7079623 A1 | IV 00O 0 0 00 O

o

e
=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
3 August 2006 (03.08.2006)

25 | 0.0 00 OO

(10) International Publication Number

WO 2006/079623 Al

(51) International Patent Classification:
GOGF 11/34 (2006.01)

(21) International Application Number:
PCT/EP2006/050406

(22) International Filing Date: 24 January 2006 (24.01.2006)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
0500905

(71) Applicant (for all designated States except US): INTER-
NATIONAL BUSINESS MACHINES CORPORA-
TION [—/US]; New Orchard Road, Armonk, NY 10504
(US).

(71) Applicant (for MG only): COMPAGNIE IBM FRANCE
[FR/FR]; Tour Descartes, La Defense 5, 2, Avenue Gam-
betta, F-92400 Courbevoie (FR).

28 January 2005 (28.01.2005) FR

(72) Inventor; and

(75) Inventor/Applicant (for US only): VERTES, Marc
[FR/FR]; 858 chemin Giraoudéou, F-31470 Saint Lys
(FR).

(74) Agent: THERIAS, Philippe; Le Plan Du Bois, F-06610
La Gaude (FR).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KN, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV,
LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI,
NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG,
SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US,
UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declaration under Rule 4.17:
of inventorship (Rule 4.17(iv))

Published:
with international search report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: METHOD FOR COUNTING INSTRUCTIONS
SEQUENCE OF EVENTS

FOR LOGGING AND REPLAY OF A DETERMINISTIC

fin fin fin
Schi Sch2 Sch3
Schl é/ Sch2 Sch3
TA 8 TA
uv | 1 | |]
-------- s e i >
r
WProX l Ta
PMC RDPMC
UICX _
P [T TT] | L
: ISCH
v
5
B 563 idA:NI3:5G13
g idB:N12:SG32
idA:NJ1:SG1
JuProX

(57) Abstract: This invention relates to a transparent and non-intrusive method for monitoring and managing the running of tasks
executed in one or more computer processors, in particular in multi-processor systems with a parallel architecture. It proposes a sys-
& tem and method for managing a computer task, termed target, during a given execution period, termed activity period (SchJ, SchR),
& within a computer system, in a computer processor provided with means of monitoring or estimating performance and including a
& counter (PMC) with a given possible error in plus or minus, termed relative error, this process comprising on the one hand, an eval-
uation of a number of executed instructions (NR, NJ) up to at least one given point of said activity period, using said counter; and
on the other hand, a generation of data, termed signature (SGJ, SGR), read or calculated from the state of the processor or computer
system and corresponding to at least one given point of said activity period.

10

15

20

25

30

WO 2006/079623 PCT/EP2006/050406

Method for counting instructions for logging and replay of a
deterministic sequence of events

Field of the Invention

This invention relates to a transparent and non-intrusive method for
monitoring and managing the running of tasks executed in one or more
computer processors, in particular in multi-processor systems with a parallel
architecture. It applies in particular to the various tasks of a multi-task
transactional application executed in a network. This management in particular
enables a recording of the running of these tasks in the form of logging data, as
well as a replay of this running from such logging data in order to present a
behaviour and a result corresponding to those obtained while logging.

The invention also relates to a system implementing such a method in the

functioning management of the software applications that it executes.

Background of the Invention

Implementing a functioning management which is non-intrusive and
transparent regarding the managed application is very useful, in particular for
enabling the use the numerous existing applications with more flexibility, or
reliability, or performance, in their original state ("legacy applications").

Non-intrusive functioning management techniques by intermediate
capture and by restoration of the state of an application on a synchronisation
point or restart point ("checkpoint") have already been proposed by the same
applicants in patent application FR 04 07180. In a complementary manner,
non-intrusive logging and replay techniques have already been proposed by the
same applicants, in particular in patent applications FR 05 00605 to
FR 05 00613.

However, the logging of one or more events still represents a work
overhead for the logged application or the system which executes it, and
minimising it as far as possible is very interesting.

Among the events constituting the execution of an application, those

which have a non-deterministic behaviour vis-a-vis the state of the application

10

15

20

25

30

WO 2006/079623 PCT/EP2006/050406

must be logged and replayed by storing their result in the logging data, for
enabling a forcing or reinjecting of this result during a later replay. It is therefore
of interest to reduce as far as possible the number of events which must be
treated as non-deterministic.

Events external to the application, or to the system which is executing it,
often have a behaviour which is intrinsically non-deterministic, and must in
general be stored, for example as described in the applications cited earlier.

Internal events, by comparison, most frequently have a deterministic
behaviour and also constitute the majority of operations executed in the running
of an application. It is therefore of interest to aggregate and optimise the logging
of non-deterministic events, in particular internal.

If all the events from a portion of the running are deterministic, all this
portion can be logged in an economic manner simply by storing the start state of
the application, for example in the form of a restart point. The replay is then
obtained, for example, by restoring the application into the restart point state as
stored, and by launching the execution of these deterministic events. The term
“piecewise deterministic execution model”, comprising a grouping of
deterministic portions composed only of deterministic events can then be used.
The boundaries of deterministic portions are thus in general constituted by
non-deterministic events, for example an arrival of an external message at the

beginning and another non-deterministic event for the end.

Summary of the Invention

One aim of the invention is to simplify or optimise the logging and the
replay of such a deterministic portion.

Moreover, certain types of computer architecture may include
non-determinism causes sometimes inherent to their own nature, in particular
the parallel architecture system, sometimes qualified as physical or actual
parallelism.

Another aim of the invention is therefore to facilitate or optimise the
implementation of logging and replay functions, and to reduce the causes of

10

15

20

25

30

WO 2006/079623 PCT/EP2006/050406

non-determinism within a parallel environment, in particular for multi-task
applications.

In the context of an functioning management in a redundant architecture,
another aim of the invention is then to reliabilize the functioning of a multi-task
application executed in a parallel environment.

A deterministic portion, by its nature, will always give the same result
when it starts from a same situation and executes the same instructions. In
order to log and replay such a deterministic portion, it is therefore possible to
store and restore only the start situation, and to let the execution happen out of
the same executable file, during the number of instructions corresponding to the
length of this portion.

However, if this is not envisaged in the original application, the
implementation of a counting of the executed instructions represents a
significant work load for the machine(s) executing these instructions. With
known techniques, such an overload is often unacceptable or limits such an
implementation to experimental situations, and is hardly usable in an
exploitation situation.

One aim of the invention is to overcome all or some of these drawbacks.

For this, the invention proposes a method for managing a computer task,
termed target, during a given execution period, termed activity period, within a
computer system, in a computer processor provided with means of monitoring or
of estimating performance, these means including a counter with a given
possible error in plus or minus, termed relative error.

This method comprises on the one hand an evaluation of a number of
instructions executed up to at least one given point of said activity period, using
said counter; and on the other hand a generation of data, termed signature,
read or calculated from the state of the processor or of the computer system and
corresponding to at least one given point of said activity period.

Advantageously, the evaluation of the number of instructions executed
since the start of the managed period uses at least one system call instruction as
a synchronisation barrier jointly with the computer.

This method is particularly useful for managing a task during an activity
period composed of a succession of deterministic operations between two
non-deterministic operations.

10

15

20

25

30

WO 2006/079623 PCT/EP2006/050406

The invention thus proposes to manage a task being logged in a
processor, termed logged processor, and comprises a storing of logging data
corresponding to this activity period of said task, termed logged period. Such
logging data then comprises at least one supposed value of the number of
instructions executed, as well as the signature, termed logged signature,
corresponding to the end of said logged period.

It is thus possible to log the use of a processor by storing in an ordered
fashion, in at least one file termed processor log, logging data representing the
logging of a succession of activity periods from a plurality of tasks executed in
said processor, and comprising for each of these periods an item of data
identifying the executed task.

From such logging data, the invention also proposes a replay of the logged
period by managing a task termed replayed, executed by a processor termed
replay processor, within a replay computer system, starting from a state
corresponding to the state of the logged processor or to the logged system at
the start of the logged period. The method then also comprises:

- from the start of the replay period, a monitored execution phase executing a
number of instructions, evaluated by the counter, less than or equal to the
supposed value of the number of instructions of the logged period, reduced
by the relative error of said counter;

- a confirmation phase comprising an iteration of the following steps:

- interruption of the execution of the replay task at a given point in the replay;

- comparative test between the logged signature and the signature
corresponding to the replay interruption point.

