

(19) 日本国特許庁(JP)

(12) 公表特許公報(A)

(11) 特許出願公表番号

特表2004-519700
(P2004-519700A)

(43) 公表日 平成16年7月2日(2004.7.2)

(51) Int.C1.⁷

GO2B 5/08
F24J 2/16
F24J 2/50
GO2F 1/1335
GO2F 1/13357

F 1

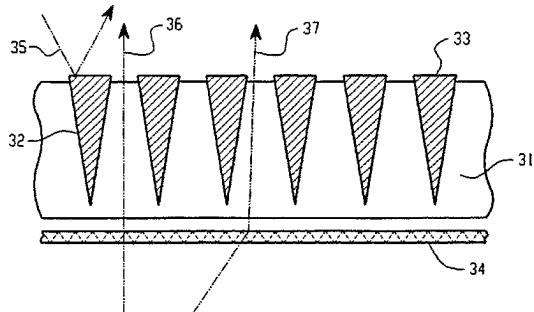
GO2B 5/08
F24J 2/16
F24J 2/50
GO2F 1/1335
GO2F 1/13357

テーマコード(参考)

2H042
2H091

審査請求 未請求 予備審査請求 有 (全 44 頁)

(21) 出願番号 特願2001-556353 (P2001-556353)
(86) (22) 出願日 平成12年2月2日 (2000.2.2)
(85) 翻訳文提出日 平成14年8月2日 (2002.8.2)
(86) 国際出願番号 PCT/US2000/002625
(87) 国際公開番号 WO2001/057559
(87) 国際公開日 平成13年8月9日 (2001.8.9)
(81) 指定国 AP (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), EA (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), EP (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OA (B F, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG), AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, D K, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW


(71) 出願人 502281426
トウリヴィウム テクノロジーズ, アイエヌシー.
TRIVIUM TECHNOLOGIE S, INC.
アメリカ合衆国, 44114, オハイオ州, クリーヴランド, 37ティーエイチ フロア, イースト ナインス 街 1301
(74) 代理人 100080447
弁理士 太田 恵一
(72) 発明者 クライクマン, リチャード, ダブル.
アメリカ合衆国, 78727, テキサス州, オースティン, ユカタン レーン 43
OO

最終頁に続く

(54) 【発明の名称】多角反射式導光膜

(57) 【要約】

透過反射器の一方の側からの光の反射率を最大にすると同時にその透過反射器のもう一方の側からの光透過率を最大にする透過反射器。これは、その透過反射器に透明な、そして反射性の部分とを別々に設定することによって達成される。その透過反射器は透明材(31)からなり、それが本体としての役割を果たし、そこを通して光線(36)を透過させる。その透過反射器はさらにアルミニウムや銀のような反射材(33)からなる反射性の領域(32)を含んでおり、それにより、光線(35)を透過反射器から反射して照り返す。

【特許請求の範囲】**【請求項 1】**

第一の方向からそこに飛び込んでくる光を反射するための手段と、その第一の方向とは反対の方向から到着する光を透過させるための手段を有し、前記第一の方向から来る前記光に対する反射される光の割合と、前記反対方向から来る光の量に対する透過させられる光の割合との合計は 100 パーセントよりも大きいことを特徴とする透過反射器。

【請求項 2】

前記透過反射器には第一の表面があり、前記反射手段は前記第一の表面の少なくとも一部を覆う反射性材料からなり、そして、前記光透過手段は前記反射性材料と結合した一つまたは複数の構造物からなることを特徴とする、請求項 1 に記載の透過反射器。

10

【請求項 3】

前記構造物は基礎部と側壁からなり、前記基礎部は前記反射性材料と結合しており、そして、前記側壁と前記第一表面に対する角度は、前記構造物に当たる光を前記第一表面を通して前記反対方向から反射するに十分であることを特徴とする、請求項 2 に記載の透過反射器。

【請求項 4】

前記側壁の前記角度は 83° と 90° 未満との間であることを特徴とする、請求項 3 に記載の透過反射器。

【請求項 5】

前記構造物の基礎部は長方形であり、前記長方形は、前記第一表面を横切って一つの方向に走っていることを特徴とする、請求項 4 に記載の透過反射器。

20

【請求項 6】

前記基礎部の前記長方形には長さと幅があり、前記幅は前記長さよりも短く、そして、前記構造物には高さがあり、そしてその高さの前記基礎部の前記幅に対する比率は約 6 と 2 2 の間であることを特徴とする、請求項 5 に記載の透過反射器。

【請求項 7】

前記透過反射器は第一表面を備えた光透過性材料からなり、その第一表面には一つまたは複数のぎざぎざがあることを特徴とする、請求項 1 に記載の透過反射器。

【請求項 8】

前記ぎざぎざには前記第一表面と連通する側壁があり、そして前記側壁と前記第一表面との角度は約 83° から 90° 未満との間であることを特徴とする、請求項 7 に記載の透過反射器。

30

【請求項 9】

前記ぎざぎざは反射性材料で満たされていることを特徴とする、請求項 7 に記載の透過反射器。

【請求項 10】

前記反射性材料の選択は、アルミニウム、銀、金またはそれらの組み合わせからなるグループの中から行われることを特徴とする、請求項 9 に記載の透過反射器。

【請求項 11】

前記ぎざぎざは前記光透過性材料に一つまたは複数の溝を形成し、その溝は前記第一表面を横切って一つの方向に走っていることを特徴とする、請求項 8 に記載の透過反射器。

40

【請求項 12】

光を第一の方向に透過させることができ、第一の表面をもち、前記第一の表面には、その第一の表面にあたる光の一定の、だが全部ではない割合を反対の方向から反射するための手段があり、また前記反射器手段と結合した一つまたは複数の反射構造物をもち、前記構造物には前記第一表面から前記第一の方向に向かって伸びる側壁があり、前記側壁は前記第一表面に対して 90° 未満の内角を有し、前記角度は前記側壁にぶつかる光を前記第一の方向から前記第一表面を通して反射するに十分であり、このように、前記第一の方向からの光のある割合は前記第一の表面を通過し、その特徴は、前記反対方向から来る光に対する反射光の割合と、前記第一方向から来る光の量に対する透過光の割合との合計が 100 パーセントよりも大きいことを特徴とする透過反射器。

50

0 パーセントよりも大きいことを特徴とする、光透過性材料。

【請求項 1 3】

前記反射構造物は、前記光透過性材料で形成されており、前記材料を前記光透過性材料とは異なる屈折率を生み出すに十分なやり方で行われていることを特徴とする、請求項 3 2 に記載の光透過性材料。

【請求項 1 4】

放射線を第一の方向に伝達させることができ、第一の表面をもち、前記第一の表面には反射手段があり、該反射手段は前記第一表面にぶつかる放射線の一定の、だが全部ではない割合を反対方向から反射するための手段であり、そして、前記反射手段と結合した一つまたは複数の反射構造物があり、前記構造物には前記第一表面から前記第一の方向に向かって伸びる側壁があり、前記側壁はその第一表面に対して 90° 未満の内角を有し、前記角度は前記側壁にあたる前記放射線を前記第一の方向から前記第一表面を通して反射するに十分であり、このように、前記第一の方向からの放射のある割合は前記第一の表面を通過し、その特徴は、前記反対方向から来る前記放射線に対する反射放射線の割合と、前記第一方向から来る前記放射の量に対する透過放射の割合との合計が 100 パーセントよりも大きいことを特徴とする、電磁放射線透過性材料。

【請求項 1 5】

グリッドと太陽熱集積器を備えた太陽熱集積装置であり、太陽熱は前記グリッドを通って前記太陽熱集積器へと第一の方向に通過し、前記の一部はその集積器から前記グリッドへと反対方向に反射され、前記グリッドには第一の表面があり、前記第一表面には前記第一表面にぶつかる一定の、だが全部ではない割合を、前記反対方向から反射するための反射手段があり、そして前記反射器手段と結合した一つまたは複数の反射構造物があり、前記構造物には前記第一表面から前記第一の方向へと向かって伸びる側壁があり、前記側壁はその第一表面に対して 90° 未満の内角を有し、前記角度は前記構造物にぶつかる前記第一の方向から前記第一表面を通して反射するに十分であり、このように、前記第一の方向からの放射のある割合は前記第一の表面を通過し、その特徴は、前記反対方向から来るに對しての前記反射される割合と、前記第一方向から来るに對しての前記透過させられる割合との合計が 100 パーセントよりも大きいことを特徴とする、太陽熱集積装置。

【請求項 1 6】

前記太陽熱集積器はさらに放射を生成し、前記追加生成された放射線は前記反対方向から前記第一表面にぶつかり、前記追加生成された放射線の一部は反射されて前記太陽熱集積器に戻ることを特徴とする、請求項 3 8 に記載の太陽熱集積装置。

【発明の詳細な説明】

【0 0 0 1】

発明の背景 - 技術分野

本発明は、（赤外線を通して可視となる）入射光線のある方向への反射率と、その反対方向への透過率とを、同時に必要の高められた応用分野のすべてに関するものである。即ち、一つの側からの反射率と他の側からの透過率との合計が 1.0 を超えるということである。そのような膜を、以後、マルチフレクターと呼ぶこととする。

【0 0 0 2】

一つの応用分野は、太陽熱集積に関するものであって、そこにおいて太陽に面した方向では光の透過が最大になり（反射率が最小になり）、そして集積器に面した方向では反射率が最大になる（透過率が最小になる）というものである。本発明により、そのような装置でのエネルギー保有レベルが極めて増大する。さらに、本発明の用途として考えられるのは、太陽エネルギーによって発電の一部または全部をまかなわれている、暖房、冷房および／または発電システムの一部として用いることである。本発明により、太陽熱集積器の効率が高まり、それによって化石燃料の使用を抑えられる。

【0 0 0 3】

第二の応用分野の一部として考えられる用途は、外部で生成された（周囲の）光と内部で生成した（人工の）光との両方を用いることが望ましい場合に、何らかの非放出性の、例

10

20

30

40

50

えば、電子発色性の、強誘電性の、強磁性の、電磁性の、そして液晶の、表示技術を用いるものである。その場合の膜は、そのような非放出性のディスプレイの透過反射性／反射性／透過性要素に代わるものであり、取って代わられる要素は、内部で生成された光（バックライト）に対し独立であることも、それと一体をなすこともある。このような膜を用いると、人工光と周囲光とから同時に助けられて、明るさが増すことになり、その結果、装置の電力使用を極めて減らすことができる。電力供給の一部または全部にバッテリーを用いている装置では、バッテリーの寿命の伸びが174%にもなる。

【0004】

第三の応用分野に含まれるのは、建築材料であって、（例えば窓や天窓のような）光源からの光を方向づける一方で、それと同時に、周囲光を建物や構造物の中で反射させる為に膜を用いることが考えられる。

【0005】

発明の背景 - 従来技術の説明

太陽熱集積器

太陽熱集積器についての従来技術に含まれるのは、太陽光線を直接電気に変換する光電変換用素子や器具、水を熱するために用いられる太陽熱エネルギー、そして発電を行うための大規模太陽熱発電所である。これらのシステムで太陽エネルギーを「集積する」ためには、太陽の進路に向けて直接、パネルやパネルを配列したものを並べる。このようなパネルを構成しているのは、太陽エネルギーを特定の集積用部位に向けて反射させるための鏡や鏡のような材料であり、あるいは、さまざまな吸収材である。吸収材を用いるシステムをさらに分類すると、太陽エネルギーを電池に集積するもの、あるいは、太陽エネルギーを熱エネルギーとして吸収して、それを水とか、水・グリコール凍結防止混合液のような熱伝達体を熱するために用いるものに分けられる。もっとも入手しやすい市販の太陽電池は、非常に純度の高い単結晶のまたは多結晶のシリコンのウェーハでできている。このような太陽電池は、典型的には、商業生産において18%までの効率を達成可能である。太陽電池生産に用いられるシリコン・ウエハーは比較的高価であって、最終製品としてのモジュールの原価の20-40%に上る。このような「大量生産シリコン」技術に代わる選択肢として、半導体の薄い層をガラスのような支持材の上に堆積させるというのがある。テルル化カドミウム、ニセレン化銅インジウム、および珪素のようなさまざまな材料が使用可能である。三つのタイプの熱集積器がある：平板型、真空管型、および集束型。平板集積器が、もっとも古いものであるが、それは絶縁された、防水された箱の中に暗色の吸収板があって、その上に一つまたは複数の透明な、あるいは半透明のカバーがあるというものである。真空管型の集積器は、透明なガラス管を平行に並べたもので構成されている。各真空管を構成するのは、ガラスの外管一本と内管一本、または吸収材を、太陽エネルギーはよく吸収するが放射熱損失は抑制する選択的な被覆物で覆ったものである。管と管の間の空間から空気を抜き取られ（「真空にされ」）、それによって、伝導および対流による熱損失をなくす。集束型の集積器の応用例は、通常は、放物面を備えた桶のようなもので、鏡を張った表面を用いて太陽エネルギーを（受光器と呼ばれる）吸収管の上に集中させ、その吸収管の中に、熱伝達流体が入っているというものである。

