt tttgctgctca 125340
gacaatataa ggaaggtctt aaccacagaa atgctatgca ttgaaaattat aataaatcatt 125400
tttttccttgt aacaaaaaat gtagaacctg gatatttgca gattatataa tttatgtgttt 125460
aaaaaataa cttgctttggc ctttgcataaa aatcatatat atacacatatat atatgtgtgt 125520
tggtgtgtgc atatgtatata tatgtatatac catatataaatcatacttatatacctattata 125580
aacattttct ttaacctcct attttatattc aataaataaatt aatgtgttaga agatagtctt 125640
gatatttcct catcaagatgg taacattgca tttggaaggg attatatatttt ttgaaacgta 125700
atattttccccctt ataagttgag ccacggttattt atttttagata ttaacacagat tttttttttca 125760
agacaattgaa caaataattac atgacatgta tttaaggtggt gggctttggc gcgaacttctc 125820
catctctctgt tcattcactgt ataaatgagc gacagtagta actttctcaca agagttgttct 125880
ttaagatcta ataatggct cttaaaactct tgaataggtta ccaaatcagc agtaagccac 125940
aaataaacat taactcttttatt tgtctctca tggccgaata acacagaaaaa gtaagaatatt 126000
aataataactat ctcactagtg tacacactcct cctgtctgag gtagagaaggt agagaatatatt 130080
cacatatttttg aaacgctctat gctatattttta tttttatgcc aagcttgggc tttgatttcat 130140
tttggaaccac gggtggtgtgc ttaaagtgaa cccctccccctt cccttaaagct caagttctttt 130200
ttttagttttct ttttttttcttttttcgctctt cccctc cctggtgcc aagcttgggc 130260
ttttgttagtgg aaggtgctttt cctccattttt tgaggcttaag tgaacattgtgtaaaattattgca 130320
gcacaacatc ggttctaccc ccctatcttttta ccaagttaaa aagcttgggc aaaaagagaa 130380
gtgggtgttct gcggttttga atgtagttttttt cttggaagatg ttagcacaca aataggagttc 130440
tctttgctctt accaaactttta acacactgac aagcttggga gggaaagacat tcaaaaaaacac 130500
tcactttgtgct cccaaagctgt aatattttttc aatcatttcggt gcttgagcttct ccccttgtaa 130560
tcttcgaccac ccacacacac ccacaggtc tttctaccc cccagaa acctggtttttttt 130620
tgtcaccacc atctcttgcac aatgggtttttt cctaaatcacca acctggtttttttt 130680
aagtaacaccc cctccaagacg aagctgctact ttctttttttt ttaaagcatcactgag aagtagcagttg 130740
tctcctggtccttt cttggtgtagc tccctaccca tttctttctaaa agtagttttttttt 130800
catatataagct ttaaatgtagga actatttctattct cccactttttttt cccttttttcctt
aggtttgata acccatgttg cccgcaatgtt tccccggagg cattgttggag tttagaatgc 136140
cagtagtat attaaggttgt gcaccacttcca agatccggtgg ccaacatcccc tatatgtaag 136200
atatatttca aacagtttgg tcgatctttaaat aagtgaaaaa gagaatgcttg 136260
ttttgcttc ttcactttttaa tattagaaag aagagggagc cccacaggaa ggaattttcag 136320
aagatagtgg ccgtgtgatctt gcctagtgaat gcctttctgag gtaggtgttc 136380
aagctgattc ttctctaacc aaacagttgc atggttcacat ttttcttttca 136440
attatgttgtgttgcatactgcctctctctacatgtgctactaactgtggagctcacgact 136500
taagagattg ttttctatttt tacttaagggcccttcagcat tagagaaat ttttttagaa 136680
actttacatt cttaaaataa tttcttaaatgt gaaagttaggg gaaatcaatgt gatgccaa 136740
agagattgtt actttttgc cacatgcgtc caatggtgtgc aagcatagtaaatatataagtt 136800
taccacaagc agatataaga aaataaagtttctagctggtaataattttttttataaat 136860
cgcaattataat ctaaataaataa acagttttgtt gaaatcgcctttatttt 136920
gtatctttta taagaaatgt ttatcagggg aaataaagta atacatggat atataaatatatatttttttt 136980
cgcaattttgtttttaa cagttttgtt cagtttttttt 137040
agtaaataaat aaaaaacactc tcacgtgtaa agagcaggttc atcagtttaa 137100
aattttcatc accaaattaa cagaggaatataactaatctgtagatgtaaataatatttttatttttttttattt
ttagcacata ttagcacatt caaggctctg agagaatgtg gttaacttttg ttaactcag 140160
cattcttcac ttatatatcag aatatttcttc tctttttctc 140220
tcgctcttt tttttttttttttttttttt cagagaccgc tctttaaacat ggttggaact 140280
accagagctca ctttaagga gatcactttc ctagactgat aaaaaatttca tggctctctt 140340
taataatgtgc caaatatatg aattcctagga tttttctcata ggaaggtttt tttctttttc 140400
gggagatctc attaactccca catggtggtc gaaataaaactg ttgatgtgtaa aaaaactctgt 140460
ataaatttat ttttaaatcatagttct cttttttatta attctggtggc atagtcattt 140520
ttaaatttcag tttatagcag aagacagagaatt cttgctagcag 140580
atatatatga ttgatgtttttt cttatsttattt tagtctggtgtt aagagagagaa 140640
tgagagagactagtagcattttacttagc aagactagcatc gtatacatgctg 140700
tacacacagt attggtgctg taggtgctattt catcatcatttactagcagagagaa 140760
gttttatatttattagttatattt taggatttgattttagaaccagtttagattttagc 140820
atagtaggttacttggttggtt actagattttttactaagtagcagaaatc 140880
atataatatgattttttattttaaatcttatgaagagagatcctatgctac 140940
acctgtagacatttttagttagaattttttttttagatattt
p11089.ST25.txt

```
aaaccacatt cttcacaaga gcccctagtgg tgaagcttctta gtaagttttt gtaagttctatat 144180
ttggttttaaa aatggtcctgtag atgtgctag ggaatctttaa taagttttg gtagctcgca taagttctgcat 144240
actatgattc acatacctagt gttgccttct cccatgacactt caagttttaa atctcctagat 144300
atctctgaga agtgcaggtta cccagaaacttc cctgtgttctct ttagggacacag cagcagata ttagttttttt tatttttact 144360
ttggtgggttg gaaatttggtct gcttttttct taagctttctt gttgctttct ctaactgctct 144420
ttgcaagttact acaaaataactga ttagtttttgta acaffaaacta ccaaaactacta ttagttttttt 144480
ttagtttttttt ctgtgtttttta cctgtgttttt taagttttttt ttagtttttttt ttagtttttttt 144540
tgcaagttact acaaaataactga ttagtttttttt ttagtttttttt ttagtttttttt ttagtttttttt 144600
ttagtttttttt ttagtttttttt ttagtttttttt ttagtttttttt ttagtttttttt ttagtttttttt 144660
ttagtttttttt ttagtttttttt ttagtttttttt ttagtttttttt ttagtttttttt ttagtttttttt 144720
ttagtttttttt ttagtttttttt ttagtttttttt ttagtttttttt ttagtttttttt ttagtttttttt 144780
ttagtttttttt ttagtttttttt ttagtttttttt ttagtttttttt ttagtttttttt ttagtttttttt 144840
ttagtttttttt ttagtttttttt ttagtttttttt ttagtttttttt ttagtttttttt ttagtttttttt 144900
atgttatttatttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt tt
acgacccatact ggaagccagac ttgagagctg tccccctgct gctctccgcct 60
cctgcttctgc gaaagtttca ttcgaacaac atctctgcaaa agttcatggt gcctcaccctg 120
gaaacttgga gatctctgttt cccagacacc acgttggggtt aaccttggtgg ggaagcagaga 180
agtttctgtga ttcagctgccc cagggcaggg agaatggggt cttcagcaggct tgaagaatgtg 240
agacacagaca gaataataacat tcggagtctaa tgaagagtt ggaggaagaaaa gaggccccctg 300
ggcctccggga agaactgtgga tcggctctcc gcgcttccccc tggagggggt gcagggttcctca 360
gcagttgaggg ccaagctgtag agatgctggtc gagagccaggg gaaagccgc tagagggagag 420
cctccacccc aaaggtcaac aagcagaggc tcgggtgaag aatctcaagag tgtggaagatg 480
agagagacca tgcaccacaa aagacagaaa cgtgagcaggg aactcctcttc ccacagttccc 540
cctccagatct ggtatgctcag gacggccgcaa gccttaattgc gatgctcagag gcagaccccta 600
gggatatcgc ccagacacag cgaagcttc gggaaaggtt ggtcttgcagc tcaagcctgct 660
agaaatgcact tcggctcttc gggcaggggca gcctcggcagct ctcacgcccc taccacccac 720
cctccacctct ctccccctccc cctcaacccgc cagacacgc acctctgcaag ccagagttcct 780
gctttgaccc ccctccccct gtggacaccct cggatctatc ggtctccatgt gaggccccca 840
catcctcaagt gttcaggcttc cctcctggg gcccctcccc tcaccacacag ccctaatgctg 900
ggaggctcctg tggagtttct cttggacccag cagggggttc ggggcgcttgct 960
cacatcgctgg ggccctattat gggtgtaagc agacccctcc aaccactact ccccatttccag 1020
tatcaagcttc tgggctcttg gtggctcccc ccacaaagcc gcctcaccct ccaaggttggg 1080
gttggaaactcc acctttctgt ccaccaccag ccaacctcccc catctgtgca cggaaaccgtc 1140
cctcccccacc tgcttcctgg cttgctcaca atgcactcagc cttcctccctt ggcttggtggg 1200
cccaacccact acctggactct gtgcctctccc ccacccctgt gggacaggtt atgggtagggg 1260
tctctctggg ccagaggaag ggcccaactt tggccctccct aacccactct ctcggctccctg 1320
tctctctccgcc cccctcaactg gttctcttta tcctactctct taggtgatact 1380
tcgaggcagcctct ccctcccttc agttttccct ccctcctccct tcgcctccccc tcccccgcttt 1440
cccacccgat gcggccactt cccctctcttt tccctcccccc aacaagccct cttgttcttca 1500
atcaccaccac ccagtatact acgctcccttc cccatcccca ggcctggttgg gcggagggg 1560
cccaacccacc tctcccctctgt gcgccctctgc tcgcctcccag ccagccctctc 1620
tccctctcccactctgc gtcgcagccc cccacccacc cagttccttaca ctcctcccttcc 1680
accagcagc cagaccaagc cagcagcagc agcgacgaga gcgcgagcag gcgcgacagc 1740
agcctcagcg aaactttggtt cccctccccct ctggagcattt tcccccaccac ccgaggctccg 1800
gtagctccca ccacgcacac ccttaagccca tgtctccctc cctggggtct ctgaggccct 1860
accacaccag gcagcacacac ctgccccccc ctcacacccca ggtctctctac agcgaagcag 1920
gcccccaatgtg ccctcagcct tgtcctctctt ccaactctttc cctttctcact tctcaaggtt 1980
cctaccccagtt tcataaccccc tccccctcttc agggccctca aaggggcccc tacccccttc 2040
cacgggtgcct taccgtcacc acctttccgct gccctttttc cacgggtcatt gccacccgtg 2100
cctctcgcag tgcagctgctac aaacggccct cccacccggt gcggacccagc taccgaaaga 2160
gacgcggcgcc cccggggtgcc taacagacag ccacccagcac ccgatcagaa cccgggggctc 2220
cctctctctct cctgaacgggg acccccacc gcgtatcaggg aacctcgcct cctgcaagcc 2280
cagggaccttc caagcgccgc ccggccagccag tgggacctgg gcctccccggct cttgccgcggc 2340
cctcagcgcg gctcccttcg ccacacccac ccgggacccc aggctctctag tgggcaggtca gtcacgcagt 2400
gcgccacgca gatcataaag aagggcggacgc aagctgtatat cagccccccag agccgctggc 2460
cccacgcgag cccgcctctgg aagtttgtaga tgtacccagcc catgcagctgc 2520
agttgcaggt gttcagcaca accttcgtcgc cccggggctc cccgggctcg ggcagctggtc 2580
tgtactctgt gcacccagtgc gttcagcagc tctgctcgcc gcagccagcag gcgaccccagc 2640
aggtgcggcg ccagcccggg cagccgccgvc gcacacgaca gacgcagcagc gacggcagcgg 2700
aagccgagaa aagcgcggcg gcgcagaaggg aggcgctagt gtcagccagc tggacagggc 2760
tccagggcag ggcttcggctg tgggacggca catctctctgg ggggacgcgg cccctctctctc 2820
cctctgcaacc gggacagtgcg tggcagcactaag GCCCCCCCTA CCCGCTCTCTA CACACTCCG 2880
cctgacgcac tctcagtgaa tatgccccggt cttcatgtcat gtctctctggc aatgcagccac 2940
atcattctca cgcgtccccctg gcggcagctgg accgggggtct cctgggttaac aatgtgccccg 3000
ccctgctacag cagttgactca gctgcggggg agagggcgaac gcagggccgt gacgagaccc 3060	
tccggtacgag ctcctcagcct gcggcggggc ctcctgctag tgcagctgaa cccctctactg 3120
gggcctctgg gcggcgctgct cagctccccct cccgacatgg gggctctggtc tctgcggctg 3180
gccacacttgg cttgacccct ctcccccccc ccgcagctgg gcggcctttgc tccagccggc 3240
gtctagcgct gcagagcctgg ccacgccttcgc gcgtctgacat gtcctatgct gacggcagctg 3300
cagctgcaga gcaagccgcca ggccgcttgtgg cattgccacc caagccggccgc 3360
tgcgatgct caatgtgact ccaccaactc accagcaatct ccacgatcctg cgcagctgctc 3420
acgtgcaaca gcaagatgcacat ccttcagccag ccttctgctctc ggtgcaacact ctcattgcacc 3480
cccttgccctc agggtctcac ccctacccgga cttccctactac agctggaaact cttctactac 3540
cccttgccctc tctccctctg cagcagaacg aagttctctgg ttcacagcttc tgggctgccc 3600
tccattgcggc cttcctctctgc ccctctctctcg gcagcagtaatg cagctgcaggg 3660
ccatgcagcgc acagtgcgtct gcagctgcagc gctgtgggct gcggacagccag caggtgccggc 3720
atgcctactac cccgcttgacag gcgtgcccgt gcgcctggccca ggcagacact tcacagtcccag 3780
tgaagaagggc aacgcgacag ccaagtgtgag acctgctgctg aaggaagagcact catggctctct 3840
p11089.st25.txt

acattggacc ttggagcacc cccaccccct cccaccccctt gccacccaga 3900
gccaagagg tgctgctcag ttgcagggcc tccgcagcgtg gacagagagt ggggggaggg 3960
gggacagaca gaagggcaag gcccaggtgtg gtgtgcagag gtggggaggt ggcgaggtgtg 4020
gggacagaaa gcgcacagaa tctgtgacca ggttctctttt ccttgcctccc cctgcttttc 4080
tctctccccc taagccaaacc ctgtgctccgc ccgccccttccc ctggccccggtt ggttgatt 4140
tttcatgttg tagatggtggc tgtttttgctgt aagcatgctgat gcccccccctg ccctccccgcg 4200
atccctgtgt gcgcgcctccc tctgcaaatgt atgcctctttc ccctttcccc acacattaaa 4260	ttatatata taatatatatata taatagcgtct ttataaaaaac atcctcaacca aaccaaca 4320
aahaaaaaaaaa tccctcaacac tccccagga 4349

<210> 9
<211> 13994
<212> DNA
<213> Homo sapiens

<220> misc_feature
<221> LOCUS SEG_HUMHD
<222> (1..(13994)
<223> RI 12-FEB-2001
DEFINITION Homo sapiens huntingtin (HD) gene.
