a9 United States

US 20110072074A2

@0y Pub. No.: US 2011/0072074 A2

a2y Patent Application Publication) Pub. Date: Mar. 24, 2011
Yuan et al. REPUBLICATION
(54) METHOD FOR DOCUMENT DELIVERY TO A Publication Classification
MOBILE COMMUNICATION DEVICE
(51) Imt.CL
(75) Inventors: Jianwei Yuan, Cumming, GA (US); GO6F 15/16 (2006.01)
Olav Sylthe, Atlanta, GA (US) GO6F 17/30 (2006.01)
. (52) US.ClL .. 709/203; 707/798; 707/E17
(73) Assignee: Research In Motion Limited, Waterloo,
ON (CA)
(21) Appl.No. 12/724,557 67 ABSTRACT
(22) Filed: Mar. 16,2010 A process for viewing a selected portion of a document on a
p 2 p
Prior Publication Data mobile communication device without having to request mul-
tiple pages of the document contents containing document
(65) US 2010/0174778 Al Jul. 8, 2010 global properties applied to the selected part of the document,
’ comprising marking pages of the document within a server,
Related U.S. Application Data based on size required by the mobile device, associating
properties and attributes of the selected portion with the
(63) Continuation of application No. 10/930,677, filed on pages, and transmitting the pages with the properties and

Aug. 31, 2004.

10~—»

attributes for display by the mobile device.

Patent Application Publication Mar. 24,2011 Sheet1 of 7 US 2011/0072074 A2

=]

12

14

10—

../\

Fig. 1

Patent Application Publication Mar. 24,2011 Sheet 2 of 7 US 2011/0072074 A2

Figure 3

US 2011/0072074 A2

Patent Application Publication Mar. 24,2011 Sheet 3 of 7

(X3, uns anjep
%9 13N

ure[d se 10[029x3] U1 JuYIP 0) AnjeA 13833u1 anjRA
10[00) ‘3tEN

a3, Juns anpep
X3], -swieN

P33 S8 100D IXD] Y} AUYDP 0) IN[BA 1982JU1 INfEA
10]07) JOWBN

o PUE,, BuLsls :an[EA
X3 BweN

uterd se Juoj 2y} SUYIP O} INfEA 3AQ BRIRA
U0 sawieN

Plog,, Bumns anjeA
N0, 3N

Pl0q S® Ju0y 34} SUYID 0} ANjEA 334Q BR[BA
1u04 :3weN

i ydesSered puosss,, Suws anjeA
X3, sowEN

PUBLILLOY
10j02 1x3},

puLLLOY
10j02 %3],

puewnuod 0.1

purwitiod Juo,{

T
Cmermns
Crmsi
Commmes
Cormmrss 2

JAdesfered jsag,, canjep

X3, taureN

pusuuug
ydeidereg

purwiuoe

ydeidered

{ 2131

jusuodwod
X3

US 2011/0072074 A2
U
©
5
i

AU 13D, Sus anfeA
1X3], ouieN

pusLug

ydeideieg

U TNV

pusion

ydeSeeg

puguaog

gdeifereg ydesgeseq

PUBILLILYD

[120919¢e],

PUBLILIGY
{POIqeL

pusLiwuY

11303[qe L

CC«EECC -
[1902198L 0 ‘SnIsA

Xopu] :oweN

0 nfEA
XOPUJ DUTEN frommemstnere

| angeA
Xopup DweN e

PUBLILIOD MOYO[qEL PUBLIIIOD MOYI[qe]

PUBHRIIOD J[qE

Juguouauiug

Slqel

Patent Application Publication Mar. 24,2011 Sheet 4 of 7

US 2011/0072074 A2

Patent Application Publication Mar. 24,2011 Sheet 5 of 7

wsuodwos
aFewy

~e.
-~

-
b

9 aingig

T
- -
-

JBWNI0PANS Y

301001 913 07 Joyurod g tonjep

19y reureN

puraug
uUIRJY

t
t
t
(
(
1
'
t
t
1
i
t
t
1
1
1

JusBUINOOPQNS A1
Jo 001 oy 03 sajurod © 1on[EA
Joy tameN

puBIIOY
0UASY

puLanuuy

ydeideieg

pugiuuy

ydeiGereg

Patent Application Publication Mar. 24,2011 Sheet 6 of 7 US 2011/0072074 A2

30
Document
Document DOM cache: map with key of Document ID
3< Pagelindex (Integer} =0
PageSize (integer} =0
Catculate the document 1D based on Hyperlink map and bookmark map
the document contents RequireSize (required response size from the client)
Theok the DOM existencs Yes
in cache
34
\
Build document DOM structure
37
‘ \ h 4
35— Add the document DOM structure to Retrieve the document DOM structure
cache from cache
36
Yes

Page mark set already
exists in the root?