In particular, the logged signature includes a datum termed logged
pointer, representing the value of the instruction pointer of the logged task at
the end of the logged period. The method then also comprises a setting up of a
break point on the replay instruction corresponding to the logged pointer datum.

According to the invention, monitoring of the execution of the replay task
comprises in particular an overflow of the counter, initialised beforehand in order
to determine a number of instructions having to be executed from the start of
the replay period and the overflow of which causes an interruption of the replay
task.

10

15

20

25

30

35

WO 2006/079623 PCT/EP2006/050406

However, because this type of counter is not envisaged for such an exact
usage, such an interruption can occur with a certain delay after the counter
overflow.

The invention therefore proposes to initialise the counter at the start of
the replay period with a certain margin, in order to overflow sufficiently early in
order that, in case of a latency period existing between the overflow of the
counter and the interruption of the task which has caused it, the number of
instructions executed by the replay task is less than or equal to the supposed
value of the number of instructions of the logged period, reduced by the relative
error of said counter.

Moreover, as a security, the confirmation phase may comprise a security
step signalling an error if the number of replayed instructions exceeds the
supposed value of the number of logged instructions increased by a given
number of instructions.

From a log representing several periods logged in this manner, the
invention may thus carry out, in a processor termed replay, a replay of the use
of a logged processor, by using an ordered set of logging data from a succession
of activity periods logged in said logged processor.

The invention also provides for a logging of a succession of attributed
exclusive accesses pertaining to a shared resource, termed target resource,
accessed by a plurality of logged tasks, this method also transmitting or storing
at least one file termed resource log. This resource log thus comprises logging
data representing an identification of each of the different successive tasks
having obtained these exclusive accesses.

Starting from these techniques, the invention proposes to manage the
functioning of at least two application tasks, within a system software managing
by sequential activation the execution of said tasks in a computer system,
endowed with a parallel structure comprising means of calculation capable of
executing several application tasks simultaneously in at least two arithmetic
units. For such application tasks accessing at least one shared resource, the
method comprises on the one hand the following steps:

- a logging of a first succession of activation periods of one or other of these
tasks in a first arithmetic unit; and
- alogging of a second succession of activation periods of one or other of these

tasks in a second arithmetic unit;

10

15

20

25

30

35

WO 2006/079623 PCT/EP2006/050406

- and a logging of a succession of attributions, to a so-called accessing task
among said tasks in response to a request for access to said target resource,
of an access termed exclusive to said target resource, i.e. such an attribution
excluding any access to said target resource by another of these tasks during
the entire rest of the activation period of the accessing task immediately after
said request for access.

On the other hand, the method also comprises a combination, in an
ordered structure termed replay serialisation, of logging data representing the
successions of activation periods in each of the arithmetic units, combined with
logging data representing the succession of attributed exclusive accesses. This
combination is arranged so as to maintain the order of succession of the
activation period within each task and vis-a-vis said shared resource.

According to the invention, the replay serialisation data may be used in a
replay computer system for replaying the logged running of the logged tasks.

Moreover, the method may comprise a virtualisation, within the replay
computer system, of all or part of the software resources accessible, during the
logging, to the tasks logged.

The method according to the invention enables in particular carrying out a
replication, termed active, of the functioning of a logged application comprising
at least two tasks, executed on at least one node with a parallel structure,
termed primary node, of a computer network and accessing at least one shared
resource. This replication therefore comprises a replay, in at least one replay
application on a replay system, of a replay serialisation originating from logging
data transmitted on-the-flow from the primary node to the second node when
generated.

In one embodiment, the invention may then carry out reliabilization of an
application comprising at least two tasks, executed on at least one node with a
parallel structure, termed primary node, of a computer network and accessing at
least one shared resource. This reliabilization thus comprises also a switching of
service, from the primary node to at least one secondary node instead of the
primary node, initiated on detection of a failure or of a given event within the
primary node.

In another embodiment, the invention may also carry out a balancing or
an adjustment of the workload within a computer network executing on at least
one secondary node an active replica of a target application executed on a

10

15

20

25

30

WO 2006/079623 PCT/EP2006/050406

primary node. This load balancing thus comprises a switching to the active
replica of all or part of the service provided by the managed target application.

Therefore, the method according to the invention may be implemented
within at least one node of a computer network, for example a network
constituting a cluster managed by one or more functioning management
applications of the middleware type. The method thus enables extending or
optimising the performances and functionalities of this functioning management,
in particular by logging and replaying of instructions sequences.

In the same context, the invention also proposes a system implementing
the method, applied to one or more computer systems of the parallel type or
constituting a parallel system, and possibly used in a network.

Brief Description of the Drawings

Other features and advantages of the invention will become apparent from
the detailed description of an embodiment, which is in no way limitative, and the
appended drawings in which:

- figures 1 and 2 illustrate a logging of the scheduling of the execution of the
tasks within a processor, by counting the tasks according to the invention;

- figures 3 and 4 illustrate, according to the invention, a replay of an activity
period of a task by counting instructions in a processor;

- figure 5 illustrates, according to the invention, a deterministic replay of a
multi-task application in a monoprocessor system, obtained from a logging,
by counting instructions, of the task scheduling in a processor;

- figure 6 is an illustration of the functioning, according to the prior art, of the
access to a memory shared between two tasks executed in parallel by two
different processors from a single environment;

- figure 7 illustrates, according to the invention, the creation and maintenance,
within a task, of a structure enabling control of access to memory pages
shared between a number of tasks executed in parallel on several different
processors from a single environment;

- figure 8 illustrates, according to the invention, the functioning of control of
access to memory pages shared by two tasks executed in parallel on two
different processors from a single environment;

5

10

15

20

25

30

WO 2006/079623 PCT/EP2006/050406

- figure 9 illustrates, according to the invention, a logging of a multi-task
application on a multi-processor computer and its on-the-flow replay on a

mono-processor machine.

Detailed Description of the preferred embodiment

The techniques described here correspond to embodiments of the
invention using certain characteristics of processors of the types employed in
computers of the PC type, for example processors of the Athlon type from the
AMD company or Pentium processors from the Intel company. Other current
processors, for example used in workstations, or future processors, can of course
present all or some of these characteristics or similar characteristics, and be
employed to carry out the invention.

Figures 1 to 2 present a technique for the logging of different portions of
deterministic internal events executed successively by a single pProX processor
or arithmetic unit.

As illustrated in figure 1, different tasks TA and TB may be executed by
portions, termed activation periods Schl to Sch3, launched successively by the
scheduler SCH, forming part of a system agent termed context manager and
which manages these alternations or interlacings.

Among the different tasks executed within a computer system or a
processor, some may be part of an application which one seeks to manage, and
will be qualified as "monitored"” tasks. These tasks are identified by the state (set
to 1) of a normally unused data bit within the task descriptor, here termed
management bit MmA or MmB (see figure 7). Monitored tasks and others which
are not monitored may alternate within the succession of activation periods
executed in a processor.

For the monitored tasks TA and TB, marked in figure 2 by a letter "m", the
activation periods are chosen such that they are composed of deterministic
events only. These deterministic periods are defined by one or more logging
software agents. This logging agent may comprise elements executed in the user
memory space of the computer system, as a task of an functioning management
application. This logging agent may also comprise or use elements modified or
added within the system software, for example within the scheduler.

10

15

20

25

30

35

WO 2006/079623 PCT/EP2006/050406

Because the majority of events of an application are internal events, and
that lots of them are deterministic, a large part of each managed task is made
up of deterministic events. Each time a non-deterministic event occurs, the
logging agent closes a deterministic period. The non-deterministic event
detected is then executed, possibly in the form of an unmonitored task, and is
logged with its result according to a known method. On completion of this
non-deterministic event, the logging agent defines the start of a new
deterministic portion and launches again the counting of the instructions.

The logging, and possibly the processing, of the non-deterministic events
is carried out outside of deterministic activation periods, or example in an
execution period K1 or K2 in kernel mode KLv, i.e. while the processor privilege
mode is at the value 0, as opposed to the value 3 for the user mode Ulv.