【0006】

放出性ディスプレイ

非放出性のディスプレイ、特に液晶ディスプレイについての従来技術には、反射性ディスプレイまたは表面光源（透過性）ディスプレイが含まれるが、それはバックライト付きディスプレイと呼ばれるのが普通である。従来の反射型ディスプレイは、反射膜を基層として用いることにより、表示要素を通して周囲光を元の方向に向け直すものであるが、その構成は図1に示される通りである。この図において、（日光、事務所の照明のような人工光または装置11の頭に取り付けられた光源からの）周囲光10はディスプレイに入り、その装置のさまざまな層、6の偏光子、（色フィルター、共通電極、TFTマトリックスやその他の部品も含まれることのある）7のガラス板、それに8の液晶懸濁層を通り、そして反射膜9から元の方向に送り返されてさまざまな層を通り、画像を生成する。このよ

10

20

30

40

50

うに利用可能な光で画像を作り出す方法には、その利用可能な光による限界がある。この方法は、高画質の写実的な画像を生成する方法としては効果的ではなく、カラー画像の画質の制限がさまざまな条件において過酷である。従来のバックライト付きの（透過性の）ディスプレイの構成は図2に示されている通りである。この図においては、光はバックライト・アセンブリーで生成され、光線13として方向づけられて、6の偏光子、（色フィルター、共通電極、TFTマトリックスやその他の部品も含まれることのある）7のガラス板、それに8の液晶懸濁層のようなさまざまな層を通って、画像を生成する。このように人工光で画像を生成する方法には、周囲光がどのくらいあるかで限界があり、電気を発生させるにつき、その時間の一部または全部を通してバッテリーを用いるシステムにおいては、バッテリーの寿命が限界になる。周囲光がある場合にぎらつきを生じさせるのは、6から8の層をすべて通らずに、上述のようにさまざまな層で反射される光である。このぎらつきを克服するため、そして、ユーザーにとって快い画像を生成するために、バックライトのゲインを増やすことにより使用可能な光を増やす、すなわち6から8の層を通る光を増やすなければならない。このように人工光が増えるとバッテリー上の負担を増すことになり、それゆえにディスプレイを取り付けたシステムの使用可能性を減じることになる。周囲光が増えるにつれて、ぎらつきも増え、それにしたがって、快適な画像を生成する上でバックライトの効果がなくなる部位も出てくる。

10

20

【0007】

周囲光とバックライトを同時に使う試みはすでに行われていて、その結果、ディスプレイの透過性品質と反射性品質の両方を折中する応用例が生まれている。この目的のために透過反射器を用いることはUS4196973においてHochstrateが教示するところである。US5686979の第2欄においてWeberは、この目的についての透過反応器の限界を教示し、その代わりに、ある時には完全に透過的となり、ある時には完全に反射的となる、切り換え可能なウインドウを提案している。

30

【0008】

建築材料

建築材料についての従来技術は、光の透過及び／または反射を制御することが望ましいような（窓、天窓、または光導波管のような）光源用の膜や被覆物に関するものである。膜や被覆物は一般的に、着色性の素材か反射性の素材かという二つの範疇に当てはまる。着色材の特性は、光の一定の割合を膜の一方から反射し、その光の残りを透過させるというものである。着色膜や被覆物では、透過性／反射性の比率を決定するのは、その一つまたは複数の物質の特性であり、その比率はその膜のどちら側でも同じである（反射性R+透過性T=1）。反射性の膜や被覆物では、反射性Rは1以下であり、その場合に限界を決定するのはその素材の特性である。

30

【0009】

目的及び効果

本発明の一義的目的は、一つの方向から入ってくる光を、その光の損失ができるだけ少なくなるようにし、かつ、その光が別の方向に向き直るのを制御しつつ、反射する一方で、それと同時に、その反対方向からの光を、その光の損失ができるだけ少なくなるようにして、しかも、その光ができるだけ別の方向に向き直らないようにしつつ透過させるようにして、光を再び方向づけを行うことである。

40

【0010】

本発明のもう一つの目的は、一つの方向から入ってくる光を、その光の損失ができるだけ少なくなるようにし、かつ、その光ができるだけ別の方向に向き直らないようにしつつ透過させる一方で、それと同時に、その反対方向からの光を、その光の損失ができるだけ少なくなるようにして、しかも、その光ができるだけ別の方向に向き直るのを制御することにより、その光を一つのシステム、つまり、太陽熱集積器あるいは（オフィス・ビル、博物館等の）構造物の中に、封じ込めるように、光の再方向づけを行うことである。

【0011】

本発明による多角反射式導光膜により、輝度を増やすことができ、そして、ぎらつきを抑

50

えることが求められるシステムにおいて、ざらつきを抑え、かつ／または、光の封じ込めが必要なシステムの効率を増すことができる。

【0012】

好みしい実施例の詳細な説明

膜材料は透明なものであり、その膜材料が一部をなすシステムの構成要素として設計されることになる。その膜の中に一組のぎざぎざ、あるいは別個の形状があり、その中に一つまたは複数の反射性材料が満たされている。ぎざぎざの断面の形状は、三角形でもよいし、またはさまざまなパターンで配置されうる他の多面体でもよい。ぎざぎざの代わりに角錐、円錐またはその他の多面体のような一連の別個の物体を置いてもよいし、同様にそれらをさまざまなパターンで配置してもよい。ぎざぎざまたはそれに代わる物体のそれぞれ別個の表面の形状は、平面でも、凹面でも、凸面でも、あるいはいずれかの面から反射する光が制御できるように穴がいっぱい開いていてもよい。ぎざぎざを満たす材料として好みしいのは、アルミニウムや銀などの反射率の高い材料であるが、複合ペースト、複合材料あるいは屈折率や反射特性もさまざまな多種多様な材料でもよい。反射性材料を透明材料に埋め込んで、各形状の底辺がその透明材料とほぼ平行であり、その透明材料とぴったり一致するか、またはわずかにそこから引っ込んだところにあるようにする。ぎざぎざまたはそれぞれ別個の形状は、平行に反復され、膜のある部分を横切って間隔を開けて置かれている。ぎざぎざまたはそれぞれ別個の形状は、一つのパターンを繰り返す前に、形状、高さ、角度または間隔を変化させて配置してもよい。

【0013】

図3において、14は透明材料、15は反射性のぎざぎざまたは物体、12はバックライト・アセンブリー、そして16は非放出性ディスプレイ・システムの残りの部分とそのディスプレイを眺める方向を示すことにする。例えば、

17 = = 溝または物体の基礎部の幅の半分

2 = 溝または物体の基礎部

f = 溝の基礎部の半分幅の倍数

18 = f = ぎざぎざの間の間隔

19 = Th = (溝または物体の高さに基づき、透明性材料の性質によって決定される)膜の厚み

K = 溝の基礎部の半分幅の倍数

20 = K = 溝または物体の高さ

21 = M = ここではディスプレイの制御可能な最小領域として定義される画素当たりのぎざぎざの数とし、

また、

R_{M2} = 正常な入射光に対する反射性材料の反射率

22は発明全体を示すものとする。

【0014】

鏡状と漏斗効果の達成は、(1)膜を構成する材料の成形と(2)さまざまな反射率、屈折率、複合材料か、あるいは、その二つを組み合わせた材料の選択とを適切に組み合わせて用いることにより可能である。光を方向づけ／一力所に集中させる構造物および／または微小構造物に含まれるのは、(交差または非交差の)ぎざぎざ、円錐またはその他の円錐断面、(角錐または四面体のような)正多面体または非正多面体の構造物、同じサイズの、または周期的に全体が変化するさまざまなサイズの、膜の反射率、透過率および吸収率がさまざまに異なる値をもつすべての構造物であり、しかも、それらに限定されるわけではない。これにより、一つの方向への高い反射率とその膜を通しての低い透過率と、もう一つの方向への高い透過率と低い反射率を達成することが可能になる。

R₁ = 一つの側面からの反射(率)

T₁ = 一つの側面からの透過率

A₁ = 一つの側面からの吸収率

R₂ = もう一つの側面からの反射率

10

20

30

40

50

T_2 = もう一つの側面からの透過率

A_2 = もう一つの側面からの吸収性

エネルギー不变から、 $R_1 + T_1 + A_1 = 1$ であり、かつ $R_2 + T_2 + A_2 = 1$

透過反射器の従来技術においては、 $R = R_1 = R_2$; $T = T_1 = T_2$ そして $A = A_1 = A_2$ 。その結果、従来技術における設計においては、 $A = 0$ のとき、 $R + T = 1$ となっていた。たとえ従来技術により透過反射器の限界が克服されたと主張される場合でも、そして、そこに開示された透過反射きが光を導いたり方向づけたりするはずのものとされている場合でも、全体的な透過率や反射率は示されておらず、なんらかのゲインがありうるとしてもそれを測定することはできず、識別できない。

【0015】

10

この技術においては、膜の一つの側面における反射率の値は別の側面における反射率の値からは有意にかけ離れたものであり、一つの側面における透過率の値はもう一つの側面における透過率の値からは有意にかけ離れたものである。この新しく開示された膜により、 $R_1 = R_2$ 、 $T_1 = T_2$ そして $A_1 = A_2$ が可能になる。以下に示す具体的な実施例においては、 T_1 、 R_2 、 A_1 および A_2 が小さい。その結果、 $R_1 + T_2 > 1$ となる。この開示された膜は透過効果を増す。理論的限界においては、膜をこのような非放出性のものにしたものについては、 $T_1 = R_2 = A_1 = A_2 = 0$ である。その場合には、 $R_1 + T_2 = 2$ である。

【0016】

20

膜の第一の実施態様は、透過した上で分散するにもかかわらず、光の方向づけを行うべき用法に関するものであり、特に太陽熱集積器や、図4で示されたように放射された光を方向づけまたは回収するなんらかの装置で用いるためのものである。この図においては、太陽 23 からの光は、光線 10A として透明材 14 に入り、吸収材 24 に直接に透過させられる。光線 10B は透明材 14 を通過し、吸収材 24 によって部分的に反射される。光線 10C は透明材 14 を通過し、そして反射構造物 15 によって吸収材 24 へと向きを変えられ、その一部が吸収材 24 によって反射される。膜の材料は、可視光線、紫外線および / または 300 - 2500 ナノメーターの間の赤外線に近い光線に対して光学的に高い透過性を有し、紫外線光に対して安定しており、結露が浸透せず、非吸湿性で、引っかきに対する耐性があり、しかも清潔を保ちやすく、それが一部となっているシステムの他の要素に適合するような屈折率を適切に選んだものであるべきである。その接着剤は、300 - 2500 ナノメーターの間の光に対して光学的に透過性が高く、紫外線に対しては安定している。第一の実施態様においては、透過率と反射率の合計の最大値を想定して設計されている。その場合、その膜が一部をなしている特定の装置の内部に最大限の太陽光が集積され保持されることになる。それゆえ、この実施態様については、例えば $R_{M2} = 1.00$ とすると、完全な反射性の材料である。例えば $f = 0.1$ とすると、ぎざぎざを製作可能な実際上の限界である。回折や干渉効果をなくすために f と f については十分に大きな値を選ぶこと。例えば、 $f = 200 \mu$ を選択すると隣接するぎざぎざの間の間隔は基礎部で 20μ であり、これは可視光線の最長の波長を十分に超えている。反射性が完全な材料を用いている限りは透過中の多角的反射が問題にならない太陽熱集積器については、 $R_1 = 2 / (2 + f) = 0.952$ そして $T_2 = 1.000$ である。そういうわけで、 $R_1 + T_2 = 1.952$ となり、これは理論的限界の 2.000 に近い。そういうわけで、システムに入る光エネルギーのほとんどすべてをとらえることになる。膜の第二の実施態様はバックライト・アセンブリーとディスプレイ・システムの残りの部分との間に挿入してもよいし、バックライト・アセンブリーの構成部品の一つにしてもよいし、あるいは、ディスプレイの他の部分の一つの構成部品に付属させてもよい。この場合には、できれば、人工光源にの中に、光の大部分が膜に対して直角に現れるような、光を平行にする手段が含まれているのが望ましい。開示された膜の透過性の高い側はバックライト・システムに面しており、反射率の高い側はビューアーに面している。この膜ならディスプレイの全面を覆える。ぎざぎざや物体を配置する際のディスプレイの縁との角度は平行から斜めまで、どのような角度でもよい。

40

50

【0017】

本発明を用いる非放出性のディスプレイ装置の構成は図5に示す通りである。この図において周囲光10は、さまざまな層、6の偏光子、(色フィルター、共通電極、TFTマトリックスやその他の部品も含まれることのある)7のガラス板、それに8の液晶懸濁層を通り、本発明22の反射要素によって向きを変えられて再び6から8のさまざまな層を通り戻っていき、その一方で、それと同時に、バックライト・アセンブリー12から生成された人工光線13は、本発明の透明要素22を通過することになり、バックライト・アセンブリー12のような隣接する要素に付属させてもよいし、あるいは、ディスプレイ装置の中の別の層として設置してもよい。

