

US 20110159512A1

(19) United States(12) Patent Application Publication

(10) Pub. No.: US 2011/0159512 A1 (43) Pub. Date: Jun. 30, 2011

Sanyal et al.

(54) POLYNUCLEOTIDE SEQUENCES OF CANDIDA DUBLINIENSIS AND PROBES FOR DETECTION

- Inventors: Kaustuv Sanyal, Karnataka (IN);
 Sreedevi Padmanabhan, Karnataka (IN); Jitendra Thakur, Karnataka (IN)
- (73) Assignee: Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, Karntaka (IN)
- (21) Appl. No.: 13/061,937
- (22) PCT Filed: Nov. 7, 2008
- (86) PCT No.: PCT/IN08/00760
 - § 371 (c)(1), (2), (4) Date: Mar. 2, 2011

- (30) Foreign Application Priority Data
 - Sep. 25, 2008 (IN) 2341/CHE/2008

Publication Classification

- (51) Int. Cl. *C12Q 1/68* (2006.01) *C07H 21/04* (2006.01)
- (52) U.S. Cl. 435/6.15; 536/24.33

(57) ABSTRACT

The present invention relates to identification of centromeric sequences of *Candida dubliniensis* and localization of CdCse4p centromeric histone to the identified region. Also the present invention relates to distinguishing *Candida dubliniensis* from other members of genus *Candida*.

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

POLYNUCLEOTIDE SEQUENCES OF CANDIDA DUBLINIENSIS AND PROBES FOR DETECTION

FIELD OF THE INVENTION

[0001] The present invention relates to identification of centromeric sequences of *Candida dubliniensis* and localization of CdCse4p centromeric histone to the identified region. Also the present invention relates to distinguishing *Candida dubliniensis* from other members of genus *Candida*.

BACKGROUND AND PRIOR ART OF THE INVENTION

[0002] Candida is a genus of yeasts. Many species of this genus are endosymbionts of animal hosts including humans. While usually living as commensals, some Candida species have the potential to cause disease. Clinically, the most significant member of the genus is Candida albicans, which can cause infections (called candidiasis or thrush) in humans and other animals, especially in immunocompromised patients. Many Candida species are members of gut flora in animals, including *C. albicans* in mammalian hosts, whereas others live as endosymbionts in insect hosts.

[0003] Among the other important members of this genus *Candida dubliniensis* is a significant pathogenic fungi. *Candida dubliniensis* is an organism often associated with AIDS patients but can be associated with immunocompetent patients as well. It is a germ cell-positive yeast of the genus *Candida*, similar to *Candida albicans* but it forms a different cluster upon DNA fingerprinting. It appears to be particularly adapted for the mouth but can be found at very low rates in other anatomical sites. *Candida dubliniensis* is found all around the world. The species was only described in 1995. It is thought to have been previously identified as *Candida albicans*. Retrospective studies support this, and have given an indication of the prevalence of *C. dubliniensis* as a pathogen.

[0004] This isolate is germ tube positive which accounts for its historic miss-identification as *C. albicans*. The most useful test for distinguishing *C. dubliniensis* from *C. albicans* is to culture at 42° C. Most *C. albicans* grows well at this temperature, but most *C. dubliniensis* do not. There are also significant differences in the chlamydiospores between *C. albicans* and *C. dubliniensis* although they are otherwise phenotypically very similar.

[0005] A study done in Europe of 2,589 isolates that were originally reported as *C. albicans* revealed that 52 of them (2.0%) were actually *C. dubliniensis*. Most of these isolates were from oral or faecal specimens from HIV positive patients, though one vaginal and two oral isolates were from healthy volunteers. Another study done in the United States, used 1,251 yeasts previously identified as *C. albicans*, it found 15 (1.2%) were really *C. dubliniensis*. Most of these samples were from immunocompromised individuals: AIDS, chemotherapy, or organ transplant patients. The yeast was most often recovered from respiratory, urine and stool specimens. The Memorial Sloan-Kettering Cancer Center also did several studies, both retrospective, and current. In all 974 germ-tube positive yeasts, 22 isolates (2.3%) from 16 patients were *C. dubliniensis*.

[0006] Molecular analysis show that *C. dubliniensis* is distinct from *C. albicans* by 13-15 nucleotides in the ribosomal RNA gene sequences. Early reports purported that *C. dublin*-

iensis was responsible for, fluconazole-resistant thrush but susceptibility studies reveal that its categorical distribution is similar to *C. albicans* with isolates ranging from susceptible to resistant.