ACCESSION AH003045 REGION: 316..14309
VERSION AH003045.1 GI:663286

<300>
<308> L27350
<309> 2001-02-12
<313> (1..(614)
<400> 9
atggcacacc tggaaaaagct gatgagagcc ttgcagctccc tcaagtcctt ccagcagcag 60
cagcacagac agcagcacga gcagcacagc agcagcacac gacagcaagc gcagcaacac 120
cgcgcaccgc cggccggcgc gcggccgggt cctcagccttc cttcagcgcgg gcgcagggca 180
cagcgcgcgtg tcgcctcagcc gcagccccgcc ccgccccgggc cccccggg ccgccggg 240
gctgtggtctg agagcgcggtc gcacccagcg tgagtttggg cccgctgcag ctcctctgtct 300
attaattttc ttcttttttt tattttttta aagaaaaagc ttgacgtac caagaaagaac 360
cgtgtgaatct attgtgctgc aatatgtgaa aacatagttg cacaagctgt caggttaattg 420
cactttgagc tgtctagaga aacactgaca gtttctcttc tttttttgtc tagaaattct 480
cacatatttc agaaaactctt gggtcagcgtc atggaaaaattt ttctgtgcctg cagtgtgac 540
gcaagagcag atgcagcagtt gttgtggtct gacattgcttc aacaagttatc aaagtaaga 600
acggtgtgag taatgcttctc ctcatactttc taatctcttt gtagttgttg ttaggttttg 660
atggatttca attcttccag ttacagcgtc gagctctata aggaaattaa aaggttgggc 720
cattttttc cttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt
p11089.ST25.txt

tctcctttct agccttgccg ccatcaaggt gacattggac agtccactga tgatgactct 2880
gcaccctttg tccattgtct gcgcctttta tctgcttctt gtttgcttaac agggtggaa 2940
aatgggtgagt acctaaagggg agtgcagcag ttgactgaag ttggcttggg tgattttcctg 3000
gcagtgctgg ttcgcggacag ggtatgtgag ggctcagcgtga agggccctggc cttcagcgtg 3060
gtgggagcac gtgtgcccct ccacccggaa tctttcttca gcaaaactca taagtttccct 3120
cctgacacca cgggaattcc tggctatgta aagttccaca tctgtatgtgc tcttgtccatg 3180
gctgagcaat ttaattccac agagggagat tattgttccag cacatctggaa ctctacatcgat 3240
catggagacc cacaggttccg agagccactc gcctattctct gtggagacct ctatctgctcc 3300
atccctcgac gcctccgctt ccggctttggag ggtctgtgag gcaccattag aacctccccaa 3360
gqtaagccgc accttttgat cttgccgttttat gttctgtttgt gtggctggtt tcttctgatta 3420
ggaatatcaat tttcttgggc ggattgcatt cttttgctgc ggaaacactc gaaggtgag 3480
tctctgttta cttgcagagtt agctttgacta gtctgtgagg gcagcataatt ctccctgtgga 3540
accatcttct gcctcttgcg ccctggaccttt ggtttccaga actgtgtcat gcctttctgc 3600
agcagactgt acctgtatgg aggacttccag ctgtctcatcg atgtcgctac ttgagggacac 3660
agttccatttg gctgtgtgagc gacagagtct tgggaacccc ttgcaagatg gaaacttccag 3720
tagtgagact tgaaccctatt atatactgctag tctctgtgatg ccacattacc cttctctgatg 3780
tcggtgagct ttttgtggagc aaagagcagaa aacctccacca gaggctccta cattcttacca 3840
ggggttacag cttttttttt gggtaggagtt ctgttgttatat ttatatattttt cttctctctta 3900
aagctttttt aactgcaagaa acgagtgtctc aataatgttgg ctaccccttt gcctttgagat 3960
gagaacccaa gggtgagcga tgctggccga gcataactaa tagtgatatc accaatatttt 4020	
tatctcttttt ctcttttaagc aaattacact tcttttttctt gttaggttttg ccaagact 4080
ttttttataat gtgaccaaggg acaaagctgag ccatagtgtgg ccgttgcaagg agatcacaagc 4140
agtgtttaccc tgaacacttct gtcattgactgc aacgacgcctc cactccatttt cttccgtcgc 4200
acaataacca ggtatgtggca cccgctggca ctctcctattt gtaatttttag ctctccatttt 4260
tttgttataa gatataagat aggctaaagg ctaacacacac gcataacaga cgtcactatg 4320
gaaaataacca ttccttaagtt tattgcagcag tccctctctctc ataatcacact taaczacc 4380
agagcactca ctaggtatct ccctctttgtg gctctctctct gaggctggatg ttatatgttt 4440
ttttttcttg agtggttgatgct gtggctcctgct cttccactgc cttccctgttg 4500
tggtatggga gtttaggttgg gcactgggg atagttaattt ccatcgtata tattaatagt 4560
aatggagact tgcataagct gcctccctag ggtgcctccta cgtgactgtg ctagagtg 4620
taggaagagac tgtacgtggtg gatggtgcac aatgattctctg acctccctctg cttcagcttg 4680
gttccctagg gatcttccag cccatacaaa tgtctttgatt ttggccggaa actgtgcttgc 4740
aggtactgtttgta aacagggact ccggagaggt nntgtctcttg cccatatcacc 4800
agccagtcgg ccaaatcttc tgagaaatttc atgggcctctc caaaccagaag ccaaccagc 4860
agccaccaag caaagacggg ttggtggcctc cctgatgggac caagccctcag tggccatggag 4920
ggacagcctc ttctcctcaac tgctgacctag gattaacctg tggccacagc tcctgctcaag 4980
cggagcttcca gaccccgcaaa taagagtaatt cttccaccttg gtgtctggat ctcatatttg 5040
ttttgctttt ctttacctctt ctttgggacc cagttctctct gcccttctcct caaacaaccctc 5100
aagctccatt cgcagcggag ggaagaggaaga agaaccggagc gaaacagcct catgtacgatg 5160
gaagctcagag caagccagctc agggccacggt aggtgaggaag cacgctgggg aaggacagga 5220
caagttttac tttttgtggc taatattttaa agctttcttaga caaatctgata ctttcggtcc 5280
tgtaaacaag agaataacctt cactacgtggg gatgctttct ctcctctctt catcctctca 5340
actcggtcag tcttgtaaacc tctactccagtg tgaacgag tctcatcttt 5400
taaattatat cacccttggt cttctcttctca cctctctcag gtctacgcgtgc ataaccgagag 5460
cacgacgagaa aagtttgaggg tgggtttgtgc ttccccagcgctgtggccttct gattcgat 5520
aagacgctccg acacgccggc acattggggag gttttggtgct ttcctttttc tccctgttgg 5580
gttgcttaaat gttctgacttg tctctctcata gttgtgtgaa gatatcctag gatactctgaag 5640
atctctgcttt agttcagcagtt cacagccctct cagtctgaggt tccctcaggg accaccatctt 5700
atccttctcttc cttctggttta tgggtgtgtgac ccctctctt gttttaaacag 5760
tctctctcttc aacaaattgg ctccctcaggt ggtgtggatt gcatcactt tagcctctctct 5820
acaag gccgacgcgg tttggtgctcca cattggctag ccacagctttg accactactgt 5880
ctcctcctcc cgtgctccag ccattccaccacc gacggtcaggg tcccttctctc tgggagca 5940
gttcgacgag cagcagagagac cgcacccggg ttcctggtcag aatgtgctgtc 6000
tttctctgtct tccctctttt tccctcttggag cctttcctgt cattctttcct gcagtgacttc 6060	taacacagtg aagacacccgg ttcctgttatt cggctggcctg cttgctgttg ccagggtaag 6120
tttctctgtcttg ggtgtgcagtc ctagcctctctt cttctctttct gatgcttctat 6180
tcaataacattc atggagttgta gttgacttcttc gttttataaa gcttttaacgt tcgtcagccg 6240
taacaacaggt gtctgctttcag gaaacaggttg tttgtgtagg tcccttgctgtg cctctgttct 6300
aagagttttag tcgcttcatcc gcaacagagtt tggctggtttg ctccttctttt cttctctttc 6360
cccatgcatg cagagcttttt tttctctctct gattgtgttt atgggctttt cttctctctct 6420
ctgggtagatt aagatgtatagtg tttgctttttg cttgcgcttg cagatcagata caggttgcc 6480
aacagtttaa atggagtggg attgtgctttc ctgcttcttg cttgcctgtgc aacacagatgc 6540
bttcttcttt gtattattctc tttttttttt cttttggcttt gtagctggtaag 6600
taaaatcatt cagccctcgg ggtgcgctgctg ttttttatttt tagttttttagt 6660
aatccgaca caccccttcag ccacccgggtaagc gaactcatctt caaacatcttt 6720
catacggcgt ctcgagggca tagctccacag cttccccttta ttaagagagag ccaataaacg 6780
tgatgcaggaa agagagcttg acacacaagaga agaagttggtg ctgctgatgtg tactgagact 6840
catccagtac catcaggtaa gagaatgta ttggtgcaact gtcggtgca a cttctacaatt 6900
gtcgacgctc ttataggtgt tggagatgtt catcttcgct ctcgacgcgt gccaacagga 6960
gaatgaagac aagttggaga gacgtctcag acagatacg cagcatcact ccccaaatgct 7020
agccaaacag caggtttgct cccgccagcct tgtgcttgtg tgtgtagaaat ttggtggtgtg 7080
ttataatcca cagatgcaca ttgactctca tgaagccctt ggagtgttta atacattatt 7140
tgagattttg gcctctccttc cccctccgctc cgttagacatg ctcttaacgga gtatgtctctg 7200
cacctttaa gcaatggtggt gtctctgcgc tggcctcaga gatgaaagtct agacttatgttc 7260
attatttta tttgaggctgt cttctggattt ccacagtcac tgaagaattt gttccctttct gattcagg 7320
cctttctgag tggatgctaat cccagttcgg tgaagaattt gttccctttct gtagtcggaa 7380
gctctctcttc ctccctcgatt taactctctttg tacagataatt aataaggtaa gagatggggga 7440
cagttacttc aacgctgaag aacacagttga agggaacaa ataatagaattg gcacagtaag 7500
acatttttta aggttagtgct tcgtctcgag ccctacacttc actccactattc ctattcttttt 7560
cctttctggaa cgggtttctat tacaacggtgt ttgctcttttt ttagaagaca ttgtagaaca 7620
acagctgaag gtgaaatagtgt gtgacacga cacaacttttc ttacagctcc gcagtcacgg 7680
acctgactatg tgtctctgctcc actcagctttt ccttctctgtcag ttagattctgc 7720
gagttatgaag cttcacttcttc taactcttctt ggtgccagt aatgatctttg gtagttcac 7740
tgcattggtag ctgcttggcag gacgcggccac gttccctcttc acaggtgcttc 8040
tggacactgg gctcttcgag caacgtgcttg gatgacgcttc gctctctccttc 8100
ggttgactcag ctgttctgcgc ctcctcccag cagttctggtg tgctttttcttcttgagc 8160
tctattttct ttgctctgatt agtctgtaag cttgggttacct cacagagcttc ctgtttaacg 8220
aatctcttcat catttttttc ctttagtgcct caacgcctcat gctcttcgagc actttaacctg 8280
gctctattctt cactacattt caagcatctg cagctttttcc caggaagcttc cagttccgcttc 8340
ctttacagtgg cgcgtatcact gaaactctcact tgtctcagcgc ctcctttctgc 8400
gctcttggtg gttgaaaccttt caactcttgct tttctacttt cccgactatt ggccagagttttctg 8460
tttttttttt cccttctggt gttgagctaag aatgacgcttc cttatatggtt gttccctttcc 8520
ccggatatcat ctctgccgagt ccgggtctgt tgtctctgcgc tatgtgganact ggtttggttg 8580
cacccctttct cggctgtcttt ctcgctatgtt gcaactttccgtg cttctgccga gggttagaat 8640
gctctggtct gcaaatttta cagttgatgg aagagaaaccctgtttaattg cttccaaaaca 8700
ctaatgtgttt ttgctctatt agagcagcact ggcccaagttt ccaatggagga aacactacag 8760
aatccagggac cttctcttcgaa gcacgaggtgt gctctccagagc ttaattgtgg gaaacagagttc 8820
p11089.ST25.txt

tctgcacaccc aggtttgcttt gagttccaccc gtgtctctgtgg gaacacactct ttaccctttttt 10920
tctaaatgtg aggtttggaga ggaagctgag cattatcagga ggatgttgag agcaagagatt 10980
tcaagcaagtg ttttccaagaag gagagatatttg gagccacccat cattatattgc aggcatggga 11040
tctgtctctctctctctct cccgtaactac aggtacttgag gggaagaggg gccggagggagc 11100
ggatcagaga ctcaggggtgc gggttctcactacg aggtgctccag acctggcccttc acatggcagcag 11160
gctgagctgac acacccessgcag gccgagcggtgcc gcgcgacccgag ggcagactgacag 11220
tctctgccccg cccggaagctg gccctacactac gccaggtactgtgc ggcaggtgtgtc 11280
cataactcctg ctggtggtctgg ggaacacagctg cacacccccctgc agggagaggggcc agagggcag 11340
ggaagagaggag gaggagcccg aggcccccctgc acctggctgcc caacccgactctctccagta 11400
cctcaggtttt gcagatgagcg ttttttttttt ttaagcttgga aatattcccaactcagcatatt 11460
cacagggagaac cccgggtgctg gagttgacatt caacacccccat cccctctctctgtgctcctgagttt 11520
gttacagcgc agggttcctgc gttggtccagcgt gcgcagggaga acacccgagctctcagcactgctcagag 11580
tgagggtgtgc agatgacgttac gttgcccacac cactccctcct ccacacccccctgc acaccccgctgg 11640
tttttttcatt ctaagctcttc tattggccgtc agaacttgggcc acgacggcagcacc gctattagag 11700
gctgatgtatcgtgacgttc cagaaactgcag agggagtcaac ccctcagacatt gcgcagttagag 11760
cgtcagcattg tcctttgtgtcg ggagcagcgag gcggccgctctcctgcagcataaccccgtgctag 11820
cagatggtgctc acaggtttttct gatgacgcagc cggccggtgtgg cggaggtttggagacacag 11880
cagttcggcagg cctgtccagct gcgtgtctgag gagcagcgagg agggagaggg gccggagggag 11940
cagttggtggag ggcctgctggca gcgtgtctgag gagcagcgagg aggaggacagc gggcagggcag 12000
tgcagctacgc ctcagcggttc gctggtctggag gcgcagttcaag gcggagagag ggagagagggag 12060
ccagttcggcag cttcatccgg cacgcaagcattg cccttggggag gcggagagag ggagagagggag 12120
gagctggtgcctgcttgcagc gttggcttgag gcgcggtttgcttt cctggctgagc ccctgggtttt 12180
gactgtgcctgg gcctgcttgcagc gttggcttgag gcgcggtttgcttt cctggctgagc ccctgggtttt 12240
gactgtgcctgg gcctgcttgcagc gttggcttgag gcgcggtttgcttt cctggctgagc ccctgggtttt 12300
aggtgttctttgcttgcagc gttggcttgag gcgcggtttgcttt cctggctgagc ccctgggtttt 12360
cctctgcagcgc gcggagccgg gctggtctctc cggagtcagtc gcggagagag ggagagagggag 12420
gcgtgtggttg cccttggttggt gctggtctttg gcgtgtggttg cccttggttggt 12480
tctgggcttgg atcgtgttgtgg gcggaggtgag cggcagccgg cgcggcagcgc gcctggttgagt 12540
catatacttgc atcgtggtgttg gcggaggtgag cggcagccgg cgcggcagcgc gcctggttgagt 12600
tcctcgggcc cagtttctag acgacactcc cccacccgag cacatctgag aacaagttcatg 12660
acgtagttttg ttggtatagttgc cagaggtcatc cccgcgactgc atcgtgtagtttgcgaggtcag 12720
cgctgctgctcctgggac cccgactgc atcgtgtagtttgcgaggtcag 12780
gcatctgctttg cagtttctag acgacactcc cccacccgag cacatctgag aacaagttcatg 12840

Page 83
p11089.str25.txt
cggagatttt ctgtccaacc agcagcata ccccccagttc atggccaccg tgggtgtataa 12900
ggtgaggggt catgtgggat ggggatggag ttgacactca gcggccctgc tggcttcttgca 12960
ggtgttttca cactctgaca gcacggcggca gtctgccatacg tggctgggact ggggtcatgct 13020
gtccccctccc aacttcacgc agagggcccc ggtcgccactg gccacgtgga gctctcctctg 13080
cctcttttgc agccgcttcca ccagcgcgctg gtctggccgagc atgtttacctc ttgtggntccc 13140
tggtnctggcc cgccggccct tttctctttaa ctcctcctcag agcctcccag atgtccatcag 13200
caggatgggcc aagctgagagc aggtggacgt gaacccttttcttgcccttgtgctgcag ccacagactt 13260
cctacagaca cagatatagg aggagctcga ccgcagggcc ttccagttcg tggcttgaggt 13320
gggtgcagcc ccaggaaggcc cagtaacccg gctgtgcgtact tgtttaaagaa atgtccacaa 13380
ggtaaaccact tcgtgcagcc atgttgtgga gagactgtgta gcggccagct gggggggggag 13440
cctttggaag tctgtgcccc tctgctcctgc tctcaccccagc cacagcttggg cccatgggcc 13500
ttcgcaaaact gcgccgagcc gaggagcagag gttggcgtgtc gctgcaagtt gcagaaagttc 13560
ttcctgaggg cgtggtgagtcttctgctgctgt ccagcgcttctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgctgcta 13994

<210> 10
<211> 118777
<212> DNA
<213> Mus musculus

<220>
<221> misc_feature
<222> LOCUS AF163865 118777 bp DNA linear R
<223> OD 24-JAN-2001
DEFINITION Mus musculus alpha-synuclein (Snca) gene, complete cd s.
ACCESSION AF163865

<300>
<308> AF163865
<309> 2001-01-24
<313> (3) ..(118777)

<400> 10

AAGCCTCAGA CAGCTGACG AAAGTCCCTC AATTCTGAGC TACAGGAGTG AATTCTGCTAC 60
TGAAAACACA GGCGAGACG ACGCTGCTG CTGAGACAG AGGAAGATGA CGGAGACAG 120
AAAGTAGA AACTGTAAG AATTAGCTAA GGAGATTCTT CTCTTTTC GTCTACAG TCCTAACCAG 180
caaggacccct gactagaaga catttttggt ggtaaactgt ttggtgaaga tacagtttttg 240
gggatgtatg tgagaaatag aagagtaaac ctgaatattaa caagccatgg ctttgggtctt 300
ggtccatcaga cgaagcataaa gttaacaaatt accttttcgggt gcgtttaaatg tggggtgytaa 360
attcagctct tcaaatatcc atacatacgt ggtcccttgag aacccatgaa gaaagagatgg 420
aatctttgtggt ttggttgcaaa atctattatta tacctactgc aagtttcagc tcaaggctta 480
atgccttgcac taacctcaca atcagcctact actatttggga ttgggtgttg aaaaagatggc 540
tgagacactct tgagtctcata atttttttttt aaagaaagagct acctgatcct tctttagaagg 600
gggaacaaaa taccctcatg tggtgagctac gagacaaagt ggaacagaga tgaagagaa 660
gacacatctag aagactaccc tggagtgggttt tcatctcttata tagagac cacaaacacag 720
actagtggtatgga tacacaaaaa ggtcctctgtc acagggagct ggtgcgatgtt tcttctcgaga 780
ggtttgcgttgcg gcgttctgaca aatccagaggg tggatctgttt cagccaaacca tggacttgag 840
cacagagggct ctaattggag ggtctagagaa agagcccaag aagaggtgtag ggtttgcgaat 900
ccccataagg gagcaacaat atgaaccacac agagttcacaag gggactacac 960
cacacacacag aagagtagata cggagggact cattggctcca gttgcataatg tgaagagga 1020
tggcctttggtt aatctcatcag ggaagagagc cttttttgttc ctgtgatgcg tggatggccc 1080
cagttgtag tgagcgtcagc agggagttggt ggtttgtgcag gctgtggggg 1140
atcagagaggg ggtggatacat tgaacatgtg aataaagaaat atatcataataaaaaa aaaa 1200
ccccctcagct cgagccaaat ctttttagttc ctgtaatcag gctttcttgtg tctttttttttc 1260
tccccccttc acacagactcc tatgtttccaa acgctagcct gctgtctgactcgtatccttct 1320
agccaaatctc ccagagctgct ggaaacatagt gcacactaat ctgagctagcct ccctacact 1380
ggatattttt acagctctataa atctggtgacac cttttataaatttcttata tagatattttg 1440
tggagacagc actedttgtgtag cagacaaatct actgtcattag tgggtccaga aatgttaga 1500
atactagtcct cttgtttagtg ggtactagtt ggtgcctgtag ggtggctttaaa agtttctacaag 1560
aacagtttcatat tttttcgttg aggggtttgcag ctttccataac atatttctcactg 1620
aggagcatgtctcagatgtg agtttttgtgga ataa aaaa ataatagtaa cacaagctg gtagaa 1680
tgagagagaga aagttggagc tctttagcctgcttgataa atattaatctcaccacaac gacac 1740
acacaccaac acacagctgta ctactgatcgcag ggtgaagagtaa gaaacegaga gttgaca 1800
agagtttggtagt ggtcagaaag gaaagagaga aatagtcatgta ataaaaagctg gacaatta 1860
ttcataagtaa gatgtttgctg ctaataacatgc taagacaatag gtaaaaatataaatgc 1920
tactagttgtg aagtacttcagc caccaagctg ggtttattttttt ctttaaatgtaa 1980
aaca aaaaacc cccaaacccg aacaactaat ccaacaaacc aaaaactcccac ccaacccac 2040
aacaacacagcaacaaaa ataactccgac acaatcagtc cccacagagagc gttgacaagaga 2100
tttcaattaattt cagagtggttgttt ggtgagctcc ccagcaagctg agtttctcaccacaac 2160
gaggaacata attgaacctat tctgaactga p11089.ST25.txt
gattctctaa actgaacaga actgaattga 6240
actgaattga aatctctatc cttccctgtat gttaaatagc cttctttttc ctgtctgttct 6300
ttgtaggaggt tagcatactac tttattttgtct cttcattcttgt aaatacctgtt tctgtaacctc 6360
aatagatat cactgtgtgg gattaagagt atgttacaaaa gatagttcata aatcccaagcc 6420
aggaaatta aatgtagtgtc tcctttcgtat tccagttagaa ttatatctttgt tatgtagtgatt 6480
ccttgccccca gcacccttgtg tcctgtgattaaa cccctctcact aacatttttcca ccaagatttt 6540
tatattttttt tggtggttatgg tctacacatt aaaattatatgataaataataataatatt 6600
cctctccccct gaggaagact gacgctacac attctctatgc tagttcaagga taacatctcct 6660
actggcattga gagttcatactacactctcttctctctttgagaaaatcttagtatgatagttc 6720
cacagtatat ctaataacac acataaaagga taagttagaaattttttgatgtaggc 6780
ggtcaacagc atccacacca gacgaggagag tttgtaaaaa atcttgataggtttatatccct 6840
tggtttttttta ttatacaacttta aaaggtgttaa aacatattttttgtagttgacttctgaa 6900
aaaaagtttacagt attgttccttt cttcatttaa agaaaggtttgtagttttttgatgtagttttcct 6960
agagaaggaat attttgatgatc ccaaggtctataa gctagtttgggcctgtagttttttgatgttagttttttgtagttttttgatgttagtt 7020