In order to be capable of replaying each activation period in an identical
manner as that on logging, the invention performs a counting of the instructions
executed during this deterministic portion when logging. During a later replay
RSCH (see figures 3 and 4) of these tasks, this logged portion thus only needs to
be launched from a same state as that on logging, for it to execute on its own up
to a number of replay instructions corresponding exactly to the number of
instructions executed by this same portion on logging and for this same task.
This replay is therefore carried out without any intervention forcing the results
within a deterministic portion, as the latter contains only deterministic events.

When a deterministic portion extends over a plurality of activation periods
established by the scheduler, each of these activation periods comprises a part
of this deterministic portion, which can be itself processed as a complete
deterministic portion. In the remainder of the description, only the logging of
deterministic activation periods will be described, but it is clear that a number of
deterministic activation periods may follow one another within a single
deterministic portion.

According to the invention, this counting of instructions of a deterministic
activation period uses a performance and monitoring counter, which is currently
an existing hardware feature in a large number of processors, for example since
Pentium 2 for the Pentium family from the Intel company. This performance and
monitoring counter is provided in order to measure the functioning of the
processor, in duration or in a number of events, and is used principally to
measure performances, for example in order to carry out statistical analyses of

10

15

20

25

30

35

WO 2006/079623 PCT/EP2006/050406

application profiles, by periodic sampling of its values. Processor manufacturers
also specify that these performance counters do not have a guaranteed accuracy
and must be used for relative or differential measurements for optimisation of an
application.

The invention proposes to use one of the characteristics of this
performance counter PMC, namely the counting of instructions termed retired,
i.e. which are resolved or have left the list of instructions to be executed,
independently of the various speculative or cache techniques capable of having
certain instructions executed in advance for performance reasons.

However, this counting of retired instructions presents certain limiting
characteristics which are described in the documentation from the Intel and AMD
companies. One of these characteristics is that the reading instructions
("RDPMC") for this counter are not integrated directly into the instructions to be
resolved, which has no direct consequence on the use of this counter in
connection with the invention.

On the other hand, two other limiting characteristics may originate
inaccuracies in the counting of instructions for logging and replay and should be
taken into account.

A fourth characteristic capable of constituting a handicap is the fact that
the interruption of the execution by counter overflow may occur with a certain
delay after the instruction having caused this overflow.

These inaccuracy limits relate, on the one hand, to cases of certain
complex instructions which can be counted twice if interrupted before resolution,
and, on the other hand, instructions with hardware interruption which can cause
a non-counting of an instruction. To overcome this inaccuracy, the invention
uses a complementary confirmation technique which enables removing doubts
concerning the exact determination of the end of an activation period.

As illustrated in figure 1, a succession of deterministic activation periods
Sch1, Sch2 and Sch3, executed in a pProX processor are logged and recorded in
a log file JuProX.

During a logged activation period Sch3 where the processor is executing a
monitored task TA, one or more readings RDPMC of the value UICX of the
counter PMC supplies a number NJ3 of retired instructions. At the suspension
(end Sch3) of this period Sch3, the logging agent JSCH uses one or more items
of state data output by the state of the task TA and of its context in order to

10

10

15

20

25

30

WO 2006/079623 PCT/EP2006/050406

calculate one or more items of data representing this state in a sufficiently
univocal manner for removing the doubts which may exist concerning the exact
number of instructions executed during this activation period Sch3. This state
data constitutes a signature SG3 corresponding to this end of period (end Sch3).
This signature comprises in particular the exact value IPJX3 of the instruction
pointer immediately after the last instruction of this period, i.e. an exact
identification of the position, within the executable of the task TA, of the
program instruction executed last. This signature also comprises a control datum
("checksum™") calculated from the values read in the register RegJX3 and the call
stack Pile]JX3 from the context of the task TA on this suspension (end Sch3).

For each of the logged periods Schl (figure 3), the log JuProX of this
processor thus comprises a line associating in particular:

- an identification idJ of the task TJ executed in this period, for example the

"PID" of this task;

- the value of the number of withdrawn instructions NJ sent by the counter

PMC,;

- the signature SGJ calculated for the end of this period.

Thus, for the succession of tasks TA then TB then TA illustrated in figure 1,
the log JuProX of the processor yProX comprises the following successive lines:

" idA: NJ3: SG3

idB: NJ2: SG2
idA: NJ1: SG1"

As illustrated in figure 2, the succession of the different tasks logged of a
logged application APPJ, within a given pProX processor, may also be transmitted
initially by the logging agent JSCH to a logging queue QJuProX of the FIFO ("First
In First Out") type. The logging lines at the output of this queue are read by a
log storing task TJuProX, which initiates the storing of these lines in an ordered
manner in the log JuProX of this processor, either locally MEM or by a
transmission TRANS to another node or a backup station or peripheral. The use
of such a logging queue serves in particular as a buffer zone in order to regulate
the flow of logging data and to avoid disturbing the logged application or the
application carrying out this logging.

This benefit is particularly appreciable in the case of a global architecture

where the logging data is transmitted as it occurs, on-the-flow, to another

11

10

15

20

25

30

35

WO 2006/079623 PCT/EP2006/050406

application replaying the same running, for example on a standby machine in
order to carry out a functioning with fault tolerance and continuity of service.

In this counting technique it may be advantageous to use system call
instructions as synchronisation points for the counting of instructions. This
therefore involves instrumenting the system call routines such that they
increment a system calls counter. The counting of the instructions by the
hardware counter PMC can therefore work on the values which remain lower,
which improves its performances.

Figures 3 and 4 present a replay technique in a replay processor uProZ, of
a logged period Schl. Figure 3 represents the latest states TR1 to TR4 of a
replayed task TR, within the processor. Figure 4 represents a flow diagram of the
method used to implement such a replay. Depending on the embodiments or
usage parameters, the replay may also be done in the same processor as the
logging, for example for an functioning management of the application tracing
type, according to the same principle as that for a different replay processor.

During such a replay, for example, as an activation period scheduled by
the scheduler SCH, possibly modified in order to include a replay agent RSCH,
the task in question TJ is restored with its context in the processor mentioned,
then this task is released 41 and its execution is launched.

In order to be capable of being restored and executed in a replay
computer system different to that where the logging was done, all or part of the
resources accessible to a task or an application must be virtualised, i.e.
instantiated or recreated, for example in a virtual manner, in order to appear to
the replayed application in the same way as while logging. The items generally
involved are the task identifiers, for threads TIP or processes PID, together with
most of the resources accessed by the application and which depend on the host
system. This virtualisation is performed at the start of the replayed task or
application, and is modified during the replay so as to change in the same way
as during the logging, according to the data stored during this logging.

Advantageously, this virtualisation is done in kernel mode, which enables
in particular avoiding its operations being taken into account in the counting of
the instructions by the performance counter PMC.

The documentation from the Intel company specifies that the error due to
a hardware interruption is limited to a relative error of plus or minus one

instruction. For a logged deterministic period including at most one single

12

10

15

20

25

30

35

WO 2006/079623 PCT/EP2006/050406

hardware interruption, i.e. that which caused its closure, monitoring requires
taking into account two values of the counter PMC: the value at the start of the
replay period and the value at the monitoring point. The maximum relative error
is therefore plus or minus two instructions.

Throughout the execution of the replay task TR for the replay of the
logged task TJ, the replay agent RSCH monitors the number of instructions
retired by reading RDPMC the counter PMC of the processor pyProZ carrying out
the replay and by comparing this reading with the logging data Id], NJ, SGJ
corresponding to this logged task TJ. This monitoring is arranged in order to
interrupt the execution of the replay task TR once the instruction is reached
whose ordinal value in this replay execution equals NJ-2. This interruption is
done for example by programming an overflow of the counter PMC at the desired
value.

Because of the fourth limiting characteristic cited above, the existence of a
latency time between the overflow and the interruption may be compensated by
programming the overflow 41 (figure 4) with a certain margin, so as to be
certain that the interruption is produced before the desired value of NJ-2. This
margin may be determined by experiment and may be, for example, of the order
of 50 instructions.