No

More elements In
the DOM structure

39
™ Get next element {node) and
calculate output size

v

Add the output size to PageSize

40

41

PageSkze>=
RequireSize

Pageindex = Pagelndex + 1

: A

1. Add Pagelndex as an attribute to the node to mark the page start
2. Add the node as an attribute to the root node with the string

p tation of Pagelndex as the name

Ne 3

44\(Go to DOM page generation and delivery {Figure B) /‘

L

Figure 7

Patent Application Publication Mar. 24,2011 Sheet 7 of 7 US 2011/0072074 A2

46\ Device information from client
- VecParent: Empty parent container
Build the page mark name (typically will be a vector)
based on device information PageStartNode variable
47— ! hStart : Boolean to signal the
Retrieve the corresponding page required page staris
start node as PageStartNode

Get the parent of PageStartNode
and put it into VecParent;
Set PageStartNode = Parent

s0-/

Start iteration

52
No

More
elements in the
DOM structurg

Node has
page mark

BStart = true

" Node
is one of those
in VecParent

[Set bStart = true]

" Z Y) 4
Build output for the node in the response

59

(Finish } Y

Figure 8

US 2011/0072074 A2

METHOD FOR DOCUMENT DELIVERY TO A
MOBILE COMMUNICATION DEVICE

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] The instant application is a continuation of U.S.
patent application Ser. No. 10/930,677, filed Aug. 31, 2004,
the contents of which are incorporated herein by reference.

FIELD OF THE INVENTION

[0002] The following is directed in general to displaying
content on mobile communication devices, and more particu-
larly to a method for viewing a selected portion of a document
on a mobile communication device without having to request
multiple pages of the document contents containing docu-
ment global properties applied to the selected part of the
document.

BACKGROUND OF THE INVENTION

[0003] Mobile communication devices are becoming
increasingly popular for business and personal use due to a
relatively recent increase in number of services and features
that the devices and mobile infrastructures support. Handheld
mobile communication devices, sometimes referred to as
mobile stations, are essentially portable computers having
wireless capability, and come in various forms. These include
Personal Digital Assistants (PDA), cellular phones and smart
phones. While their reduced size is an advantage to portabil-
ity, bandwidth and processing constraints of such devices
present challenges to the downloading and viewing of docu-
ments, such as word processing documents, tables and
images.

[0004] Electronic documents are produced using various
computer programs, such as word processors, spreadsheet
programs, financial software, and presentation software. In
addition to text, such documents contain structural and prop-
erty information such as paragraph indentation, text color and
table size, etc.

[0005] When a user of a mobile communication device
wishes to view only selected portions of a document stored on
a remote server, other portions of the document that contain
the structural information and properties used by the selected
portion must also typically be transmitted to the mobile com-
munication device. The required downloading of these other
portions occurs over a potentially bandwidth-constrained
wireless network. For example, if a user wishes to view only
a single paragraph in a section at the middle of a 400-page
document, the entire section (and sometimes even entire
document) that contains default properties for the paragraph
must be transmitted to the mobile communication device.

[0006] Oncedownloaded to the device, the electronic docu-
ment is viewed using a user interface on the mobile commu-
nication device, which typically differs from the user inter-
face used to create and view a document on a personal
computer. For example, whereas the user interface on a per-
sonal computer may include a large, color display and a
pointing device such as a mouse, the mobile communication
device typically has only a small, possibly non-color, screen,
and may not have a mouse. In addition, the mobile commu-
nication device typically has greater processing power and
memory limitations than a personal computer.

Mar. 24, 2011

SUMMARY OF THE INVENTION

[0007] According to an aspect of this specification, a
method is set forth for viewing a selected portion of a server
stored document on a mobile device, comprising building a
graph structure within said server representing a map of said
document; calculating an output size for each node in said
graph structure based on size required by said mobile device
and in response marking each page start in said graph struc-
ture; searching said graph structure for a parent node repre-
senting a page start for said selected portion of said document;
associating properties and attributes of said selected portion
with said parent node; and transmitting pages of said parent
and all child nodes along with said properties and attributes
for display by said mobile device.