W_T = ディスプレイの幅

10

m = ここではディスプレイの制御可能な最小領域として定義される画素当たりのぎざぎざの数

F_w = 水平方向でのディスプレイのフォーマット(別々の要素の数、但し、各要素に赤、緑そして青の画素がある)。

【0018】

とすると、その場合には、カラーの液晶ディスプレイについては $= W_T / [3 F_w m (2 + f)]$ である。設計方法を説明するために、 $W_T = 246\text{ mm}$ および $F_w = 800$ が 1996/97年に生産されたカラーの液晶ディスプレイの設計についての典型的数値を示すものとする。また、例えば $m = 3$ とすると、ディスプレイを組み立てる工程中に膜をディスプレイの画素と揃える必要がなくなる。さらに、 m は、膜から発生することのあるバンディングのような目に見える光の分布のむらをなくすための必要に応じて、増やしたり減らしたりすることもある。

20

【0019】

第二の実施態様について示す設計については、 $f = 0.5$ とする。これによって、光が向きをえるのは最小限に抑えられ、透過光の当初の方向が維持される。 f のこの値について、バックライト・システムからの平行光の 20% は反射なしで通され、40% は反射性のぎざぎざまたは物体から一度向きをえて通され、そして 40% は反射性のぎざぎざまたは物体から二度向きをえて通される。この例では、 $= W_T / [3 F_w m (2 + f)]$ を用いて計算可能で、間隔 f (ぎざぎざの間の間隔) が $6.9\text{ }\mu$ で $13.7\text{ }\mu$ となる。(その材料の正常な反射率) R_{M2} がわかっていれば、反射率 R_1 と透過率 T_2 は計算可能である。以下の二つの設計例に留意されたい。

30

1. $R_{M2} = 1$ とすると、その場合には、 $R_1 = 2 / (2 + f) = 0.8$ であり、 $T_2 = 1.0$ 、その結果 $R_1 + T_2 = 1.8$

2. $R_{M2} = 0.86$ とすると、その場合には、 $R_1 = 2 R_{M2} / (2 + f) = 0.688$ である。 $T_2 = 0.840$ 、その結果 $R_1 + T_2 = 1.528$ である。

どちらの設計でも、既存の透過反射器技術の代わりにマルチフレクター技術を使うことにより有意な改善が得られることを示している。

【0020】

ここでの用法では、マルチフレクターは透過反射器であり、光を透過させかつ反射することができる装置である。

40

【0021】

一つの実施態様を図6に示す。例えば31は透明材料(その要素の本体)とすると、32は反射性/屈折性形状の数々、33は(充填物なし、ガス、真空または屈折率の変化を用いて構造物を生み出している)反射材を示すものとし、34はマルチフレクター要素に取り付けられたコリメータ部品を示している。光線35が形状物32の基礎部33にぶつかり、その(反射された)要素から向きをえて去っていく。光線36は(図示されない)透過性エネルギー源からその要素に入り、コリメータ34を向きをえることなく通過し、要素31をいかなる形状構造物32にぶつかることもなく通過し、そして、その要素の反射する側を向きをえることなく出て行く。光線37は(図示されない)透過性エネルギー源から 10° を超える入射角でコリメータに入り、コリメータ34により 10° 未満

50

に向きを変えられる。光線 3 7 は要素 3 1 の本体に入り、向きを変えることなく通過する。

【 0 0 2 2 】

図 7 はマルチフレクター要素の断面を示しており、そこで 4 1 はその要素の境界線を示す。構造物 4 3 はその要素の中に向かって、その要素の厚み全体の一定の割合まで、入り込んで伸びている。構造物 4 3 の頂点(先端)の角度は 4° であるとする。さらに、構造物 4 3 の頂点を(図示されない)一つの光源に直面させ、その一方で、構造物 4 3 の基礎部は(図示されない)もう一つの光源に直面させる。光線 4 4 は、その要素の面に直角にその要素に入り、形状構造物 4 3 にぶつかることなくその要素を通過し、向きを変えることなくその要素を出る。光線 4 5 は、その要素の面に直角にその要素に入り、形状構造物 4 3 の中間点にぶつかり、そして(その要素の面に直角に対して 4° だけ)最低限、向きを変え、その結果、その要素を、隣接する構造物 4 3 にぶつかることなくその要素を出て行く。光線 4 6 は、その要素の面に直角にその要素に入り、頂点(先端)近くで構造物 4 3 にぶつかり、そして(その要素の面に直角に対して 4° だけ)最低限、向きを変え、その結果、その構造物の基礎近く(その構造物の高さの 16.6% のところで)隣接する構造物にぶつかり、そして再び(上記のように)最低限、向きを変え、その結果、光線 4 6 の向きは、その要素を出た上で、その要素の面に直角に対して合計して 8° 向きを変えることになる。光線 4 7 は、その要素の面に直角に対して 10° を超える角度をなして、その要素に入り、中間点の上のところで構造物 4 3 にぶつかり、そして、(その要素の面に直角に対して 4° だけ)最低限、向きを変える。光線 4 7 が入る角度が大きくなるので、光線 4 7 がその要素を出る前に何度も向きが変わる。この例では、光線 4 7 がその要素を出るためには七回向きを変えなければならない。向きの変更を累積すると、28° である。光線 4 8 は入射角度に等しい角度で構造物 4 3 に反射される。光線 4 9 が要素に入る角度は、その面に直角に対して急であり、頂点(先端)近くで構造物 4 3 にぶつかり、向きの変更が累積している為に、光線 4 9 はその要素の反対側から出ることができない。

【 0 0 2 3 】

図 7 を構成する構造物 4 3 はアスペクト比が 14.3 のものであり、構造物 4 3 相互の間の間隔は底の幅の 25% であり、要素 4 2 の本体を横切って等間隔で構造物が並んでいる。このような要素により、構造物 4 3 の頂点(先端)にもっとも近い側(透過する側)から、その面に直角にその要素に入る光線の透過率が 94% になる。上記の要素からさらに得られる利点は、その要素に反対方向からぶつかる光の 76% が反射されるということである。この例では、透過側から入る光の 20% は向きを変えることなくその要素を通過し、40% は(その要素の面に直角に対して 4° だけ)一回だけ向きを変えて通過し、そして 40% の光は二回向きを変えることになる(その要素の面に直角に対して 8°)。この例では R + T は 1.70 である。

【 0 0 2 4 】

アスペクト比と構造物相互の間の間隔との組み合わせを上記に述べたのは、その要素の相対的配置の効果を明らかにすることを意図したものであって、それらを限定する趣旨のものではない。

【 0 0 2 5 】

その発明のもう一つの実施態様は、光を方向づけまたは透過した上で焦点に集めるような用途に関するものであり、特に、太陽からの光を用いて内部の領域を照らしたり、人工の照明を増強する建築材料に用いるためのものである。この実施態様においては、ぎざぎざや物体の角度を、そのぎざぎざや物体の底辺が透明材の境界線と平行になったり一致したりしないように、設定してもよい。この実施態様により、光源の角度とは無関係に、透明材に対して任意の角度で光の方向づけを行うことができる。

【 0 0 2 6 】

本発明について申し述べるにあたり、第一の方向からそこに飛び込んで来る光を反射するための手段をもち、その第一の方向とは反対の方向から到着する光を透過させるための手段をもつ透過反射器であり、前記第一の方向から入ってくる光に対する反射される光の割

10

20

30

40

50

合と前記反対方向から入ってくる光の量に対する透過される光の割合との合計が 100 パーセントを超えて 10
いる透過反射器として、述べてもよい。

【0027】

本発明はまた、光を第一および第二の方向に透過させることができ、第一の表面をもち、その第一の表面には、その第一の方向からその第一の表面にぶつかる光の一定の割合を占めるが全部ではない部分を反射するための手段があり、前記反射器手段と結合した一つまたは複数の反射構造物をもち、前記構造物には前記第一表面から伸びる側壁があり、前記側壁の角度は前記構造物にぶつかる光を前記第二の方向から前記第一表面を通して反射するに足る角度であり、その結果、前記第二の方向からの光のある割合は前記第一の表面を通過する、光透過性材料であり、その特徴は、前記第一方向から来る光に対する反射光の割合と、前記第二方向から来る光の量に対する透過光の割合との合計が 100 パーセントよりも大きいことを特徴とする、光透過性材料として述べてもよい。

【0028】

マルチフレクター要素はいかなる特定のシステムとも無関係であるが、典型的には、一つのシステムの内部に組み込まれたいくつかの要素の一つとして包含されることになる。マルチフレクター要素は、エネルギーの一つの方向への反射を最適化し、その一方で、それと同時に、逆の方向へのエネルギーの透過を最適化する。この達成には、埋め込んだり、エンボス加工をしたり、あるいはその他の手段でその要素の本体の中に作り出したアスペクト比の高い構造物を用いることである。反射性 / 屈折性構造物の表面席をその構造物の底辺に対して一つの方向（その構造物の頂点）に有意に増大させることにより、一つの方向に反射されうるエネルギーの量は、反対方向に伝搬されるエネルギーの量からかけ離れたものになりうる。

【0029】

マルチフレクター要素を他の要素と結合させて設置することにより、効果を増大させることができる。好ましい実施態様においては、コリメータ要素をマルチフレクターと一体化して単一の要素を形成してもよいし、マルチフレクターに取り付けてもよいし、あるいはマルチフレクターを取り付けたシステムのもう一つの構成部品の中に組み込んで、その結果、コリメータ要素をマルチフレクター要素の透過側に近接させ、その要素と透過性光源との間にあるようにしてもよい。コリメータ要素は、広い角度で分配されたエネルギー波の流入を受け入れ、そのエネルギー波の向きを変えて、その要素の表面に対する法線から測定したなんらかの具体的な角度よりも小さい角度で現れるようになるものである。コリメータ要素を用いると、透過側からマルチフレクター要素に入るエネルギーのほとんどすべてが、その要素の面に直角から約 10° の弧の内部に確実に封じ込めることができる。伝搬されたエネルギーをこのようにして封じ込めるとマルチフレクター要素の性能が改善されるが、必ずしも、それがなければ、マルチフレクター要素が有益な効果を発揮できないというわけではない。

【0030】

その要素を配置するための決定要素は、反射性 / 屈折性形状構造物のアスペクト比、構造物相互間の間隔、そしてその要素を構成するために用いられる材料である。これらの要素によって決定されるのは、（1）一つの方向（透過側）からその要素に入るエネルギーの許容可能な入射角度、（2）その方向から伝搬されるエネルギーの割合、（3）その要素の反対側によって反射されるエネルギーの割合、（4）その要素から発生するエネルギーの分布、（5）内側に吸収されたり散乱したりして失われるエネルギーのパーセンテージである。反射 / 屈折性形状物のアスペクト比（底辺に対する高さの比）によって、伝搬されたエネルギーがその要素に入る具体的な角度と伝搬されたエネルギーがその要素から現れる角度との間の関係が決定される。形状構造物相互の間の間隔により、（反射側から）その要素が反射するエネルギーの割合と（透過側から）伝搬されたエネルギーの分布とが決定される。形状構造物相互の間の間隔を増大させると、透過側から向きを変えられるエネルギーの割合が減少し、その一方で、反対側からのエネルギーの反射が減少する。逆に、形状構造物相互の間の間隔を減少させると、伝搬されたエネルギーが向きを変えられる

10

20

30

40

50

ことになる割合が大きくなり、その一方で、反対の方向からのエネルギーが反射されることになる割合が大きくなる。反射性／屈性性構造物についての底辺に対する高さのアスペクト比と構造物相互の間の間隔との間の一般的な関係は以下の例で説明する。

【0031】

例1：単一構造物が三角形の断面をもち、その要素の一つの側からもう一つの側へとその要素の全長にわたって広がっている。上記の構造物が等間隔で繰り返されて、その要素の本体すべての一方の側を覆っているのは、互い違いの三角形の列とその間の間隔である。具体的な応用例においてその要素の必要条件が、一つの側（反射側）からのエネルギーの約66.6%が反射されること、そして反対側からの伝搬されたエネルギーは約5°の角度で現れるように限定されるということなら、その場合は、アスペクト比は最低でも11.5:1でなければならない。この例において、形状構造物相互間の間隔は一つの形状構造物の底辺の寸法の約半分になる。この例に一方の側Rからの反射されたエネルギーで潜在的に有益なものの合計に、反対側Tからの伝搬されたエネルギーで潜在的に有益なものの合計を足したもののは、約1.66（R+T=1.66）となる。これは、反射側からその要素に入るエネルギーの66.6%が反射され、透過側からその要素に入るエネルギーの100%が伝搬されると言い換えることができる（R=66.6%かつT=100%で、その結果、R+T=166%）。

【0032】

例2：形状構造物は例1におけるのと同じであり、具体的な応用例の必要条件により、いかなる特定の出現角度とも無関係に伝搬エネルギーの量を最大化することが求められるとする。また、透過側からその要素に入るエネルギーは、その要素の面の直角に対して約10°以内で均一に視準するものとする。