The initial execution of the replayed period SchR is therefore interrupted at
a number of instructions between NJ-50 and NJ-2. The replay agent RSCH then
sets 42 an execution breakpoint BK within the executable of the replay task TR,
on program instruction BKI corresponding to the value IP] of the instruction
pointer stored in the signature SGJ]. The execution is then re-launched until
interruption 43 by this breakpoint BK, on and on with testing 44 the number of
instructions from the counter PMC until the number of replayed instructions is
greater than or equal to the number of logged instructions minus two
instructions, i.e. NR = NJ-2.

The exact position of the actual end of the logged period Sch] is thus
situated in the four following unitary instruction executions InstrO to Instr3, with
the respective ordinal values NJ-1 to NJ+2, i.e. at a relative position included
between minus two and plus two compared with the position NJ of the supposed
end of this same period Schl.

A confirmation phase 40 (figure 4) then enables to determine this actual
position, by comparison between the signature SG] and a value SG1 to SG4

13

10

15

20

25

30

WO 2006/079623 PCT/EP2006/050406

(figure 3) calculated in the same way from the state TR1 to TR4 of the replay
task TR, after the following unitary instruction executions Instrl to Instr4.

At the start of this confirmation phase, the replay agent checks 45 the
value SGO of a replay signature SGR calculated according to the state of the
replay task TR immediately after the interruption caused by the preceding
monitoring.

According to the invention, if the signatures SG] and SGO do not
correspond, the execution of the task TR is then relaunched, and stops 46 on the
first new execution TR2 of this breakpoint instruction BKI.

There may, however, be a doubt as to this new stopping position TR2, for
example if the logged task TJ has carried out a very short loop by executing
several times this breakpoint instruction BKI before being suspended. At each
break TR2, TR4 of the execution on this breakpoint instruction BKI, the replay
agent verifies 47 again the matching of the signatures SG] and SGR and
relaunches the execution until this matching is obtained. When the signatures
correspond (SGJ = SG4 in this example), it means the last execution Instr4 of
the breakpoint instruction BKI corresponds to the last operation logged in the
logged period Schl. The replay agent then closes 48 the replay period SchR.

The invention also envisages a security mechanism, for example a test 49
interrupting the replay TR and returning 401 a replay error after a certain
number of specific executions of instructions in order to avoid an infinite loop in
case of error, for example at the end of eight unitary instruction executions.

In order to replay a plurality of logged periods, for example on a replay of
a replay application APPR (figure 5) corresponding to the logged application
APP], the replay agent RSCH successively reads the different lines of the log
JuProX and uses each of these in order to replay an activation period
corresponding to the line in question.

As illustrated in figure 5, the different lines of this log JuProX are received
TRANS directly or read MEM locally, by a log reading task TuProZ executed in the
replay processor yProZ.

All the lines of this log JuProX, each corresponding to a logged period, are
then transmitted to a replay queue QJuProZ of the FIFO type, in the order in
which they were logged. At the output of this queue, the replay agent RSCH uses
each of these log lines to have the period which it represents replayed by the

14

10

15

20

25

30

WO 2006/079623 PCT/EP2006/050406

replayed tasks TA’, TB’ and TC’, corresponding to the logged tasks TA, TB and
TC.

In order to carry out the scheduling of these periods within the replay
processor WProZ, the replay agent RSCH uses the functioning of the scheduler
SCH as it exists in the standard system software without semantic change. This
aspect enables in particular maintaining compatibility with the other TNM’ tasks
executed in the same processor. In order to obtain the same scheduling as while
logging, without disturbing the normal functioning of the scheduler SCH, the
replay agent RSCH contents itself with blocking 55b, 55c the release of each
replay task TB’, TC" as long as their identifiers, TID or PID, do not correspond to
the identifier idA stored in the line the replay of which it must procure.

These techniques for logging and replay of deterministic periods enable to
optimise the performances and the functionalities of an functioning management
application within one or more mono-processor computers, as described in the
applications cited above.

In the case of a parallel architecture, such as a multi-processor computer
or a network comprising a humber of computers working in parallel, the use of
shared resources accessible by a plurality of tasks adds a non-determinism cause
which can be at the origin of significant performance losses in the context of this
functioning management, or even of the impossibility of implementing certain
important and useful functions.

In order to remove all or some of these causes of non-determinism, the
invention proposes a method enabling managing or controlling access to shared
resources, in particular direct access resources, such that each task could obtain
an exclusive access to the shared resources for the whole of a period where it is
activated by the system.

In figure 6 an example of the functioning of a parallel multi-processor
environment is illustrated, comprising a first processor pProX and second
processor JProY in a multi-processor environment, for example, a system of the
Linux type. These two processors each execute a task in parallel, TA and TB
respectively, within a single working memory space RAM, and are coordinated by
a scheduler. During an activation period of each task TA and TB, a sequence
SchA, SchB of the instructions from its program EXEA, EXEB will be executed in a
processor pProX, uProY. During the execution of an instruction InstrA, InstrB

15

10

15

20

25

30

35

WO 2006/079623 PCT/EP2006/050406

from this sequence, the processor will be able to use resources which are
internal to it, such as the registers RegA, RegB a stack PilA, PilB.

Within the working memory RAM, several shared memory zones ShMPi to
ShMPk are defined, for example by an instruction of the "map" type, and
accessible from the different tasks TA and TB directly by their physical address.

Figure 6 illustrates a situation from the prior art, where the tasks TA and
TB are executed in parallel over a common period and each comprise an
instruction InstrA and InstrB requesting access to a single shared memory zone
ShMPi. These two access requests will be processed 11, 13 in an independent
manner by the memory manager unit MMU of each processor, and will reach 12,
14 this shared memory zone independently of each other.

For the resources which are accessible only from certain instructions of the
system call type, it is possible to instrument the system routines carrying out
these instructions, i.e. to modify these routines or to insert elements into the
system which intercept or react to these system calls. In the context of an
functioning management by logging and replay, this instrumentation may enable
in particular the recording of their behaviour in order to be able to replay it later
identically, or to modify this behaviour so that it becomes deterministic and has
no need to be recorded.

On the contrary, for resources accessible directly without a system call,
therefore potentially from any program instruction, most operating systems and
in particular those of the Unix or Linux type, do not enable to control the arrival
of these accesses at the level of this shared memory zone ShMPi.

In order to resolve this problem, as illustrated in figures 7 and 8, the
invention proposes to modify the code of certain system software elements, or to
add certain others, so as to modify or extend certain existing hardware
functions, currently used for other functions.

In particular, it is possible to resolve this problem by modifying a small
number of elements of a system software of the Unix or Linux type, without
modifying the hardware characteristics of current processors. It is therefore
possible to use machines of a common type, therefore economic and well
proofed, in order to execute and manage slightly modified, or unmodified,
multi-task applications, by bringing to existing system softwares only a few
modifications, which add functionalities without compromising their upward
compatibility.

16

10

15

20

25

30

WO 2006/079623 PCT/EP2006/050406

The invention uses for this certain mechanisms existing in a number of
recent micro-processors, such as the processors used in architectures of the PC
type, for example Pentium processors from the Intel company, or Athlon from
the AMD company. These processors, in particular since the Pentium 2, integrate
within their memory management unit a virtual memory management
mechanism. This mechanism is used in order to "unload" onto the hard disk
certain pages defined in the working memory when they are not used, and to
store them there in order to free the corresponding space within the physical
memory. For the currently running applications , these pages still are listed in
the working memory, but they must be "loaded" again in physical memory from
the hard disk in order that a task could actually access it.

In order to manage this virtual memory, as illustrated in figure 8, the
system software includes a virtual memory manager VMM, which creates, for
each page of virtualisable memory, a page table entry ("P.T.E.”) within each of
the different application processes. Thus, for two tasks TA and TB, each executed
in the form of a process, i.e. with an execution context which is proprietary to it,
each of the pages ShMPi to ShMPk will get a page table entry PTEIA to PTEKA in
the process of the task TA, as well as a page entry table PTEiB to PTEKB in the
process of the task TB.

The virtual memory manager VMM comprises a page loader software PL,
which loads and unloads memory pages into a "swap" file on the hard disk, for
example a file with the extension ".swp" in the Windows system from the
Microsoft company. During each loading or unloading of a ShMPi page, its state
of presence or non-presence in physical memory is stored and maintained 30 by
the VMM manager in each of the page table entries PTEIA and PTEiB which
correspond to it. Within these tables PTEIA and PTEiB, this presence state is
stored in the form of a data bit PriA and PriB respectively, at the value 1 for a
presence and at the value 0 for an absence.