[0008] According to another aspect, a process is set forth
viewing a selected portion of a server stored document on a
mobile device, comprising: building a graph structure within
said server representing a map of said document; marking
pages of the document within said server based on size
required by said mobile device; associating properties and
attributes of said selected portion with ones of said pages
containing said selected portion; and transmitting said ones of
said pages containing said selected portion with said proper-
ties and attributes for display by said mobile device indepen-
dently of other pages of said document; wherein said associ-
ating properties and attributes further comprises searching
said graph structure for a node representing a page start for
said selected portion of said document; traversing said graph
structure and recursively storing each parent of said node
representing the page start in a parent container within said
server, such that said parent container contains all nodes and
leaves belonging to said page start and each parent of said
node; and generating an output for each said page start con-
taining contents and attributes of all said nodes and leaves
belonging to said page start and attributes of each parent of
said node representing the page start, for transmission to said
mobile device

[0009] By using this approach for page delivery from the
server, the client on the mobile device is able to retrieve any
portion (page) of a document and display it independently,
since all of its properties and attributes are already associated.
This eliminates the order dependence for displaying a docu-
ment such as required by a desktop application. More impor-
tantly, overall network bandwidth usage is limited.

[0010] Additional aspects and advantages will be apparent
to a person of ordinary skill in the art, residing in the details of
construction and operation as more fully hereinafter
described and claimed, reference being had to the accompa-
nying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] A detailed description of the preferred embodiment
is set forth in detail below, with reference to the following
drawings, in which:

[0012] FIG.1is ablock diagram of a network environment
in which the preferred embodiment may be practiced;

[0013] FIG. 2 is a tree diagram showing the basic structure
of' a Document Object Model (DOM) used in the preferred
embodiment of the invention;

[0014] FIG. 3 shows the top-level of the DOM structure in
FIG. 2:

US 2011/0072074 A2

[0015] FIG. 4 shows an exemplary DOM structure for a
word processing document;

[0016] FIG. 5 shows an exemplary DOM structure for a
table document;

[0017] FIG. 6 shows an exemplary DOM structure for a
word processing document containing an image subdocu-
ment;

[0018] FIG. 7 is a flowchart showing document DOM
structure construction and pagination according to the pre-
ferred embodiment; and

[0019] FIG. 8 is a flowchart showing document DOM page
generation and delivery according to the preferred embodi-
ment.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENT

[0020] Withreference to FIG. 1, network environment 10 is
shown in which the preferred embodiment of the invention
may be practiced. Network environment 10 includes mobile
devices 12 communicating via a wireless network 14 to a
server 28 for downloading document attachments to the
mobile devices 12. While only one server 28 is shown for
illustration purposes, a person of skill in the art will under-
stand that network environment 10 could have many such
servers for hosting web sites or graphic download sites, pro-
viding access to picture files such as JPEG, TIFF, BMP, PNG,
SGI, MP4, MOV, GIF, SVG, etc. As would be understood by
one of ordinary skill in the art, wireless networks 14 include
GSM/GPRS, CDPD, TDMA, iDEN Mobitex, DataTAC net-
works, or future networks such as EDGE or UMTS, and
broadband networks like Bluetooth and variants of 802.11.

[0021] A connection to a fixed service requires special con-
siderations, and may require special permission as authorized
through a Network Access Point (NAP) 16. For generic ser-
vices, such as web access, a proxy-gateway or Network
Address Translator (NAT) 18 may be provided so that a net-
work operator can control and bill for the access. NATs 18
enable management of a limited supply of public Internet
addresses for large populations of wireless mobile devices.
Solutions offered by a proxy-gateway or NAT 18 can require
a complex infrastructure and thus may be managed by a
value-added service providers (VASPs), which provide, for
instance, WAP gateways, WAP proxy gateway solutions,
multi-media messaging servers (MMS) and Internet Multi-
Media Services (IMS).

[0022] Private Intranet services 26 also connected to Inter-
net 20 may require their own Private Intranet Proxy Gateway
24 for accessing content on server 28. Such private services
include WML access to corporate mail systems, HTML
access to CRM databases, or any other services that deliver
information as formatted data with links and URLs embed-
ded. As shown, it is possible that a private service 26 may be
connected directly to wireless network 14, as opposed to
connected via Internet 20.