gaggaagaaat attttgatgatc ccaaggtctataa gctagtttgggcctgtagttttttgatgttagttttttgatgttagttttttgatgttagttttttgatgttagttttttgatgttagttttttgatgttagttttttgatgttagttttttgatgttagttttttgatgt 7080
agtggagcag tagaatgtcttg tattttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt
p11089.ST25.txt

gcagtttcca atttgccaga cattaatttt tatatatatg ggtttcaccct aagaaaaacaa 12300
cagcaatgttg aatactccct ttttttttta gttttagttt ttaccttatgta atattgcatat 12360
agcctagtttg gcactccacat atccacaacc cttggagttatat gcttttaggtt gctatatgtc 12420
ttaaaaaact cttggaaccag aatggtttggt catgctcttaa tggatgaaac accttttccac 12480
atataagagtg ggtgactttcat atagataatct gacaaacaat ttttttcacca caattgtcctt 12540
gcagaaaaaa ttttggaaag tgcagagatca ttatatcaatt ttataaaatt gtagaaaaact 12600
gtcttttttta cattataaaaatttt tagctaaatt taaaattttg agttctgagga agactgtac 12660
catattgagt ttataatatttttttactcatc gatctaaatttttt ttatcatcacta cagtaaaaaa 12720
	gcacactctt cattatagtatt gtaagtgaagtc tgtcattttg ttcaacacac acagttgtcattt 12780
tttcccatctg tcttttaggttg tttttacttacta cttcttaca taagaccaca 12840
gcacaagata atataaggagc tagaatgcttc attcactttta tttttccca acacacctac 12900
agacctccat ttatcattttg aaaaaatttg cttatatgtcattact cttcttttttt 13060
atatatatat atatatataaa aaggtgttgta tagatagttg atgtgtagttg atgtgtgtt 13120
gcagcagattg tttatattatt atggtaagtcact cctttctcttttt 13180
tatgctattttttttccttgaaacacccgactcatttgaga taaaataaatttgtagttttt 13240
tttttgaaatca tttcattttggtagaagagt ttaattttttta cgttaattttattcataatcg 13300
taagagcattc ctgtagaacaactccttttatttatttactaa attaaattttttagaatgatgtt 13360
gcatactttccat atctggcatac atctgcaacac caacacacatc atcttttttt 13420
tataaatataa ctaacatcctt cttgtgatat cttgtagataa aacacttttt ctttgttttttt 13480
tataaatggta cttgagaaacatcctttatgcatagtaagactttgcctttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt
aagcacaact atccccagtga gtccttcggt gctcgccgagt tgggccttaa agtatctgac 16320
atattttttc ttctttattc gaaatccccca ggttaagag gagatccccg tgaattttata 16380
aatatgtcat atgcgggaatat tagttggtatgttg gctctaatcctt aactaactgta 16440
attttatgg ttcactgtgaa aatgctattt tggcagtaaat aaagaagaa aagaaactaa 16500
taaactagtg atatattgcaa cagcataagg gaaactaaca atctagctgta cttggttaaa 16560
caaaggcccat atactccag tgaatgtaaca gaaatccata gaatttataa catagttcaca 16620
agggatggaac cattcccccttt tttcttttttt gatttcacttc agtgagcata actggccaga 16680
ctgtgtgact gaagataataa gaaaccagac agtggctgatgg ttagagccaa cacccctgacc 16740
agtaaggacct agtatttttgca gcaatgagttg tctcatataga tgaataagcttttctttaaa 16800
atgtcttgcaat ctccttggga cttctttccaa atctgcaagagc aacatcagc aacraagctcac 16860
tcttaccine aataacttcat ttagagcactt tttgattcagc cttcctgtcct ttcagatc 16920
ttcacactattt aataggtttgct gctagaattgc tcccagatgga cttcctaagctgttaaa 16980
tttcattaaag cagagagaagct gataagcgagcta gtagacgctgtcgagagcata cagaagcagtg 17040
cattgtgagag ctaggtgatag tattgagca atctgtcattc cacaactgtg aatatgtttttaa 17100
aattttttcac tattcttcaat ttttgagggag gtgggtctac tcaatttactt ttttttcttaa 17160
aatagaaaaa aaaaaaactgaa gcaaataatag tggtaaaggt gctgaaggggaa gaaacagacac 17220
gaaacacagc gcccaggagcg aacccacacag cggctggcaag aacatctacac gcagaaaggg 17280
ctgcacccctt ccctcctggttt ttagagcactt tggcagtaaac ccccaagaa aatggaagtc 17340
ctccaggaat tttccggaggg aaggaagagct cggctagcctt gttgctattc cagggtgagc 17400
atgttccttca ggaagagata tacagatatc gatactcattg cagacctccta tgggagaaag 17460
actggagcagg gcagagagac agtgaatcggc aaccaactctt gaccatctgc ttagctcatac 17520
atacatttcgg acctcttcttc aaccaagagtgc aaccttggggc actaaaccttc tggccctttc 17580
cctacaccgg ccacacagttt cttctgtttt tttgatgattt tgaagaagtaa agggctgggtct 17640
taatgttgcg agttgagccat gttgctccttaa ttggtgagcctt tgggagatgc aagagcaaggg 17700
atatctacctct atctgctcgac cggctccacat ctttctctttt aattttcaagt aacactgata 17760
ttgccacacta ggtggtaggct ttaggtatgttt ttaaagggaa taagaattgaa agggctgggtct 17820
taaacagttta attttctgtca cattcactgtg aactgcctattt gtgggttttt tggccctttct 17880	tctcttttatta cagccacacag cagccctctttt aatcagtttca aacagtaagcttggagacgg 17940
aattttttaa tattttttat tttatatatttttt gattttttcatt gttgctttttt cccttttttttt 18000
ccttccagggc gattcagacgcc taccctttctt acgacccctttt cccctttttttt atacagttaa 18060
cgccacattg atctcaggtg cggccacacac agttcacaata caaagaaagc aagaagcaaggg 18120
cactctgtggt gggagggagt tgtggcactcct aatccactctg ctgtaaacaagctgtatgattt 18180
tgtcctcacttc gtagagaaagct gggaaagctgtg taagtaacac agaaatgtgc tcaagctcttg 18240
p11089_ST25.txt

gagctatggg ttcctctatg tgtacttttt ggtttgttggg tttgtggagc tctggaggggt 24360
ccttggatt gatattctta aatgggttga ctcacaagc atcgaatcgt tggtggatccct 24420
attgatcagg cctctagccga gctcttctcag agcagctgat atcgctctcc tttcagcacag 24480
caggcttctgg tttataagcagt tttgtgtccttg tggggtttgctg cccaatttaaa tgaacattct 24540
ccttcagttct cctgctccatt ttcttgacctt gttcttcctct tgaagcagggg agtttaaagct 24600
ttgctgtgatgt gaagagatgt gcagtttctcct ttcagcaggt agcttctctcttctctact 24660
tgtgcaggggt gctcggcacta cccacacttct cagttctgatgt gataattcag cctgtcttcatt 24720
aaagcaccca tttaaacact tggattgcaag tcataaattt aatattgtaat attgccaggta 24780
caaactttac tcgtacagct tcactcttaaa aatattgcaa aaaaataaag aagcctcagat 24840
taattgctta ctacttttata ctactttttt tccaggtgtt gctagctctcc caacacttcttc 24900
tctgcttcata cctttctcag ctcagctttct tggcataactt ggttaaattt 25020
aaataacgct tctggtgtatat tttgagcaca cactttctcct aaggggagag gttcttgctgct 25080
aatggaatgt gcaggtccct attaattgctg aatatttttaa aatattttgaa 25140
atagcaattt gttctacacc cgggtgtagtt atactcttctt tgaagaaatgt agagctagcga 25200
tattttgatgt cttgagctct cagacttttttg ttgtgcagctt gattcttcata 25260
ctgtaaggtt aatagtctgag tttgtgctac tcaagactcag ccgcctcaggt ggaggttctg 25320
ccctcttttc cccgctgcttt cagctcagat ggaagcagctt cgggtttttt 25380
tgttctttaat aaggttttct cgccttcact tctcattctctt tttggtttttt 25440
cttggaggtt tttgactggc tgggtctcag ctcacagttg gggacttctg aaggtcttgtg 25500
aaggtttttaa ggtcgttgacc cctcactttcag tttggatagtct cactgttcttg 25560
atgcaacactc ttcattgtctg ttcgcttgcac gactttctcact tgaagactcag 25620
cacacatatttt agagctgcttt cccctccact tttggtttttt 25680
gagagagact tttggttttaa ctagataata aagctgtttg aatataaatt 25740
tcaatttcaaa aataaataa aataatagtt tttggttttaa caacacttct 25800
tgtgtaattt aatgtgaccc atgtccctct gggactttgg cagcttttcttctg 25860
tttggttttta cagcgtcgct tttgattttgg aatattttagt tgggacacttaa gatgcttttt 25920
gccacattg cagttcttat aaggttaagtt cctcctcttt cttggactcag 25980
ctttgctttaa aatgtgctttt ccgtgcttctg ggtgacaggtc tccttttcttt 26040
ggtttgctttc cctgctcactc aatgtgctttg tttggtttttg tttttttttt 26100
ctgagctttgtg ctgagcttattt cctcgttttgagctt cagtttttctc 26160
tttgctttttaa gatcagctttg cagtttttctcg taaacagttt cgaagtttaa agtttaaatt 26220
gagctactttg ttcggtgtggt ttttttttttt caaacatttttt gttgctttttt 26280
p11089.ST25.txt

tgctgccact ggctttgtca agaaggacca gatgggcaag gtatggctgc ctgttttatg 32400
ttcagtaata accctggaca ccagttcttc gcatgcatca tagagcatgc acatgtgca 32460
cactgtgggg aacactgcct ttaaagggct cttatatggta tgtcactgtg tccttgggaa 32520
atgtcatgca caacaataac ctgatttggta tagtttctgg gagaagagata tagaactaa 32580
aaaagctagt aaacactaag agaccagtgca catttcgaaaga aataaccccg cttttcattga 32640
aatgtaggt tgtgaatccct tctttatagcc aataagcaagc atttctatga gtatattttta 32700
cactgaactt agccttaaggg ttgagaagca atcatgagta attttcaaat tttcagaaag 32760
aagatcttttc atggctatagta gatcatctct tattaatgta catatgctca 32820
tataacttta caacactttt ccaaatatgc ttttgccacac tgggagactt aaagtctcata 32880
ccaaacaagc atcatgtgtgt tgtatggtga tttctacatt ttcgaaatttc taaaaattgtc 32940
tctggataaa tatggctctg cagtgcatact ttcattgttat aattttgctta ctaaatgctta 33000
aaggagaaga aagatgagac cccctggaaga tgacaatttca caaactctca gatccttacg 33060
taggtgagt ttgtgcaattt ttgtcatact gttctttttcg agaatgctcc 33120
gctctccccc aaaaaagccc atctcaggttt tcctcggtcctt gggtcttggtg taatgacact 33180
tctctttgcta atgccttaaaa tttttttttttt ttaaagtttttatcaca ttataattattt 33240
tttcttaatt ctaattttctt cttgtgtgtat aagttgcatt tgcataattta aataatataaa 33300
atatcattttg ggtaatattttt cttctctatg tgaagccatg tcaatatgtca 33360
aatattttatttttt tttggtcttgag taactctctag tctctgagtga agttcataac tcaattatc 33420
gaatatgcaata gaaatgcaagc aatggaacact gactcttaata ttaaaggtcag 33480
atatcagttg taaaaacatgt ggctattgac tgattcacaag ttttggttaac 33540
aatgggttctt taagatagaca ccctgagaaac ataattcttcac ctggggggca 33600
actctatagg gtctctccttc ttctaactctct catagggtgac caaagacaagg aatgtactagtg 33660
agtgtgggaa cttgagaggtg gtacctttcat gacattctct catgttggaata aataaattgtc 33720
aaccaacaag aatcttggaa gtgccagagag tgtctcagag tgggtgcatact gttcattg 33780
tcatatcagc tctgtctgta gtcataatag ctttttgggttt aacgtctattt ttttgtgttaat 33840
aacatataatc atgccttatttt cctattttcat atctggtaattttta cttttcatata 33900
ntttttttttttt aagacactttc agattagtgta aagttgtgact gttcattgagc 33960
aatcttagtga aaacacaggg aacctctttgct agaataacagc atagacacac atataacaacta 34020
aagcacaacca ggaagccccc caacagacca ctaattttttttt caaactctcctt gatggagcatg 34080
gtgtggtggtc tagatgttgtca gattctcctga gttactgagaag ttttttaataa accttttgtg 34140
accccccac acectctattc gagttggcaga gatgtgaagt ttttttaataa aaccttttgtg 34200
actatataatc catgttttttt tagtcagaaaaag acgtacatca cttggccagc tgtgtcaccaca 34260
atacataacct tccctttgtcct actgtgtggaag tgtgtcataat ctagaggttag tgtgagacac 34320
p11089_ST25.txt

ccttctgtag aagtgtcttt ccagccaatt agtttcatgt gtgtgcatgt gtgtgtgtgt 36420
tgtttttgggt gtttttatat gtgatagtg tgtcttggtgt gtctgctggtta tggtagagat 36480
atgtgtatgt gcatttttat gcgtagggc gcagtttggg gatcagcaac aagacgagt 36540
agtttgctgttg tgttatgcaa attcactttgt ctaaagaggg cgttagatag ttagtatatt 36600
gacattgaga tattttttct ctcattttgt ctaaggatca tttctctgta tggtaattttac 36660
aggtgtgacag tgtgagctgg cttttcacgt ggcggcttgag gacccaaatt tccagagttg 36720
gtttacagc caagctctgt actcagagag ccaaccttaa agctctctct tgtcagattt 36780
tctctcttac caagatagtt cttttttttct ataattatac agatatattc tcccccttttt 36840
aacctccccccc agctctcccc ccctctcttt ctcattttct tccataacct tccctcttctt 36900
cctagaaaaac aacaggtttt ctaagaggtaa ataaatatag tagataaaat gcagaaaactc 36960
agaagaagaag cagttgagaa aaaaaagcaca agaaccacaa tcaatgacag gacattagtt 37020
tacacactac ggaatttcctt attaaccacca aagatggaag cgtgtagacta gacataaaaga 37080
ccacgctgt aatattttcttgt tggtcagctctc tgtgctctgt caggtgtttggttc 37140
ccagctgtcgt tcttttcctct tgcggtttcttg gcctggtttct gtttttatttt 37200
tctctcttc ctttcccttt ctttctttcttcttctt ctgtgcttctcag 37260
agtttcctcg tcattttctgtg agcactgtgt ccacctcccttt ttctctcttt attagttttct 37320
ccgtgctggt tgtgctggttc tgtgctggtc tgcctctggtc tgtgctggttct ccctctctcttc 37380
ccagtctgtgc ggttagtttt gccaggttgg gttttttttttttaa aatatttcat ttcctctctttcttctttctttttgagattatttttttattttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt
ttgtaattcc aagcacagtga gtcatttgct aatatgtgat tggtatccag atggatcagc 40440
aagaaatgca tgaatcatga atgcatgctgc ccctgtgattat gtatgtagac cactgagggcc 40500
aacagacatt atccctagtg aaaaaacagtga agtatagtgat gtatattccc taagcttata 40560
ctcccatataa aagagtttaa gttggcttttg ttagaaatgaa aagagaatttt cattatttcg 40620
aataaataac taacctgtag gggtgttaccc ctgggttttttat gtagaattgc aatggaagtag 40680
cttcagacaa atataaaacc taattatttcc cctcgctgagc acaagaacac aaacatcttttc 40740
cactcaagtta ctagttcagg tggttttataa tctgtcagca tggaaaccttc agcaacatag 40800
acatgatataa aatagtttaa aagccgacagt atggatgatg cctttttccaa aagaaatgttg 40860
aaggcacagct ggtgtatagtgc actttaaagc cttacaagcta caaatataagct tctactata 40920
caaatctgta tatttttacct caagtgcttg aggaggttaaa tttcctaaaca agtgcctaata 40980
cagaatctct caatgagatcttaa attttatttt ttttatttt cattgacac 41040
tgtatatccac gttcctgttct cctctgcatatat cctcccttttt cttccccatta 41100
ctatctaggt ggtgctttccc cccccctgcccc ccctcttactct cctcaacttcag 41160
gggcattgat cctttctcagg ccacagggcag cccccctatcaac tgggtccagcatcag 41220
ccccctgctac atataggaact ggggagctgg gttccgtccat gcgtcactctttaggtttc 41280
tttaatctct cggcaactctgg ggggttctgg gttgtctcttact aagggctttta 41340
gttgtataaca tgtgaacatt tattgtctact gtctctctcac ataaaacctctgtgataat 41400
tttataggtt ttcatttgcag tgtctactat tgttttttaag atgatctctaa acttacatga 41460
tttataggtt atatattatttt aaggggatta aaaaatgatac atatcgccag ggcacacacag 41520
acacacac atacactcatt ctctcaatctg gacaagttaa atgctctggcc acttacagaca 41580
gtaccttctc tgtttttttta gtaacacaggt ctaaaaagttttctcttgag aataatggctg 41640
cataacactct attataggtgg ctctctgagtgc tcgacactcag ctgctctac 41700
gttgactgtta ttttttttttttatcactcaagct gatatttttactatgttgtatag 41760
aatggcacaac cttcctatag gggcgagatct ggtatatataa tgggtcttttt gacagctcag 41820
tagctcttct cccaatcttcag aataggaagaa ataatgatttttagtcttggatgta 41880
gctcttgact gagaacatagctttggttgcactaatacaaa aaaaaatgacaagcttatg 41940
ccattgatg ttcataatcact caaattctag aacaatcctg gacataagct aattagctgt 42000
atttttctcg gaaaacctcag gaaaggaagataataggg aaaaagaagcatgtgggg 42060
atatgattct tgggataggt gttctctctatt tagtttccag gacaagtatttcatgatattg 42120
aatgatta ccaatctctataa aataaggtaa tttgtcctgata agaaactttta ctttatttcttc 42180
taatataaact tttattttata ggttacttttta aagaaatcactcctctcttct ggtgatgtggg 42240
aattatataaa catattttgt ctatatttcat ggtgtagatattt cacacacagcttacagcag 42300
tacatgatgaa aacaacacagcttggtctgaaatgagtaaatgagataaatagtg 42360
p11089.ST25.txt

gtttttaaat ttatctttta aattgaaaaat gcacagtact tagcattata ttgcaagggc 44460 
ataattatct ttcttagttg ttcttcacac cagatgcata gagaataatt ctaagtcttc 44520 
atgagccaca tatataagat ggccctgagta atgacgcgttc tcacccctgct ttctcttgctct 44580 
tagataatgt ctcttttttagtt cccagataaa aggacactca gaacaagtgta atgatctcttc 44640 
agcatttttc atccacactt attttatttg gacaccctttaa aaaaacctct tgtaagaaggg 44700 
acaaagacat atacccctgtg ttccatgttaa ggtttttccca caacatctgg aaaaagatctt 44760 
gatagccttag atgtgagagtg cccagctaga ccagctatga aattctcttt ttctctctct 44820 
tctcttttgg tgtagccagcc tacacttcacct ttcaacacct aatttggacc cagataacct 44880 
aggaatctgc cattgctcac caagcttgaggg tgtgtttgtgg aagggcacaag 44940 
tgtcctctcg tcagtgctca acatgttgacag tgtctgtgctc acaggtttaaa aatgcagttga 45000 
taggaagttgc ccttgagttca cacggtcata cggcggaaaa gcactgcaag ttctgtctctgc 45060 
cacctagtgt atttttgtgct taagagttta acagctttaa atttcataat aaggttatatt 45120 
atcacaagct ttgtaatgat acattttctca aatgcgtggaat acctggcaat agccactagg 45180 
taaaatattc gatgtgcttat cccttgtaatt aattttttta acagaaaaagt acagagagtc 45240 
attggttgac ataatagttt gttctcttgcttg cattaagttg aatatgagg tgtataagaaca 45300 
tattaagtt tgtaacaactg ttgtcattata aaaaaaaact tgcctagttg gttctggtgtg 45360 
tatattctag cagtcttttt ttatttttact aatttattc aataggaat taaggttaca acatttttt 45420 
ttacctgttt gctccaaatc caaacttaat tgatatttata aataattttta cctagttttg 45480 
acatattgcag agttttatgt aatgcacttgg ccatgtgctg ccatttatttt actagccaccag 45540 
acatatgtggt gtggccttac ctaattttcata ttgtgtttctc tcttttgcac caagtattatt 45600 
aacctgtaggg atgttagggag ttgaatttcca ggacccagtt cattgacagc aatcatctttg 45660 
tctcctctcta gttgtaaat gatcaagttt gtgttttttt ttttttggat gtttttttttt 45720 
ttggaagcag gggtttcttctg ttagcttctcg gctgttctgtg aacctccctct ttagaccagg 45780 
ttgcaacctac aacactgaccat ccaattcttcc cttgctttcag aatgtgttggga tttaagatgt 45840 
gtcgacccac tcgctgtgagcctaatcagttttt gttttttgtg aatttggaagc gttttttttatt 45900 
taaaaattttc aacctgaaat ggctttttta tatatttatata ttatttataa taattattccaa 45960 
atcataataga aatacattttt cagcaattctt ctttctttgtc ggcctttgat aatggagcatgg 46020 
ccttattttac aaccatgaaaaa cccatcctttta aagggcagaag aatgtatattat 46080 
cctgaggtgtt ttataataagt gttctctggat aatggcagaag tttcttctgat ctttctgtgcg 46140 
cctgatattc atctggctttggtt cattgatcttt tttttttgact cttgatattccat ctgagagagga gctatctttca 46200 
tagctcagtag atgctaggtga aacaaacagac atgcaattgga ttaattcctttg aaaaaaagagaag 46260 
atttttttttatc atctgagttttt gctgtggaaact cagagatctta gacgaggttt ctttgtgctgga 46320 
gaatctttatc tttgtgttcttg catgatcactt ttgtacttttg tctctggagga gacatatttttc 46380
aacgggttaa gaactgaaggg ggttaaactg
tcccccctgta cagcacaaac cccacatgtg
ttcggtttta ggtatatttc gttatgttcct ttattttctctg ttttctttttt
attaaatata ttcacagtag ggagaaatccc ctgatttaaa
tgcccatctg tggtaagaca cagaaagcaca ccaaagacaca
ttgcccgctt ccacatcag ttcggttttta taacatata
ccagttttta atgaagcaac aatgcttcac atgtctagtt ggagtttttt ttactatac