【0033】

この応用例において、必要条件は、一つの方向（反射側）のエネルギーの約80%を反射すること、そして、反対側（透過側）からのエネルギーの95%を超えるものを伝搬させるということである。形状構造物用の反射材料が完全な反射を行うことを前提にすると、アスペクト比15:1の要素は約96.8%の透過性を有することになる。形状構造物相互の間の間隔は形状構造物の寸法の約四分の一である。この例では、一方の側Rからの反射されたエネルギーで潜在的に有益なものの合計と、反対側Tからの伝搬されたエネルギーで潜在的に有益なものの合計とを足したもののは約1.77（R+T=1.77）である。

【0034】

更に、反射されたエネルギーと伝播されたエネルギーとの両方の分布を個別的に制御できるように、その要素を配置することもできる。例としては、このような形状は視覚角度を改善するディスプレイアプリケーションにおいて有効である。

【0035】

構造物が三角形をなして並んだ並びに先端近くでぶつかる光線は、その要素を出る前に、出られるとしたらの話ではあるが、これより多くはできないという程の回数、向きを変えることになる。先端近くでぶつかる光が出ていく前に、方向転換はできれば二回を越えないのが望ましいが、その為に必要なアスペクト比と構造物相互間の巾はどのようなものかという計算は、当業者であれば、基礎的な幾何が使って、幾何光学の初步を理解していれば、行えるものである。光線の経路を幾何的にグラフ化することにより、それを用いて、そのシステムの制約条件も含めた様々なパラメーター相互の関係を導き出すことができる。構造物の高さを決定することになる要素には幾つかあるが、その内の一つが透明材の厚みである。具体的な一つの応用での必要条件が、光の伝播を直角に対して10°以内で行うことであるなら、その場合には、ある高さを前提にして、頂角をグラフ化したり計算したりできる。頂角と高さによって、アスペクト比が得られることになり、そうして、その構造物の底辺の巾が得られる。

【0036】

非放出型についての好ましい実施態様においては、その要素の厚みは100milsを越

10

20

30

40

50

えるべきではない。その要素の本体の透過係数は $> 97\%$ であるべきである。形状物のそれぞれの頂点（先端）がその要素の本体に入り込む度合いは、厚み全体の 10% から 100% である。各形状の頂角は固定されていて 2.6° と 9.5° の間であり、高さ：底辺比は $6:1$ と $22:1$ の間である。もう一つの実施態様においては、形状物の頂角は固定されていて 3.0° と 7.0° の間であり、高さ：底辺比は $8:1$ と $18:1$ の間である。どちらかの実施態様において、高さ：底辺比を $4:1$ まで下げてもよい。この結果として、構造物の壁の底辺に対する角度は約 83° から 90° 未満までの間ということになる。形状物の底辺はその要素の一つの表面に平行であり、底辺の幅は 2.0μ から 200.0μ の間である（ $\mu = \text{ミクロン}$ ）。もう一つの実施態様においては、底辺の幅は 2.0μ から 50.0μ の間である。形状物を作り出すのに充填材を使うにせよ、あるいは、光学的方法によるにせよ、各構造物の底辺は反射性のものである必要がある。これは、充填工程を通して、堆積 / フォトレジスト工程を通して、あるいはオーバーレイを使うような他の方法によっても達成可能である。三角形の並びの構造物は、周期的に繰り返されるのであり、各三角形の頂点の間の間隔は固定されていて 3.0μ から 300.0μ の間であって、隣接する二等辺三角形の底辺の間の間隔は 1.0μ から 100.0μ の間である。もう一つの実施態様において、頂点の間の間隔は 3.0μ から 70.0μ の間であってよく、そして底辺の間の間隔は 1.0μ から 20.0μ の間であってよい。

10

【0037】

好みしい実施態様においては、コリメータ要素をマルチフレクター要素の透過側に隣接する要素に取り付ける。他の応用例においては上記の仕様に変更を加えることが必要とされ、あるいはそのような変更が可能になるので、好みしい実施態様に記載した寸法は限定する趣旨のものと解すべきではない。

20

【0038】

好みしい実施態様においては、単一の形状物の断面は三角形であり、その要素の一つの縁から反対側の縁にまで伸びて単一の並びを形成しており、透明材（その要素の本体）の中で、その三角形の底辺がその要素の本体の一つの表面の平面（反射側）に平行であり、一致しており、あるいはわずかにそこから引っ込んだところにあるように、配向されている。好みしい実施態様においては、前記三角形の並びは、その要素の全領域にわたって平行かつ等間隔で繰り返されており、形状物とスペースとの縞模様の絵柄を形成している。他の実施態様においては、前記三角形の並びの代わりに、角錐、円錐、または何らかの多面体のような別個の物体を置いてよいし、同様に、さまざまなパターンの配置をして特定の効果を達成するようにしてもよい。他の実施態様においては、上記の別々の形状物を形状や、高さや、角度あるいは間隔を変化させつつ配置してもよい。好みしい実施態様においては、三角形の並びのそれぞれの別々の面は平面である。他の実施態様においては、その並びのべつべつの面の一つまたは複数、あるいは別々の形状物は、凹面、凸面、および / または、穴のいっぱいあいたものでもよい。さらに（角錐や円錐のような）微小形状物を各構造物の平らにした基礎部の上に堆積させて、反射されたエネルギーの方向をさらに制御するようにしてもよい。

30

【0039】

好みしい実施態様においては、その要素の透明の「本体」の材料には特殊な特性があつて、その特性により、内部散乱のような、エネルギーの吸収と方向転換が最小限になつてゐる。その上、その要素の透明の本体の材料には、エッティング、成形もしくは、その要素の本体を変質させるような他の工程に必要な特殊な特性が必要となる。ふさわしい材料は例えば、ポリカーボネートや PMMA（ポリメチルメタクリレート）のような重合体である。エッティングや、成形や、あるいはエンボス加工を用いてその要素の本体に一連のぎざぎざを作り出す場合には、反射性の高い金属のような充填材を用いてよい。さらに、ポリマーのような透き通った材料または（気体、空気または真空のような）無材料を用いて、そのぎざぎざを充填してもよい。透き通った材料または無材料を用いて、そのぎざぎざを充填する場合には、その要素の本体用に選んだ材質は、充填材よりも高い屈折率を有すべきである。その要素の充填材と本体との屈折率の最低限の違いは 0.01 と見積もられる

40

50

。好ましい実施態様においては、その要素の本体全体を通じて各形状物について屈折率が同じである。本発明の目的においては、反射という用語には、構造物の本体にぶつかる光について論じる場合には、その材料の反射率が違うことにより、入射角度と相まって、その構造物にぶつかる光が相當にあるいはほとんど全面的に反射することになる場合の、屈折も含まれる。

【0040】

ぎざぎざの充填に反射性材料を用いる場合には、単一の材料または複合材料を用いて上記の三角形の並びを作り出してもよい。反射性の形状物用の充填材料の最適化を行って、吸収を最低限にし、エネルギーの方向転換の制御用の反射特性を高くすることになる。ふさわしい材料は、例えばアルミニウムまたは銀で、反射率95%以上のものであるが、屈折率または反射特性の異なった、複合材ペースト、複合材、または混成材料でもよい。

10

【0041】

上記に述べた通り、反射材料は透明な本体の上でコーティングしてもよいし、本体の中の溝の充填材の一部であってもよいし、あるいは透明な本体とは物理的には別ではあるが、そこに付属した屈折性の構造物の基礎になってもよい。

【0042】

マルチフレクター要素の好ましい実施態様を作り出す第二の方法は、つまるところ、感光性の透明材料の中に上記の三角形の並びを作ることである。その要素の本体の個別の領域において屈折率を変えることにより、望みの形状を作る。この実施態様においては、アルミニウムのような、反射材の薄い層をその要素の一方の側に、三角の並びの底辺(反射側)に隣接したところに堆積させる。その堆積物のいくつかの領域を、三角の並びの間のスペースに対応して除去し、その要素を横切る縞模様のパターンを作り出す。光学的な方法を用いてその要素の個別の領域の屈折率を変えるには、有益な光学的および機械的特性を示す感光性材料が必要となってくる。光によって誘導される屈折率の変化が十分であるに加えて、(典型的には紫外線で)適切に組み合わされた「書き込み」波長の一組と、光学的透明性と、薄い膜の成形可能性と、それに機械的挙動とが、大いに重要である。このような材料は、機械的挙動を最適化した有機重合体や、有機重合体の化学的な用途の豊かさを組み合わせる有機・無機混成物、即ち、ポリシラン、ポリゲルマン、および/またはそれらのゾル・ゲル混成物であってもよい。

20

【0043】

感光性の透明材を用いることに関連する他の実施態様においては、別々の形状物を、形状、高さ、角度または間隔を変化させて配列してもよく、その三角の並びも含めた、一つの形状物の別々の面の一つまたは複数は、凹面、凸面、および/またはいっぱい穴のあいたものであってもよい。さらに、(角錐や円錐のような)微小形状物を、上記の堆積工程の一部としてか、あるいは、一つの独立した工程として、各構造物の底辺の上に直接に、その要素の一方の側に堆積させて、反射されたエネルギーの方向をさらに制御するようにしてもよい。他の実施態様においては、屈折率は別々の形状のそれぞれで異なっていてもよく、その結果、その要素の本体全体にさまざまな互い違いのパターンを作り出して、それによって具体的な効果を達成するようにしてもよい。他の実施態様においては、その要素の本体全体にさまざまなパターンを作り出すために、ぎざぎざを充填することで作り出された形状物の組み合わせと、一つの感光性材料の屈折率の変更とを利用してよい。

30

【0044】

本発明において用いられる、光という用語は、赤外線を通しての電磁スペクトルの可視部分に対応する波長をもった電磁放射を含む。しかしながら、本発明の装置は、反射され、または屈折されることが可能な電磁放射ならどれにでも適用可能である。但し、それは、そうするためのサイズや材料の構造物を作り出す能力があることが前提である。具体的にいうと、本発明は、ラジオ、レーダー、超短波、赤外線、可視光線、紫外線、X線およびガンマ線の放射にも応用できる。

40

【0045】

本発明の構造物を作り出すもう一つの方法は、物理的な作業環境において完全な状態を維

50

持するなんらかの適切な材料からその構造物を製作し、その構造物をなんらかの適切な方法によりつり下げる事によるものである。つり下げるためには、針金か、グリッドを形成するようなあるタイプのフィラメントを用いてもよいが、それは個別の応用例によって異なるものであり、当業者には自明のものである。本発明のこの一面は、透過反射器のサイズが非放射性のディスプレイのサイズについての要件によって制約を受けない、太陽エネルギーでの応用において有益である。

【0046】

太陽の放射を集積する方法でもっとありふれたものの一つは、鏡を用いて太陽からの放射をパイプを組み合わせたものの上に反射することである。そのようなパイプを組み合わせたものの構成は、加熱する液体を入れた第一のパイプの周りを第二のパイプで囲むことで構成されている。二つのパイプ間のスペースは真空中にするのが典型的であり、そうすることによって、対流や伝導による損失量を減少させる。本発明の構造物をパイプの間のこのスペースに取り付けることにより、鏡からの太陽の放射の大部分は捕らえられて、加熱すべきパイプにまで反射されて回収され、全体の効率が上がることになる。大抵の場合、加熱されたパイプもまた放射を放出しており、それもまた捕らえられて、反射で回収されることになる。こういうわけで、太陽の放射は透過反射器を通過し、その一方で、当初、太陽熱集積器に吸収されなかつた放射は、その太陽熱集積器から、その温度のせいで、放出されつつある一切の放射と組み合わされて、その太陽熱集積器に、反射で回収される。この実施態様においては、その真空状態が、その構造物に結合した透明材料ということになる。

10

20

30

40

【0047】

このような太陽熱の応用において、構造物の高さを左右することになるのは、そのパイプの間の間隔のみであって、その構造物の底辺は非放出性ディスプレイにおける用途と比較しても、大きくなつてもよい。もっと小さいサイズの構造物もこの用途に応用できるのではあるが、底辺の幅は 3500μ 以上であつてもよい。放射の集中と反射の両方を改善する為に、パイプの少なくとも一部の周りにいくつもの構造物を巻き付けるのが望ましい。

【0048】

この特許における用法としては、「構造物」という用語は、光を屈折させまたは反射する要素の形状を指して言っている。その構造物は、光透過性材料の上または中に取り付けた物理的には別の品目であつてもよく、それは、その光透過性材料に切り込んだ溝またはぎざぎざとして形成され、またはそういうものを表現したものでもよく、あるいは、それは、異なつた屈折率の形状物を形成するようにその光透過性材料の一部を処理する工程の最終的な結果物であつてもよい。その透過性材料が、太陽熱の応用にみられるように、気体または真空状態である場合には、その構造物を、グリッド、ワイヤ、フィラメントまたは他のそのような装置によって、その材料の「中に」取り付けて、そのグリッドがその透過反射器の表面となるようにする。

【0049】

本発明は、いかなる従来技術の装置が行っていたよりも多くの光を反射し透過させる、無比の能力を有するものである。反射可能な光の割合の合計に、透過可能な光の合計を足したもののが、100%を超えることになる。