[0023] Referred to throughout this document for the pur-
pose of describing the preferred embodiment is the structure
of'a Document Object Model (DOM) for a document attach-
ment to be viewed on a mobile device 12.

[0024] The attachment server 28 uses a designated file-
parsing distiller for a specific document type to build an

Mar. 24, 2011

in-memory Document Object Model (DOM) structure repre-
senting an attachment of that document type. The document
DOM structure is stored in a memory cache of server 28, and
can be iterated bi-directionally.

[0025] As shown in FIG. 2, the graph-based document
DOM structure consists of nodes and leaves. The nodes serve
as the parents of leaves and nodes, while leaves are end points
of'a branch in the graph. Each node and leaf can have a set of
attributes to specify its own characteristics. For example, a
paragraph node can contain attributes to specify its align-
ment, style, entry of document TOC, etc. In addition, each of
the nodes and the leaves has a unique identifier, called a DOM
1D, to identify itself in the document DOM structure.

[0026] The document DOM structure is divided into three
parts: top-level, component and references. The top level
refers to the document root structure, while the main docu-
ment is constructed in the component and the references
represent document references to either internal or external
sub-document parts. The following paragraphs examine each
part in detail.

[0027] The root node of a document DOM structure,
referred to as “Document”, contains several children nodes,
referred to as “Contents”, which represent different aspects of
the document contents. Each “Contents” node contains one or
multiple “Container” nodes used to store various document
global attributes. The children of the “Container” nodes are
components, which store the document structural and navi-
gational information. When the attachment server 28 builds
the DOM structure for an attachment file for the first time, the
top-level structure is a single parent-child chain as shown in
FIG. 3:

[0028] Three types of components are defined by the
attachment server 28: text components, table components and
image components, which represent text, tables and images in
a document, respectively. The text and table components are
described in detail below, and the image component structure
is identical.

[0029] A component consists of a hierarchy of command
nodes. Each command represents a physical entity, a prop-
erty, or a reference defined in a document. For the text com-
ponent, the physical entity commands are page, section, para-
graph, text segments, comments, footnote and endnote
commands, which by name define the corresponding entity
contained in a document. The property commands for the text
component are font, text color, text background color, hyper-
link start/end and bookmark commands. The text component
has only one reference command, referred to as the text ref-
erence command, which is used to reference a subdocument
defined in the main body of a document. Usually, the children
of'a text component are page or section command nodes that,
in turn, comprise a set of paragraph command nodes. The
paragraph command can contain one or multiple nodes for the
remaining command types.

[0030] Using the following sample text document, the cor-
responding document DOM structure is shown in FIG. 4:

First paragraph.
Second paragraph with bold and red text.

US 2011/0072074 A2

[0031] As FIG. 4 demonstrates, the section command,
which is the child of the text component, consists of two
paragraph commands. The first paragraph command contains
one text segment command and the text content for that para-
graph is added as an attribute to the text segment command.
The second paragraph command has a relatively more com-
plex structure, as the text properties in the paragraph are much
richer. Each time a text property (font, text color, etc)
changes, a corresponding text property command is created
and the change value is added to that command as an attribute.
The following text segment command records the text with
the same text property as an attribute. As document structure
gets richer and more complex, more commands of corre-
sponding types are created and the document properties are
added as attributes to those commands.

[0032] The table component has the same three types of
commands as the text component, but different command
names. The document DOM structure for the sample table
document below is shown in FIG. 5:

Cell One
Cell Three

Cell Two
Cell Four

[0033] As shown in the FIG. 5, the table component has
physical entity type commands of table, tablerow and table-
cell, where the tablecell command can contain all available
commands for the text component. In the example above, the
first child TableRow command of the table command has an
attribute “Index” defined by value of 0. This indicates that the
indicated table row is the first one defined in the table. The
attribute of the leftmost table cell command in FIG. 5 has the
same meaning.

[0034] A document sometimes contains subdocuments, for
example images, tables, text boxes etc. The DOM structure
set forth herein uses a reference command to point to the
graph of such subdocuments. Thus, for the following sample
document, the attachment server 28 generates the DOM
structure shown in FIG. 6:

This document has subdocument of images like this one -

Second paragraph contains the same image m

[0035] The structure shown in FIG. 6 is identical to that
discussed above in connection with FIGS. 4 and 5, except for
the attributes of the two reference commands. The attachment
server 28 constructs the image in “Sample Three” as a sepa-
rate image component, which contains all ofthe image data in
its own DOM hierarchy. In the DOM structure for the main
document, the values of the “Ref” attributes of those two
reference commands point to the image component, as indi-

Mar. 24, 2011

cated by the dashed lines, such that the DOM structure con-
nects together all parts of the document.