ccacatggtt atttaaactgt gcattttcct tttgcgaataa caccttccaa
tacagggtcga atccagttgtc acctgctgaa acctggatct cttctgtagta attagataat
atagcctta aatcagctatt gctatgtcccc ttttgttccttt gcagttttcttg aacagctcata
ctcattttt ccagcttttta cctcctctgcc cctcttcctctc
ttcacacac acacacacac acacacacac acacacactag agagttgtaa
ccagagacta caaatgtgaggt tgtgcttgctg tgatgaatgg gacagtgtga ttctttcatc
ccagctgtgaa acctgagttgg tctgctgtaa acctaggttg tttatattc
tctacagag caaagcactg gattctctagtt cttcttctgaa acctaggttg tttatattc
tgatgttgag atcaagagc cctgcttttag ggcggtgcca tgtgccagct cagcgatatg
gattacagg ctgctctgag tgcagttttg gcaggtgctca tgtgaccagc cagatagcct
tggtgatgga aatagcttg ggtctggctct ctcagctgtg cagccagttag gaagagagaga
agccactgga cctccgctttgg gtactataaa cttcaaagctt cttcactagt aacactttctc
cacacaatgc cacacacacaat agttagtgctc cttccttgatg agttaaatttt
caaatataaa tacatcagc gacttttctta tttccaaatatg cttactcattc
tgaggagagaa tcaactgata cgctatagc caacactgttt caagtctggtt acctgtagtt
tttgtgtggcc actttacttc tcataacaaaa cacacctgtggt gtacatggaag
gccagtggga attatgtgag caagatgtttt gagagacaca tgtctttcagc tctgactttg
cattacccgactacagta cggatgtagga gagttcacta cagctacttagt ggcgagaaa
acaccaacta attttggtgga gaattgttga tggcaaatata cctccatggt gattttcttttg
tattcagagattttttaga gacttttctta tttccaaatatg cttactcattc
tgaggagagaa tcaactgata cgctatagc caacactgttt caagtctggtt acctgtagtt
tttgtgtggcc actttacttc tcataacaaaa cacacctgtggt gtacatggaag
gccagtggga attatgtgag caagatgtttt gagagacaca tgtctttcagc tctgactttg
cattacccgactacagta cggatgtagga gagttcacta cagctacttagt ggcgagaaa
acaccaacta attttggtgga gaattgttga tggcaaatata cctccatggt gattttcttttg
p11089.ST25.txt

caaattgtat cttgggtatt ttaagtttc ccacatattca gttgagtgc 56520
acctgttgtt ttcttttgact gctgggcttc ctcacagctgtg atgtatatctt ccagatacat 56580
ccattgcct aagagtttca taattcattg gttttaaatt gtctggtgat acctccattgtt 56640
gtaaatgtac cacacatccc gtctctcttga ggatcccttt gtttcttttca 56700
gctccggct tttataataa aggcgtgctt gaacataagta gagcatgctgt ccctattata 56760
agttggcaact ctttggtaat gtataagagta aaatcttaca taaaaaggtt tgcgcaggtta 56820
aaagaagaa gctattaaata taattcatacct atacatatgaat gtttttactac acacaaaaac 56880
aaacaaacac caacaaaagaa agaaacttag aagagattcc tttctcctag tggcaggtata 56940
tctttccccct tttatctctca caagtcacag gatttggttg agtcacactca agttatgg 57000
gacagagca aattacattg gccagacga cttctctcttg tagattcctgt gacacatag 57060
cacagaaaaa agaaacttag tgatggtgat tttaataagag acgaggtgga aagcaatctt 57120
gagagattg tattgtgcct cctgtcatac tgcgctgttaa taagagcatg tcctgtttccc 57180
aatggttgcatt ctttcaatatc acatggtgtag ttatagtttga ttttttttt 57240
aaagacacta agtgagagcc ctggtgctct cttcaattct ccagaggtgt ctgactccttct 57300
atatcagcatg cacacactgtt agaggaacta tgacatcagct ctttctttgat 57360
tatctccgct ttcctgaactct tctctctcttc tggattgtgg agttcttccc 57420
tgaataacaga atgaaggttgt ccacacatta gaaagcttactg agacaccccc ttaagagctgt 57480
gctctggagc attaagtagc tctcagactcc tgcagacgaaga attataagaagtcg cattgcttatt 57540
tcagggcaggc cacagacactctg gctttttttgg ccagctttcttt ctttctttt 57600
caaatgatta tttctttttgccagaattttc gctctctcttca tagactactct tgaactcctt 57660
tgcttttttct tggctttctct ttcctgagtt cttactctgtg tcttgggacat atctctctctc 57720	
tagcagcagcc tactgaacttctg aggtggtttc tccctgttctg tgcctacatgta tgaataagttat 57780
gatgaagaaaa ccgctgttcat ccccaactcat gttctagctgc acatgcctctt actttcttata 57840
ggctcgcagct cctctcgact gacacccatct ttcacacacact tcaagactttc tccccctatac 57900
agggctcagt cagcctttgtt aatatgtaatt aaggaaggctt aataatgggca aggattata 57960
gtctcaactag aggtggtttc gaatacggttg tctttgtgagc ggatttcttt gatcatgtgg 58020
gccaattttttg gcaaccttta aactcattata aatcatatct tcttctttttg gctttttttt 58080
ggsatattata cacacccctaa ataaaaattt caggtgtaaa aaaaaaatatttttttagaatt 58140
aaagaacttaga taagctataata ctaaggtgagc gatattttatt gcatcttttctt 58200
gctatgttggtt catgtggtttc ttttatatttt cgtttctttct tagctcttcattcagttc 58260
aaacttaaccatttgg ggaacacaaaa aattttttttttt cctctctctctg tagctctctcctc 58320
aacctctcaag taagacattta ctagagatcagt agtaatcaag aatattttttatatattta 58380		
tacaatgatt gatgtgagc 58440
ttttactttg tcaacattca agattgtaat tttaaacca cagtaagaaa acatgttatt 60540
aagtaagagt tttgcattttt tccacagccg caaatcgatc accttggggtt ctcgtagtagc 60600
aactgacacttg gccatgtacg tgcctgactg cagaatacaaa ggaattgcccgt ttgtgctgcc 60660
gattttccac cactctacat caatctccct tcacatagtt ttactgtggtg catatctgta 60720
ggcctagacat ccttctttgcct aacaacaaac ctttttaacc aacctcatatct ctattttaaat 60780
ggacaatatt ctacggcatt ccctactggg ctatagattca agtcagcgttgc tgggcccagct 60840
tgacttgagc ttctttgtatg tggcttgccct ctgagagcat ctactgccacg caggaagtct 60900
gcagcctcttg tgaatggtaag tacgagacat ccccttctctct ttcctacttctttg 60960
atattttttt gacttagatgaa cggatataccaa aattatatgtgtt ggtgtaagtaa aattatatgaa 61020
gaeagcatac ttaagtgtctt atggtgctatt atctcccttact ttctcaatata ctttttagat 61080
tctttcccccc ccagacctct tgcctgcatacg tccgcagcctc agttgctcata gactagttttt 61140
taatagacta tcaacacacaa ctgctgacatt atgtgagaagt aaagcgcgaag gaaccttggtt 61200
tttggttaa cttgaaatata cagtaagtttt aagggcaacca aacaactatatattt ggtgagttcct 61260
tggaggtccct gtcctcaggag aacaaaaagc aacaaacaata gccccacaataa aacatccccaa 61320
aacaacaaca aatacagagtt aagttatctat ttctcataaagcttcttct ctattttgcat 61380
agtacagacta aataggtgtta cgcttctactt gttctgtgattt ccctactcgcg tcgctagttt 61440
acaagactca caagatataa caagattgaag ttcagagcatg caactgacacc aaccaacagc 61500
actttgggtaa gaatagttgct gtagtcctactc agggagaatt tatgctcagg cagctaaaca 61560
gtgatattaaat ccaagttgcctt tttgtgcttccc tctgcattgca gtagggagatt cagatacc 61620
ccttccctct tttttttattt gatattatat ttcattcactc aatatttttaa aatatttactag 61680
attaattatg ttttttatata ttataaatac agtttttggtt gacactcttctc taatatatctt 61740
aactgtgacctg tggagaaatat tagaagaattt aataaacagc aatatcagctaa aacaaagtta 61800
ctgttttata ccaatggcta aattctgattg tagtaaacat ttcacetttta atatggtgtt 61860
actttttttcatt ttcacagata tttttttctta aaataagtcgcc tgcctgcctt gaaagaatttc 61920
agtaaaactct catgaatattat ttatcccttt aacaactcttc ttaagttgtg gggctagttg 61980
attctcatcga aggaattttag agattctcag tagcccacat tttaaatatttt ctagggtcttg 62040
atttgttact acctctctgtt agagtctagtt tagtacagaa tagttgtgtct ccaattcttg 62100
ttgctgcacaa tttttttgtt ggcagagtgtt ttactgtggtg gaaacatgtta aaccttaacc 62160
cctatataagc aggtaatggtt tttagtatttt gaccggtattttttaatt aataaaaaaa 62220
tataactatt tttcattcag tttataatat atataattcag tctcttttaa tacatctataa 62280
caagtctgcaaa tagctatgat ttttttattttt tattgtggttt atgcagatc cattatggttc 62340
attactgtgtg tttgtatgtcct cggagagggc cagagaagggg tgtcagatcc cagggacatct 62400
gagttgagga aggggttgga ccagtgagta gttttgattg acagaaactcata gatttcttgttccc 62460
acagccactc atctgtgata tatcctttgc p11089.ST25.txt
tgtaacagt gttggtgag attagccatc tggctcttttt 66540
tctatactta cccatcactct actattacca tccaccatca ctatcttcttcta ctaaaaacct 66600
taaagcacat ttaagatct tggatagctgc gaaggtact gtagtctctt ttaaaggtgcata atatagtccc 66660
agttggttag cacgtgcctca ggataggttc tgagtctctt caattcagcac catcaaaaccacat 66720
caaaagataa aaaaatagaa tgtatgactactata ctatatctttta tagctctctctactaact 66780
gcaactaccat gcacacactcc atggccaggtg aaggaagagag atacgcagacc tggccacattgag 66840
cagtttttta gactttggtc tggcttttgg ttaatgtcacta aaaaatagaa aagagaggg 66900
aagtagttga aattggtgttgtt ttgtagtgtaga taaatcttttagacacta agataagactct 66960
ttgtttctag ttttttttttcttttctattt ttcctctctct cttatacagat cttatacagat 67020
gttctctcact cttcagagc cggattgaca cccctttgcttg ccacacactca gtaatcttca 67080
ttatgattct caacagactac aaacatctgtgtta gcaaaagagtt cactttattagg 67140
tgtgggctca tccacactatg agataaggac ttaaaaggtttt cagcagctgag gaaggtttgag 67200
aaccagttggt ttaaggtcgacttgtacgcc ccaatattcag cagcagctgag 67260
ttggagtaact tctacagtgtttgttt tattttgattc tactcttcttg aggtctttttaggg 67320
agcctgttgc aggactgtgagtctg ttcctaaatgtt gcagatgactctct 67380
cttccttctct cctgacccttcg cggctattct tttctctctctcttttctt ttgcttacactacactacactcctcct 67440
gagcttcctc tgcattggattt cactcttctctttcttcttt ttttttttttttgagagac 67500
tgtggaat tctccatatc gggagcccaga gggacccatt cttataactttttttaaacttattcacc 67560
gaactccccct cagttgagatgttttct cttcttttctccttctctctt ctgatgtgactctctctcctttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt...
agatgtagta attcttaaag tttcccaatta aataaaatgt caaagtttttt gctattggttt 68580

ttgatacact gacctcccaa atcatagtagt tataaaagata tttcttgaaaa acctcgaat 68640

ccttctcttg tctttctctta gaaattggttt atgactggttc tctctttaaca gtgtagagta 68700

atgaatgcaac atcacaataat aatagaccaaa gcagccctgtg ttagaaattt catttagtatttt 68760

acgtgacttt cccgtggact gggaaataaag tgctcggcct catttatttc gcatttttct 68900

ggacaccagt acctttttttt taggaaattttt cagctaactac caacacttct ctaatggctt 69000

ttcattctcct gcagcctttt tattttgtt cctgcac actttttttt aataattataa 69120

ttttttttta atgcttggtg ttagaattttt cacaactgta cattacacta cagactattt 69180

cttttccttct cagtagcttc caagagagat gcagccctctt cgtatgtctttt ttttttatttt 69240

gcacacagtc catttttttt ctgctttttt ccacatgcaga cagtagcttc cattttttttt 69300

agaaaaaatg gaaagggcctgtg aacactaatgct cttctctcttt taggatttttt ttttatttttt 69360

catttttttt atgtcactac aatattattttt ccacatgcaga cagtagcttc cattttttttt 69420

catattttttt cttctctttt tattttttttt gcaaaatgat cattttttttt 69480

atgatatcct cgtatatct tatttttttt tttttttttttt cttctctttt gcaaaatgat cattttttttt 69540

atgatatct cgcctatttttt cttctctttt tttttttttttt cttctctttt gcaaaatgat cattttttttt 69600

actattattttt cttcttttttt cttctttttttt gcaaaatgat cattttttttt 69660

actattattttt cttcttttttt cttctttttttt gcaaaatgat cattttttttt 69720

actattattttt cttcttttttt cttctttttttt gcaaaatgat cattttttttt 69780

actattattttt cttcttttttt cttctttttttt gcaaaatgat cattttttttt 69840

actattattttt cttcttttttt cttctttttttt gcaaaatgat cattttttttt 69900

actattattttt cttcttttttt cttctttttttt gcaaaatgat cattttttttt 69960

actattattttt cttcttttttt cttctttttttt gcaaaatgat cattttttttt 70020

actattattttt cttcttttttt cttctttttttt gcaaaatgat cattttttttt 70080

actattattttt cttcttttttt cttctttttttt gcaaaatgat cattttttttt 70140

actattattttt cttcttttttt cttctttttttt gcaaaatgat cattttttttt 70200

actattattttt cttcttttttt cttctttttttt gcaaaatgat cattttttttt 70260

actattattttt cttcttttttt cttctttttttt gcaaaatgat cattttttttt 70320

actattattttt cttcttttttt cttctttttttt gcaaaatgat cattttttttt 70380

actattattttt cttcttttttt cttctttttttt gcaaaatgat cattttttttt 70440

actattattttt cttcttttttt cttctttttttt gcaaaatgat cattttttttt 70500
gggtatctaa caagatccgt aggtatgtag
ggccagcaag cactctgcctt ctcataccttg
78600
tggttggagtt aatataaagta ggaagttgccc attttggtctc tgtgcttcagc agaagagaac
78660
acactagacct tgttagtgca gccctagcca ggcctatcct ttcaatgtgaca tgggtagagt
78720
ataaatagct atggccatcc tttcttgctt tgtgatgtctc taacagatcc gagaagacaa
78780
acatttagga gtaggagtttg tacctatttt gcataggaaa tgtcagtttt cagttgtccat
78840
gcagggaaatt actatatattac taaaacatc acagttccctc cggctgttgc ttttaatgca
78900
aataggaat gatgtagtatg ggaatataaa gctggcataa cttccgtcat tgtgagacttgg
78960
 ttctgcaagt cacagctgtc aaaaagagtctt catgattcct ttaatcagctt ctttgtggctc
79020
tgtgcagatga agatatacat agtacatccttc ctggatctctt ctagacactc tgtctagcagca
79080	
tataagactc cttcttttgc gagaatataaa taagaatatg gcacagggaaac agaatagtta
79140
 ttgtgaagga ggttgtaatga gataagataa agaatgtattc agagctgccata atctgatctc
79200
tctttggtcg gttgattcctt cttgcttctct gagkgcttggaa atgaaaccatc cttcttttcatc
79260
tgactataaa atctagatataa taaaacacac aatattaatg catttaagag acaatctaatc
79320
gacccgagg gagaagactcttatccactga ttttaaatat gtatattgat acactaaactt
79380
 tttaaaagaga aggaaagaga tctcttataaa ttgctccttta tgtatacagac taagggctgaa
79440
atgttgtctga ctctgctgctg cttctctcttc atatggtcct cttcagtctcctic cttcagagaaa
79500

ttgatttgtt tgtgcgttctg tgtggttctcg gcctttcttc acactccatgc atttttttca
79560
 aaactgtcttt cttgctccctt cttctgcacaac atgttataacga gttgtaagtaga aaaaagtgaa
79620
 atgtatattgg cttctcccttc atagttctcct ttctacgtctc acgataaactctaatc aatgtgtaaa
79680
gctactgcaaa acaaaataa attataagaa ttgagccata cagtctctctc tattataaag
79740
tgtaacgtaa aagggccact atatagagga gcaagactcag cataagggctt gatttaaaaa
79800
aatggtcagaa caataatcccc tttgatgga tagactatcag tctctacagtt cttgcagacct
79860
 tacatcataa gttgccactca tttctataat tagttgattgc agcataactct tcctttcttc
79920
tttcttcttt gttttctgtt gttttctttcttt ttagctcttga gttcttcgctt gttactcagc
79980

tgtctcgtgg aactactccttg tagaccacaga ggcctccccaa tctgacaatc tgcctggcttc
80040
tgcccttcgaa gttgctgggat taaagccaga ggcacacaccat attgccgggg cttctctgctt
80100
ttttaaggttg tgtctctccgtc agatcatgta atgtttttcc tcucucucac cttttttcct
80160

ttctgagcagct gttgtgattga ttaacagattgt ttctgcttgc tttggttattt cttctgtgagc
80220
ctgtaatctaa actgcctcttc tttaataaacc atagtgctgttg cttgctacctc gaacgctgttt
80280
tagatgtggtgt ttctttacgaa ggttctccatc tgtatctcttc gaccccttatt cttctctgtag
80340
agcactctcttt tcccccgattgt ctaataataa gataactgttg tgaacccatgc ttttttttaga
80400
acatatatttat cttcaagtga cttcggattg tttctttgctt ttaacctagtgc gagcagagct
80460
 tatggtccacc cagagccttt ctggagataa cttctctcttc tctgccaaga gctccttcatct
80520

tttataagat gttctagga aaattcagtt taaatgaga gttgtatgtgg atgtagtgaataa
80580
p11089.st25.txt

ggtacaatttatgacactactttatgttgcagatttaagaaccacattgtaacatacctttatgcttccactagtatagtctccataagattaagttaaatgttctgtgaagtattctatcattcagaragtgtgttggttgcagattcctttcataaatatacataatatcaagatgactgttctgtggactcattgttctcttttctttcataactcgtggaggttagttaaagaacatgttctctatccactagtatagtttccttaccttttctttcatttttcactttgctattctagtgcataatcatcttcatcataactcagaatccttccacactacgtttcttaagagacagccactttcactttattatgttgaggatagttcattttgattcatttttttttttttctttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt
p11089.st25.txt

ggtgacaatt aaaaatctggg agagtttttg tacactatac cctcttttggtg atgagatctt 84660
atgaatgagt gatgtcagtg agaaagagaac tgttaactata ggttttttgg acccttttttt 84720
tagataatag acgcgtgttct aagagcgcgca cttaacctcttg atatatttttcc ccaagacccct 84780
tgcaaacctg tattctgtcct attgtgatctt ggtcatggcgaa tactgtcttag ttctgccatc 84840
caggctccaa ttcacctagac tctctgttgct gctccacagg agaggaggtta gcttcaccta 84900
accagccacc cctgagcctcc caggaagggc catgggaagag ataatgtgtgc caactgcacca 84960
gcagagcgctgc tgctcccccttc ttataactatc ataagcaactg cagggtctata ggcacacagc 85020
atcactgtta atattaaag ganggtgactat atggccaaatc atcgctttttct atgtgctgaa 85080
agaagtgaatg ccctactataag cttcttttctc ttaatattag ttgagaagttgt tctacatgctc 85140
tcttatattc agcaaattat atcagactaa agctgtgttag tcaaatgctat acctatatagga 85200
agtgatcaga acagtgatga atgtgatgtc gtgataatata cacatgctaa agtatcctct 85260
aagaaagagaa ggcgcagcgtgc caaattgaaga aaatatttaaggt gaaagttgttc ctatggaagaa 85320
tctatgtgcct ccaacgccttg gcacaatagtg aatgtataaatt cccgtgtgggt ccctcttgaga 85380
attaatgaacctg cacttccctct actcctcata ataagaattg agaagcagctg ataggaaacaa 85440
gaaagacagc aagccaccca acttttccctttttttaccttttacatgggcttttct 85500
ctctttgatatag cagtcccccc cttcatgca gaaacagagggt tggagttatt tggagatct 85560
ataatcgtct ctgctctataaa agcaagtgtat gtctcaatgaa ttaataaagttg gaaagggcact 85620
agagtaaagag cagaggattcct gatatactcct gtttcgttctttc cttgagccaa ggtccttcttt 85680
taactcctctt gatcaactgt cagaaaccttg tctagatttta ggtctgtaa gaaacatcatttg 85740
tttctcttata cagttccccg atcatggcaag aagggaccgta tgaacagagg tgaaggttgtct 85800
gtttttccag acaggtgtct cattctcttt tttgctatgtg ttaaaggctca ttcttaacta 85860
caggcccaaga cttcttgataa ctactgtggct ctagaataaatt tcagcggacc gttttagtaata 85920
gtagcatttact ctagctctcata atgtgaaacta gttgaaat aaccagctgca ctgacacagaa 85980
aaaacaaggccag aagccgcttatt gcgtggatgt gatctttttcta cactggcttct gcaggtttcct 86040
agatgattttct cttgtcacaact ccaagaaacag taagccctttac aagacttttg gaaggctttta 86100
gctaattatac agccatggcct ctcaggtgatt gcctcataaatatgagattttatatgacttctta 86160
atggcataac atcaatgggtg tttctgtgct cccactatac acacatatac tttctttgacc 86220
attaagcatat aaaaagcacag agagacgttgg atttctgact gataatatca caagagctcccg 86280
ccacacactgtttctcttatcataa atagagttgga atttacagtttttatattgacatttatgacca 86340
tttttttcaag tttatatttat attacatcata acaatggtaacatattata cttgagagcgttgct 86400
ttaatctctcag ccacttctcct ttcctcttaatt aagctgtctctattctctata gaaataaggaa 86460
gtatctaat cttcaagggcct accttttacttatgtgcctgccatcactaacgttggctttctcattttct 86520