[0007] Previous literature describes that Centromeric DNA sequences in the pathogenic yeast *Candida albicans* are all different and unique (Sanyal et al, 2004). The Cse4p-containing centromere regions of *Candida albicans* have unique and different DNA sequences on each of the eight chromosomes. However similar studies have not been carried out in *C. dubliniensis.*

[0008] Amongst the most prevalent methods of distinguishing *C. dubliniensis* from *C. albicans* are the compositions and methods for the detection and identification of species of *Candida*, in particular, to nucleic acid probes that specifically hybridize to the internal transcribed spacer 2 (ITS2) of the ribosomal DNA (rDNA) repeat region of *Candida* species (such as *C. albicans* and *C. dubliniensis*).

Another method of identification includes use of multiplex PCR which uses essentially three factors: (i) the elevated number of copies from the rRNA genes (about 100 copies per genome), (ii) the differences regarding the sizes of the ITS regions and (iii) the elevated variability of these region sequences among the different species of *Candida*. Thus, this technique is based on the amplification of DNA fragments specific of the internal transcribed spacer regions 1 (ITS-I) and 2 (ITS-2) by multiplex PCR. The methodology uses the combination of two universal primers and seven specific primers for each one of the *Candida* species studied, in a single PCR reaction, originating two fragments of different sizes for each species (European publication no: EP1888745).

Most techniques used so far distinguish *C. dubliniensis* from other species by identification of rDNA or RNA sequences of the genome.

The genome of *C. dubliniensis* has not been sequenced completely and the work to find out more information about its genome is in progress.

However the present invention has been able to assign centromeric functions to the sequence identified and these centromeric sequences are further used to distinguish *Candida dubliniensis* from other members of the genus based on the localization of histone proteins CdCse4p.

[0009] Faithful chromosome segregation during mitosis and meiosis in eukaryotes is performed by a dynamic interaction between spindle microtubules and kinetochores. The kinetochore is a proteinaceous structure that forms on a specific DNA locus on each chromosome, termed as the centromere (CEN). Centromeres have been cloned and characterized in several organisms from yeasts to humans. Interestingly, there is no centromere-specific cis-acting DNA sequence that is conserved across species (1). However, centromeres in all eukaryotes studied to date assemble into specialized chromatin containing a histone H3 variant protein in the CENP-A/Cse4p family. Members of this family are called centromeric histones (CenH3s) and are regarded as possible epigenetic markers of CEN identity (1, 2). The Saccharomyces cerevisiae centromere, the most intensively studied budding yeast centromere, is a well defined, short 125 bp) region (hence called a "point" centromere), and consists of two conserved consensus sequences (Centromere DNA Elements; CDEs), CDEI (8 bp) and CDEIII (25 bp) separated by CDEII, a 78-86 by non-conserved AT-rich (>90%) "spacer"sequence (3). CDEI is not absolutely necessary for mitotic centromere function (4). Retention of a portion of CDEII is essential for CEN activity, but changes in length or base composition of CDEII cause only partial inactivation (4, 5). The S. cerevisiae CenH3, ScCse4p, has been shown to bind to a single nucleosome containing the non-conserved CDEII and to flanking CDEI and CDEIII regions (6). CDEIII is absolutely essential: centromere function is completely inactivated by deletion of CDEIII, or even by single base substitutions in the central CCG sequence. Centromeres of most other eukaryotes, including the fission yeast Schizosaccharomyces pombe, are much longer and more complex than those of S. cerevisiae and are called "regional" centromeres (3). The centromeres of S. pombe are 40-110 kb in length, and organized into distinct classes of repeats which are further arranged into a large inverted repeat. The non-repetitive central region, also known as the central core (cc), contains a 4-7 kb non-homologous region that is not conserved in all three chromosomes (3). The CenH3 homolog in S. pombe, Cnp1p, binds to the central core and the inner repeats (7). However, the central domain alone cannot assemble centromere chromatin de novo, but requires the cis-acting dg/K repeat present at the outer repeat array to promote de novo centromere assembly (8, 9). Several experiments suggest that unlike in S. cerevisiae, no unique conserved sequence within S. pombe centromeres is sufficient for establishment and maintenance of centromere function, although flanking repeats play a crucial role in establishing heterochromatin that is important for centromere activity (10). Studies in a pathogenic budding yeast, Candida albicans, containing regional centromeres suggest that each of its eight chromosomes contains a different, 3-5 kb, non-conserved DNA sequence that assembles into Cse4p-rich centromeric chromatin (11, 12). C. albicans centromeres partly resemble those of S. pombe but lack any pericentric repeat that is common to all of its eight centromeres (12). Therefore, the mechanisms by which CenH3s confer centromere identity, are deposited at the right location, and are epigenetically propagated for several generations in C. albicans without any centromere-specific DNA sequence remain largely unknown.