【図面の簡単な説明】

【図1】

(従来技術)は従来の反射性ディスプレイの働きを示す図である。

【図2】

(従来技術)は従来のバックライト付きディスプレイの働きを示す図である。

【図3】

本発明のバックライトの実施態様の全体的特徴を示す図である。

【図4】

本発明のソーラー・パネルの実施態様の全体的特徴を示す図である。

【図5】

50

本発明を用いる非放出性ディスプレイの典型的な構成を示す図である。

【図6】

視準器を用いる本発明の実施態様の働きを示す図である。

【図7】

本発明の実施態様とそれに関連する光経路の断面を示す図である。

【符号の説明】

- 6 偏光子
- 7 ガラス板
- 8 液晶懸濁層
- 9 反射膜

10

10 太陽または部屋からの周囲光

10 A 吸収器を直接に照らす光線

10 B 光線は直接、吸収器にぶつかり、吸収器に反射し、反射構造物の基礎に反射して吸収器などに戻る等

10 C 光線は反射構造物の側面にぶつかり、吸収器に向けられ、吸収器に反射して、反射構造物の基礎に反射して吸収器などに戻る

11 ディスプレイの外部からの制御可能な光源

12 バックライト・アセンブリー

13 バックライト・アセンブリーからの光線

14 マルチフレクターの透明材料

20

15 マルチフレクターの反射材料

16 非放射性ディスプレイ装置の残りの部分

17 反射構造物の基礎

18 反射構造物の基礎のところの間隔

19 マルチフレクター膜の厚み

20 反射構造物の基礎から頂点への高さ

21 画素(ディスプレイのピクチャエレメント)一つあたりの反射構造物の数 22 マルチフレクターの断面

23 太陽

24 太陽熱集積器内の吸収材

30

【国際公開パンフレット】

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
9 August 2001 (09.08.2001)

PCT

(10) International Publication Number
WO 01/57559 A1

(51) International Patent Classification*: G02B 5/08, 27/00, F24J 2/00

(21) International Application Number: PCT/US00/02625

(22) International Filing Date: 2 February 2000 (02.02.2000)

(25) Filing Language: English

(26) Publication Language: English

(71) Applicant (for all designated States except US): TRIVIUM TECHNOLOGIES, INC. 30370 Hilliard Road
[—/US]: Westlake, OH 44145 (US).

(72) Inventors: and

(75) Inventors/Applicants (for US only): CLIKEMAN, Richard, W. [US/US]: 4300 Yucatan Lane, Austin, TX 78727 (US). LUBART, Neil, D. [US/US]: 10707 Copper Hill Drive, Austin, TX 78728 (US). MAYFIELD, Charles, R. [US/US]: 4300 Yucatan Lane, Austin, TX 78727 (US).

(74) Agent: EARP, Robert, H., III; Benesch, Friedlander, Coplan & Aronoff LLP, 2300 BP Tower, 200 Public Square, Cleveland, OH 44114-2378 (US).

(54) Title: MULTIFLECTING LIGHT DIRECTING FILM

(81) Designated States (national): AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TI, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

— with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 01/57559 A1

(57) Abstract: A translector which simultaneously maximizes light reflectivity from one side of the translector while maximizing light transmissivity from the opposite side of the translector. This is achieved by configuring the translector with distinct regions of transparency and reflectivity. The translector is composed of a transparent material (31), serving as a body, for transmitting light ray (36) therethrough. The translector further includes reflective regions (32) composed of a reflective material (33), such as aluminum or silver, for reflecting light ray (35) away from the translector.

MULTIFLECTING LIGHT DIRECTING FILM

5

Background-Field of Invention

This invention relates to all applications where there is a requirement in which reflectivity of incident light (visible through infrared) in one direction and transmissivity in the opposite direction are simultaneously enhanced. That is, the sum of the reflectivity from one 10 side and the transmissivity from the other side exceeds 1.0. Such a film will hereinafter be called a multiflector.

One application area is for solar collection in which transmission of light would be maximized (reflectivity minimized) in the direction facing the sun and reflectivity maximized (transmissivity minimized) in the direction facing the collector. The invention will significantly 15 increase the level of retained energy in such devices. Additionally, the invention could be used as part of a heating, cooling and/or power generating system in which solar energy is utilized for some or all of the power generation. The invention will increase the efficiency of solar collectors and will thus reduce the use of fossil fuels.

A second application area includes use with any non-emissive display technology -- such 20 as electrochromic, ferroelectric, ferromagnetic, electromagnetic, and liquid crystal -- where it is desired to use both externally generated (ambient) light and internally generated (artificial) light. The film is a replacement for the transreflective/reflective/transmissive element of the non-emissive displays, where the replaced element is either independent of or integral to the internally generated light (backlight system). Use of this film will allow brightness 25 contributions simultaneously from artificial light and ambient light such that systems will see a significant decrease in power usage. In system where a battery is used for some or all of the power supply, battery life can be increased by as much as 174%.

A third application area includes building materials in which a film can be used to direct 30 light from a light source (such as a window or skylight) while at the same time reflecting ambient light within a building or structure.

Background-Description of Prior ArtSolar Collectors

The prior art for solar collectors includes photovoltaics where sunlight is converted directly to electricity, solar thermal energy used to heat water, and large scale solar thermal power plants used to generate electricity. In these systems solar energy is "collected" by placing panels or arrays of panels in the direct path of the sun. These panels are composed of mirrors or mirror-like material to reflect solar energy to a specific point for collection, or are made up of a variety of absorbent materials. Systems where absorbent materials are used can be further be divided into systems where solar energy is collected in cells or where solar energy is absorbed as thermal energy to heat either water or a heat-transfer fluid, such as a water-glycol antifreeze mixture. Most commercially available solar cells are made from wafers of very pure monocrystalline or polycrystalline silicon. Such solar cells, typically, can attain efficiencies of up to 18% in commercial manufacture. The silicon wafers used to make them are relatively expensive, making up 20-40% of the final module cost. The alternative to these "bulk silicon" technologies is to deposit a thin layer of semiconductor onto a supporting material such as glass. Various materials can be used such as cadmium telluride, copper-indium-diselenide and silicon. There are basically three types of thermal collectors: flat-plate, evacuated-tube, and concentrating. A flat-plate collector, the most common type, is an insulated, weatherproofed box containing a dark absorber plate under one or more transparent or translucent covers. Evacuated-tube collectors are made up of rows of parallel, transparent glass tubes. Each tube consists of a glass outer tube and an inner tube, or absorber, covered with a selective coating that absorbs solar energy well but inhibits radiative heat loss. The air is withdrawn ("evacuated") from the space between the tubes to form a vacuum, which eliminates conductive and convective heat loss. Concentrating collector applications are usually parabolic troughs that use mirrored surfaces to concentrate the sun's energy on an absorber tube (called a receiver) containing a heat-transfer fluid.

Emissive Displays

The prior art for non-emissive displays, particularly liquid crystal displays, include either reflective displays or surface light source (transmissive) displays, commonly denoted backlit

displays. The conventional reflective display which uses a reflective film as the bottom layer to redirect ambient light back through the display elements has a composition as illustrated in figure 1. In this drawing ambient light 10 (sunlight, artificial light - such as office lighting - or from a light source attached to the top of the unit 11) enters the display unit, passes through the various layers of the unit, 6 polarizers, 7 glass plates (which may include color filters, common electrodes, TFT matrix, or other components), and 8 liquid crystal suspension, and is redirected from the reflective film 9 back through the various layers to produce an image. This method of creating an image with available ambient light is limited by the available light. This method is not an effective means for producing high quality graphic images and severely limits the quality of color images in a variety of conditions. The conventional backlit (transmissive) display has a composition as illustrated in figure 2. In this drawing, light is produced with a backlight assembly 7 and directed as light ray 13, through the various layers, such as 6 polarizers, 7 glass plates (which may include color filters, common electrodes, TFT matrix, or other components), and 8 liquid crystal suspension, to produce an image. This method of producing an image with artificial light is limited by the amount of ambient light and, in systems where a battery is used some or all of the time to generate power, by limited battery life. When ambient light is present, glare is created by light reflecting off the various layers, as described above, without passing through all the layers 6 through 8. To overcome this glare and to produce an image that is palatable to a user, the backlight gain must be increased to produce more usable light, i.e. more light passing through layers 6 through 8. This increase in artificial light causes an added drain on the battery and thus reduces the usability of the system to which the display is attached. As ambient light increases, glare increases and thus, at some point the backlight becomes ineffective in producing a palatable image.

Previous attempts to use simultaneously the ambient light and a backlight have resulted in applications that compromise both the transmissive qualities and the reflective qualities of the display. Hochstrate, in U.S. 4,196,973 teaches the use of a transreflector for this purpose. Weber, in U.S. 5,686,979, col. 2, teaches the limitations of the transreflector for this purpose and alternatively proposes a switchable window that at one time is wholly transmissive and at another time is wholly reflective.

Building Materials

The prior art for building materials is related to films or coatings for light sources (such as windows, skylights, or light pipes) in which the control of transmittance and/or reflection of light is desired. Films or coatings generally fall within two categories: tinting or reflecting materials. Tinting materials have the quality of reflecting a certain percentage of light from one side of the film while transmitting the remainder of the light. In tinting films or coatings, the ratio of transmittance/reflectance is determined by the properties of the material(s), and is the same on either side of the film (Reflectivity $R + Transmissivity T = 1$). For reflective films or coatings, the reflectivity R is less than or equal to 1, where the limit is determined by the properties of the material.

Objects and Advantages

A primary object of this invention is to direct light in such a manner as to reflect incoming light from one direction with minimal loss of said light and with controlled redirection of said light, while at the same time transmitting light from the opposite direction with minimal loss of said light and with minimal redirection of said light.

Another object of this invention is to direct light in such a manner as to transmit incoming light from one direction with minimal loss of said light and with minimal redirection of said light, while at the same time reflect light from the opposite direction with minimal loss of said light and with controlled redirection of said light in such a manner as to contain said light within a system, i.e. solar collector, or structure (such as an office building, museum, etc.).

The Multiflecting Light Directing Film according to the present invention will increase the brightness and reduce the effects of glare in systems where this is required and/or will increase the efficiency of systems where containing light is required.

Brief Description of the Drawings

Figure 1 (prior art) is a diagram showing the operation of a conventional reflective display.

Figure 2 (prior art) is a diagram showing the operation of a conventional backlight display.

Figure 3 is a diagram showing the general features of a backlight embodiment of the present invention.

5 Figure 4 is a diagram showing the general features of a solar panel embodiment of the present invention.

Figure 5 is a diagram showing the typical composition of a non-emissive display utilizing the present invention.

10 Figure 6 is a diagram showing the operation of an embodiment of the present invention utilizing a collimator.

Figure 7 is a diagram showing a cross section of an embodiment of the present invention and the associated light paths.

Reference Numerals in Figures 1-5

15	6	polarizers
	7	glass plates
	8	liquid crystal suspension
	9	reflective film
	10	ambient light from sun or room
20	10A	light ray striking absorber directly
	10B	light ray strikes absorber directly, is reflected off absorber, is reflected off base of reflective structure back to absorber, etc.
	10C	light ray strikes side of reflective structure and is directed to absorber, is reflected off absorber, is reflected by base of reflective structure back to absorber, etc.
25	11	controllable source of light from exterior of display
	12	backlight assembly
	13	light ray from backlight assembly
	14	transparent material of the multiflector
30	15	reflective material of the multiflector
	16	remainder of the non-emissive display system

17 base of the reflective structure
18 spacing between reflective structures at the base
19 thickness of the multiflector film
20 height of the reflecting structure from base to apex
5 21 the number of reflecting structures per pel (picture element of display)
22 multiflector in cross-section
23 the sun
24 absorbing material in a solar collector

10 Detailed Description of the Preferred Embodiments

The film material will be transparent and will be designed as an integral element of the system in which it is a part. The film contains a set of indentations, or discrete shapes, which are filled with reflective material(s). The cross section of the indentations may assume the shape of a triangle or other polyhedron which may be arranged in a variety of patterns. The indentations may be replaced by a series of discrete objects such as pyramids, cones, or any polyhedron, and likewise may be arranged in a variety of patterns. The discrete faces of the indentations or objects may be planar, concave, convex, or pitted such that light reflecting from any face may be controlled. The preferred material for filling the indentations is a material with high reflectivity such as aluminum or silver, but may be a composite paste, a composite material, or multiple materials with different refractive indices or reflective qualities. The reflective material is embedded in the transparent material such that the base of each shape is approximately parallel to and coincident with, or slightly recessed from the transparent material. The indentations, or discrete objects, are repeated in parallel and spaced across the area of the film. The indentations, or discrete objects, may be arranged in varying shapes, heights, angles, or spacings before a pattern is repeated.