acccatgtttt ctgctcagcct gttctgatgtg aatattttctt gattttttctc aaagccctacc 86580
atcaacagag gagtctggct tgtggttgcc caaatgactg ttttgagctt gcctttcttc 88680
acgggttgtc tgtatgatgcc ttagcagca gtcacacgaa acttcctttt taatatctgt 88740
acaagcacag ctttctgata cttctctgata ggaacgctgca gttcacccttt tctggagtgtg 88800
atagaaaaag gaacactgatt ggaagctgtg tgtgaaatttga atttcagctgg aatccacagg 88860
taatgaccaaa gaaggttgtgt gcacacaccacta attgagctttt ttttagttatg tggatcaagtc 88920
aatcagaggg ctagagacag tggacatcttt taaaattccttg ttttctttaaa 88980
gtaggtatat gtttcttagt gccttcacct tccattttct cttccagttta atatatatta 89040
atatatatata ttactttggact tccaactapt tattttataa tattactcttt tttggatctcc 89100
atgataattgg aaccaacaggt tctatattga aacttaattgt ttttaatatts ccatcataa 89160
tgaaatgaaa atatatatttt aacatattgta tataatctcc aagttttaaa aaggggga 89220
tgctccctac taaatcctcct cccgacactt tagggaaaccct tgtggaataatta aacacagaa 89280
gaacagaggg aggctggagga caccaggaga acatgcaccc tgaataaaaaa aaccaggctc 89340
atgtagagtt gatagacacgc gacggccaccttg gagcggccta cccgctcata 89400
catactacag cttccttctt gatgttttttgt gtatgttctgctg agttgttgggtct 89460
ttgccctttc tctctggtttc ttttctctat attttgtgatt atttgtcttcatt ttcgatgaagtc 89520
tcatttttct ttgtatttatt ttcatttttatt ttattttcttt ccagttttaga 89580
cctgttatcct ttgacatataaa gccacaaggt cggctctagttt tggagagttagagggg 89640
aaaatgtatc caggataagtt tttttttttttt ttttttttttttt tttttttttttttt 89700
gtcctgatttt tgtgtttttat cttcataata ctcattttctga aacaaggcag ctagtttctta 89760
attagttttc tgtgttattttt tattttttttttt tttttttttttttt cccatcagag cgaagcccag 89820
cgttcatatt ttgcatatcctt accataactg ccaaatcagac ccgttctttcct gccccattgga 89880
gacctgctg aggctgctgac tttttttttttt ttttttttttttt tttttttttttttt 89940
cataggtgca taacaccaggt ggtgggtgcct agcctcaagcat cccataatag tccatatga 90000
ggtcctaaaa ggtgtatgct gctgctacata tggccttttt tttggatccct 90060
attaccttttc cggattttttt tttttttttttt tttttttttttttt tttttttttttttt 90120
tgtatttttag ttcagctgatt gatagacataa tttttttttttt tttttttttttttt 90180
tggccactcttt tttttttttttt tttttttttttttt ttttttttttttt tttttttttttttt 90240
ctgcatgcttt ggcttcttct ggttctagttt taacaccagc ggtttttttttt cttcataata 90300
ctgttatttt ttttttattttt tttttttttttt tttttttttttttt tttttttttttttt 90360
atttgataaagttt tttttttttttt tttttttttttttt tttttttttttttt 90420
aatataaatg ccaaatctttttt agatcagaaagta aagcataacttca aatactctgt 90480
gatattttattttaa ccaatgagtttattttttttttt tttttttttttttt 90540
tttgatgtgac actctgttctttagttt cttttctctactaat gtatattttaaatat 90600
ttattagcat ctatcagctt atctcataca ctggagaatg aataagtttg ctttgacctg 92700
cctggctgtc ctttttggaa ccagctacct atgagttact cagagaggaa tcatgcaagt 92760
cgttccccct tgctaatagc ctggtttttc gtgtctggag tattccagct ggagagtctc 92820
cgttggatag cagttgcaatc ctctcagaga ggctgggaat aagcactgct tctcttaatct 92880
tcctcatagt tacctacatc tatttgaatt ttggaagctc aggacacata atatatttca 92940
aatattata aaataaaccag atataagata caagccccatt ttatatattag 93000
gttatatacaga aagcctgcata ttcaatgttgt aaacatacaga caaagatca aaaccatata 93060
caatagcaga ctgtcagggga ttggttccatt agatttgtag ggagacatata ctaaagcgaa 93120
aaaatcctcg tatgaggttc gaaagaacgt tgaatccttc ctgtcttaatc tcatgaaact 93180
gcagtctggat ggtataggtga ttagtgcant tataagacaag atataaatatatgtaattatgat 93240
atacttcgtt taatatatta tgaagaacaat tattattgtgc tgccttaaga catatatata 93300
tttaaaccag ttctataccat gaaacaaacc tggacaccca tactgagttgc tattcgccaat 93360
gcagggcctcc aaaaaatgactg tatatgttctt atacagagt tgttggccttc tctacttttc 93420
cttacagat tataacgata tacatgttttg aatgtctaat aatattttgtcttgatactgta 93480
aatgattttc cactctttact taagaacact aacatctccttg agctaatgca tgcctcttttt 93540
tttttaacct ttcttgaattc tgggaagaac ctaatacttc aagatgtaa ctaaggtcttc 93600
cagtaatattg tggactacag gagggtataa atggttgggt tattggctca aaacactcagc 93660
tgaagacaga tgtatagttg gttttttccct actctcctca attctctgatag tattgaaat 93720
tcgggtttgt tccattgcct atgcttgagct aggagagacta aggaggagag agagataactg 93780
agagaacagt gggaggaaga atcataatgc tcacgtttttt tctctataac agaatctattg 93840
ttttaatatata tattgtctca agatagcaag gaaatataac gtaagcaatt ggaggaagaag 93900
agaggtgctcc gtatgaagag gaaaaaggact aaaagagggc aatggagaga aatagtcag 93960
gtcagagatgt tgzataactag ggaaatctag tgaagagacta aatactcatt cagcctctct 94020
aaaattatttt atttaaagag cgaattgagaa tttaaacatg gaaatagact cgaatttccc 94080
acattcctca aegcattggtc tttatgggtt gctttgaaga gcaacagactc tttattaagt 94140
gtggaggcaca aaggtgtgagc ttttggctgt taataaaagatcg tgttgaagaa gaagagaaga 94200
agaaaaagaa gaaagaaagaa agaaagaaagaa agaaagaaagaa gaaggaagag gaaggaatta 94260
agaaaaagaa aggtcctgcttc acaccagatt tacatgacct ttattttaca tggatatact 94320
tctgtcttttc tctgtggcagc tttactagtct gttggtctctaa ttttatctactg tatacctgcgc 94380
tagactttag acacttttcat catttgagtt aatatctcctaa gaagacacag gtgtcagatta 94440
cagttctccat tcaataatctt attttttctt tttattttgg aacataagtaa cactttgttcct 94500
taagtaacaa ggtcaaggttt ttggctttat tcttgctcctc tctcaacat ttttcttctct 94560
tcttacatct tttaaacttta tttcaaaaggg aatattggcga taaggtatgct tattggcgcg 94620
agcaggcttt ttatcttaat atctcccaaa cctctgttaag aaataaaga caataaaataa 98700
attacctttaa gatctcagac agcaaccttg cccagctgaa gctctcttaa ttaattgtgtg 98760
gacctgtga agaacaaggg acaacctcag agttcttcag ttattatcca accaaagctt 98820
cagataatga cagtagggag gtttttggag cacagagacat cttggaaact tgaaccttctt 98880
tgttgactta ggccctctctc tcattctctg tgtggttttgt aaggcaaaaa ctcagagccat 98940
atcagaaact cacacattc taagaagcttg ttggatgcgaag tggacaacaag cagacataat 99000
cagaaattaac aacactactc aagtctccgct gcggatctcct aacagagaatat aaagtgcctc 99060
ataaagatgt ggaaatagg ggtagtctga aaggttaaat tgtggagagtg tcgctcgata 99120
cgatgataag tgggcaggat aaaaaatatata ttattatatag attataagat atataagaca 99180
gcagaaattg aagatgcgagtc aagagtttga cagacacaa aatatggtgt attcataaaag 99240
agtatattctc aggctcctca taagggcccag tgtgaggaaa cttttctcaagaacggtatt 99300
tataaagtgt ccataaatgt attgctcaac attttttttctg atataatgctt ctaatcttgga 99360
atcataaatat ccccccctttgc ggcttttaaa aagtgagaac tcagtgccact 99420
tcagttgact cagctggcagtc tgcatcagttc taatctctga accacatataa tggattttgt 99480
ttcatttaaa cccatctgcgc cccatggcctt tctaatgcctta aaaaaaacc tgccttcagct 99540
gacccctatgc aacatcttcac agaagcagtc tgtctccaaacctataatgt tctttttttcc 99600
atcgaagctca agatagcagag taataatcaca ctttagagac aagctatctc atagatgttc 99660
tgctctccaa taagaagagaa atatgatcgtg tgcactcagt ggccacagtgc ttcatttttag 99720
ccacagacca tgcagatgcc ttgctgccaat cttgatgtgatt aggggatacc ctctcttcctc 99780
tataatgtct gtctctcagta cttctcctcat tttctctgggt tgtcctctcct cttggtgttag 99840
ccttttctca caggtgccttc tgctgacagct tactgtgtgt tgtataagca agagcagtcat 99900
tgttttctcc aagagagagaa gcggcttaaa agaaggggtc tgtggcaaca atgggctgtga 99960
acagtgcaag cagatgaata gataaatggaa agaagtgttttt ggagagcaatc ctagcagct 100020
cattttttaa tacaagcatac aatgattgcga tgtaataaacc ataatacgctc tctcatcagt 100080
tgcagcagat tgcgtgactca tgtgtgttcat atttttgattg tatataagaagaataaaggg 100140
aaattcttaaa tttgtttagt gtctgttggtta atgtgatcat atggggtact cagttcaatct 100200
gtatatttata tgcagcagtgg aagtgccctgc atctcttatta cagtagcaggt ggagttatt 100260
atgtatgtct tttggtagaa atatggatcca gttttactgtg gttgttttca cactgtgcttc 100320
agtggaatctgt atagatcata tttatggtctc taagtgctat aatccagcag aggcaggggt 100380
atattctgag tcagagccag cttgttttac agagtggtatt ctaggataagc cagggtagaa 100440
cagagaaacc tgtctctaaa taatacaaca accaacaacac agatattttc tcccccaactt 100500
catatatcct ctcagggag ttttttcatgg gggcagcagc tagcacaaga ggtggtatgc 100560
actgcccctc cacactctgtg gcggcttccaa ccccatacctc tgtgtgtcacc tacatcatgaa 100620
ctaaatgtctc gagattgaat gttcagatgc tagacacaa aaattatatgt aaggaatgaaa
p11089.ST25.txt
ggctagtcct tgttgttgtg tgtgtgttgt taaaatcagg ctgtagtttt gttttttttt 108780
tatggtttta aaaaactcaac tactgaaacc ttatgtttta atatatatat tatatatatat 108840
atatcctgtga tcaccaatgta tattatatg aatatagggt gcctgtgtata ggttttgctt 108900
gttatgagtat atatataggt ttaaaagataa cttggaagttag ttttttcccag gttccacaca 108960
ggcagagtcga ttggagacga tggagctagag atgagattag cttgtctaat cagcaagctc 109020
caggagctca cttgctccata atgcgccatca ttaaactcgtgc gccacactcgc ggcgtgccaca 109080
tatatcaca tatacctatcc agagaaataca agacacagct actctacttg gttgctcatg 109140
catagaaag ggcatatcttc atttttcaag ggcctttcccc cgccttaatg ttctctttata 109200
gaacaaagcc cctccaaggtt gtaaatgttt tgtgtagttgt gatatactgt gcaaggccaa 109260
aatggcagcag aaaaaaggct gaatacatgg taaatatccttt gtgtgtggttg ttgatttttgt 109320
agacaggggtt tctctgtgaa gcctgtggttg tctctggaact cacctttagag accaggctgg 109380
actcggaactc agaatacgcgc ctgcctctgcct ctctcggagtt cttgggattaag acggactgcac 109440
acacagccga ggcatactggt aataatcctta cactctgttt caaacaagtg ttttttttttt 109500
attttatgca gtagaattat atatatagcag ttttctctcg gggaaagtaag gtaatactggtg 109560
aatagctttcg ggaattttatcct cctccatcgt gttctggtcag accccctatatc cttaaaacat 109620
tacattcttt tcatcataaa ttccttactaag cggtagaatc cccttttaac acacacacac 109680
acacacacac acacacacac acacacacac cttctttaaa ttcctcctctt acacacacac 109740
/tttttttttc atctccatga agacccattt ccacccatgg ctactagctcc ctctctctcga 109800
/ttcatggatt tttggttttgt gactctatttc gtttatgctcag acctttttttt cttaaaacac 109860
/gattgagact gcacatcagt acatgatggt atccctcagt ggttaaaac agaaggcaat 109920
/gatttacccc tgcctccaat catcagatgt aagtagtata gcagtgcttg agggcatctga 109980
/gttctcttcat cattttctga gttcataatat gtgtataataa aaaaattattt 110040
/tgcatatatg tgcataatac agggataata tttatatattt acacagaca cactctgtgc 110100
/ttttataagt tcatgattga aattctctatg atttgccattt gagacatatt ttttttttttt 110160
/gyccctctcaca atctctcttcgc ttctcctctct cacctactcttct cggtctctctt tcagagacag 110220
/gataagatgt gcgttgttattc ctgacagatct actattctgcc attttgaaacag catttttttt 110280
/gttctctcaca tttactcgac ccctgtgaaa gggagagcttt atccttattata gcctgaaagt 110340
/agccttttgtt ccagctctcct gcagagacaac aacagagagca atggcaagaa ccgctcaggg 110400
/ttgagggggtt gctgtgtgagtc ttgctctggtt gattttgtgtt tcggctaatcat 110460
/aaaatgacttt gcacccacacac tttgttttcaag cctgtctattttttttt atagatctattgtg 110520
/ttatatatattataaa tttattttttt aatccctaggttt cttgataaatt ataagacactttc 110580
/taagatgtat gcttaataa atcctgccat tttaaactcctt cttgagcataa aatgctctgcc 110640
/cccccccttaa tggtcttttgc tgtctctcatcc tttatgtcttt atggagcaaa cttgttctagt 110700
p11089.ST25.txt

aagatttggt gaacacggtg tttcttaaat gaatgccagg agagtcaaat ctttagcaca 112800
ggaaatgtga tctacaagaa acacaaacac gttactatgt tttttaaaa gaacaccaaca 112860
attattgatt tacaacttgg atgatttatt tattaaattgc atcagcagg gatttttaatt 112920
gattgttttc catggttaac ccaggaagga atttcatagc acacctcgac attatcggga 112980
tgaaactcgg acggcaacca cagtttatcgg ctctataaca atggacccccttgccca 113040
catttcttctt tctattgagtc atcagtttata cagtttataattc atcagttcag gcctgttta 113100
ctattcttat tcagtttatc aataaatctt cacaagttttc attggaaataat gcactgaaga 113160
gtggtgttc tctatttctt cttatgagtc tttttaaatctg cagtttcttg ggctgaacta 113220
gggtgcattt ttgtctcattgt cttttttttccttgccca ctctataata tctattttctt 113280
tctttttttcctgtgctta cacagtggcttc acgattccttttaaata ttgctttctct 113340
aacatataactt aggtcgtgaga ttgatattgac cattttatcct tttttttaaattc atcagttcactt aataaatatt 113400
ccacacaccc ctaaaaccctt caggtcggattt ttcagttttctttttttt 113460
gaaagttggctgatggattg gcactgctgttct taactggtcct tggcgcttctt 113520
ctgtcattttt cttttttttaaattgcttttctagttttttctttttaaattgcttttctttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt
agtttagggg gagagagaga gagagaaga gagagagag

p11089.ST25.txt

118777

<210> 11
<211> 4047
<212> DNA
<213> Mus musculus

<220>
<221> misc_feature
<222> (1).(4047)
<223> LOCUS Drpla ID: 60255227 Version: 1.2
OD: 16-MAY-2002
DEFINITION Mus musculus dentatorubral pallidoluysian atrophy (Dr pla), mRNA.
ACCESSION XM_132846

<300> XM_132846
<309> 2002-05-16
<313> (1).(4047)

<400> 11
cacgacagaa taaagactcg atgtcaatga ggagttgacg gaagaaggag gccccccgggc

cccgaaagaga gctgagatca aggggccggg cctccccctgg agggtgctac acatccagca

gtgattgcaag agtctgaaag tccaggcaga caagcaagaa ggccccgata gagagccct

cgatcctgga cagcttggat ggccgacgca ttaacgatga ccgacagccg gacccctagag

ataagacca ggacacacgag acacatccc ccagcatccta cagccccgggc agcgtggaaga

atgacctgga cttctctctct ggcctgtccc agggccccgc ccgcccctac cacccacctc

cactttcccc tctctctctct ccaccaccag acagcacctc ccgacagccg gagctctggtc

ttgaacctca tctctctctctt gcgcctactg gatatactgc tccgatggag cccccccact

cgagattatt ccaggcccca cacccctggag tctctctctct acacccacag ctctctctccg

ggaatgtcag tgtgaggttt tttatcttgac ccccatgggg ttccaaagggg gaagccgtgtc

cctctctctct gttgctgctg aggcgaagc gagaacaccc ccccccaccct acceccaatctc

caatctacaag ttctctctct gatgtggctct ctctccccaa gccccacgtg gctccaggttg

gttggtgag cttctctctct gcaccaccac cagcctctct ccccatggtg acaccaaaaac

tgctctcttt acctgccttg agaaccctca acaatggcttc agcctccctct cctggcatgg

ggctccagcc aatcctctggg catctgctctt tctcccatgct catgggttagc ggcctaggct

gacctctctct cggcaggag caaaggtcca gctttgcccc ttttccccac ccttcctcctc

cagcttctct ctctctccct gggctcccaag tgcgatatcc atatccatcc tccgagtagt

tgcgctcagc cttctctctct ctctctccct cccattccct gctctgccac ccagctctgt gcggagccag gcgtcactc

caccagact ctctctctct cccacagctt gcggagccag gcgtcactc

Page 144
p11089.ST25.txt

tctctccctcc ctatggccgc ctcttgccca acaacaacac ccataccagcc cctttccctc 1380
tcactgggggg ctactctaca gcccaccaccag cacccctcact acatcaccat caccagcagc 1440
agccacagca aacaacatcat cattgaaacct ctgggccccc cccacccggga gcgtacttctc 1500
acctcttaca gagcagtaac tccacattgg cacacccctta caacatgtca cccctcctgg 1560
gcttcttaag gccctacccc ccagggccag cacaactggc cccacccctag gcacagctgtt 1620
cctataacca agcaggtcccc aatggctccc cagttttctct ttcacactct ctcgggtctct 1680
cctcttaagc cttctattca tgttcaacc cctctctcat ccaggggccc caaggagcat 1740
ccctccccct cccacccagtcc cctcctactca ccacccctctag ccaccttctca agctaccttc 1800
tcggccacctg gccttctctcg cccacaggct acaacacagc ttcgccacccct gggccctctc 1860
agttacagca gaagacccca tccacaggggt cctacaagac agcaccaccccg cctggataca 1920
aacgggggtc acacccctcc ttccagaacag ggacccaccg ccgcttacgta gccacctctc 1980
cggcagcaggg cccagggacc tccaaacccag gtccacccgac cttgggcccgg gggccccctgc 2040
caccggcgggc gcttctcaagt tggcttatctc tgcttccccg ccacctgcggga ggcgactcag 2100
ggcccgcccc ccgccagcag cagatcataa aagagccgagc ggcaggagag getacctcccgg 2160
agatcctcgt gccttccggcc gcggccctcc ccagtggtctg gactgccagc 2220
gccatgccag ccagtctagg ccagctctaatag agcactttgcag cgcgggctctc aacctctggcgc 2280
cgcgcagcga ccttgtacttc ggtgcgcctgg agggtctccaa gctggcccaag aacgcgcgcgg 2340
accttcgtga gaaagtgcccg cgccagcagcg agcagcgccgc ggcggagagag aagagccgagc 2400
agcgcagcag gcgacgcgaa aagagccgagcg acgcggcagag cttggagcgca 2460
gttgaaact ggcggcgagg ggcccgtgctc cagttgagat gcccctctcctt ggtcctgtgc 2520
cccatcggcc tccctctctag cttgccagcgc cttgtctctctac agtccctcccct taccgtgggc 2580
tgtgatactcc gcctctcggcc actcctcaggt aatacgccggc acctctctagtc aatgctctcgtg 2640
gccattcgcc ccaacccattt atagtggcctt tgggggcagg gcacgcgggg gctctggtgtt 2700
acaatgtctcc agcccttacga agcagcgcagg cagctgccccag aagacggggag cggggagccc 2760
gttgaaagtt gcctcgtcac ggcagcagcag ccgcttttga ggtgaaacct agtgagctgg 2820
acccccatca tgggggtcctcc ggcgacccag ccccttccttc cccgacacag ggccggctcgg 2880
ctctacgacc ccggccacccc gcgcgctcata cttcccccttt ctactccgaac ctggggccccc 2940
tggagcagaga acggctagcg ctggcagctg gcggccagctt cgcgtctctgag atgtctctatg 3000
tggcagctgt gcgagcctgac cagaaagtt gcggcgcttg ggcagatgtc 3060
acatagccgg gcgctcgatgt ctgccttcagc ctcccccatca ccacccgaac cccacacattc 3120
acctctcacttc ctcactgcag cagcaggatg cttccacccgc agcctctgcc gcggtcgacc 3180
ctctctgtga cccctctgcc tccaggtcttc actctactccg gctcctctca cccagctggga 3240
cctcccccaa cccctcctttt cctcacccctc tgtcagagaa cgaagtctctt cgcctaccagc 3300
aacaaatatctt acagggctgtg tcgtgcttc 4034 0260
ccatacttccaaccttg cccagccagctgcg tcgtttcgctc 4039 0265
ctgagggctgtc tccctgcttcc cagaggtcgcg 4044 0270
ccacccgctt gcggcagcatgg cagatcctcctgtc 4049 0275
cttctcttcct cacactccgtt gctgggtggtc 4054 0280
ccacccagccgt cagactgcgttc gtagactggagct 4059 0285
ccctctgcagctac ccaggagttgg cggagccggct 4064 0290
"---" 12
"---" 10033
"---" DNA
"---" Mus musculus
"---" misc_feature
"---" (1). (10033)
"---" LOCUS MMU24323 10033 bp mRNA linear R
OD 18-JUL-1995
DEFINITION Mus musculus huntingtin (HD) mRNA, complete cds.