OBJECTIVES OF THE INVENTION

[0010] The main objective of the present invention is to obtain a polynucleotide sequence. Another main objective of the present invention is to obtain sets of primers for amplification of the polynucleotide sequences of *Candida dubliniensis*.

[0011] Yet another main objective of the present invention is to obtain a process for identification of centromeric sequences of *Candida dubliniensis*

Still another main objective of the present invention is to obtain a method of distinguishing *Candida dubliniensis* from *Candida albicans*.

Still another main objective of the present invention is to obtain a kit for identification of *Candida dubliniensis*.

STATEMENT OF THE INVENTION

[0012] Accordingly, the present invention relates to a polynucleotide sequence having SEQ ID NO 1, 2, 3, 4, 5, 6, 7 or 8; a set of 20 primers having SEQ ID NOS. 9, 11, 13, 15, 17, 19, 21, 23, 25 and 27 as forward primers and SEQ ID NOS. 10, 12, 14, 16, 18, 20, 22, 24, 26 and 28 as corresponding reverse primers respectively; a set of 14 primers having SEQ ID NOS. 29, 31, 33, 35, 37, 39 and 41 as forward primers and

SEQ ID NOS. 30, 32, 34, 36, 38, 40 and 42 as corresponding reverse primers respectively; a set of 10 primers having SEQ ID NOS. 43, 45, 47, 49 and 51 as forward primers and SEQ ID NOS. 44, 46, 48, 50 and 52 as corresponding reverse primers respectively; a set of 16 primers having SEQ ID NOS. 53, 55, 57, 59, 61, 63, 65 and 67 as forward primers and SEQ ID NOS. 54, 56, 58, 60, 62, 64, 66 and 68 as corresponding reverse primers respectively; a set of 10 primers having SEQ ID NOS. 69, 71, 73, 75 and 77 as forward primers and SEQ ID NOS. 70, 72, 74, 76 and 78 as corresponding reverse primers respectively; a set of 16 primers having SEQ ID NOS. 79, 81, 83, 85, 87, 89, 91 and 93 as forward primers and SEQ ID NOS. 80, 82, 84, 86, 88, 90, 92 and 94 as corresponding reverse primers respectively; a set of 18 primers having SEQ ID NOS. 95, 97, 99, 101, 103, 105, 107, 109 and 111 as forward primers and SEQ ID NOS. 96, 98, 100, 102, 104, 106, 108, 110 and 112 as corresponding reverse primers respectively; a set of 14 primers having SEQ ID NOS. 114, 116, 118, 120, 122, 123 and 126 as forward primers and SEQ ID NOS. 113, 115, 117, 119, 121, 124 and 125 as corresponding reverse primers respectively; a process of identification of centromeric sequences of Candida dubliniensis, said method comprising steps of a) identifying putative Cse4p binding region and b) amplifying the putative Cse4p binding region to identify centromeric sequences of the Candida dubliniensis; a method of distinguishing Candida dubliniensis from Candida albicans in a sample, said method comprising steps of a) isolating DNA from the organism in the sample and b) amplifying the Cse4p binding regions with primers capable of amplifying said regions in the Candida dubliniensis to distinguish it from Candida albicans and a kit for identification of Candida dubliniensis comprising set of primers having SEQ ID NOS. 9 to 126.

BRIEF DESCRIPTION OF ACCOMPANYING SEQUENCE LISTINGS

[0013] SEQ ID NOS. 1, 2, 3, 4, 5, 6, 7 and 8: Centromeric polynucleotide sequences for Chromosome 1, 2, 3, 4, 5, 6, 7 and 8 of *Candida dubliniensis*.

[0014] SEQ ID NOS. 9, 11, 13, 15, 17, 19, 21, 23, 25 and 27: Forward Primers for Chromosome 1 of *Candida dubliniensis*.

[0015] SEQ ID NOS. 10, 12, 14, 16, 18, 20, 22, 24, 26 and 28: Reverse Primers for Chromosome 1 of *Candida dubliniensis*.

[0016] SEQ ID NOS. 29, 31, 33, 35, 37, 39 and 41: Forward Primers for Chromosome 2 of *Candida dubliniensis*.

[0017] SEQ ID NOS. 30, 32, 34, 36, 38, 40 and 42: Reverse Primers for Chromosome 2 of *Candida dubliniensis*.

[0018] SEQ ID NOS. 43, 45, 47, 49 and 51: Forward Primers for Chromosome 3 of *Candida dubliniensis*.