In Figure 3, let 14 represent the transparent material, 15 represent the reflective indentations or objects, 12 represent the backlight assembly, and 16 represent the remainder of the non-emissive display system and the direction from which the display is viewed. Let:

30

17 = r = half width of base of the groove, or object
 2r = base of groove, or object
 f = multiple of the half width of base of the groove
 18 = f/r = spacing between indentations
 5 19 = Th = film thickness (based on the height of the groove, or object, and is determined by the nature of the transparent material)
 K = multiple of the half-width of base of the groove
 20 = Kr = height of groove, or object
 21 = M = number of indentations per pel (picture element) defined here as the
 10 smallest controllable area of the display

Also let

R_{M2} = reflectance of the reflective material to normally incident light

22 represent the invention as a whole

15 The mirror-like and funnel effects can be accomplished by using a combination of appropriate (1) shaping of the material comprising the film and (2) choice of materials with either different reflectivities, indices of refraction, composites, or a combination of the two. The light directing/funneling structures and/or microstructures include, but are not limited to indentations (intersecting or not), cones or other conic sections, multi-sided structures (regular or not) such as pyramids or tetrahedrons, all structures of the same or different sizes generally 20 varied periodically and in which the reflectance, transmittance, and absorption of the film might have different values. This enables the achievement of high reflectivity and low transmissivity through the film in one direction and high transmissivity and low reflectivity in the other direction.

R_1 = reflectivity from one side

25 T_1 = transmissivity from one side

A_1 = absorptivity from one side

R_2 = reflectivity from the other side

T_2 = transmissivity from the other side

A_2 = absorptivity from the other side

30 From the conservation of energy: $R_1 + T_1 + A_1 = 1$ and $R_2 + T_2 + A_2 = 1$

In the prior art of transfectors, $R = R_1 = R_2$; $T = T_1 = T_2$; and $A = A_1 = A_2$. It follows that in the prior designs, $R + T = 1$ when $A = 0$. Even where prior art claims to overcome the limit of transfectors and where the disclosed translector is meant to channel or direct light, no overall transmittance or reflectance is shown so that any possible gain cannot be determined and is not apparent.

5 In this art, the value of the reflectance on one side of the film is significantly decoupled from the value of the reflectance on the other side, and the value of the transmissivity on one side is significantly decoupled from the value of the transmissivity on the other side. This newly disclosed film allows $R_1 \neq R_2$, $T_1 \neq T_2$, and $A_1 \neq A_2$. A specific embodiment will be shown 10 below in which T_1 , R_2 , A_1 , and A_2 are small. It follows that $R_1 + T_2 > 1$. This disclosed film multiplies the transfecting effect. In the theoretical limit, for this non-emissive version of the film, $T_1 = R_2 = A_1 = A_2 = 0$. Then $R_1 + T_2 = 2$.

15 The first embodiment of the film is related to uses in which light is to be directed without regard to dispersion upon transmission, in particular for use in solar collectors or any device in which radiated light is to be directed or collected as illustrated in Figure 4. In this drawing light from the sum 23 enters the transparent material 14 as light ray 10A and is transmitted directly to an absorbing material 24. Light ray 10B passes through the transparent material 14 and is 20 partially reflected by the absorbing material 24. Light ray 10C passes through the transparent material 14 and is redirected by the reflecting structure 15 to the absorbing material 24, is partially reflected by the absorbing material 24. The film material will be highly optically 25 transmissive to visible, ultraviolet, and/or near infrared light between about 300-2,500 nanometers, stable to ultraviolet light, impervious to moisture, non-hygroscopic, scratch resistant, and easy to keep clean, with an appropriately chosen refractive index to match the other elements of the system in which it is a part. The adhesive is highly optically transmissive to light between about 300-2,500 nanometers and stable to ultraviolet light. In the first embodiment, the design is for maximum sum of transmissivity and reflectivity. Then maximum 30 sunlight will be collected and retained within the specific device in which the film is a part. Therefore, for this embodiment, let $R_{M2} = 1.00$; a perfectly reflecting material. Let $f = 0.1$, the practical limit for manufacturability of the indentations. Choose values for r and f large enough to avoid diffraction and interference effects. For example, choose $r = 200\mu$ so that the spacing between adjacent indentations at the base is 20μ , well above the longest wavelength of visible

light. For a solar collector where multiple reflections during transmission are insignificant as long as perfectly reflecting material is used, $R_1 = 2 / (2 + f) = 0.952$ and $T_2 = 1.000$. Thus, $R_1 + T_2 = 1.952$, near the theoretical limit of 2.000. Thus, virtually all light energy entering the system will be trapped. The second embodiment of the film is related to use with a non-emissive display system, such as liquid crystal displays, or other devices in which light is directed for the purpose of creating an image. This embodiment of the film may be inserted between the backlight assembly and the remainder of the display system, may be a component of the backlight assembly, or may be attached to a component of the remainder of the display. The preferred artificial light source in this case would include a means of collimating light such that the majority of light emerges perpendicular to the film. The highly transmissive side of the disclosed film faces the backlight system and the highly reflective side faces the viewer. The film will cover the full area of the display. The indentations or objects may be arranged at any angle to the edge of the display, from parallel to oblique.

Non-emissive display systems using the invention will have a composition illustrated in figure 5. In this drawing ambient light 10 will pass through the various layers 6 polarizers, 7 glass plates (which may include color filters, common electrodes, TFT matrix, or other components), and 8 liquid crystal suspension and will be redirected by the reflective elements of the invention 22, back through the various layers 6 through 8, while at the same time artificial light rays 13 generated from backlight assembly 12 will pass through the transparent elements of the invention 22 may be attached to adjacent elements such as backlight assembly 12 or be installed as a separate layer in the display system.

Let

W_T = width of the display
 m = number of indentations per pel (picture element) defined here as the smallest controllable area of the display
 F_w = format of display in horizontal direction (number of distinct elements, where each element has a red, green, and blue pel)

Then $r = W_T / [3 F_w m (2 + f)]$ for a color liquid crystal display. To illustrate the method of design, let $W_T = 246\text{mm}$ and $F_w = 800$ represent the typical values for a vintage 1996/97 color liquid crystal display design. Also, let $m = 3$ to eliminate the necessity of alignment of the film with the pels of the display during the display assembly process.

Additionally, m may be increased or decreased as necessary to eliminate visible non-uniformities in the light distribution, such as banding, which may be created by the film.

For the designs shown for the second embodiment, let $f = 0.5$. This minimizes the redirection of light, preserving the original direction of the transmitted light. For this value of f , 20% of parallel light from the backlight system will be transmitted without reflection, 40% will be transmitted with one redirection from the reflecting indentations or objects, and 40% will be transmitted after two redirections from the reflecting indentations or objects. In this instance r can be calculated using the equation $r = W_T / [3 F_w m (2 + f)]$ to be 13.7μ with a spacing $f r$ (spacing between indentations) of 6.9μ . The reflectance R_1 and transmittance T_2 can be

10 computed if R_{M2} (normal reflectance of the material) is known. Note two design examples:

1. Let $R_{M2} = 1$, then $R_1 = 2/(2 + f) = 0.8$. and $T_2 = 1.0$, resulting in $R_1 + T_2 = 1.8$.
2. Let $R_{M2} = 0.86$, then $R_1 = 2 R_{M2} / (2 + f) = 0.688$. and $T_2 = 0.840$, resulting in $R_1 + T_2 = 1.528$.

Both designs show the significant improvement available from use of the multiflector

15 technology in the place of existing transreflector technology.

As used herein, a multiflector is a transreflector, being a device capable of transmitting and reflecting light.

An embodiment is shown in Figure 6. Let 31 represent the transparent material (body of the element), 32 represent the reflective/refractive shapes, 33 represent a reflective material (where no fill, gas, vacuum, or a change of indices of refraction are used to create structures), 20 and 34 represents a collimating element attached to the Multiflector element. Light ray 35 strikes the base 33 of a shape 32 and is redirected away from the element (reflected). Light ray 36 enters the element from a transmissive energy source (not shown), passes through the collimator 34 without redirection, passes through the body of the element 31 without striking any shaped structures 32 and exits the reflecting side of the element without redirection. Light ray 25 37 enters the collimator from a transmissive energy source (not shown) at an incident angle greater than 10 degrees and is redirected by the collimator 34 to less than 10 degrees. Light ray 37 enters the body of the element 31 and passes through without being redirected.

30 Figure 7 represents a cross section of the Multiflector element, where 41 represents the boundary edge of the element. Structure 43 extends into the element a percentage of the total

element thickness. Let the apex (tip) of structure 43 have an angle of 4 degrees. Additionally, let the apex of structure 43 face one light source (not shown) while the base of the structure 43 faces another light source (not shown). Light ray 44 enters the element perpendicular to the plane of the element and passes through the element without striking a shaped structure 43 and exits the element without redirection. Light ray 45 enters the element perpendicular to the plane of the element and strikes the midpoint of a structure 43 and is minimally redirected (4 degrees relative to perpendicular to the plane of the element) such that it exits the element without striking an adjacent structure 43. Light ray 46 enters the element perpendicular to the plane of the element and strikes a structure 43 near the apex (tip) and is minimally redirected (4 degrees relative to perpendicular to the plane of the element) such that it strikes an adjacent structure 10 near the base of the structure (16.6% of the height of the structure) and is again minimally redirected (as above) such that the total redirection of light ray 46 is 8 degrees from the perpendicular to the plane of the element upon exiting the element. Light ray 47 enters the element at an angle greater than 10 degrees of perpendicular to the plane of the element and strikes a structure 43 above the midpoint and is minimally redirected (4 degrees relative to perpendicular to the plane of the element). Due to the increased angle of entry of light ray 47, 15 multiple redirections occur before light ray 47 exits the element. In this example, seven redirections are necessary for light ray 47 to exit the element – the cumulative redirection is 28 degrees. Light ray 48 is reflected by a structure 43 at an angle equal to the angle of incidence. Light ray 49 enters the element at a steep angle relative to the perpendicular to the plane and strikes a structure 43 near the apex (tip), due to the cumulative redirection light ray 49 cannot 20 exit the opposite side of the element.

Figure 7 is configured with structures 43 at an aspect ratio of 14.3, a spacing between structures 43 of 25% of the base width, and structures evenly spaced across the body of the element 42. Such an element will produce a transmissivity of 94% of light rays entering the element perpendicular to the plane from the side closest to the apex (tip) of structures 43 (transmissive side). The element described above will provide the additional benefit of reflecting 76% of light striking the element from the opposite direction. In this example, 20% of light entering from the transmissive side will pass through the element without redirection, 40% will pass through with a single redirection (4 degrees relative to perpendicular to the plane of the 30

element) and 40% of the light will have two redirections (8 degrees relative to perpendicular to the plane of the element). This example provides an $R + T$ of 1.70.

The combination of aspect-ratio and spacing of structures described above are intended to illustrate the effects of configuration of the element and are not intended to be limiting.

5 Another embodiment of the invention is related to uses in which light is to be directed or focused upon transmission, in particular for use in building materials where light from the sun is used to illuminate an interior area or augment artificial lighting. In this embodiment the indentations, or objects, may be angled such that the base of the indentation, or object is not parallel or coincident with the boundary of the transparent material. This embodiment will
10 allow the light to be directed at a given angle to the transparent material independent of the angle of the light source.

The present invention may be stated as being a transreflector having means for reflecting of light impinging thereon from a first direction, and having means for transmitting of light arriving from a direction opposing to said first direction wherein the sum of the percent of light
15 being reflected relative to the light coming from the first direction, and the percent of light being transmitted relative to the amount of light coming from the opposing direction, is greater than 100 percent.

The present invention may also be stated as a light transmitting material capable of transmitting light in a first and second direction, having a first surface, said first surface having
20 reflecting means for reflecting a percentage but not all of the light striking said first surface from said first direction, and having one or more reflecting structures associated with said reflector means, said structures having sidewalls extending from said first surface, said sidewalls being at an angle sufficient to reflect light striking said structure from said second direction through said first surface such that a percentage of light from said second direction passes through said first surface, wherein the sum of the percent of light being reflected relative to the light coming from the first direction, and the percent of light being transmitted relative to the amount of light
25 coming from said second direction is greater than 100 percent.

The Multiflector element is independent of any specific system, but will typically be included as one of several elements incorporated within a system. The Multiflector element will
30 provide optimized reflection of energy in one direction while simultaneously optimizing the transmission of energy in the opposite direction. This is accomplished by utilizing high-aspect

ratio structures embedded, embossed, or by other means created in the body of the element. By significantly increasing the surface area of the reflecting/refracting structures in one direction (the apex of the structure) with respect to the base of the structure, the amount of energy that can be reflected in one direction can be decoupled from the amount of energy transmitted in the opposite direction.

5 The Multiflector element can be placed in conjunction with other elements to produce additional effects. In the preferred embodiment, a collimating element may be integrated with the Multiflector to form a single element, attached to the Multiflector, or incorporated into another component of a system to which the Multiflector is attached, such that the collimating element is proximal to the transmitting side of the Multiflector element and between the element and the transmissive light source. The collimating element accepts incoming energy waves distributed over a broad angle and redirects the energy waves to emerge at an angle less than some specified angle as measured from the normal to the surface of the element. The use of a collimating element ensures that virtually all energy entering the Multiflector element from the 10 transmissive side will be constrained within an arc of about 10° of perpendicular to the plane of the element. Constraining transmitted energy in this manner will improve the performance of the Multiflector element, but is not a requirement for the Multiflector element to produce 15 beneficial effects.