Within each processor pProX and pProY, the memory manager MMUX or
MMUY includes a page fault interrupt mechanism PFIntX or PFIntY by which
passes any access request originating from an executed program instruction
InstrA or InstrB. If an instruction InstrA from a task TA executed by the
processor JProX requests 33 an access pertaining to a memory page ShMPi, the

interruption mechanism PFIntX of the processor verifies whether this page is

17

10

15

20

25

30

35

WO 2006/079623 PCT/EP2006/050406

present in physical memory RAM, by reading the value of its presence bit PriA in
the corresponding entry table PTEIA.

If this bit PriA indicates the presence of the page, the interruption
mechanism PFIntX authorises the access. In the opposite case, this interruption
mechanism PFIntA interrupts the execution of the task TA and transmits the
parameters of the error to an “Page Fault Handler” software agent PFH included
in the virtual memory manager VMM of the system software. This fault handler
PFH is then executed and manages the consequences of this error within the
system software and vis-a-vis the applications.

Figure 7 illustrates how these existing mechanisms are modified and
adapted or diverted in order to manage access to the shared resources according
to the invention.

In order to manage these accesses from an application APP executed in
such a parallel environment, as illustrated in figure 7, a launcher software LCH is
used to launch the execution of this application, for example in a system of the
Unix or Linux type. On its launch, the application APP is created with a first task
TA in the form of a process comprising an execution "thread" ThrA1, and using a
data table forming a task descriptor TDA.

Within this task descriptor TDA, the launcher stores 21 the fact that this
task TA must be managed, or "monitored", by modifying to 1 the state of a
normally unused data bit, here termed management bit MmA.

The different shared memory zones in the working memory, here qualified
as shared memory pages ShMPi, ShMPj, and ShMPk, are listed within the task TA
in a data table forming a pages memory structure PMStrA. In this structure
PMStrA, the shared pages are described and updated in the form of page table
entries PTEiA1 to PTEKA1, each incorporating a data bit PriAl to PrKAl used by
the virtual memory manager VMM as described previously. Typically, this pages
structure PMStrA is created at the same time as the task TA, and updated 20
along with any changes in the shared memory, by the different system routines
which ensure these changes, such as routines of the "map" type.

During the execution of the managed application APP, other tasks may be
created by instructions CRE of the "create" type, from this first task TA or from
others created in the same way. Any newly task TB created also includes a
thread ThrB1l and a task descriptor TB, as well as a page memory structure
PMStrB. Through an inheritance relationship INH from its parent task, the new

18

10

15

20

25

30

WO 2006/079623 PCT/EP2006/050406

page memory structure PMStrB also includes the different page table entries
PTEiB1 to PTEkB1, with their presence bit PriB1 to PrkB1, which are maintained
up to date in the same way.

On creation CRE of a new task TB from a monitored task TA, the new task
descriptor TDB also comprises a management bit MmB, the value of which is
inherited INH from that of the management bit MmA from the parent task.

During the execution of the managed application APP, other threads may
be created within a task TB which functioned initially in the form of a process
with a single thread ThrB1.

Within an existing and monitored task TB, any new thread ThrB2 is
created by a system call, such as a "clone" instruction. Typically, a task in the
form of a multi-thread processes comprises only one set of entry tables PTEiB1
to PTEkB1 within its pages structure PMStrB. According to the invention, the
functioning of any system routine which is capable of creating a new thread,
such as the "clone" system call, is modified, for example by integrating in it a
supplementary part CSUP. This modification is designed so that any creation of a
new thread ThrB2 in an existing task TB comprises the reading 22 of the existing
set of tables PTEiIB1 to PTEkB1 and the creation 23 of a new set of page table
entries PTEiB2 to PTEkB2, corresponding to the same shared pages ShMPI to
ShMPk and functioning specifically with the new thread ThrB2. This modification
may for example be done by an instrumentation of these routines CLONE by
using a technique of dynamic interposition through loading of shared libraries
within the system, as described in patent FR 2 820 221 from the same
applicants.

This creation is done in a way ensuring that the new tables PTEiB2 to
PTEkB2 are also maintained up to date 24, 25 in a similar manner to their parent
tables PTEiB1 to PTEkB1, either by registering them for updating into the system
routines MAP managing this update, or by also instrumenting these system
routines MAP , for example by integrating in them a supplementary part MSUP.

Figure 8 illustrates the functioning of the access management using this
structure applied to an example including two mono-thread tasks TA and TB
executed in parallel in two processors pProX and pProY. It should be noted that
the extension of the structure of the page table entries PTE to each thread ThrB2

cloned within each task also enable to manage in the same way any access

19

10

15

20

25

30

WO 2006/079623 PCT/EP2006/050406

coming from all threads belonging to monitored tasks, whether they be
mono-thread or multi-thread.

In the embodiment described here, the access management according to
the invention is arranged in order to guarantee to each task, in the sense of the
process TA or TB as well as in the sense of each thread ThrB1l or ThrB2, an
access to shared memory pages which is exclusive over the entire duration of an
activation period during which their coherence (or consistency) is guaranteed by
the system software. Such a period is described here as being an activation
period allotted and managed by the scheduler SCH of the system software. It is
clear that other types of coherence period can be chosen in the same spirit.

Also, the shared resources to which access is managed or controlled are
here described in the form of shared memory, defined as specific memory zones
or as memory pages. The same concept may also be applied to other types of
resources by means of a similar instrumentation of the system routines
corresponding to them.

The implementation of the invention may comprise a modification of some
elements of the system software, so that they function as described below. The
necessary level of modification may certainly vary, depending on the type or
version of the system software. In the case of a system of the Linux type, these
modifications comprise in general the instrumentation of "clone" and "map" type
routines as described previously, as well as modifications and code additions
within the agents producing the scheduler SCH, the page fault handler PFH and
the page loader PL. The system functionalities to be modified to produce the type
of access control described here may advantageously constitute sheer extensions
compared with the functionalities of the standard system, i.e. without removing
functionality or at least without compromising upward compatibility with
applications developed for the standard system version.

Furthermore, although using the hardware mechanism envisaged in the
processor for virtual memory management, the access control described may not
necessarily need the deactivation of this virtual memory and may be compatible
with it. The page loader PL may, for example, be instrumented or modified so
that the loading into physical memory RAM of a virtual page ShMPi is not
reflected in the presence bit PriB of this page by a monitored task TB if this page
is already used by another task TA.

20

10

15

20

25

30

WO 2006/079623 PCT/EP2006/050406

As illustrated in figure 8, at the start of one of its activation periods SchA,
a task TA is released by the scheduler SCH at a time SCHAL. Before releasing
this task, the scheduler SCH tests 31 the management bit MmA of this task TA to
establish whether the access control must be applied to it. If this is the case, the
scheduler SCH will then 32 set to 0 all the presence bits PriA to PrkA of the page
table entries PTEIA to PTEKA corresponding to all the shared pages concerned by
this access control, in order that any access request by this task TA causes by
default a page error in the interruption mechanism PFIntX for all processors
MProX where this task TA will be capable of being executed.

During this activation period SchA within the processor pProX, an
instruction InstrA requests 33 an access to a shared memory page ShMPi.
Because the corresponding presence bit PriA is at 0, the interruption mechanism
PFIntX of the processor yProX suspends the execution of this access request and
calls the page fault handler PFH of the system software, at the same time
transmitting to it the identification of the page and of the task in question.

When processing this error, a supplementary functionality PFHSUP of the
page fault handler PFH therefore carries out a test and/or modification within a
data table forming the kernel memory structure KMStr ("Kernel Memory
Structure") agent within the virtual memory manager VMM of the system
software.

Typically, this kernel memory structure KMStr stores in a univocal manner
for all of the working environment, or all of the working memory, data
representing the structure of the memory resources and their development.
According to the invention, this kernel memory structure KMStr also comprises a
set of data bits, here termed access bits KSi, KSj and KSk which represent, for
each of the shared pages ShMPi to ShMPk in question, the fact that an access to
this page is currently granted (bit at 1) or not granted (bit at 0) to a task.