ACCESSION U24323

<300> U24323
<309> 1995-07-18
<313> (1). (10033)
<400> 12
ggcgagctcc cttgctggttc cttggttctc cggcgccggct cccacccttc atggcctgctg 120
ccacccggttt ctcctgttcttc cagctcttgctt ttgaggtcgtgc 180
tccgttcagcc gagcagctccttt ccagaggagtt gtagactggagc 240
gccacccgct ccacgctcctg ggccggtccc gcgggcggcgt gcgcgcggttgc 300
agggggtctgc cagaggttgcgc gcggcctgctc atggggtttgc 360
tcccgctttt cagcctgcgtt tcctggttttt cctgtgtctg 420
tccctttcttc cttggttcttc tgcgcctttt ctgaggtcgtgc 480
tgcgttcagcc gcggttcgctc cggcgtgcttc tccctggttttt 540
gctgttcttc cctggagttgt gtaggtcttcttc 600
cagggccctac tggaaacaagt tgaatgactct gctttggtgat accacatcat accagtctctct 6720
accacatctt gcccctgccccc gggcagata gctttggtgat cttcccacag tgtctgtctca 6780
tttgcaccccc ctcctcggaga aagggggggg cagcgtgaag ttttgtgttaa gtagaagttg 6840
gggcccctgta ggcattttcc tccctagaca gatccacactg agttgctgacc tccaaagcgg 6900
gctagactgc tgctgcctgtc cactacaggt gctctgcccctc tggggggtgc tgtcctcccc 6960
agagtagtgctgtcactgctt gctcctccat ccattgtgtgt cgatccctcc tggaaagccatc 7020
tgctactcaga cctggagagc cgtccctccg tgtctgtgaag aagttgcttta tccagcttcg 7080
tgcctagaag gtagcagatc atcaacatctta cccccgctca gatctgtcttg ctgctccttg 7140
cgagtagttgc gcagactatc tggctggtgaag aacccgccg ccaccaccct 7200
agaacagcacc ctgctccccct catctccacag tgtgctgtgaag aacccctgtta tccagcttcg 7260
cgcagctcccc ctagttacata cgtgtctctgt gttgttagta aacccgggtt gcagctccct 7320
gtcacccaaag cttggagggggc atttggcagc akgatccctctc tagatcctgct 7380
ccagaggaaaag agtagtcccag cttccctctctatc cagccgtca aaacctctag ggtgttgacaa 7440
tgctactcaca ctgctgagttg ccccttctctgt gttctctgtagc ttccctccct 7500
ccagacaggg gaggaggagc gacgagcagc gaaagagagc gaaagagagc cagctcccttg 7560
tttgggttttctc cagcagcacc cttccctctctatc cagccgtca aaacctctag ggtgttgacaa 7620
cactccagtt ctagctcagac ctaagccagg tccctcctcctg gttctctgtagc ttccctccct 7680
taccagattt gagaagaaaaag gtagcagagc tagagttgggct ctagacagaa aatcctcact 7740
gattggttttctc cagcagcacc cttccctctctatc cagccgtca aaacctctag ggtgttgacaa 7800
cctctctctg tttctcttctct cttccctctctatc cagccgtca aaacctctag ggtgttgacaa 7860
gatcaacacc cagccggaga cagcagaaag gtagcctacag ctgctgtgagc aagctcccta 7920
tctctctctct ctcctggtgg gccggaataa aatcctcact cttccctctctatc cagccgtca 7980
agagaagaaaa agtagtgacac ctaagccagg tcccttcttctc cctccttcctc 8040
aaaacagggtgtgc attacacttc ctggcttcaga cctttgtgttg aattgtcact 8100
ccgtaggtatc cagcctacata gtcgacagcc aagccacccct gtcgccctctag ttagtttaga 8160
gttcgtatcc cttccctctctatc cagccgtca aaacctctag ggtgttgacaa 8220
gtactctcagt ctcagcacaat cagcgttggag gcacctccct cagatcagag caaagagagc 8280
ctctctctct ctcctggtgg gccggaataa aatcctcact cttccctctctatc cagccgtca 8340
agagccagtc aacgcgcttac ctcgagagac aacgcgcttac ctcgagagac aacgcgcttac 8400
cgagccctgc ccacgctccct cctctctctct ctcgagagac aacgcgcttac 8460
gcagcctcag ccaagtgtaa gtagctacatct gcttgctccac cctaaaggaag agacccccgt 8520
cgtagattt cacagcagcgc aaggtagtggt ctcagtttgag gcaccccttctc tctccctctt 8580
gaaacacacta cctctctctct ctcgagagac aacgcgcttac 8640
agtaatgctg tctggaagtt aggagtccac ccccctccac atttaccact gtgccttccc 8700
gggtctggag cggctccctgc tgtctgagca gctatctcgg ctagacacag agttcttttgtt 8760
cagcataagt ggctgacagag tgaatgtcag aagcccacac agggccatgg cagccctagg 8820
cctagtgcct acctgctatgt acaacaggaaa ggaaaaaagccagtcccaggagtctcttga 8880
ccccagccct gcctacacctg acagcaggtc tggatgtgtaa gctatggagc gacttgctgtg 8940
tcttcttgat agatcctgca aggattttc gggttggtgc caagttctcc 9000
gcctcagttc ctagatgacact cttttccacc tcaagatgtc atgaacaaag tcaattggaga 9060
gttctgtcc aatacgagcc catacccaata ctttcatggcc actgttagttt acaagttttt 9120
tcagactttc gagcagttcgg ggccagcattc catggctcgg gacttgggtcata gctgttcccc 9180
gtccaaacctt acacaaagaaca ttcagttgcct gatggccatgg gctgttgctcc 9240
tgtaggcgca ttacagccac gctggttttc tgcgatccttt ccacatgtca tcaacgtagat 9300
gggaagaacg gaaagggtcttg atgtgaacct tttttgcgctg gttgccacag acttctacag 9360
cacacagata gaggaggaat tggccggccag gcctttccagctcgtgttttg aggtggtggc 9420
ggcacccagga agttcctacc acagggctgtc ctgctttttgc ctaaatggtc aacaggtcag 9480
 cacctgtgta gtagttgcctg tgggacaataa ggtgctaaaga aggcagctgc tggggccctg 9540
 ggctccaggag gacgctccaca accttgctgtc ggggcctgcct tggccgctga gctttccact 9600
tgtgtcaagtt ggaacatggcc gcaatgccag cagtgtctttg caatgagagc tatgagggg 9660
acatgcacta tgctggggttt gacgctgagt cccggtctcct ggcctcgcctc cagcgtgttgta 9720
cagttcgagg atccaggatt gttgtgtccttt ttctctgtgt ctctttctgctg acatgccgca 9780
gttgacagc gactttcgttt gttgatcagta agtccctagtcttgccagat gtttctgagc 9840
cgcacctgcccc tggaggctgctg tccccactttt acccaggagg ctaatgccc 9900
acacactgtg gtaagctgctg cgtgtggggtg ggaacttggag gctgcagcaggt 9960
gtggcaaccccc attttttttt gttgctttttt tctttcagggt ttaaaattttt attatatctag 10002
 taaagaggatt aat 10033

<210> 13
<211> 3616
<212> DNA
<213> Mus musculus

<220>
<221> misc_feature
<222> (1). .(3616)
<223> LOCUS Scal 3616 bp mRNA linear R
OD 07-JAN-2002
DEFINITION Mus musculus spinocerebellar ataxia 1 homolog (human)
(Scal), mRNA.
ACCESSION NM_009124

<300> NM_009124
<309> 2002-01-07
accagccacg gctttctacg ctggcacta p11089.ST25.txt
accctcctgtc atcggttacc tgagccgcca
acgccctgctc atccccgtgg gcagcccttg ca
ccgctgccgt tttggttagt acctcacacg tttgctcaac ccgccctgcc
caagacgag aacctcaccg cagcctactt ggtcaccgcc gcagccatggt
gcagggcgac atccccctcg gcgtggtgcc ctccccacac ccggctctcc
cagcgtcccg ccatatttca tagaagcttc cctgcaagt ctgggcaacg gggagtggaa
gaaggttagg gagctcgaag cagggagattt catcaccaggt gcagagattg caaatgacct
gaagatcacc tccgctactg ttgagagag cagggagacg cagcagcccg gttgggtggct
gaatcagttt gctgtgtggt taaaccccgcc cagactcgag tgtgaagtct tgtagagata
tctctttttt tattttgagc agggctggtc atctctgctg cctgacgcga cagccagct
tctcttctctt cctgtgttcc caacctccttg ttgggacgctc tcacccctcaac
gaacctgaa gatggtcttg ttaaaaaaggg cagccctgctg ggcgtcctgct
gaagcaggtta aagacgcgca gcctggttgg gacgagacac agatagcgcg aggagaaaga
cggaaatacg cagggaagcg ccaggtttcgt cctgtgaaat gcgaactgata agtctccaga
daaaacttaga ttgctgtcag caccctctct cagcacaata gaacccagca cactcagaacgc
ccagagggag aggaggtagt gggtggccgg ccggagacggta aacactggagc accggagggact
cagccacact ttgatctttc ccaagctccc gcgatctttt caggaggtta agatctctcat
cggaatcagcg ccgaggtggt gcaatctagag acctgttgcag cagcggaggc ccgggttctct
attctgctt gctacactgt tactgtaact taggctaat gacacatgat tttactatga
cattctcttt attgattttg ttaaaccctt tcaattagtt caaacaattt gatgcagcga
agctgttgcgg ttgctcggcg tgcgaaggtg gctgtggtgg gttgagatgg
tccagacactg tcccatgagg tccctggtcga tgtcactggt gctgtggatt caaacccaggt
gcctctgcct tgtcggcagct cgagggccat cagttccca ctgggttcag
aacaacacag tggagaggta tttggttcccg gagggtgtggt gttgcgggtgcc ctgggttcaag
agtgcagagt ggtggttttc gttcctggtc tcacctcgcc cttcttctgt
attgtaggg gacatcagag acggccgatgg gaaactagtt ttaaagaacg gttgctcttca
caacatatatt tacaat

<210> 14
<211> 1543
<212> RNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)..<(1543)
LOCUS     p11089.ST25.txt  1543 bp  mRNA    linear  P
RI       05-NOV-2002
DEFINITION Homo sapiens synuclein, alpha (non A4 component of am
yloid)
ACCESSION NM_000345: VERSION NM_000345.2 GI:6806896

<300> 14
<308> NM_000345
<309> 2002-11-05
<313> (1..(1543)

400> ggagugggcca uucgacgaca guguggugua aaggaauuca uuaqccaugg auguaauuau
60
gaagagacau ucaaaagggca aggaggagau uugggcugcu gcugagaaaa ccaacagggg
120
uguggcagaa gcagcgagaa agacaaaaaa gggguguucuc uauguagggcu ccaaaaccaaa
180
ggagggagug gugcaguugg uggcaaacagu ggcuagagaa acacaaagac aagugacaaa
240
uguuggagaga gcaggguguaga cggggcuucc gagcaacagcc ccaaaacaga ugaggggac
300
agggagcaauu gcaacagcgg cggccuucguu caaaagggac cagguugggca gaaagugagat
360
aggagcgcaca caggaagagaa uucguggagaa uaugugccugug gauccugaca augagccuua
420
ugaauagccu ucugagaaac gaucaacacc gaaacgccuua gaagccuaag aaaaaaccuu
480
gcuuuccagau uccugacagu uggcagacaua uggucuaucc gaucaacagug cuuguucuca
540
augugccca ucaugacaau ucucaaaugau uuuacaguguu aucucgaguu cuuucucaagc
600
cagugauuga aguacuagug cuccggccccca cucagcauua cggugcuucc cuuucacug
660
aguagaaacaa uguagcagg gcuuuuguguuc gcuuggagau uugggccuuc aaucaagcagau
720
guuuaaaccu auuuuaaccc ccuaagcugac uaccacauau uucuaaaucc ucauuaauuuu
780
uuguggcug uuuguugachu guuguuugug uuguuggcuac auuauaaua auuauuuag
840
guguuuuuauu aauguacaua cuaagaaauug uggugcuuug uaaauuaauu uuaauaaauu
900
auaauuaccu aauauauugcu cauugaccaua ugcacacuauu aauaaauuuu augaaauuuuu
960
auaauuuugc gauguguuuuu auucaacugau guugugauua aauaugugac aauaaauua
1020
aaagcaauac ucauaugcaca auuuuuuuau uuuuauuucu ucucauuuaa uuuaauuauuu
1080
ucaaugcuuau aacguuaccu aauuaaucag ugcaccaaaag gaeaaauuaa uaaugauuuu
1140
auaagcccaau ugaagaagg gauuuaauug aaugagcuagaa gaaauuggaauu cauuaaccau
1200
accacugaa uccggcuaa gcaacugcgc aagugacugu uuguguaugc acuguguucu
1260
uauguggcgg ugaauuaaua uaugaaugug cgggcuuaggg accccagcuua cauuauggau
1320
guggcuuau ucccuggcua auuugguucu uuguugcuuu auuuuuuggu gggacagugu
1380
guguugaugug uauguguuuu auuugcuauu aacuaauauua uggacuauuc uuuaacaaau
1440
uuuguuguau uuggucugca aauuaauuuu uuuuuuaau cuuuuuggu gauauaauug
1500
guaguggaguc uaccuuucug ucuuuauaau uauuuucagc aug
1543
LOCUS SCA1 10660 bp mRNA linear P
RI 31-OCT-2000
DEFINITION Homo sapiens spinocerebellar ataxia 1 (olivopontocerebellar ataxia 1, autosomal dominant, ataxin 1) (SCA1), mRNA.
ACCESSION NM_000332

<400> 15
ctactacagt ggcggacgta caggactgt ttcactgcag ggaggtccaa aacaagcccc 60
gtggaccaac agccagcaac acacagctg caagacatgg ttttctcccc tctgcctccc 120
cctccccagc caaccccaaa tccccattaca ctttacagtt ttaacctcaaa aaaaactacta 180
caaagcaccac gctccctgtg gaggagggagc atcgtgcatac aacgtacccac ggtgtgcctcag 240
tcaagctgca gatttggatg tcatccttgg tttgcacctc tcacacgttt acacagacct cctcctccac 300
gcggagatgta tccagatgca gcatctggaa gcatactgtaa agagtctatt ttgaagcctc 360
aaacatatgt ctcgctgcaaa ccaggaaacaa agagaaagag agtggatttcc gctggaccag 420
taggtcttga aacacaaattg gttttgtgct taggggttttt acacagatatc ttcctcaactgc 480
cacccccctc acctgaacca aatcttccgttg aaagattctga tgtgaagtcggtttgtt 540
atggctttcc atttagtataa aacagctatgg tacagttttcc caagaaattt agacagatttt 600
ctctgtgaca aagaatacgta cgtgctgttt tatctgattgg taattctctct ctctgtgaac 660
ggaaagaaac acacgctggc gcccaagacgc cttcagccagc cttcagccggc ctggagctgg 720
tttcatgtg gaaagtttccc tgtgagccct cttggtacaag tgcacagcatc atgctctctcc 780
agactgctgtg ttggccgatt gtacccacgag ggagatgatt ctcctagtaag gcctgtagtctc 840
ccttcagaa atcaaatgtt cttttctgggt tatcagacta aatccagacgc catccagaca 900
gtggaaacagt ccagctggag gggggagcac gmmaatgga aatccacaaa gacggagac 960
acgagttgcttc gctcccacag aacgagcagc acacgctggc cagccgcttc tccgaggaga 1020
aggccccactc cctccggcagc gacaaacacc cgg tgtggagga cacagctggc cttcccggcggc 1080
acctctggtgg cgggccccag gggggaggag ggcagttggcc gcgcggaggc ctcggtgagc 1140
ttggctctac atgctagaaa gttctcataa aacgcggatt cacagctggc gacagctgct 1200
cgccagccgc ccaggctggc caaccagctgt gcctgagagc tgcagccacc 1260
cgccagccgc acagagcgggtg cttccctgtgc agttacgtcag cctgccaagc actttccagt 1320
aagggccggttc taatgtaggcc aagtgagggc aagctgggagg aagggaaaacg tggctctcccc 3420
ttatcatttg tatccagatt acgtgctctg aagctaaataaacacagttt tatcaagttta 3480
tctctttaat tttagtttttc tgtcttaacc tgtctttagt agttacagca ggtgtgtgcgc 3540
agggagacgtgg tgcatactgc tttttccagca gtgtctgtca gtgcagcggggc gggagagggcg 3600
gcacagcaggg aaggtgtcagg gctccagggca tccccggggaa agaagagggcg gggtctttcac 3660
agtgactgtgc tttcactagcg gcacacagagc agcggcgagggc gctgactcccc gctgatgtgta 3720
ggaaagaaaaa cccgtgggagg aagcttggtga agcgcgtcagc tggcagatttt 3780
cacagggcgt tggctgggagga tggggttcagc tggcagcagc tggcagactc 3840
cttctatcgc gcacggccg ccgcacggtgt gcacagcgtttc ttcctgagt cctgcggggt 3900
aaaatcaaca tcagggacagcg gttctaggagc ttcgcagacagc ggtggccagct 3960
ggaaaggttaa ccattttaaa gaaacatattt cttcctcaaca taatatctaatcttatccaa taaaagacac 4020
ttttattgtt atagatatat atttccccct atggggtggct actgcatactg gatatattttat 4080
ctctataagag caacattcgcac aatgcttggtg ttttctgagc tctctttactcg tgcagctgatgtt 4140
tcaccagggct gtttgtggtgg aacaggggac acctgctgtgta ctgggcccct aatggggggaagtttttggagcgtttgtgggaggggggggagggagagagacgagccccagctgagccactgagcagccgggggggaggggggggggggggggagggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg
acctttcatc cccagagatc cgaaatatca ttggatggtt tggatgcat ctttaaagtg 5400
cttaaaaaa aagtttttaa agtagggaga aatztztzzt cttcttctac tggatggctg 5460
cacaacaaact gaaacactctt tattaactata caacacccac atttggctgtc takctattc 5520
gttccacaat ttaaaaaaat atcttgttat caacccacat ttgctgtcag tgtattttg 5580
ttataatttag gttccaccag gactaatgat cttatatataa ccttttcttg agggtacca 5640
aacatattga ataggttaga aatatcgatag taagtctttgct gactttccttc gattttcatt 5700
acccctctcag cagccttgcac gacagactgg tgggtctatt tttgctgtcag tacagttatt 5760
ttagtgctgct ttattttatataa cggctttgtt cagcagacttt cccttatatttc 5820
tgctccaggc actactgaat attaggttttat tcggggctttta cctttttaccatg 5880
gtaagagga ataacttgctc ccaactagact cttgtctacta taatatcact atttacactt 5940
cagttgcgcct gacaaasacct gcacccccct tgggtccttcc tgtttctagg taattgacgt 6000
geacctacta accacacata atagatccgg acacacactgc ttgagccgta taggacactc 6060
atccatatgt ttgtgtcttct atttcggtgta tagaatattc aaaaatatgt tttttttttta 6120
aacactctgc ccaactttttc cttgtgtctct tttgcatctt gcaatactctt ctggtgcaacct 6180
agatggctgc actgttgctactc tatagtaaata gctctacttcc tttggtctttc tttttttttt 6240
gtgtgccatc cccactttcgt gccagactgg ggcctgaggg gaggccagcag gaggccagcag 6300
gctctccacct ctcctctccttg gggctgtgctg gatctgctggc gggggcgcgg cctcagggcag 6360
cggcttgcctac gcaccctgtct gacagagactt ggcctgacag gaggccctg gaggccgagc 6420
cagtgcctcc tgtccagcaca cggatatgatg aatgtgagtt gcagagagag cggagccgag 6480
tccattttcata aagcgccacttc tggcgccagtag cttcctggag tcaacccatta ttttcacgggtc 6540
ttttctgcaa gttggcgccag cccctctctttg tttgtctgtct ccctagactct cagggccgctc 6600
ccttgacgtct gacggcggagt gtttgctttatt gtttctgtct gtctctcgacg gttgtgaccc 6660
gttcggtgctag gggccgtactg tctgaccccca cggctcactg cttctgtattc ccccttttcct 6720
ttccaatagg aagagcccgac aagggcggag acgctctcgtg ttggagagtt cggccggtggt 6780
caggcttccc gagacgcctct gcgctgcgct cttgcttgtcag caacacattact caggtacag 6840
gectacaattc tttctgtgctc gttgcagatctt cctcaagtag cctgtgatctt ctgctactatg 6900
tctcttgccgc atatatttact cgcagctctgt tttgtctttt tttttctttgc ttttttttttt 6960	taaataggtca cagcaggctc tttttgttcct acaattgaagc ccatactagcta aagaattctctctgt 7020
cagggcgaaa aagaaaaaaat aataactatatta ataagaaacc caacaaaccttta aactttttact 7080
ttagggattc ttatatatatata aaaaagtgcacc tttctttcaagtatagttta aatagtatatt 7140	tctagtcttcgt ctggggccacat ctggggctgct ggggggaggg aagggatagcg actgtttgagc 7200
cacctacctc agatcttttctg aatgtggaat ccaatgtgctaat tttctttgactctttcaagg 7260
taatattttactgacgtct cttctctctct cttcccctacta caccaggtttt gattttcggttc 7320
gattttgattc tttgttgttgtgt gttcccacatt cttacactgctttg aatttgagaac cttcattttt 7380
tctgttaggt gagtgtgtgg ggtttttttc cccaccagg aagtggcagc atccctctctt
ctccccctaa gggactctgc ggaacctttc acacctcttt ctcagggacg gggcaggtgt
gtgtgtgtga cagtgcagtg tccagaagca gcacattgac tgcctcggag taggggtgta
caatcccaag gaatttgttgg aattttcgtaca ttttttttag taacgccatc
agttgcaata taatactgca tgggctagat gaaacagatgc tccttagtaat cttcaaatcc
actcttcga caagtttactc ttacacagatct tgaattatgcatagttgtgatgt
aggtgtggtgt tttgtttttgt aaggaacgta tggacaataat cctttaacatatc
cagaaacctgc taatggcaacct taatttctttt catagagagaat atttctcctac
gaccacatgta ccc.gcgcctgtt tttttctcctt ttttctcactag tacgagacagctt
aacagagtct tcttttgccccttt cctcaaacacc aatggtttaaa tttcttcttctt
aggtgttggtgt ttttttttttt aagggccaagcct cccaggcatgag accttcagcagtt
acacagt gcgagatgtt atcttagcgac atcgtcagcc ttaattgtaa atcagctgatgc
cagacatgac tttttttttt tattgtaa ttaattgtaa ttttccagc tttttttttt
aggtgtggtggt ggttgggttt tttttttttt ttttttttttt ttttttttttt
aagttgacatg aataactttt ggttttgggt ccttttttttt ttttttttttt
aggtgcactgct cccagacgcac cccagagagc cccagagcgcag cccagagagc
cctacatgtt ccacagctgtt ggtttttttt ttttttttttt ttttttttttt
agtttttttctt ccacagctgtt ggtttttttt ttttttttttt ttttttttttt
aagttgacatg aataactttt ggttttgggt ccttttttttt ttttttttttt
aggtgcactgct cccagacgcac cccagagagc cccagagcgcag cccagagagc
cggcttcagt ttctctagtc cccatgacct gcatacaaat ggttcaactg tattaaat
9420
aagtgcattt ggccaatagg tagtatctat acaataaaca caatcttcaa gaatttccat
9480
aacttttctt atctgaaagg actcaagtct tccactgcag atacattgga ggcttcacc
9540
acgttccttt tctccctctgt tgtttgtgcgt tctggatggc caatgagctt gttcctcttt
9600
tcttgcccaaa ttctgagggc cctggctggga agttgctgta cacaaatcct tacagatagta
9660
acatactgtc tccagaataa ccaagtatta ggtgtcacta gctcaagctg tgtttttcag
9720
agcagttacc aagaagctcgg gttcagcaggt tttctcttggt tctttcagaga accaacctcat
9780
ctttccaggttt tgtgagcccact gcagttcatt ttagtgcatt tgaactttgt
9840
acctgtgcat tcagttctgt gataactgcct ctttttggcg gggttttctct atctccccag
9900
ccgtcaagtgc tcaactctaa acccacaatta tgtgtcagcgg aaaggaggtt tcaagatagt
9960
ccgtgtacaga tgtgttttggta cccctcagatt agacagctctt cattttcaccg cagttgaaagct
10020
tggctcagc agccatctctt gagaacctcgt actactggtat gttttatata gtagctatta
10080
ccacacatat gcattcccaca ggccagggga aaacagagc eacaactttg gttgtggcacc
10140
tctcagacaag ccagcagagaga gagaagaaatc tttgtaaccct
10200	attgaaaaag aaaaatatataa ggctcatact ctatgtaaga agctttttatg gttgacagag
10260
aacatcccttc ctatggttgtg catatctctct tgaattccag ttagaaatata tgtacttgca
10320
ttagcttttt ttaaacaata atttttaaatg gaagacatcta tattccatat tctaatttcttg
10380
gttgtccttt tttgttggata cactcaggtc tttttatattg aatatatttg gcttttccttt
10440
gagtttgtcct gcagttttttc taggtgagaa ttattttcatt attataattaa aacaatgtttt
tattgaaaaat ttcattttcct aaattgttttt gtataacctt aacaattttact
10500
ttttcagtt tacctgtact ataaataaatt cagttccaat tgcataaaa tatttttttaaaa taaaaa
10620
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaa
10660

<210> Homo sapiens

<220> LOCUS MJD 1900 bp mRNA linear P
<230> DEFINITION Homo sapiens Machado-Joseph disease (spinocerebellar ataxia 3), olivopontocerebellar ataxia 3, ...