20 The determining factors for configuring the element are the aspect ratio of the reflecting/refracting shaped structures, spacing between structures, and materials used to construct the element. These factors determine (1) the allowable incident angle of the energy entering the element from one direction (transmissive), (2) the proportion of energy transmitted from that direction, (3) the proportion of energy reflected by the opposite side of the element, (4) the distribution of energy emerging from the element, (5) the percentage of energy lost to 25 internal absorption or scattering. Aspect ratio (the ratio of height to base) of the reflecting/refracting shapes determines the relationship between the specific angle at which the transmitted energy enters the element and the angle at which the transmitted energy emerges from the element. The spacing between the shaped structures determines the proportion of energy reflected by the element (from the reflective side) and the distribution of transmitted 30 energy (from the transmissive side). By increasing the spacing between the shaped structures, a smaller proportion of energy is redirected from the transmissive side while reflection of energy

from the opposite direction is reduced. Conversely, by decreasing the spacing between the shaped structures, a greater proportion of the transmitted energy will be redirected while a larger proportion of the energy from the opposite direction will be reflected. The general relationship between the aspect ratio of height to base for the reflecting/refracting structures and the spacing

5 between structures is illustrated in the following examples:

Example 1: A single structure is triangular in cross section and extends along the full length of the element from one side to the other. The above structure is repeated at regular intervals such that one side of the entire body of the element is covered with the bases of alternating triangular rows and spaces in-between. If the specific application requirement for

10 the element calls for approximately 66.6% of the energy from one side (the reflecting side) is to be reflected and the transmitted energy from the opposite side is restricted to emerge about 5°,

than the aspect ratio must be a minimum of 11.5:1. The spacing between the shaped structures in this example will be approximately half the dimension of the base of a shaped structure. In this example the sum of potentially useful reflected energy from one side R plus the sum of potentially useful transmitted energy from the opposite side T is approximately 1.66 ($R + T = 1.66$). This can be restated as 66.6% of the energy entering the element from the reflective side is reflected and 100% of energy entering the element from the transmissive side is transmitted ($R = 66.6\%$ and $T = 100\%$ so that $R + T = 166\%$).

Example 2: Assume that the shaped structures are the same as in example 1 and that the specific application requirements call for maximizing the amount of transmitted energy

20 independent of any specific angle of emergence. Also assume that the energy entering the element from the transmissive side is uniformly collimated within about 10° of perpendicular to the plane of the element.

In this application the requirements are for reflection of about 80% of the energy in one

25 direction (the reflecting side) and for transmission of more than 95% of the energy from the opposite side (the transmitting side). An element with an aspect ratio of 15:1 will be approximately 96.8% transmissive, assuming a perfectly reflecting material for the shaped structures. The spacing between the shaped structures is about one-fourth the dimension of the shaped structures. In this example the sum of potentially useful reflected energy from one side R plus the sum of potentially useful transmitted energy from the opposite side T is approximately 1.77 ($R + T = 1.77$).

Additionally, the element can be configured to specifically control the distribution of both reflected and transmitted energy. As an example, such a configuration may be useful in a display application to improve viewing angle.

A light ray striking a triangular row of structures near the tip will have the most 5 number of redirections before possibly exiting the element. By using basic geometry and a rudimentary understanding of geometric optics, one skilled in the art can calculate what aspect ratio and width between structures is necessary to preferably redirect light striking near the tip no more than twice before exiting. A geometric plot of the light ray path can be used to derive the relationships between the various parameters, including the constraints of the system. The 10 height of the structure will be determined by several factors, among which is the thickness of the transparent material. If the requirement of a specific application is to transmit light through the reflector within 10 degrees of perpendicular, then assuming a height, one can plot or calculate the apex angle. The apex angle and the height will give the aspect ratio and thus the width of the base of the structure.

15 In the preferred embodiment for non-emissive displays, the element should not exceed 100 mils thickness. The body of the element should have a transmissive coefficient of > 97%. The apex (tip) of each of the shapes penetrates into the body of the element a percentage of the total thickness between 10% - 100%. Each shape will have a fixed apex angle of between 2.6° - 9.5°, with an altitude to base ratio of between 6:1 - 22:1. In another embodiment, the shape will 20 have a fixed apex angle of between 3.0° - 7.0°, with an altitude to base ratio of between 8:1 - 18:1. In either embodiment, the altitude to base ratio may be as low as 4:1. This results in the walls of the structure being at an angle relative to the base of between about 83 degrees to less than 90 degrees. The base of the shape is parallel to a surface of the element and has a base width of between 2.0μ - 200.0μ (μ = microns). In another embodiment, the base width may be 25 between 2.0μ - 50.0μ . Whether the shape is created with fill material or through an optical process, the base of each structure needs to be reflective. This can be achieved either through a fill process, through a deposition/photoresist process, or other methods such as the use of overlays. The triangular row structures are periodically repeated with a fixed spacing between the apex of each triangle of between 3.0μ - 300.0μ and the spacing between the base of each 30 adjacent isosceles triangle is between 1.0μ - 100.0μ . In another embodiment, the spacing between the apex may be between 3.0μ - 70.0μ and the spacing between the bases may be

between 1.0μ – 20.0μ . In the preferred embodiment, a collimating element is attached to the element adjacent to the transmitting side of the Multiflector element. The dimensions described in the preferred embodiment should not be interpreted as limitations since other applications may require, or allow, variations on the above specifications

5 In the preferred embodiment, the cross section of a single shape is triangular and extends from one edge of the element to the opposite edge to form a single row and is oriented in the transparent material (body of the element) such that the base of the triangle is parallel to and coincident with, or slightly recessed from, the plane of one surface of the body of the element (the reflective side). In the preferred embodiment, said triangular row is repeated in parallel and
10 evenly spaced across the entire area of the element forming a striped pattern of shapes and spaces. In other embodiments said triangular-shaped rows may be replaced by discrete objects such as pyramids, cones, or any polyhedron, and likewise may be arranged in a variety of patterns to achieve specific effects. In other embodiments, the discrete shapes, as described above, may be arranged in varying shapes, heights, angles, or spacing. In the preferred
15 embodiment, the discrete faces of each triangular row are planar. In other embodiments one or more of the discrete faces of the row, or discrete shapes, may be concave, convex, and/or pitted. Additionally, micro-shapes (such as pyramids or cones) may be deposited on the flattened base of each structure to further control the direction of reflected energy.

20 In the preferred embodiment, the material for the transparent “body” of the element will have specific properties that minimize absorption and redirection of energy – such as internal scattering. In addition, the material for the body of the element will require specific properties necessary for etching, molding, or other processes that alter the body of the element. Examples of suitable materials are polymers such as polycarbonate and PMMA (polymethylmethacrylate). Where etching, molding, or embossing is used to create a series of indentations in the body of
25 the element, fill material such as a highly reflective metal may be used. Additionally, clear material such as a polymer, or no material (gas, air, or vacuum) may be used to fill the indentations. Where clear material or no material is used to fill the indentations, the material chosen for the body of the element should have a higher index of refraction than the fill. The minimum difference in index of refraction between the fill and the body of the element is
30 estimated to be 0.01. In the preferred embodiment, indices of refraction are the same for each shape across the body of the element. For purposes of the present invention, the term reflection,

when discussing light striking the body of the structure, also includes refraction where the difference in the index of refraction of the materials, along with the angle of incidence, results in substantial or near total reflection of the light striking the structure.

Where the indentations are filled with a reflective material, a single material, or 5 composite material, may be used to create the above mentioned triangular rows. The fill material for the reflective shapes will be optimized to minimize absorption and have highly reflective properties for the controlled redirection of energy. Examples of suitable materials are aluminum or silver, with a reflectivity of 95% or greater, but may be a composite paste, a composite material, or hybrid materials with different refractive indices or reflective qualities.

10 As described above, the reflective material may be coated on the transparent body, be part of the fill for grooves in the body, or be the base of the refracting structure physically separate from but attached to the transparent body.

A second method of creating the preferred embodiment of the Multiflector element 15 consists of producing the above-described triangular rows in a photosensitive transparent material. The desired shapes are produced by changing the index of refraction in specific areas of the body of the element. In this embodiment, a thin layer of reflective material, such as aluminum, is deposited on one side of the element, adjacent to the base of the triangular rows (reflective side). Regions of the deposition are removed corresponding to the spaces between triangular rows, creating a striped pattern across the element. Utilizing an optical process to 20 change the index of refraction of specific areas of the element will require photosensitive materials that exhibit favorable optical and mechanical properties. In addition to a sufficient photo-induced refractive index change, a suitable set of "writing" wavelengths (typically in the ultraviolet), optical transparency, thin film formability, and mechanical behavior are of great importance. Such materials may be organic polymers that have optimized mechanical behavior, 25 or organic-inorganic hybrids that combine the chemical versatility of organic polymers, i.e. polysilanes, polygermanes, and/or their sol-gel hybrids.

In other embodiments related to utilizing a photosensitive transparent material, discrete 30 shapes may be arranged in varying shapes, heights, angles, or spacing and one or more of the discrete faces of a shape, including the triangular rows, may be concave, convex, and/or pitted. Additionally, micro-shapes (such as pyramids or cones) may be deposited on one side of the body of the element directly over the base of each structure, either as part of a deposition

process, described above, or as an independent process, to further control the direction of reflected energy. In other embodiments, the indices of refraction may be different for each discrete shape such that various alternating patterns are produced across the body of the element to achieve specific effects. In other embodiments, a combination of shapes created by filled 5 indentations and altering the refractive index of a photosensitive material may be used to create various patterns across the body of the element.

The term Light, as used in the present invention, encompasses electromagnetic radiation with wavelengths corresponding to visible through infrared. The present invention's apparatus is, however, applicable to any electromagnetic radiation that is capable of being reflected or 10 refracted, subject to the ability to create structures of a size and a material to do so. Specifically, the present invention can find applicability in the radio, radar, microwave, infrared, visible, ultraviolet, x-ray and gamma forms of radiation.

Another method of creating the structures of the present invention is by fabrication of the 15 structures from some suitable material that will maintain integrity in the physical working environment, and suspending the structures by some suitable method. Suspension may be accomplished by the use of wire or some type of filament that forms a grid, but will depend on the specific application and will be apparent to one skilled in the art. This aspect of the invention is useful in solar applications, where the size of transfectors are not limited by the size requirements of non-emissive displays.

20 One of the more common methods of collecting solar radiation is by the use of mirrors to reflect radiation from the sun onto a complex of pipes. The pipe complex consists of a first pipe carrying the liquid to be heated, surrounded by a second pipe. The space between the two pipes will typically be evacuated to decrease the amount of convection and conduction loss. By 25 mounting the present invention's structure within this space between the pipes, the majority of solar radiation from the mirror will be trapped and reflected back onto the pipe to be heated, thus increasing overall efficiency. In most situations, the heated pipe will also be emitting radiation, which will also be trapped and reflected back. Thus solar radiation passes through the translector, while radiation not initially absorbed by the solar collector, combined with any 30 radiation being emitted from the solar collector due to it's temperature, is reflected back to the solar collector. In this embodiment, the vacuum is the transparent material associated with the structure.

In such solar applications, the height of the structure will only be dependent on the spacing between the pipes, and the base of the structure may be large as compared to the use in non-emissive displays. The width of the base may be 3500μ or larger, although the smaller size structures will also be applicable to this use. The multitude of structures will preferably be bent around at least a portion of the pipe to improve both the gathering and reflection of radiation.

As used in this patent, the term "structure" refers to the shape of the element refracting or reflecting light. The structure may be a physically separate item mounted on or in the light transmittive material, it may be formed or represent a groove or indentation that has been cut into the light transmitting material, or it may be the end result of treatment of portions of the light transmissive material such that a shape having a different index of refraction is formed. Where the transmittive material is a gas or vacuum, as may be found in solar applications, the structure is mounted "in" the material by means of a grid, wire, filament or other such device, with the grid representing a surface of the transreflector.

The present invention has the unique ability to reflect and transmit more light than any prior art device. The sum of the percent of light capable of being reflected, plus the sum of light capable of being transmitted, will be greater than 100 percent.