When the page fault handler PFH processes the error transmitted by the
processor PProX, it consults 34 the access bit KSi corresponding to the ShMPi
page in question. If this access bit does not indicate any current access, it
modifies 34 this access bit KSi in order to store that it granted an access to this
page, and also modifies 35 the presence bit PriA corresponding to the requesting
task TA (bit changing to 1) in order to store the fact that this task TA now has an
exclusive access to the page in question ShMPPi.

21

10

15

20

25

30

35

WO 2006/079623 PCT/EP2006/050406

It should be noted that these test and modification operations of the
access bit KSi of the kernel memory structure KMStr constitute an operation 34
which is implemented in an atomic manner, i.e. it is guaranteed that it is
accomplished either completely or not at all, even in a multi-processor
environment.

Once the page fault handler PFInt has attributed exclusivity on the
requested page ShMPi, it relaunches the execution of the instruction InstrA so
that it actually accesses 36 the content of this page.

After that, if an instruction InstrB from any another monitored task TB,
executed in parallel by another processor puProY, requests 37 an access to this
already attributed page ShMPi, the interruption mechanism PFIntY of this
processor will also consult the presence bit PriB of this page for the requesting
task TB. As the task TB is a monitored task, the presence bit PriB consulted is in
the absence position (value at 0). The interruption mechanism PFIntY will
therefore suspend the requesting instruction InstrB and transmit 38 an error to
the page fault handler PFH.

This time, this page fault handler PFH notes that the access bit KSi of this
page is at 1, indicating an exclusivity has been granted already on this page
ShMPi to another task. The page fault handler PFH will therefore initiate 39 a
suspension of the whole of the requesting task TB, for example by ending its
activation period into the system software context change manager. During its
next activation period, this task TB will therefore repeat its execution exactly to
the point where it was interrupted, and will be able to attempt once more to
access this same page ShMPi.

In the case where the requesting task is a thread ThrB2 (figure 7)
belonging to a multi-thread process, the existence of a set of page table entries
PTEiIB2 specific to this single thread ThrB2 enables to suspend only the thread
which requests access to a page already allocated in exclusive access, and not
the other threads ThrB1 which would not enter into conflict with this exclusivity.

On completion SCHAS of the activation period SchA of each task, the
scheduler suspends the execution of this task and backs up its execution
context.

On this suspension SCHAS or on a suspension 39 on a page request which
is already allocated, the invention also envisages a release phase for all shared
memory pages for which this task received an exclusive access. Thus, if the

22

10

15

20

25

30

35

WO 2006/079623 PCT/EP2006/050406

scheduler SCH notes 301 through the management bit MmA that the task TA in
course of suspension is monitored, it scans all the page table entries PTEIA to
PTEKA of this task to establish on which pages it has an exclusive access, by
consulting the state of the different presence bits PriA to PrkA. Based on this
information, it will then release all these pages ShMPi by resetting to 0 their
access bit KSi in the kernel memory structure KMStr.

In other unrepresented variants, it is also possible to decouple the concept
of management or monitoring into several types of management, for example by
envisaging several management bits within a single task descriptor. A task may
therefore be monitored so as to benefit from an exclusive access as regards
certain categories of task. Similarly, a task may be excluded only by certain
categories of task.

Thus, through suspending all the tasks which seek to access a page which
is already allocated, an exclusivity of this page is obtained for the first task which
requests it, without disturbing the coherence of the execution of the other tasks
thus suspended.

Through avoiding any modification of a single memory zone shared by two
tasks being executed at the same time, this therefore avoids any interference
between them in the change of content of this memory zone. From a given initial
state for this memory zone, at the start of each activation period of a task which
accesses it, the change of its content thus depends only on the actions of this
task during this activation period. For a given sequence of instructions executed
by this task, for example a scheduled activation period, and by starting from an
known initial state, it is thus possible to obtain a execution of this sequence
which is deterministic and repeatable vis-a-vis this task.

Because, in particular, of the use of an atomic operation for storing the
allocation of exclusivity on an accessed memory zone, the method enables to
avoid or reduce the risks of deadlock of a single resource shared between a
plurality of tasks seeking to access it competitively.

Advantageously, on attribution to an accessing task TA of an exclusive
access for the rest of this period to the shared memory page ShMPi, the page
fault handler PFH, PFHSUP may prepare a logging datum representing this
attribution. This logging datum comprises an identification of the task TA to
which this exclusive access was attributed, and possibly other complementary
data applying to the context or representing the position of the requesting

23

10

15

20

25

30

35

WO 2006/079623 PCT/EP2006/050406

instruction InstrA in the execution of the task TA in question, as well as the
number of instructions executed by this task TA in the duration of the exclusive
access obtained.

Within the system software, this logging data may be grouped in a access
log representing the succession of exclusive accesses attributed during a certain
period of time or of execution. This log comprises in particular an ordered set of
data identifying, for example by their PID or TID, the succession of tasks having
obtained these exclusive accesses. Each resource accessed by a monitored task
may therefore give rise to the establishment of a log which is proprietary to it
and groups the succession of tasks having obtained a exclusive access over this
resource.

By combining these access control techniques (figures 7 to 8) with the
techniques for logging deterministic periods described above (figures 1 to 5) as
well as with checkpointing and logging and replay techniques described in the
applications cited above, the invention proposes to also implement in parallel
architecture systems the different types of functioning management described
previously.

Figure 9 therefore illustrates, according to the invention, a logging of a
multi-task application APPJ on a multi-processor system MP1 and its replay as
required in a monoprocessor system UP2.

For the logged application APP], the logging agent JSCH logs, for each
processor PProX or pProY, the succession of all activation periods for the
different monitored tasks TA, TB and TC. As described above, it transmits them
separately as queues QJuProX and QJuProY respectively. It should be noted that
if a task is executed once in a processor and once in another processor,
activation periods for this task will be present in the two queues.

With shared resources ShMPi to ShMPk accessed by the logged application
APP], a logging agent JVMM records, for each of these resources, logging data
representing the succession of exclusive accesses allocated on this resource. This
exclusive access logging data is generated within the virtual memory manager
VMM, by the page fault handler PFH, along with the exclusive accesses which it
allocates to the different tasks.

Each recording of this access logging data comprises in particular:

- a univocal identifier of the shared resource in question, for example, an

address for a shared memory zone;

24

10

15

20

25

30

WO 2006/079623 PCT/EP2006/050406

- an identifier (PID or TIP) for the task which obtained this access;

- the duration of this exclusive access, obtained for example through
counting technique described here;

- complementary data allowing compensation for the inaccuracy of this
counting, for example a signature as described previously;

- and certain complementary data that are useful, for example, for the
virtualisation of system resources and of the different external or
input/output events.

This logging data is transmitted to a logging queue QJShMPi of the FIFO

type.

Depending on the embodiments, it is possible to store the content of these
queues QJuProX, QJuProY, QJuUMPi in one or more log files, for example, for a
later use.

Out of these queues, the different logging data is transmitted to the replay
system UP2, by communication means such as a computer communication
network.

The data from each logging queue QJuProX, QJuProY, QIJuMPi is received
by a replay queue QRuProX, respectively QRuProY, QRuMPi which corresponds
to the issuing queue.

In the output of these replay queues, logging data of the different logged
processors UProX et pProY is combined together, according to the access logging
data, so as to restore the combined serialisation of the logged activation periods
and the allocated (continuous) exclusive accesses.

Within the replay system, after defining this replay serialisation, or replay
scheduling, execution of a replay is launched in the replay processor.

It should be noted that the number of replay processors may have no
importance excepted the performances at replay, as soon as the tasks are
distributed among these processors in a manner which does not break the
scheduling of this replay serialisation.

From a logged application APP] in a multi-processor system MP1, it is
therefore possible to obtain a replay of the deterministic periods of the different
tasks TA, TB, TC of its application, in the form of replay tasks TA’, TB’, TC' in a
replay machine UP2. By combining this replay of deterministic periods with a

logging and a replay of non-deterministic events and in particular of external

25

10

15

20

25

30

WO 2006/079623 PCT/EP2006/050406

events, the invention enables to obtain in a high-performance manner a replay
application APP] reproducing the execution of the logged application APPJ.

By transmitting the logging data from the logged system to the replay
system as soon as it is generated (on-the flow), it is possible to produce a
following or "shadow" replay application which runs in exactly the same way as
the logged application, simply with a time delay. The term "active-active"
configuration can be used in this type of situation, where both applications are
under execution, in contrast for example to the techniques storing the state of
the application as a future provision.