[0036] Having described the document DOM structure
used to implement an embodiment of the invention, a detailed
discussion will now be provided of a pagination function or
method according to the preferred embodiment.

[0037] The pagination function is a client and server side
operation. FIG. 7 shows the processing steps, from which it
will be noted that the server 28 uses a map in memory for
document DOM cache storage and the key to the map is the
document ID. Initially, when the user of a mobile communi-
cation device 12 sends a request to the server 28 to view a
document, the device 12 sends two attributes and the number
of bytes it requires (RequireSize) as a response from the
server (e.g. 3 K bytes). The two attributes are whether the
device is a color or monochrome device, and the screen size
(width.times.height.times.color depth) of the device in pixels.
Other information about the device 12 can also be transmitted
to the server 28 (e.g. memory size). After the server 28
receives a document-viewing request, it starts the pagination
process (step 30), and initializes the variables Pagelndex and
PageSize.

[0038] The following terms and variables are used in the
process of FIG. 7:

[0039] The Pagelndex variable is defined in the server 28
and used by the server to record the current page index being
paginated by the server. The page index is initially set to O
indicating “Page 1.

[0040] PageSize is a variable defined in the server 28 and
used by the server to record the current size for the page being
paginated and is reset to 0 when paginating a new page.

[0041] Hyperlink map is a variable defined in the server 28,
which is a container consisting of the element type of hyper-
link node in the document DOM structure. The key (ID) for
each element in the container is the hyperlink target string.

[0042] Bookmark map is a variable defined in the server 28
which is a container consisting of the element type of current
page index (Pagelndex value) for the bookmark in the docu-
ment DOM structure. The key (ID) for each element in the
container is the bookmark string.

[0043] The server process constructs a document ID (step
32) based on the document contents and uses the ID to check
the document DOM cache (step 33) to determine whether the
document DOM structure for that document has been con-
structed. If the document DOM structure does not exist in the
cache, the server builds the DOM structure (step 34) for the
document and adds it to the cache (step 35).

[0044] To construct the document ID, the original docu-
ment file is opened and read in binary mode. The server 28
creates a MD5 Context structure, hashes the MDS5 context
structure with raw binary data, byte-by-byte, from the file,
finalizes the MDS5 context structure and retrieves the 16 byte
key for the file. The MDS5 context structure has the following
structure in syntax of C++ language

typedef struct

{

unsignedlong

adwState[4]; /* state (ABCD) */

US 2011/0072074 A2

Mar. 24, 2011

-continued
unsigned long adwCount[2]; /* number of bits, modulo 2 " 64 (Isb first) */
unsigned char abyBuffer{ 64]; /* input buffer */
}MD5_CTX;

[0045] Caching the document DOM structure requires con-
siderable memory, and therefore increases the overall hard-
ware deployment cost. On the other hand, building the DOM
structure for a document is even more time and CPU intensive
in contrast to the document key construction operation, espe-
cially for big documents. Since processing time is more criti-
cal than hardware deployment cost for wireless operation,
caching the document DOM is the approach adopted for the
preferred embodiment, rather than building the DOM struc-
ture for the document each time the server receives a viewing
request and then discarding the structure after sending the
response back to the client device 12.

[0046] Once the document DOM structure has been built
and stored in the cache, the server 28 determines whether a
page mark has already been set in the root (step 36). If not, the
server traverses through the DOM structure (steps 38, 39, 40
and 41) and calculates the output size (PageSize) for each
node in the DOM structure based on the number of bytes
(RequireSize) provided by the device 12. The server incre-
ments the Pagelndex (step 42), adds it as an attribute to each
node in order to mark the start of each page, and adds each
node as an attribute to the root node with the string represen-
tation of Pagelndex as the attribute name (step 43). Following
this pagination function, the attachment server 28 is able to
transmit the document page-by-page to the requesting mobile
device 12 based on client generated requests, and process
flow continues to FIG. 8 for DOM page generation and deliv-

ery (step 44).