[0019] SEQ ID NOS. 44, 46, 48, 50 and 52: Reverse Primers for Chromosome 3 of *Candida dubliniensis*.

[0020] SEQ ID NOS. 53, 55, 57, 59, 61, 63, 65 and 67: Forward Primers for Chromosome 4 of *Candida dubliniensis*.

[0021] SEQ ID NOS. 54, 56, 58, 60, 62, 64, 66 and 68: Reverse Primers for Chromosome 4 of *Candida dubliniensis*.

[0022] SEQ ID NOS. 69, 71, 73, 75 and 77: Forward Primers for Chromosome 5 of *Candida dubliniensis*.

[0023] SEQ ID NOS. 70, 72, 74, 76 and 78: Reverse Primers for Chromosome 5 of *Candida dubliniensis*.

[0024] SEQ ID NOS. 79, 81, 83, 85, 87, 89, 91 and 93: Forward Primers for Chromosome 6 of *Candida dubliniensis*. **[0025]** SEQ ID NOS. 80, 82, 84, 86, 88, 90, 92 and 94: Reverse Primers for Chromosome 6 of *Candida dubliniensis*. **[0026]** SEQ ID NOS. 95, 97, 99, 101, 103, 105, 107, 109 and 111: Forward Primers for Chromosome 7 of *Candida dubliniensis*.

[0027] SEQ ID NOS. 96, 98, 100, 102, 104, 106, 108, 110 and 112: Reverse Primers for Chromosome 7 of *Candida dubliniensis*.

[0028] SEQ ID NOS. 114, 116, 118, 120, 122, 123 and 126: Forward Primers for Chromosome 8 of *Candida dubliniensis*. **[0029]** SEQ ID NOS. 113, 115, 117, 119, 121, 124 and 125: Reverse Primers for Chromosome 8 of *Candida dubliniensis*.

BRIEF DESCRIPTION OF ACCOMPANYING FIGURES

[0030] FIG. 1: Orthologous Cse4p-rich centromere regions in *C. albicans* and *C. dubliniensis.*

[0031] FIG. **2**: Localization of CdCse4p at the kinetochore of *C. dubliniensis.*

[0032] FIG. **3**: Binding of two evolutionarily conserved key kinetochore proteins, CdCse4p (CENP-A homolog) and CdMif2p (CENP-C homolog) to the same regions of different *C. dubliniensis* chromosomes.

[0033] FIG. **4**: Comparative analysis of CEN6 region of *C. albicans* and its orthologous region in *C. dubliniensis* showing genome rearrangement.

[0034] FIG. **5**: The centromeric histone in *C. dubliniensis*, CdCse4p, belongs to the Cse4p/CENP-A family.

[0035] FIG. **6**: Relative enrichment profiles of CdCse4p in various *C. dubliniensis* chromosomes.

[0036] FIG. 7: The CENP-C homolog in *C. dubliniensis* (CdMif2p) is co-localized with CdCse4p.

[0037] FIG. 8: Relative chromosomal positions of Cse4pbinding regions in *C. albicans* and *C. dubliniensis*.

[0038] FIG. **9**: Conserved blocks in the pericentric regions of various chromosomes of *C. dubliniensis* and *C. albicans.*

BRIEF DESCRIPTION OF ACCOMPANYING TABLES

[0039] Table 1: Comparison of the amino acid sequence homology of the ORFs flanking the CEN regions in *C. albicans* and *C. dubliniensis*

[0040] Table 2: List of PCR Primers used for ChIP assays. [0041] Table 2B: List of PCR primers used for Cse4 complementation experiments

[0042] Table 3: Sequence coordinates of the Cse4p- binding and the pericentric regions in all the chromosomes of *C*. *albicans* and *C. dubliniensis*

[0043] Table 4: List of strains

[0044] Table 5: Comparison of mutation rates in Cse4pbinding and other genomic noncoding regions in *C. albicans* and *C. dubliniensis*.

[0045] Table 6: Homology between the repeats in the pericentric region of *C. albicans* and *C. dubliniensis*

DETAILED DESCRIPTION OF THE INVENTION

[0046] The present invention relates to a polynucleotide sequence having SEQ ID NO 1, 2, 3, 4, 5, 6, 7 or 8.

The present invention also relates to a set of 20 primers having SEQ ID NOS. 9, 11, 13, 15, 17, 19, 21, 23, 25 and 27 as forward primers and SEQ ID NOS. 10, 12, 14, 16, 18, 20, 22, 24, 26 and 28 as corresponding reverse primers respectively.

In another embodiment of the present invention, the forward and the reverse primers are used for amplification of centromeric region of chromosome 1 of *Candida dubliniensis*.