<240> ACCESSION NM_004993

<300> NM_004993
<308> 2002-07-31
<331> (1) (1900)
<400> 16
ggggcggagc tgaggggtgt ggttgcgcgt ggggccggtt gcctccgagc aaataacat 60
ggagtccatc ttccacgaga aaccaagaag ctcacttttct gctcaacatc gcctgaaata 120
cctattgcaaa ggagaaattt ttgactctttgt ggaataattc tcaattgacac atcagaatgc 180
tgaggggagc aggatggagaa tggcagaagg aggagttact agtgaagatt atcgcaagcctt 240
tttacacgag cctctctggaat atatggatat cagttgtgttt ttcctcttac aggttataag 300
caatgctcttg aagagtgggt gttataaacat atctctcttc aacagtcgagc agtactgcag 360
gctcaggagtc gatcctatca atgaaagatc atttatatgc aatataaaag gccattgttt 420
tacagtttaga aattagggaa acagctggttt ttaaccttcata ctggtcctgaa cgggtccaga 480
attaatactca gatacatatc ttgcccttttt cttgggctcaa ttaacaagac agggattgcc 540	atatatttttc gtttaagggttg atctggccagc tggcgaagct ggacaaactc gcagatgtat 600
taggttacca cagatgtcatc gacacaaactc tattgggagaa gatattgcac aactaaagaa 660
gcaaaaggtc ctaaaacagc acctgtgacag atgtggtttaga gcggaaattg gctcgagaatt 720
gttgacgacg gatgagggag attttgccag gcgtcttgcct gtaaatgcc cacgaaattc 780
catggagagat gagaagacat tttctcgcag ggtcatttac ctaaggtatgc aagggctagt 840
cagaaacata tcctcaagata tgaacacagc atcaggtataa aatctttactt cagaagact 900
tcggaagaga cgagaagcct atcttggaaaa acagcgccaa aagcagcaac aagcgacagc 960
gcaacgacag cagggagacc tatcaggaac gatgttcacat ccatgtgaaac ggccaggcac 1020
cagtttacca gcacctggagc gtgtattcgag tgtatgcatag atgtgaagaa acaattttcct 1080
gggacagtgtg accatgtcttt tagaaactgt cagaatatgat ttgaaacagc aagggaaaaa 1140
ataataacctc taaaaaataaa ttttagataatt cataaccttc aaccatttcc cttgtgatta 1200
cagcataggg ttcctttttgga taattgctgca aagagattgag gaataagaca ttttattggg 1260
ttgaaacaa aatgtggagga aagtgagaatac ctgctgtcgtg gttagagcata aataatgtac 1320
tttcccctaata tagcgaagag gcgttctcgcg tctgtgcgta gcgtgtcgtcga atatattttg 1380
ttggggggttt ttcctttttttag gttgacatgat ctaaagttgga ggcattttttc 1440
tggtatccag ttcgaaacat gccttcctatct cttcagcttc gctgctttttc ccatgattttg 1500
tttttttttt tcctacaggagt gtaagagggt ggctacactc atgaaagacg tttcatttttc 1560	tttttttttt tcaaggtgtgg ctctacacac actggaattg atcaggcttg ttttttcttc 1620
atggtctag aagatgtgac atggttctcttt tcatcaacagact gcctgcgtgtc atatagttt 1680
caggattttc ttttttcgtggt gttcagttcag gttggttctac aagagttcagt cagagtgggttt 1740
atctttttgga aagatgttaag ttccttttttgg gttttagcggt ttaagccctc aaggactgggt 1800
cattattttc gtagttgtcgct gttcctaaac tcggaatcca gcttgcacag atgacttgag 1860
aataaatgag cttttttttaa aaaaaaaa aaaaaaaaaa 1900
p11089.ST25.txt

DNA
Homo sapiens

misc_feature
(1..(1735)

LOCUS MJD 1735 bp mRNA linear P
RI 31-JUL-2002
DEFINITION Homo sapiens Machado-Joseph disease (spinocerebellar
ataxia 3, olivopontocerebellar ataxia 3, autosomal dominant, at
axin 3) (MJD).

ACCESSION NM_030660

NM_030660
2002-07-31

(1..(1735)

17
gggcgggcgt gttcggcgct ggccccgttg gccctcagac aaataaacat 60
gtagtcacat ttcccagaga aacagccttc tggaaaaatg gatgacagt gttttttttc 120
tatccaggtta taagaactgt cctttgaagtt tgggggttaa gaaataaccc ttggtcagag 180
tccagagtcat cagacgctca ggttctgatcc tataaatgaa agacatattta tataaatta 240
taaggaacac tggttacag ttagaaaatt aagaaaaaag ctgctttaact tgaatctctc 300
ttgacagggt cagacattta atatcagata ctttttctgg tttcctacta 360
acaggaaggt tattcttat ttgtctgtaaa ggtgcatctgc cagactggcc aagctgaccca 420
actcctgcag atggttaggg tccaacagat gcatcgacca aacttatttg gagaaggtt 480
agcacaactaaa aagagcagaa gagaaggaagct aacagaccttg gaagagagtgt tagaagcagaa 540
tgatggtcag ctggaggttag aagagatggt aagaggtggtc cagacggtctc tggcactaag 600
tcgccacaga aatgcatggt aggagtgagc catcagatctcc cggccagtctt tcctcgctaat 660
tagctcaagtt ggttctcagaa acatattctca agatatgacaa cagacatcatc gttcaaatct 720
tactcctgaga gaggttttac gacagagacaa gactctatttc gaaaaaata gcaaaagactaag 780
gcaacagcag cagcgacagc agcaggttgc gacacatctaa gacagagttt cacacattg 840
tggagcagtt gcagcagaaat gggaggtact tggaggtgat ctaggtgatcg ctaggtgata 900
agaagacatgt cttcagcagc tgtgtgacag tccttttgcag ctaataacag atagtttga 960
aacagaagga aaaaaaatat atccttaaaa aataatatttg atatctctac ttcttcacatino 1020
ttcctctgttg gattacagca tagggccacac tttgtggtaatgt tgtcaaaagag tggaggaatt 1080
aagactttta gcgggtttgta aacaaaaattg tgggaaaggt gaacaattcg tcggtgttag 1140
gctaaatata gatcttcacat attattagct aaagagcccag tcatcaattta aagacatttta 1200
aataagttttctaaagtctgtttttttt ttgtggtgtg gcaattgttaaa ctagttctaa 1260
gttagggcat tttttttttgca cagactgctaa ttagcttcttg cacggtctgctttttctacta 1320
ctttctgataa gttggtctcag aatcatgtaat 1380
Page 162
agttgccttc atttcattt aaccaatta aacctttcagg aagtatatctc tacctttccgt 1440
agttgatatt tagtaatgtgt tgtggaagga tgaacagttc tccctttcaac tgtatattgt 1500
gttgctccagt gttttctttgt gttgtttttct tgtatcacaac cttttcttctg acctgtgtttt 1560
cattattttt ccacaatcttc tttgaaagat ggtatatctt tttgaggtttt agcgttttaaa 1620
gccctacgat ggagcatatta tttcatgact ggtgcgttcc taaactcttg aatcagccttt 1680
gcacaagtac ttgagaataa atgagcattt tttaaaaaa aaaaaaaaaa aaaaa 1735

<210> 18
<211> 5832
<212> RNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1) (5832)
<223> ACCESSION NM_012104
VERSION NM_012104.2 GI:21040369

<220>
<221> misc_feature
<222> (1) (5832)
<223> LOCUS BACE 5832 bp mRNA linear PRI 05-NOV-2002
DEFINITION Homo sapiens beta-site APP-cleaving enzyme (BACE), transcript variant a, mRNA.

<300> 18
<308> NM_012104
<309> 2002-11-05
<313> (1) (5832)

<400> 18
ucceccagcccc gcccgagggcg gagcuggcguu augguggccuu gacgcagccaa 60
cgcagcggca ggagcgggga gccwugcccc cugccggcgc cggcgcggcccg ccgggggacc 120
aggggaagcg ccacccggcccc gcagcagcgc cccccucccag cccccgcgggg agccggcgcgc 180
cgcugcggccag gcgcugcgcgc gcgcugcggc uguagcgcgct uccgaaccgc ccuggcucuc 240
cugcuccggcu gcucucugga ucucucucug cccucucuccc cagccccggcc cccggggccg 300
gcccgagcccc cagcaggcccc ugccccuugg cugccccccaa gcucucucuc ucugcagcgc 360
accagacacca cccccacgcucc ggccgcggcc gcagggcaggg ccagggcaggg gcucggcgcc 420
agagggccgg aaggggcccc caccacaguc cccagcagcccc cccgggcuccc cccgggggugg 480
ugccgcgggg augagcucuccc gcacagcggc ccacgcagcc caucgcgggug cccggcgcca 540
ggcgcuggg ggccggcccc cugggccguc gcugccggcc cgagccggcc ccagagcgcg 600
agagcgggggc cgggaggggc acguuuggugg aqacggucgg caacccggag ggccagcggg 660
ggcggggcaug cacggcug gcagcggcuc gcagcggcuc cccaggucgg 720
ugcagcagcgc gccagcagcgc cccggccguc cgcagcagcgc cccggccguc 780
acccacagac gcagcagcgc cccggccguc cgcagcagcgc cccggccguc 840
p11089.ST25.txt

acacccagg gcaagggaaa gggagcugg gcaccgaccu gguaagcauc ccccauggcc 900
ccacgucac ugugcugucc aaacaguuguc ccaacucuag aagacaag uuucaucau c 960
acggcucaa cuggacagc aacucguggc uggcuauguc ugaaguaugcc aggccugacg 1020
acucucgguca gggcucuuucu gacucucugc uaaacagacgc ccaacuuuccc aacucuucu 1080
cucugcagcu ucugcugcu ggcucucuuc ucaacaccguc ugaagugcug gcucugucgc 1140
gagggagcag guacauaggg gguacugcc acucgcugua cacgagcagu cugugguaua 1200
ccaccauccg gcggccagucg uaaauagagg ucaaucaagu gcggcgaggga acuacagacg 1260
aggaucugaa aagagcugc aaggaucuca acuauguacaa gagcauugug gacagugggca 1320
ccaccaaccc ucuuucucccc aagaaagug uugaacucug acuacaaucu acuacagcag 1380
ccucuccac gcagacagcuu ucucagucuu ucugcuacug agaaaagcgug gugucgagc 1440
aagccagcac ccccuucuag acacauuucu cagucacucu acucuaccau auggugaggg 1500
uuacaccaac guuccucucgc acucaccaac ucucgcagca auaccucgcg caguggaag 1560
auguggcaca gucccaagcac gcugcuacuu acauugcua caacucacgc ucacucagc 1620
cugguaccc gcacugguau cuggacgc cucucugcag gcuuaacggg cccagaagaaac 1680
gaaugugcgu ugcugucagc gcucugcagc uggcugacua uccacccgcg caccacagc 1740
aaggccuucu ugacucugug agcucaguug aacacauucc ccacccgcau cagcagcag 1800
agcucaaccu caagcaccuag gucuacucgca uggcugcagcu cgccgccccu ucaucguuc 1860
cacucugcgu caugugugcu cagugcgcgu guccucgcgu ccucgcagcg cagcauugc 1920
acuuugcug ugcacucucc cuccacacgu gaggagccgc auggacagca gauagagauu 1980
cccugggucc acacucugcu gucuucacuu gggcuacagu agggacacacu guggcaccu 2040
uguuggcgag caccacaggu ccucucuucac ccaaccaauug cccucucuuu gauagagcaag 2100
gaaagugcgu gcagcaggcu uccagcgguc uguuaccgug gggagcaagaa aagagaagaa 2160
agaagcucac ugcugcgccgg auaacucuugu gcacucuacu auuuuagug cggaggaucg 2220
ccugcuagaa ucuacgcccu gcaccacucuu cccacauucc uuuaaaacu ccaacaaa 2280
guauucuucu uuucuacugu ucaagaaguac uggcaucacu cgacccuucu cuugcugcgu 2340
guccugcugg uacccucgcac gagaacagac ccacguugggu uccucugcugg ccaacagcag 2400
uagagagga ugcacaguucu guuauucugu uuagagacag ggacuguaac caacacccua 2460
acauugcgc aagaguaggcc ucuuagcuau aaaaaaaaa cuagagucag uuuaaauauc 2520
auggggggcg cgagcagag aaggaaggag aggagagauc caagacagga aauaggggau 2580
caagacuau aagagcagacu aacacccuucu uacucacaccu uacucacacu ccacccucc 2640
aagugacau ccacccacag aagagcgggg guugcuucuua uguuauucua ucuagugugug 2700
cagcuacucc aaagucugac ugggaagcgc uuaucuacgc aagagcucu uuuaugcuc 2760
uuaaauuga aguucucuccu aagagucucc uuaaauucuc acuuaacaca ugaauucug ccaauuaau 2820
uucauugucu cuaucaugaac cacccuauau p11089.ST25.txt ucucauauug auagccagca cugaauaau c 2880
caaacccccc aagcuaccagg ugcccuuggg gagaacuau gcuauuau cagcccugggc 2940
ucugcuuucc uggcuauuuu cacucauuu ccccccaaauc uuccuccugg gcuuugccacg 3000
cagcgccua aagcauauag guagccagc accuucuauu uauuauauaa agcauauu u 3060
ugaacacuuc uucaacacguu uaugcuccau uuaccuccgg cugatauuu uccuauu accg 3120
uaauaagaugu agcaagcaau uuaauauauu cagagauggu uccacuccauu cccuaccuccu 3180
cuaaaggccc cccuuauau uugacuauag caucaacagg uggacauuag uauuauacc 3240
gaguauagaga auauacacugc uuauugccuc uuaacauuu uccauggcagc 3300
cugccagaagc gagccagcacc uccuggcccuc cccuauauau uccaugcuuua 3360
ugaaggccauu cuuauuuuuu ccuccauuccg ccuccuaauu gguacugugg 3420
uacccagggcu ggacuguggc cuaguagug ggggacacagu ucauauacc uccuauaccu 3480
cuagcaauag uaacauacguu accaguguaa gugggagag gugccuuucu cuaguauacc 3540
cacugcaucc uccuccacuc uggcccuaucc gcuacacccugc uauugguacg 3600
guagccauucc acaugguacg uggccauaucc gcucugcucu cacucuauu uacuugugau 3660
gcgcagcuggc cacaacccau uuaccuaaua ucaacagauu uccugacag uuuuuauug 3720
gguuccucucu auuccucagg cccuuggggc uggucuuggcu gacucagccag acccuaaac 3780
uacagacugcu gacagggag cuagcaguc uuccacuccg cgcucuauuc gcuaugcuuacg 3840
uauuacuuu acagucucuu caugaguuag uauacagcc aauuuggcgcu cuauaaucu 3900
cccauguguc gaaaaacug gcuuucugcc gcucucuucc gcuccuauu uahuagccaua 3960
ucuauagccau uccucucagc ccuuauauuu uuuaaagaa aacucucuau uguuuuuuuu 4020
uuuacaguau cuuuccuucc gcccuaaaau uuaauacucu aaguuaaa auaaagcuuua 4080
acacagucau cuuguguaua uaaauuauag uuaauacauu guauuuuuau auacugcuu u 4140
ugaagauggc cuugucccaau cuuccacac gcucuuuggg gcuccuuucc ccuccuguacg 4200
ugcuuuauu caucucacgc cuagucagcg agggagag ccuauaccag gcucucaaca 4260
ccuuguugcu uucuguacug auacucaga agaaagag uacuagggc gcucucuccu 4320
augcacaacu cuuacacacu ucuaacuccc uccugauggg gcucuccacag guucuauuu 4380
gggaaacagu uaaaccccaauu cccucuuuuu ucuuauuu uccuauuu ucuuugggcu 4440
cacaaggauu ugguaaagaa acaauauugcu uuaacucuau uuuauauu uuaauuuggc 4500
ggggauacug aaaaaaucg ccugggcucu aaguggcug guaauugag ggggaagaga 4560
aucuuaacaua ucaacagaa aaaccgaauuc ccuaaaacaa aaaaagcaauu aagacugggc 4620
uucuauuuug cccccuauuc gguucaugac aacuuaucugc cccuggacauu uacaauuuu 4680
uuaaccaag aagucugggc accugacucu ucauagacugc acucuacaca cccuacuauu 4740
cacucuacacu gacgcagac gggcucucgu ccuauucacu acuucuagcu 4800
auuaaccugg gcacugaggg cagaagaaauu gauggaagauu caucucugugc gcugacagc 4860
aaggaugaaa gacaagagaag gaaagagaga ucaaagggcag aaaggaauuc auuauaguggg 4920
gucugaaagg aaaaucuucu gcuuucggcag augauacgccu gagauuacgc agaucuauug 4980
gucccagauu ggaaagaaaa aucagaugauu guuuaauuaa uaauguccuu uccuggagu 5040
caguuuuuuu aaagauuaaa cuccuagguuu uuuacuugguu auuucuuuaa gagaagggag 5100
cugaggccau uccuggugag aguuaagaa aaaggauugc aaaaauauucu aagcucuauu 5160
agaguacagc cuuuccagg uaaauacccu aaaaauaaaga uguuacuauuu gcagagggg 5220
aaaaaugaucu uaaugccag uagcuuccac agagcaagug auuuaaauuu uugaaauucca 5280
aacuauucuu uaaauauauc uuuggucucc uuuaauucaca ggcacgggaa uauugucccc 5340
cuaacuuuuuc uugcuucuucu aauuauaauc acauucaucca gaccauccca cagcuaucu acaauuuauu 5400
uugcacagac aucuucucac ccagguggcu gucuaggagc caccaagggu caccaaaaauc 5460
cuugguugug aacaaacucg cuuaacucuc uggugggaggg ggaauagccu uacauugag 5520
ccagaaagaa auguggacuuu cacaauugug gucugucagc gcuugauag 5580
aagccagagc aguggcgaca aaggaacccu ugcccacagga aaacuugguug guugugcuau 5640
auuucugucc agaaauuagg guggcagag uccuguggg uacauagggg auuugggacc 5700
uggguauguu guauacucuc gacucuagau uuuguggaug uaaacagaa uauuucuuaa 5760
accuuaauguc uguuauuauu augagcguua acacaguuua auuaucaauaa gaagacu 5820
cuacuagcguu uaa 5832

<210> 19
<211> 557
<212> RNA
<213> Homo sapiens

<220> misc_feature
<221> (1..(5757)
<222> LOCUS BACE RI 05-NOV-2002
<223> DEFINITION Homo sapiens beta-site APP-cleaving enzyme (BACE), transcrcript variant b, mRNA.