In such an "active-active" configuration, it can be considered that the
replay application APPR constitutes an active replica of the master or primary
application. This active replica presents a slight time delay which can depend on
factors such as the comparative performances of the two systems, to which the
times of transmission and processing of the logging data are principally added.
The typical delay is a few scheduling periods, which is commonly a few
milliseconds.

On first consideration, the techniques described here may allow the
implementation of a functioning management which represents only a small
overhead compared with the original or legacy application, and only a loss of
performance of a kind which is possibly acceptable in an exploitation situation.

The invention advantageously enables to apply this type of "active-active"
configuration to the implementation of an application reliabilization, where the
active replica can be used as a mirror application of the original and take over
from it in case of failure or on a particular event. Compared with hardware
implementations of mirror systems, the invention enables much more flexibility
in the functioning as well as in the hardware management, owing to its improved
independence from the hardware characteristics of the machines employed.

Such a configuration thus enables to bring fault tolerance functionalities to
an existing application, in a flexible and non-intrusive manner, at the same time
limiting losses of performance and even in a parallel architecture.

These advantages exist also while using such an "active-active"
configuration in order to produce a balancing or an adjustment of the work load
("load balancing"), by redistributing all or part of the services from the logged

application to the active replica. This may be for example to optimise the use of

26

10

15

20

WO 2006/079623 PCT/EP2006/050406

the hardware, or to free a part of it in order to implement a relocative
maintenance.

It should be noted that the different mechanisms described here use the
software part in a manner dissociated from the hardware part. Good
independence with respect to the hardware is then obtained, which, in particular,
makes the implementation simpler and more reliable and conserves good
performances by allowing the architecture to manage itself at best the
parallelism of the different calculating elements, should these be processors or
computers.

Moreover, due to the invention being most often purely software
implemented, it is possible to use standard hardware with all the advantages
implied.

The invention in particular enables to extend to parallel environments the
functioning management techniques that were developed for multi-task
applications functioning in shared time over a single calculating element. Thus,
the invention enables to integrate such parallel environments into networks or
clusters in which this functioning management is implemented within an
application of the middleware type, for example in order to manage distributed
applications or variable deployment applications providing an "on-demand"
service.

Obviously, the invention is not limited to the examples which have just
been described and numerous amendments may be made thereto, without
departing from the framework of the invention.

27

10

15

20

25

WO 2006/079623 PCT/EP2006/050406

Claims

1. Method for managing a computer task, termed target, during a given
execution period, termed activity period (Schl], SchR), within a computer system,
in a computer processor provided with means of monitoring or estimating
performance and including a counter (PMC) with a given possible error in plus or
minus, termed relative error, this process comprising

on the one hand, an evaluation of a number of executed instructions (NR,
NJ) up to at least one given point of said activity period, using said counter; and

on the other hand, a generation of data, termed signature (SGJ], SGR),
read or calculated from the state of the processor or computer system and

corresponding to at least one given point of said activity period.

2. Method according to claim 1, characterized in that the evaluation of the
number of instructions executed (NJ, NR) since the start of the managed period
uses at least one system call instruction as a synchronisation barrier jointly with
the computer (PMC).

3. Method according to one of claims 1 or 2, characterized in that it manages
a task during an activity period composed of a succession of deterministic

operations between two non-deterministic operations.

4, Method according to one of claims 1 to 3, characterized in that it manages
a task (TJ) being logged in a processor, termed logged processor (puProX), and
that it comprises a storing of logging data corresponding to this period of activity
of said task, termed logged period (Sch3, Schl), this logging data comprising at
least one supposed value (NJ]) of the number of instructions executed as well as
the signature (SGJ), termed logged signature, corresponding to the end of said
logged period.

5. Method according to one of claims 1 to 4, characterized in that it logs the
use of a processor (uProX) by storing in an ordered fashion, in at least one file

termed processor log (JuProX), logging data representing the logging of a

28

10

15

20

25

30

WO 2006/079623 PCT/EP2006/050406

succession of activity periods (Sch1, Sch2, Sch3) of a plurality of tasks (TA, TB,
TA) executed in said processor, said logging data comprising for each of these
periods a datum (idJ) identifying the executed task (TJ).

6. Method according to claim 5, characterized in that it carries out, from the
logging data, a replay of the logged period (Sch]) by managing a task, termed
replayed (TR) task, executed by a processor, termed replay (pProZ) processor,
within a replay computer system, starting from a state corresponding to the
state of the logged processor or of the logged system at the start of the logged
period, the method also comprising:

- from the start of the replay period, a monitored execution phase executing a
number of instructions (NR), evaluated by the counter (PMC), less than or
equal to the supposed value (NJ) of the number of instructions of the logged
period, reduced by the relative error of said counter;

- a confirmation phase comprising an iteration of the following steps:

- interruption (46) of the execution of the replay task at a given point (TRIO,
TRI2, TRI4) in the replay;

- comparative (47) test between the logged signature (SGJ) and the signature

(SGR) corresponding to the replay interruption point;

7. Method according to claim 6, characterized in that the logged signature
(SGJ) includes a datum termed log pointer (IPJ), representing the value of the
instruction pointer (IPJX3) of the logged task at the end of the logged period
(Schl),

the method also comprising a setting up (42) of a breakpoint (BK) on the
replay instruction (BKI) corresponding to the logged pointer datum (IPJ).

8. Method according to one of claims 6 or 7, characterized in that the
monitoring of the execution of the replay task (TR) comprises in particular an
overflow of the counter (PMC), initialised beforehand in order to determine a
number of instructions (NR) having to be executed from the start of the replay
period and the overflow of which causes an interruption (41) of the replay task.

0. Method according to claim 8, characterized in that the counter (PMC) is
initialised at the start of the replay period with a certain margin, in order to

29

10

15

20

25

30

WO 2006/079623 PCT/EP2006/050406

overflow (41) sufficiently early in order that, in case of a latency period existing
between the overflow of the counter and the interruption of the task which has
caused it, the number of instructions executed (NR) by the replay task (TR) is
less than or equal to the supposed value (NJ]) of the number of instructions of
the logged period, reduced by the relative error of said counter.

10. Method according to one of claims 6 to 9, characterized in that the
confirmation phase comprises a security step signalling an error if the number of
replayed instructions (NR) exceeds the supposed value (NJ]) of the number of

logged instructions increased by a given number of instructions.

11. Method according to one of claims 6 to 10, characterized in that it carries
out, in a replay processor (uProZ), a replay of the use of a logged processor
(MProX), by using an ordered set (JuProX) of logging data of a succession of
activity periods (Sch1, Sch2, Sch3) logged in said logged processor.

12. Method according to one of the preceding claims, characterized in that it
carries out a logging of a succession of attributed exclusive accesses pertaining
to a shared resource, termed target (ShMPi) resource, accessed by a plurality of
logged tasks, this method also transmitting or storing at least one file termed
resource log (JShmPi), comprising at least one identification of the successive

tasks having obtained these exclusive accesses.

13. Management method according to one of claims 1 to 12, characterized in
that it manages the functioning of at least two application tasks (TA, TB),
implemented within a system software managing by sequential activation the
execution of said tasks (TA, TB) in a computer system, endowed with a parallel
structure comprising calculation means capable of executing a number of
application tasks simultaneously in at least two arithmetic units (pProX, pProY),
these two application tasks (TA, TB) accessing to at least one shared resource
(ShMPi), the method comprising:
- a logging of a first succession of activation periods of one or other of these
tasks in a first arithmetic unit (pProX); and
- alogging of a second succession of activation periods of one or other of these
tasks in a second arithmetic unit (pProY);

30

10

15

20

25

30

WO 2006/079623 PCT/EP2006/050406

- and a logging of a succession of attributions, to a so-called accessing task
among said tasks in response to a request for access (InstrA) to said target
resource, of an access termed exclusive to said target resource, i.e. such an
attribution excluding any access to said target resource (ShMPi) by another of
these tasks during the entire rest of the activation period (SchA) of the
accessing task immediately after said request for access;

the method also comprising a combination, in an ordered structure termed

replay serialisation, of logging data (QJuProX, QJuProY) representing successions

of activation periods in each of the arithmetic units, combined with logging data

(QIShmPi) representing the succession of attributed exclusive accesses, so as to

maintain the order of succession of the activation periods within each task (TA,

TB, TC) and vis-a-vis said shared resource (ShmPi).