[0047] The page mark attribute name is associated with the
device information and required response size (RequireSize)
provided by the device 12, to enable the server to paginate
through the document DOM structure and generate the
response based on device capability. For example if the device
is a monochrome type, the color information contained inside
the DOM structure will be ignored during the server pagina-
tion and response generation operations and therefore opti-
mize the wireless bandwidth utilization.

[0048] Since the key to the memory map is the document
1D, the algorithm used to calculate the document ID (step 32)
must guarantee the uniqueness of the key. According to the
best mode, as set forth above, the algorithm used inside the
server 28 is the MD5 messaging encryption algorithm
invented by Professor Ronald L. Rivest of MIT Laboratory
for Computer Science and RSA Data Security, Inc. There are
several other hashing options that can be used. However MDS5
is the most efficient and reliable one based on the broad range
of different document content required to be processed by the
server 28.

[0049] In the process of FIG. 8, PageStartNode is DOM
structure node type which, in the preferred embodiment is a
COM (Common object module) object base interface. Vec-
Parent is typically a one-dimensional container, for example
vector, containing elements of DOM structure node type. It is
used to store the parents (recursively until the node of com-
ponent type) for the page-starting node, as discussed in

greater detail below. bStart is a Boolean variable defined in
the server 28 and used to signal that the required page has
already been traversed.

[0050] In operation, the server 28 uses Pagelndex to build
the page mark attribute (step 46) and search for the node
representing the page start (step 47) for the page of interest
identified by the client device 12. It is used by the server 28 to
cache the node which marks the start for the page required by
the client device 12. Once the node is found, the server 28
recursively retrieves the parent of the node (step 48) until it
reaches the component level (step 49) and puts all the parents
into storage (VecParent), namely the parent container (step
50). The server 28 then traverses the DOM structure again
(steps 51 et seq) to persist the in-memory structure to a form
that can be transmitted across the network to the mobile
device 12. If a node is one of those stored in the parent
container (step 54), it generates the output for the node (step
57). The output includes the contents and attributes for all of
the nodes/leaves belonging to that page as well as the
attributes of the parents for the page start node.

[0051] Upon locating the corresponding page start node
(step 55), the server 28 sets a Boolean (bStart) to true, indi-
cating that the page has been traversed (step 56), and gener-
ates the output (step 57) for each following node to be iterated
until the next page mark is found (step 58). Once the server 28
determines that it has completed traversing the DOM struc-
ture (step 52), or has found the next page start mark (step 58),
the process finishes (step 59).

[0052] From FIG. 8, it will be noted that all of the parents
for the page-start node are output into the response, which
means the default attributes and properties defined for the
node but contained in its parents, will persist. However, the
siblings of the node are ignored if they do not belong to the
response page. For example, if the client (mobile device 12)
requires the second part for a spreadsheet, the server 28 not
only generates the response containing the corresponding text
contents but also includes the global information for the table
such as number of rows and columns and current table row
and cell index, etc., into the response. Once the client receives
the response, it can display the text at the correct position
without having to request the first part of the spreadsheet from
the server.

[0053] A person skilled in the art, having read this descrip-
tion of the preferred embodiment, may conceive of variations
and alternative embodiments. For example, generating mul-
tiple sets of page marks for successive pages requires consid-
erable time and CPU usage since the server 28 has to re-
traverse the DOM structure. Accordingly, one alternative is
for the server 28 to create only one set of page marks in a
document DOM structure and generate the response based on
the device information. However, this approach is likely to
create more page marks than necessary and will introduce
extra transactions between the wireless device 12 and the
server 28 if the user wants to view a large portion of a docu-
ment. Based on the understanding that minimizing the wire-

US 2011/0072074 A2

less bandwidth usage is more critical than the processing time
on the server, creating multiple sets of the page marks and
caching them is the approach adopted in the preferred
embodiment.

[0054] All such variations and alternative embodiments are
believed to be within the ambit of the claims appended hereto.