<230> ACCESSION NM_138972; VERSION NM_138972.1 GI:21040365

<300> 19
<308> NM_138972
<309> 2002-11-05
<313> (1..(5757)

<400> 19
gcgggcgccg gcgggacggc uggcgagcagc gacgucuauu uugggcuccu gacgacccaa 60
cgcagcggca gcgcgcgggc cggcgcgcgc gcgggggggc 120
agggagccgg cccgcggccc gccgagccgg gcccucgggc cccgcggg gaccgcgacgc 180
cgcgggagc cgccgagcgc ggcgggcggc uguagcgggc uccgauuucc gcggcucuccc 240
cgcgggcggu gcuggcaguc cggcgcggagc ccggggccg 300

Page 166
ccccagggcc cugcaggcccc uggcguccug augcuccccca cuccuccucuc cuugagaagcc 360
accagcacca ccacagcuc guggcaggcgc ccagggcgac accuggggccu gugcaagcc 420
agagggccgg aaggcggggg ccacacacug ccacacaggca caucacgcug cccuccucgc 540
gcgcuccugg ggccgcucccg cuggggucgc gugucccccug gaggacgcac gaagaccccg 600
agagacggcg cggaggggca agcucucug guagacucug caacucgagg ggcacggc 660
ggcacccgg caacugggga aagggagcgc gcacccgacc gcaccacccu aacaacacgg 720
uggaucacac ucacacagac uucacuggc guggcucccc ccacacccuc ucucacucgc 780
acuccacagg gcacucuugg agccacucgc accaccuccc gggaccuccu cagguagcc 840
acccaccagg caaagggcag aggguagggu gcacacccgg guagaacucc ccacaccugc 900
ccaacgucac uggcagggcgc aacauagucg guccacucuc ccacacucuac aucagagga 960
acggcuccua cuugagggcgc acucucaggc accacucug gcacccucuc caccuccucu 1020
ugucucucuu cccgcucauc caugucuaga acuccucucgc uggcgagagg agcaagaucc 1080
uuggagguau gcacccacuc cgcuacucgc ucaaguacacc uccacagggg cgcauagagc 1140
uguggauuau uggagugcau uugugccggu uggacagcau ugggaaauggu cuugaauuc 1200
acugcagggc guacacaguua agucacaguc uggcucuaguc ugaccaaccu acccuucugcu 1260
ugcccaagac gaguuuggaa gcucagucua uaaucacacc gcacccucuc uccacaggaga 1320
agucucucug uguuucucug cuaggaagcc agcucugcc guggcaccgc guaccaaccu 1380
cuugacacau uuucucacuc acucacugcu accacagggc uggguauacu acacuacucu 1440
ucgcacacc caucucucuc cgcuacaccc uggcgcacag uggacaagug gcacgccacc 1500
aagcagacug uuacagauuu ggcacucacc aguacaccc cgccagacgu uggugagugc 1560
uuacacgguu ugcuucuucc uguuggucucg acucgcgggc aacuccaauu gcucuuucug 1620
ucacgcucuc cagucagccgc guagacucuu gcacccgcgc ggcacagccu acacuacacu 1680
ccuuggacau ggaagcaggu gcucacaccc uuccacacag acucucug ucuuccucua 1740
ccuagccucc guuacucucuc ccucucacuc gcucuccacu ugcuccacuc uuccucacuc 1800
ugucucaguc gcucucucuc cgucucuccgu ccacgcagcu gcuagcuauu gcucagucac 1860
ucuccucucu guagacuugg gcucuccuuuc gcagcaaucac gagaucuccu gacccacacc 1920
uccuggucuc acucuucucua cauagagggc acquacagguu caccucucucu cacagucaag 1980
ccaggccuc cccacaccac aacugccucu gcuacagucu uguugggaug agagagaggaa gggcagccag 2040
guguuccuac ggacacucu gcugacuugg aacucuuagc uuuuuucu uguacaccuacc 2100
gcuccuacuc ucuucuuccu acuacacucgu gcuacacacu uuuuuucu uuuuuuucu 2160
gcuuaccuacc uuucucucuc acacuacgc cuuuccucuc cuuucuuuccu 2220
uagacccaga agauacucgc cuaucgcagc guacuacucgc uguacucuccu uguacuacc 2280
cccuccucu ccccucccuu uuuucuucucu uuaucuccuuu ggcuucacaa gauuuuggaa 4380
aagaacaaau augcuucuaca cuacuucuuca auuuucuauau uugcagggga uacugaaaaa 4440
uacgccaggu ggccuauaggg ugcuguaaag uugagggggag aggaaaccu aagauuacaa 4500
gauaaaaac gaaucucccuu aacaaaaaga acaauuagac uggucuucca uuuuugccac 4560
uuuccuguuc augacagcua cuuacccgga gacuacuacaa uuucuauuc caaagaaag 4620
ggguacccag caccuguaag agcuacguuc uccagccacu ccaacucccc uaaaacaguc 4680
cagggagcu cccgacguca agacucuacu aacgacuacu agucaaaaga 4740
ugagggcaga agaauagcga agaaucaacu ugcgggugga cagggagcu aaaaagaaaa 4800
agaagaaaaa gagauuucac aaagcagaaac ugggggaccu guuuggucaaa aaagaaaaaa 4860
ucuuugcuaa cggcagcuua uccagcuacu uuuucuuuca agaaugagca 4920
aaaaaacagu caaucguuca uuaauauaag ucuuucccuu gaggucagcuu uuuuuuaa 4980
guaacucucu aguauuuacu ugguuuaauc uuuuagugaa gggggcagcu gcauuaacu 5040
guggucauaa gauagaaagcu auuacuacca cuuauacu cuuauacuuc caacucuuuc 5100
ccagrcauua aaccuacuacu uaaagcagaa guguggaagcu aagcuauagcu 5160
cuguagcua cccagagcu uugauuucua aaauaagggc auuacacuac cuuauacu 5220
auccacuuug ucuccacuua uuccaccgca gagguauagcu ccccuucuuac caacucuuuc 5280
ucaaaauau aauaucaacga ucccaagauc uacguuauac uaaauuugca cagcacaacu 5340
cucaacccag uguccugucc ggcucacccc aagugucacca aaacacuugg uugugaacca 5400
acucuccuaa cccucugggg gaggggguaa agcuagacua ggagaccaga aguaguggg 5460
aaagggugag gacuucacaa uguaggccag ucagacagcu auuagaaagc aagacaggg 5520
cagcagaaag agacuuggcc cggaaaacu cgguggguug ucuacuacu uuccacaca 5580
auacguccua cacaacgcuug uggguacauu ggggauug cuuacgguu auuagguuuacu 5640
uucucggacuc uguuauuuug uguagguuaa cagauuauuc uguauacacu augucagguuu 5700
aaauaaugag cguuacacac guuuauauuu caacaaagag ucaacacacg agggguau 5757
p11089.ST25.txt

ucuuccucgc cccaaauuua uaaacucuaa guguaaaaaa aaguccuaac aacagcuccu
3960
ugcuuguuaa aaauaguguuu aacucacugc uuucuuuaauuc uugcucucug cccaaagauu
4020
guuccauxuc ucacucacucg ccuucucuccu guguucucug uuuccuucucaaa uucuucu
4080
uuggcggcca cggacacagag ggacacacg gacacaagggc cggcacaacc uuucuucuuu
4140
ucugacugau ccuugacacag aacagcuccag ucucucucucu gcacacucucuu
4200
ccacacacau uacucucucug cagcaacgug cuuucucuugg ucuuucuggaacacaguua
4260
agcccccucc ucaccccccuc ccuucuucucu uuucuucucucu uucuucucucuccu aacagauuu
4320
gaaagaaac aaauagcuuuu acacacauuu ucaacuucua aauuwgcagg gguauucgaa
4380
aaauacggca gggcugcuggauggaaggg agacacaggcuuucuucuu ccuucacucuu
4440
caaauuucca aacaaacaa ccuaacccuuac aacacgcuuucu cccuucucuuu uccuucucuu
4500
accuuucucug ucuacagcg caacuacuucg gacacgacaa caaucucuucu aacccagaa
4560
aguggggucag cuggucucug aacacgguaacuucucucucu gcacacucucuu uccuucucuu
4620
ugccacacguu ucacucucucuc uccuucucucuc uccuucucucucu gcucacucacuc uuucucucucu
4680
aagugacgga agacagacag ggaacagacg gaacacacag gcucacucacuc gcucacucacuc
4740
caacacacac gguuuccgucuc uucuucucucuc uccuucucucucu gcucacucacuc uccuucucucuc
4800
auggcuucguuc uacucugacacu gcucucucucuc uccuucucucucu gcucacucacuc uccuucucucuc
4860
aaaaauacgcuuua uacacugucuuc uacacucacu uccuucucucucu gcucacucacuc uccuucucucuc
4920
aaacaguaac cuuucuucuc uccuucucucuc uccuucucucucu gcucacucacuc uccuucucucucu
4980
ccagucacag uauucaccaaa gguauucgau ucucucucucuc uccuucucucucu gcucacucacuc uccuucucucuc
5040
uucucacacgc uacacucacacg uacacucacacg uacacucacacg uacacucacacg uacacucacacg
5100
uucucacacgc uacacucacacg uacacucacacg uacacucacacg uacacucacacg uacacucacacg
5160
aaacagauuc uucuucucuc uccuucucucuc uccuucucucucu gcucacucacuc uccuucucucucu
5220
gcuucacacg uauucacucacg uacacucacacg uacacucacacg uacacucacacg uacacucacacg
5280
ccagucacag uacacucacacg uacacucacacg uacacucacacg uacacucacacg uacacucacacg
5340
ccacacacac gcucacacacgc uacacucacacg uacacucacacg uacacucacacg uacacucacacg
5400
gguuugggu uucuucucuc uccuucucucucu gcucacucacuc uacacucacacg uacacucacacg
5460
uggacucacacg uacacucacacg uacacucacacg uacacucacacg uacacucacacg uacacucacacg
5520
aaaauuccag gaacagacac gguuuggggc ucuucacacg uacacucacacg uacacucacacg
5580
uuacacacac gcugagauuu uccuucucuc uccuucucucucu gcucacucacuc uacacucacacg
5640
uuacacacac gcugagauuu uccuucucuc uccuucucucucu gcucacucacuc uacacucacacg
5700

<210> 21
<212> RNA
<213> Homo sapiens

Page 172
p11089.ST25.txt

<220>
<221> misc_feature
<222> (1)..<(5625)
<223> LOCUS BACE  5625 bp  mRNA  linear  P
RI 05-NOV-2002
DEFINITION Homo sapiens beta-site APP-cleaving enzyme (BACE), transcript variant d, mRNA.
ACCESSION NM_138973; VERSION NM_138973.1  GI:21040367

<300>
<308> NM_138973
<309> 2002-11-05
<313> (1)..<(5625)

<400> 21
ucccccacccc gcccgggagc ugcagcgcgc gacguggauu augugguccu gacgacgcaa  60
cgcagcgcga ggagccgcca gccuucuggc cuggccggcc ccgccccg ccgggggacc 120
aggagaaggc ccacgcgccc gcacugcccg ccucucccag cccgccccg ccgggggacc 180
ccgcugccag cgccugccgc gcgcugccga uggacgccgc ucgcgauuuc agcaccucccc 240
cucgcucggg guccgcucag uccucccccua ccuccccuga ccgcuccuca cagcccggaac ccgggggag 300
gccgacccca ccgcacucug ggccacagcg ccacggcacc acggguggca gugcagccc 420
aggggccagg aagccgggag ccccaacccgg cccacacggu gcuccggcag ucgcugcggg 480
uggagcgcggg augugcucucc gcaccagcagca ccacgcacgg caucgcucagg ccuccgcuagca 540
gcgcgcucgg ggcgcgcgccc cggggcugc gcgcugccgg gcacaccgcac gacaagcccg 600
aggagccagg cccaggggggc ucgcucucgc gacucuggag aacaacagcgg ccggugcagcgcu 660
gccacucgca caucacagcg aacccgcuug gcagaagcgc gcacccgcuac ccgcccuagc 720
uggauacagg cagcaguaac uuggcagugg gugcgcggccc ccacccucua ccugcagcugu 780
acacacacag gcagcugucgc agcacauacc ccggacuguc gcagacgugc uaugcgccuc 840
acacacacag caugucggac gggcagcug gcacucacccgc ccgcuccugg gcugcgcucu 900
ccaccaacca gucugcaagug cgcgcgcucuc gcggggagcg caccacauau ggcgggaccg 960
acacacacgcu guacacacagcg agucucuggu uauacacccau ccggcggggac ugguaauag 1020
agguacacau uggccggggg gagaucaaug gacacauaag cggcgcagac gcaccaagag 1080
acacacuauga caacacgcaug guggacagug gcaccccaac ccuccuuggc ccacaaagaag 1140
uguuagagc ugcacuacac cagcucucuc gcgcacagac uuggcagcu 1200
gcggcagcag uaggacacgg ccgcgcucucuug gcgcacccac ccggacauuuu 1260
ucacacacau cuccacucuc cuagggagc aguuacacca ccgcucucuc gcaccaacca 1320
ucucgcgcga gcacauacag cggccgaug gcagacucgcgcc gcaccccaac gcacagcuuu 1380
acaacuucgcua cuaacacacacgc ccgacgcucu ggacugacg uauacacccau 1440
gcugcuguac guccuccugu cggccgccc gaccagcagcgc ugcaacuucgc 1500

Page 173
augugcagga ugaguucagg acggcagcgg ugggaaggcc uuuugucacc uugggacagu 1560
aagacugugg cuacaacauu ccacacagac augagucacac ccucaugacc auacgccuaug 1620
ucauggcugc caucgcgccc cucucuacuc gcucacucug cuugacggug ugcaguggg 1680
gcucuccg ccgucugcgc cagcagcaug augacuuuggc ugaugacauc ucucuggcua 1740
agugagggcag ccuaugggca gaagaaagag auuucuccugg accacaccuc cgugguucac 1800
uuugugacca cauagagacg acgcaugggc cccgggacc gaaccccauc ggacccgccc 1860
cacccaccau augccccaugc cugauagagg aaggaauaag gccgacaggg gguuccagg 1920
gacuguaggg cuagggaaaca gaaagagaga gaaagagaga cccugcuggc gggaauacuc 1980
uuugugaccau caaauuaaug ucgggaaauu cugcucugug aacauucacgc cccuacacuu 2040
uguucacauc cuuucuaauu ucucacaccc aaagauuacuu ucuuucuuua guuucagaaag 2100
uacuguggauc acacgcaggu uaccuuggcg uggugccug ugguuaccug gcacagaaga 2160
gaccaacguu guuucucugc uggccaagcu gauagaggag ggaugacacg uuuggcuauu 2220
gcucuauaga cagcagugcuu aacaaacagc cuucauugg ugcaaaagcu gcccucuugaa 2280
uuuaaaaaaa acacuauagu gacuaauuaau caaauuuggg gcggcugggaa agagaggaag 2340
gagagggagcu acaagaacagag ggaauagugag gaaccaacggc gaaacacaac 2400
cacucacccg ucucuauuugu agacucacuc uccuaagagcuu ucucuacacuc cagaagaugg 2460
guguguuuuu caaguuuuuc uuucuugugg uugucagccug accaauaagug agaugggaag 2520
ggcucuuauc gaacacgacgc ucuuuuuuug caccuuaaua uugauggccc acuuaagaug 2580
uccuacuacc acauagauuuu cugcucuauu auuucuauag ucucuauauc ucaccacccuu 2640
uauuucuacua augaucacuggc gacucuauaa cuccuaacccc cccucugacuc aguguucgcuc 2700
ugggagacca acuggacuaau agcggccgcg ggcucugucuc uuccuguacau aggcucacuc 2760
uuucucucuca auuccuccucc gcgcucuuggc agcacaaggg cuuacagggaa uagguagggag 2820
accucuuucua ucauaucuauu aaagcauaau uguugaauac ucuuacuacuc gcucugccuc 2880
uuaucuucccuu gcuuggauuu cuucuuaauuu gcgguaaauuaga aguagcaaga ucuuucacua 2940
auucagagug guwucacucgc cuccuaccuuc uccuaauaguc cccucucauu auuucucuaa 3000
aagcaucacca cagucucacuc ucgauuaauc caagauauaag agaauuacac ugcuuuuagg 3060
uccuaacauu acugccacucu guaacgacgc acuuucuggc gggccggaga aaggggacuc gcccucaggc 3120
uccuuaauug gcucuccacac aagacucucu ugaugagcuu cauuuuuuuc cuucuuaucug 3180
uccucucccucu cccgcuccucc auugguaacug ggguaccag gcuguucuuu ggguucaggua 3240
guggggacca guucuuacuc cuuccuauac gcucucacuc aucuaacucag ggauacacug 3300
uauuggggaa gacucugggau uucucuacuaaccaccugca ucuuacucuc cuucugucuca 3360
ccccgcucucu cccgcucuccu auugguaacgg gacucuacuauu guguuaaauu accugauuag 3420
auacaagagg gcggcucuggcu guuccugggcc uccacacgc gcccacaagc cauaacacca 3480
uuaaacaaga auacugaguc aguauuuuuau cuugggcuucu ucuauuccca cugcucuugg 3540
W0 2004/047872

p11089_ST25.txt

aauuuggug auguaaaaa cauaucucug uaaaccuauu gagcucuaua auauauggcg 5580
uaaacacagu aaaaauuuc cauaagaaguc aaacuacuag guuua 5625

<210> 22
<211> 3880
<212> RNA
<213> Mus musculus

<220>
<221> misc_feature
<222> (1) (3880)
<223> LOCUS Bace 3880 bp mRNA linear R
OD 07-JAN-2002
DEFINITION Mus musculus beta-site APP cleaving enzyme (Bace), mRNA.
ACCESSION NM_011792; VERSION NM_011792.2 GI:6857758

<300>
<308> NM_011792
<309> 2002-01-07
<313> (1) (3880)

<400> 22
ccccagcgcg cuuagguccg gggagccggg agccugauua uggugcucug acgcagcgc 60
gcgcggcgag gagccggagg uccucacgc gcucaaguc gcucuggaaga cccugaaagc 120
ugcagccgcgc uauagcgcgg cccggcccgc cccgccccac aagggggcgg aucccccccgc 180
ugagcggggc gcgcgggcgg ccagauuagc uggcucgccc uggcaagccu gagcucucuc 240
ucucugcgcc uacuacuugg uccucacgc acucuacgcc cggagacag gcagagucg 300
aggcccgcgc uacuacugcc gcucucgcg gcacccgggg gcucugagca gagaagcggc 360
ccacccgcau cuuaggggga cgccagagag cagagucgac uccggaacc caaagggcggg 420
gcucucuugg gcucuagcgc gcucucacu uggcucuucc gcucucgucu gcucuagcgc 480
ugccccaggg accaucucug gccauggcgc gcuctccccgc agccggcugg cagggccagg 540
ccccggcccg gcgcggccgg gcacccgcca caggagacgc gacagccggc gcacgcgcgg 600
cacccuugga gcaucgugg gcaaucucc gcggaagucc gcagccgccc gcauagucga 660
gacacccaa gcacccggcc cacagcgcac uccauacucg gugacgcaac gcacuaguc 720
uccuuuagc ggcucuguuc ccacucuucc uccucguagc uacuacuacc gcacuucucu 780
cacccauau uggcagcgc gcacucaccu uggagcgccc uacccgacc gcacagcgc 840
ggggagcgg gcacccggac uggagcgcg ccacacucgc cccacuagcc cugucuaggc 900
caacauagc gcaccacucg caucucagag gcucucuucc ugggcagc gcucuagcgc 960
caccuaucgg gugccuauag cggagcucgc cggcccgcac gcucuucuugg agcucucucu 1020
ugacuccucg gcuagcgcg cccacauucc caacauucc uccucucgc gcucugacgc 1080
ugcucuccgg ccacacccag cgcggcagc gccucgcgug gggagggagc uggcucuacg 1140
ugcuauccgc acucacucua acuagggcg acucacucua ccacucucgc gcuccggcgug 1200
guauauagga guauauagga uacgugugga caaauaggu caaauaggu agauggacug 1260

Page 176
ucaguaucagac gcacugcgcc uccucgccac cccucucucu uccucucucu 3300
ucucucgcag ccucucgcuc gcacucucuc uccucucucu 3360
cuccacccag gcacucucuc uccucucucu 3420
gcucucucuc gcacucucuc uccucucucu 3480
gcucucucuc gcacucucuc uccucucucu 3540
guacucucuc gcacucucuc uccucucucu 3600
guacucucuc gcacucucuc uccucucucu 3660
guacucucuc gcacucucuc uccucucucu 3720
guacucucuc gcacucucuc uccucucucu 3780
guacucucuc gcacucucuc uccucucucu 3840
guacucucuc gcacucucuc uccucucucu 3880

<210>   23
<211>   1096
<212>   RNA
<213>   Homo sapiens

<220>
<221>   misc_feature
<222>   (1..1096)
<223>   LOCUS   SNCA 1096 bp  mRNA  linear  P
       RI  05-NOV-2002
       DEFINITION Homo sapiens synuclein, alpha (non A4 component of amyloid) precursor (SNCA), transcript variant NACP12, mRNA.
       ACCESSION NM_007308: VERSION NM_007308.1  GI:6806897

<300>
<308>   NM_007308
<309>   2002-12-05
<313>   (1..1096)

<400>   23
guaaucuaau gcacucucuc uaaucucuag agggcguuag 60
ggcgcgcgc uaaucucuag agggcguuag 120
uguacucucuc guacucucuc uaaucucuag 180
uguacucucuc guacucucuc uaaucucuag 240
uguacucucuc guacucucuc uaaucucuag 300
uguacucucuc guacucucuc uaaucucuag 360
uguacucucuc guacucucuc uaaucucuag 420
uguacucucuc guacucucuc uaaucucuag 480
uguacucucuc guacucucuc uaaucucuag 540
uguacucucuc guacucucuc uaaucucuag 600
uguacucucuc guacucucuc uaaucucuag 660
uuuuuuug uguuuucca gaaguuguaa gugauuugcu aucaauauu auuagauuu
uagguugcuu uuuaaugauac ugucuaagaa uaaugacgu uugugaaauu uguuaauua
auuauaucuu aaaaaauugu gacgacgaa cuacaccc cuuuaaccau auuagaaau
uuuaaccuuu ugcgauuguguu uuuauucacu uguuugugua uuuaaauugg gagaauuuaa
auuuaacagu uauucuauuc aaaaaauuuuu uuuuuuaauc caaucacacu uuuaaauuu
auuuauggcu uaaagcaac augaaauaag aacugacaca aaggacaaaa auuauaaguu
auuauauagcc auuugaagaag ggagaauuu uagaagaggu agagaauug gaacauuac
ccuacacucg gaauuc