14. Method according to claim 13, characterized in that the replay serialisation
data is used in a replay computer system (UP2) for replaying (TA’, TB’, TC’) the
logged running of the logged tasks (TA, TB, TC).

15. Method according to one of claims 13 or 14, characterized in that it
comprises a virtualisation, within the replay computer system (UP2), of all or
part of the software resources accessible, during the logging, to the tasks
logged.

16. Method according to one of claims 14 to 15, characterized in that it carries
out a replication, termed active, of the functioning of a logged application (APPJ)
comprising at least two tasks, executed over at least one node with parallel
structure, termed primary node, of a network of computers and accessing at
least one shared resource, this replication comprising a replay, in at least one
replay application over a replay system, of a replay serialisation originating from
logging data transmitted on-the-flow from the primary node to the secondary
node when generated.

17. Method according to claim 16, characterized in that it carries out a
reliabilization of an application comprising at least two tasks, executed over at
least one node with parallel structure, termed primary node, of a network of
computers and accessing at least one shared resource, this reliabilization also

31

10

WO 2006/079623 PCT/EP2006/050406

comprising a switching of service, from the primary node to at least one
secondary node instead of the primary node, initiated on detection of a failure or
of a given event within the primary node.

18. Method according to claim 16, characterized in that it carries out a
balancing or an adjustment of the work load within a network of computers
executing over at least one secondary node an active replica (APPR) of a target
application (APPJ) executed over a primary node, this load balancing comprising
a switching to the active replica of all or part of the service provided by the

managed target application.

19. System implementing a method according to one of claims 1 to 18.

32

WO 2006/079623

PCT/EP2006/050406
1/6
Fig. 1 fin fin il
g Schl Sch2 Sch3
Schl Sch2 \ Sch3 [L
ULv TA TB TA
---------------------------- I i p S
KLv K1 K2 [~ T i
HProX L ‘
PMC RDPMC
UICX
A S S [w3] —
\ JSCH
v
E ;
Q SG3 idA:NJ3:SG13
2 idB:NJ2:SG12
idA:NJ1:SGJ1
JuProX
Fig. 2
APP1
TA T8 TC TNM TIuProX
m m m
\\l\ / h
Y
JISCH
Y
JuPro
Y A
QJpProX l TRANS |

(fifo)

WO 2006/079623 PCT/EP2006/050406

2/6
Fig. 3 TR —>| ’
TRIO TRI1 TRI2 TRI3 TRI4
BK
NR instr
. B Sl O ——— e N - SR 1 S
arrét RSCH 1 NJ-2 Instr0 M InstrON, || § ¥~ Instr2h _ . _. _. 4> Instra | BKI;
, "IN-T | Instri | S T s
sfl:" S:s'ze NJ Instr2 ' Tnetr3
PP NJ+1 | Instr3 |
NJ+2 Instr4 !
1)

Schl:f id):N

JuProX

RSCH

finSCHR | erreur rejeu

-~

WO 2006/079623 PCT/EP2006/050406

3/6
Fig. 5
APPR
TA' TB' TC' TNM’l | TRpProZ
m m m 52
55A\ >>B| 55C/

RSCH

JuPro 51
A
54
idA:NJ1:5G11
idB:N12:5GJ2 ‘ TRANS

QRpProZ |idA:N313:SG13

fifo

(fifo) . 53

Fig. 6

RAM
T ST E._l__B_._._._._.-._._._._._.:
g exeA : : exeB :
: : ShMPj .
E SchA E] schB ;
: ShMPi i
; T // X . T
pProX ! / \ E V! pProY

!| schA i ,MU : i
i —>| instrA ; : ;
i [instrA - 9
i i :
i E

PCT/EP2006/050406

WO 2006/079623

4/6

I

¢da131d Ta!dld
Zgld 19idd
§¢
g43SINd ke [4

Tvidld

dns2

v\ aNO1D

dNSK

dVI

g

adal

Tvidd

VAShd

Y1

PCT/EP2006/050406

Limimimimimemimimsms onsmems g im i m i m e el im e m - D I

ANKWK / XNWKN

1
\ X3UIdd
AUILd ; -
™~ !

i

A

5/6

.. T.l-'.—

uojsuadsns 6 J _22>m

] .

_ 14 @ @bed il

: op Jndbseyd T " '

loimimimrim{mimimrmim i im i mim e m it mr - Nowromrme L R T e it _ lllll [
m i ' ; |
; g41Shd i : :
; [} | .
! i !
i : b :
1 qyos i : WS T
" W). m m
i g !
H| @ax3 gaLli m i
H |\ SO - p !
LTS M m HIS __

Wvd

WO 2006/079623

PCT/EP2006/050406

WO 2006/079623

6/6

adn

IdWHSCO Aoadricd xoddrird

z704dr

l.dWYS

Uddv

TdWW

IdNHSID Aoidrtd xoddrcd

.IﬂNIl

HOSC 7

N

2L

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2006/050406

A. CLASSIFICATION O] 3S4UBJECT MATTER

INV. GO6F11

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GOGF

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages

Y abstract
figure 4

cotumn 13, Tines 26-40
column 17, Tines 35-53

column 2, Tine 60 - column 3, line 4

column 8, 1ine 21 - column 10, 1ine 30

X US 6 708 296 B1 (GOVER FRANK CARL ET AL) 1
16 March 2004 (2004-03-16)

2-19

—f—

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A* document defining the general state of the art which is not
considered to be of particular relevance

"E* earlier document but published on or after the international
filing date

L document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
cltation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or
other means

*P" document published prior to the international filing date but
later than the priority date claimed

T later document published after the international filing date
or priority date and not in condlict with the application but
cited to understand the principle or theory underlying the
invention

X' document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

"Y* document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu—
merrllts, such combination being obvious to a person skilied
inthe art. '

"&" document member of the same patent family

Date of the actual completion of the international search

5 May 2006

Daie of mailing of the intfemationa) search repon

19/05/2006

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL — 2280 HV Rijswijk

Tel (+31-70) 3402040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Weber, V

Form PCT/ISA/210 (second sheet) {April 2005)

Relevant to claim No.

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2006/050406

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

Y

RUSSINOVICH M ET AL: "REPLAY FOR

CONCURRENT NON-DETERMINISTIC SHARED-MEMORY

APPLICATIONS"
ACM SIGPLAN NOTICES, ASSOCIATION FOR
COMPUTING MACHINERY, NEW YORK, US,

vol. 31, no. 5, 1 May 1996 (1996-05-01),

pages 258-266, XP000593204

ISSN: 0362-1340

abstract

paragraphs [01.0], [03.1], [03.2]
US 5 961 654 A (LEVINE ET AL)

5 October 1999 (1999-10-05)
column 3, Tines 15-19

EP 0 864 979 A (DIGITAL EQUIPMENT
CORPORATION)

16 September 1998 (1998-09-16)
page 1, Tines 45~51

page 18, Tines 46-55

FR 2 843 209 A (CIMAI TECHNOLOGY)
6 February 2004 (2004-02-06)

page 10, lines 8-13

page 12, lines 7-12

US 5 774 660 A (BRENDEL ET AL)

30 June 1998 (1998-06-30)

column 12, 1ine 6 - column 14, line 8

2-19

18

Form PCT/ISA/210 {continuation of second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

international application No

PCT/EP2006/050406
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 6708296 Bl 16-03-2004 US 5875294 A 23-02-1999
US 5961654 A 05-10-1999 NONE
EP 0864979 A 16-09-1998 CA 2231570 Al 10-09-1998
JP 10254700 A 25-09~1998
us 6112317 A 29-08-2000
FR 2843209 A 06-02-2004 AU 2003273481 Al 25-02-2004
CA 2493407 Al 19-02-2004
EP 1529259 A2 11-05~2005
WO 2004015574 A2 19-02-2004
JP 2005535044 T 17-11-2005
US 2005251785 Al 10-11-2005
US 5774660 A 30-06-1998 US 6182139 Bl 30~01-2001

Fomrn PCT/ISA/210 (patent family annex) (April 2005)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