1. A process for viewing a selected portion of a server
stored document on a mobile device, comprising:

building a graph structure within said server representing a
map of said document;

calculating an output size for each node in said graph
structure based on size required by said mobile device
and in response marking each page start in said graph
structure;

searching said graph structure for a parent node represent-
ing a page start for said selected portion of said docu-
ment;

associating properties and attributes of said selected por-
tion with said parent node; and

transmitting pages of said parent and all child nodes along
with said properties and attributes for display by said
mobile device.
2. The process of claim 1, wherein said marking each page
start further comprises:

transmitting a page size limit from said mobile device to
said server indicative of the size of a single page of said
document to be displayed by said mobile device;

traversing and paginating said graph structure into succes-
sive pages within said server based on said page size
limit; and

caching said pages within said server.
3. The process of claim 2, wherein traversing and paginat-
ing said graph structure further comprises:

initializing a page size value;

retrieving and calculating output size of successive nodes
of the graph structure;

adding the output size of said successive nodes to said page
size value; and

in the event said page size value exceeds said page size
limit for a given node then marking said graph structure
to identify said given node as starting a new page for
transmission to said mobile device.
4. The process of claim 3, wherein marking said graph
structure further comprises:

maintaining a page index value that is incremented with
each new page;

adding said page index value as an attribute to each said
given node for marking each said new page; and

adding each said given node as an attribute to a root node of
said graph structure with a string representation of said
page index value as attribute name.

5. The process of claim 2, further comprising calculating a
document ID based on contents of said document before
building said graph structure, checking a memory cache of
said server using said document ID for said graph having been

Mar. 24, 2011

previously built, and in the event said graph structure exists in
the memory cache then omitting the building of said graph
structure.

6. The process of claim 5, wherein calculating said docu-
ment ID further comprises performing a hashing function on
the contents of said document and in response generating said
document ID as a unique key to said map.

7. The process of claim 6, wherein said hashing function
comprises the MDS5 messaging encryption algorithm.

8. The process of claim 1, wherein said graph structure is a
Document Object Model (DOM).

9. The process of claim 1, wherein said associating prop-
erties and attributes further comprises:

traversing said graph structure and recursively storing each
parent of said node representing the page start in a parent
container within said server, such that said parent con-
tainer contains all nodes and leaves belonging to said
page start and each parent of said node; and

generating an output for each said page start containing
contents and attributes of all said nodes and leaves
belonging to said page start and attributes of each parent
of said node representing the page start, for transmission
to said mobile device.

10. The process of claim 9, wherein said traversing said
graph structure and recursively storing each parent of said
node representing the page start in said parent container per-
sists until a node of component type is reached.

11. The process of claim 10, wherein said generating an
output for each said page start persists until a further page
start is located.

12. A process for viewing a selected portion of a server
stored document on a mobile device, comprising:

building a graph structure within said server representing a
map of said document;

marking pages of the document within said server based on
size required by said mobile device;

associating properties and attributes of said selected por-
tion with ones of said pages containing said selected
portion; and

transmitting said ones of said pages containing said
selected portion with said properties and attributes for
display by said mobile device independently of other
pages of said document;

wherein said associating properties and attributes further
comprises searching said graph structure for a node rep-
resenting a page start for said selected portion of said
document;

traversing said graph structure and recursively storing each
parent of said node representing the page start in a parent
container within said server, such that said parent con-
tainer contains all nodes and leaves belonging to said
page start and each parent of said node; and

generating an output for each said page start containing
contents and attributes of all said nodes and leaves
belonging to said page start and attributes of each parent
of said node representing the page start, for transmission
to said mobile device.
13. The process of claim 12, wherein said marking pages
further comprises:

US 2011/0072074 A2

transmitting a page size limit from said mobile device to
said server indicative of the size of a single page of said
document to be displayed by said mobile device;

traversing and paginating said graph structure into succes-
sive pages within said server based on said page size
limit; and

caching said pages within said server.

14. The process of claim 13, wherein traversing and pagi-
nating said graph structure further comprises:

initializing a page size value;
retrieving and calculating output size of successive nodes

of the graph structure;

adding the output size of said successive nodes to said page
size value; and

in the event said page size value exceeds said page size
limit for a given node then marking said graph structure
to identify said given node as starting a new page for
transmission to said mobile device.

Mar. 24, 2011

15. The process of claim 14, wherein marking said graph
structure further comprises:

maintaining a page index value that is incremented with
each new page;

adding said page index value as an attribute to each said
given node for marking each said new page; and

adding each said given node as an attribute to a root node of
said graph structure with a string representation of said
page index value as attribute name.

16. The process of claim 12, wherein said graph structure is
a Document Object Model (DOM).

17. The process of claim 12, wherein said traversing said
graph structure and recursively storing each parent of said
node representing the page start in said parent container per-
sists until a node of component type is reached.

18. The process of claim 17, wherein said generating an
output for each said page start persists until a further page
start is located.