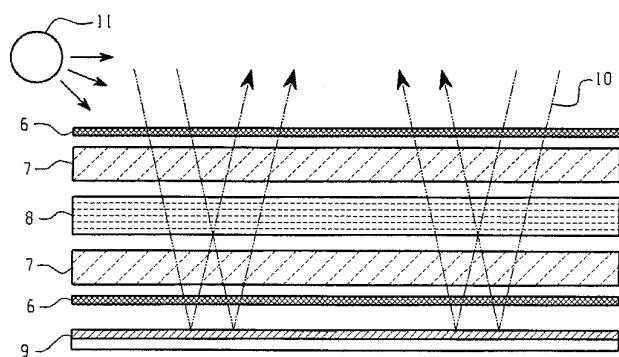
Having thus described the invention, it is now claimed:

1. A transreflector having means for reflecting of light impinging thereon from a first direction, and having means for transmitting of light arriving from a direction opposing to said first direction wherein the sum of the percent of light being reflected relative to the light coming from the first direction, and the percent of light being transmitted relative to the amount of light coming from the opposing direction, is greater than 100 percent.
5
2. The transreflector of claim 1 wherein said transreflector has a first surface, wherein said reflecting means comprise a reflective material covering at least a part of said first surface and wherein said means for transmitting light comprises one or more structures associated with said reflective material.
10
3. The transreflector of claim 2 wherein said structure comprise a base and sidewalls, said base associated with said reflective material and wherein said sidewalls are at an angle relative to said first surface sufficient to reflect light striking said structure from said opposing direction through said first surface.
15
4. The transreflector of claim 3 wherein said angle of said sidewall is between 83 degrees and less than 90 degrees.
20
5. The transreflector of claim 4 wherein the base of said structure is a elongated rectangle, said rectangle running in one direction across said first surface.
6. The transreflector of claim 5 wherein said rectangle of said base has a length and a width, said width being smaller than said length, and wherein said structure has a height, and the ratio of said height to said width of said base is between about 6 and 22.
25
7. The transreflector of claim 1 wherein said transreflector comprises a light transmitting material having a first surface, said first surface having one or more indentations.
30

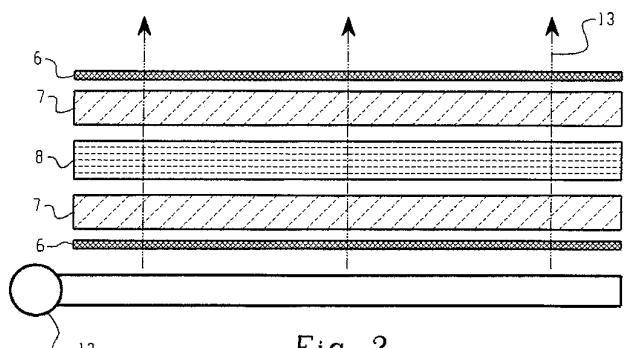
8. The transreflector of claim 7 wherein said indentations have sidewalls communicating with said first surface and wherein said sidewalls are at an angle relative to said first surface of between about 83 degrees and less than 90 degrees.
- 5 9. The transreflector of claim 7 wherein the indentation is filled with a reflective material.
10. The transreflector of claim 9 wherein the reflective material is selected from the group consisting of aluminum, silver, gold or combinations thereof.
- 10 11. The transreflector of claim 8 wherein said indentation forms one or more grooves in said light transmitting material, said grooves running in one direction across said first surface.
- 15 12. A light transmitting material capable of transmitting light in a first direction, having a first surface, said first surface having reflecting means for reflecting a percentage but not all of the light striking said first surface from an opposing direction, and having one or more reflecting structures associated with said reflector means, said structures having sidewalls extending from said first surface toward said first direction, said sidewalls having an internal angle relative to said first surface of less than 90 degrees, said angle sufficient to reflect light striking said sidewalls from said first direction through said first surface such that a percentage of light from said first direction passes through said first surface, wherein the sum of the percentage of light being reflected relative to the light coming from said opposing direction, and the percentage of light being transmitted relative to the amount of light coming from said first direction is greater than 100 percent.
- 20 13. The light transmitting material of claim 32 wherein said reflecting structures are formed in the light transmitting material by treating said material in a manner sufficient to create a different index of refraction from said light transmitting material.
- 25 14. An electromagnetic radiation transmitting material capable of transmitting radiation in a first direction, having a first surface, said first surface having reflecting means for reflecting a percentage but not all of said radiation striking said first surface from an
- 30

opposing direction, and having one or more reflecting structures associated with said reflector means, said structures having sidewalls extending from said first surface toward said first direction, said sidewalls having an internal angle relative to said first surface of less than 90 degrees, said angle sufficient to reflect said radiation striking said sidewalls from said first direction through said first surface such that a percentage of radiation from said first direction passes through said first surface, wherein the sum of the percentage of said radiation being reflected relative to said radiation coming from said opposing direction, and the percentage of said radiation being transmitted relative to the amount of said radiation coming from said first direction is greater than 100 percent.

10


15. A solar collection device, said device containing a grid and a solar collector, wherein solar radiation passes in a first direction through said grid to said solar collector, and a portion of said solar radiation is reflected from said collector to said grid in an opposing direction, said grid having a first surface, said first surface having reflecting means for reflecting a percentage but not all of the solar radiation striking said first surface from said opposing direction, and having one or more reflecting structures associated with said reflector means, said structures having sidewalls extending from said first surface toward said first direction, said sidewalls having an internal angle relative to said first surface of less than 90 degrees said angle sufficient to reflect said solar radiation striking said structure from said first direction through said first surface such that a percentage of said solar radiation from said first direction passes through said first surface, wherein the sum of the percentage of said solar radiation being reflected relative to the said solar radiation coming from the opposing direction, and the percentage of said solar radiation being transmitted relative to the amount of said solar radiation coming from said first direction is greater than 100 percent.
- 20
- 25
16. The solar collection device of claim 38 wherein said solar collector generates additional radiation, said additional radiation striking said first surface from said opposing direction, wherein a portion of said additional radiation is reflected back to said solar collector.

30


WO 01/57559

PCT/US00/02625

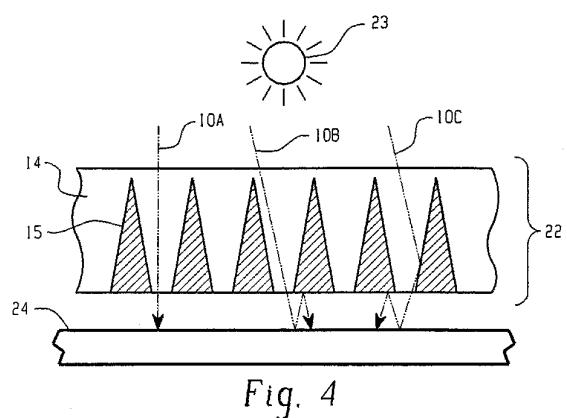
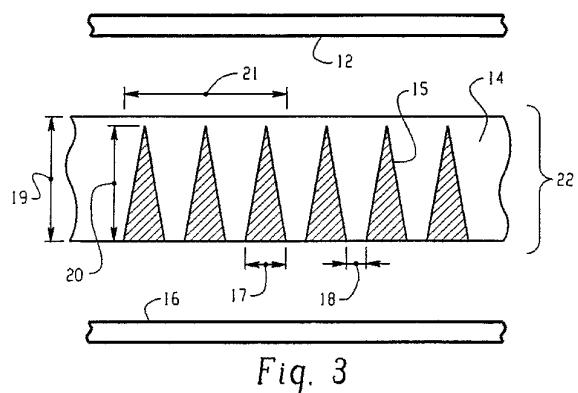


1/4

Fig. 1
(PRIOR ART)

Fig. 2
(PRIOR ART)

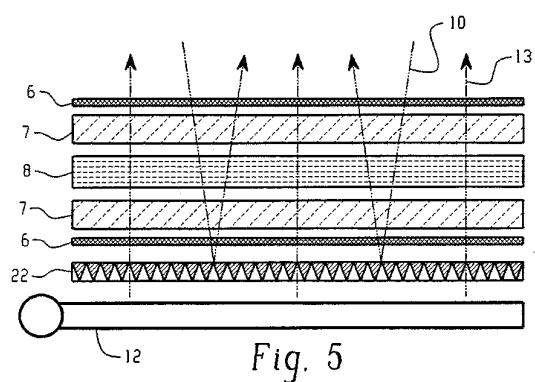


Fig. 5

Fig. 6

WO 01/57559

PCT/US00/02625

4/4

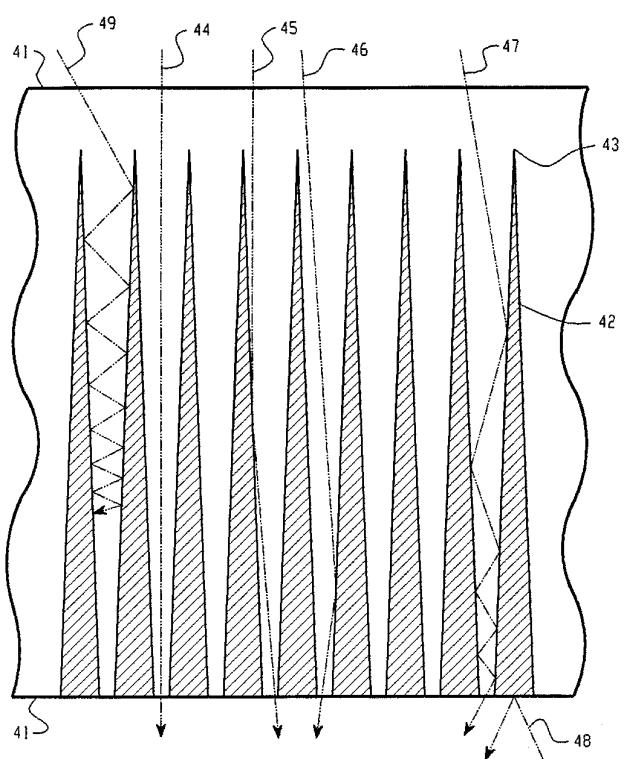


Fig. 7

【国際調査報告】

INTERNATIONAL SEARCH REPORT		International application No. PCT/US00/02625															
<p>A. CLASSIFICATION OF SUBJECT MATTER IPC(7) :G02B 5/08, 27/00; F24J 2/00 US CL : 359/618,619,627,636,639; 126/684,685,701 According to International Patent Classification (IPC) or to both national classification and IPC </p>																	
<p>B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) U.S. : 359/592,597,618,619,620,625,627,636,839; 126/684,685,687,701,702 </p>																	
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched NONE																	
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) NONE																	
<p>C. DOCUMENTS CONSIDERED TO BE RELEVANT</p> <table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th style="text-align: left; padding: 2px;">Category*</th> <th style="text-align: left; padding: 2px;">Citation of document, with indication, where appropriate, of the relevant passages</th> <th style="text-align: left; padding: 2px;">Relevant to claim No.</th> </tr> </thead> <tbody> <tr> <td style="padding: 2px;">X</td> <td style="padding: 2px;">US 5,781,342 A (HANNON et al) 14 July 1998 (14-07-98), see entire document.</td> <td style="padding: 2px;">1, 2</td> </tr> <tr> <td style="padding: 2px;">X</td> <td style="padding: 2px;">US 4,040,727 A (KETCHPEL) 09 August 1977 (09-08-77), see entire document.</td> <td style="padding: 2px;">1-12,14</td> </tr> <tr> <td style="padding: 2px;">X</td> <td style="padding: 2px;">US 3,985,116 A (KAPANY) 12 October 1976 (12-10-76), see entire document.</td> <td style="padding: 2px;">1-12,14,15</td> </tr> <tr> <td style="padding: 2px;">A</td> <td style="padding: 2px;">US 1,253,138 A (Brewster) 08 January 1918 (08-01-18), see entire document.</td> <td style="padding: 2px;">1-12,14,15</td> </tr> </tbody> </table>			Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.	X	US 5,781,342 A (HANNON et al) 14 July 1998 (14-07-98), see entire document.	1, 2	X	US 4,040,727 A (KETCHPEL) 09 August 1977 (09-08-77), see entire document.	1-12,14	X	US 3,985,116 A (KAPANY) 12 October 1976 (12-10-76), see entire document.	1-12,14,15	A	US 1,253,138 A (Brewster) 08 January 1918 (08-01-18), see entire document.	1-12,14,15
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.															
X	US 5,781,342 A (HANNON et al) 14 July 1998 (14-07-98), see entire document.	1, 2															
X	US 4,040,727 A (KETCHPEL) 09 August 1977 (09-08-77), see entire document.	1-12,14															
X	US 3,985,116 A (KAPANY) 12 October 1976 (12-10-76), see entire document.	1-12,14,15															
A	US 1,253,138 A (Brewster) 08 January 1918 (08-01-18), see entire document.	1-12,14,15															
<input type="checkbox"/> Further documents are listed in the continuation of Box C. <input type="checkbox"/> See patent family annex.																	
* Special categories of cited documents: *A* document defining the general state of the art which is not considered to be of particular relevance *B* earlier document published on or after the international filing date which may throw doubt on priority claim(s) or which is cited to establish the publication date of another citation or other special reasons (as specified) *C* document referring to an oral disclosure, use, exhibition or other means *P* document published prior to the international filing date but later than the priority date claimed																	
Date of the actual completion of the international search 04 JUNE 2000	Date of mailing of the international search report 21 JUN 2000																
Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231 Facsimile No. (703) 305-3230	Authorized officer Ricky D. Shafer Telephone No. (703) 308-0956																

Form PCT/ISA/210 (second sheet) (July 1998) *

フロントページの続き

(72)発明者 ラパート, ネイル, デイ.

アメリカ合衆国, 78728, テキサス州, オースティン, コッパー ヒル ドライブ 1070
7

(72)発明者 メイフィールド, チャールズ, アール.

アメリカ合衆国, 78727, テキサス州, オースティン, ユカタン レーン 4300

F ターム(参考) 2H042 DA02 DA04 DA11 DA21 DA22

2H091 FA14Z FA21Z FA23Z FA41Z FD06 LA03 LA13