The present invention also relates to a set of 14 primers having SEQ ID NOS. 29, 31, 33, 35, 37, 39 and 41 as forward primers and SEQ ID NOS. 30, 32, 34, 36, 38, 40 and 42 as corresponding reverse primers respectively.

In another embodiment of the present invention, the forward and the reverse primers are used for amplification of centromeric region of chromosome 2 of *Candida dubliniensis*.

The present invention also relates to a set of 10 primers having. SEQ ID NOS. 43, 45, 47, 49 and 51 as forward primers and SEQ ID NOS. 44, 46, 48, 50 and 52 as corresponding reverse primers respectively.

In another embodiment of the present invention, the forward and the reverse primers are used for amplification of centromeric regions of chromosome 3 of *Candida dubliniensis*.

The present invention also relates to a set of 16 primers having SEQ ID NOS. 53, 55, 57, 59, 61, 63, 65 and 67 as forward primers and SEQ ID NOS. 54, 56, 58, 60, 62, 64, 66 and 68 as corresponding reverse primers respectively.

In another embodiment of the present invention, the forward and the reverse primers are used for amplification of centromeric regions of chromosome 4 of *Candida dubliniensis*.

The present invention also relates to a set of 10 primers having SEQ ID NOS. 69, 71, 73, 75 and 77 as forward primers and SEQ ID NOS. 70, 72, 74, 76 and 78 as corresponding reverse primers respectively.

In another embodiment of the present invention, the forward and the reverse primers are used for amplification of centromeric regions of chromosome 5 of *Candida dubliniensis*.

The present invention also relates to a set of 16 primers having SEQ ID NOS. 79, 81, 83, 85, 87, 89, 91 and 93 as forward primers and SEQ ID NOS. 80, 82, 84, 86, 88, 90, 92 and 94 as corresponding reverse primers respectively.

In another embodiment of the present invention, the forward and the reverse primers are used for amplification of centromeric regions of chromosome 6 of *Candida dubliniensis*.

The present invention also relates to a set of 18 primers having SEQ ID NOS. 95, 97, 99, 101, 103, 105, 107, 109 and 111 as forward primers and SEQ ID NOS. 96, 98, 100, 102, 104, 106, 108, 110 and 112 as corresponding reverse primers respectively.

In another embodiment of the present invention, the forward and the reverse primers are used for amplification of centromeric regions of chromosome 7 of *Candida dubliniensis*.

The present invention also relates to a set of 14 primers having SEQ ID NOS. 114, 116, 118, 120, 122, 123 and 126 as forward primers and SEQ ID NOS. 113, 115, 117, 119, 121, 124 and 125 as corresponding reverse primers respectively. In another embodiment of the present invention, the forward and the reverse primers are used for amplification of centromeric regions of chromosome 8 of *Candida dubliniensis*.

The present invention also relates to a process of identification of centromeric sequences of *Candida dubliniensis*, said method comprising steps of:

[0047] a) identifying putative Cse4p binding region; and

[0048] b) amplifying the putative Cse4p binding region to identify centromeric sequences of the *Candida dubliniensis*.

In another embodiment of the present invention, the identification of putative Cse4p biding regions is carried out by sequence analysis and chromatin immunoprecipitation. In yet another embodiment of the present invention the amplification of the putative Cse4p binding regions is carried out using any set of forward primer and its corresponding reverse primer selected from a group comprising SEQ ID NOS. 9, 11, 13, 15, 17, 19, 21, 23, 25 and 27 and SEQ ID NOS. 10, 12, 14, 16, 18, 20, 22, 24, 26, 28 respectively, for chromosome 1 of Candida dubliniensis; SEQ ID NOS. 29, 31, 33, 35, 37, 39 and 41 and SEQ ID NOS. 30, 32, 34, 36, 38, 40 and 42 respectively, for chromosome 2 of Candida dubliniensis; SEQ ID NOS. 43, 45, 47, 49 and 51 and SEQ ID NOS. 44, 46, 48, 50 and 52 respectively, for chromosome 3 of Candida dubliniensis; SEQ ID NOS. 53, 55, 57, 59, 61, 63, 65 and 67 and SEQ ID NOS. 54, 56, 58, 60, 62, 64, 66 and 68 respectively, for chromosome 4 of Candida dubliniensis; SEQ ID NOS. 69, 71, 73, 75 and 77 and SEQ ID NOS. 70, 72, 74, 76 and 78 respectively, for chromosome 5 of Candida dubliniensis; SEQ ID NOS. 79, 81, 83, 85, 87, 89, 91 and 93 and SEQ ID NOS. 80, 82, 84, 86, 88, 90, 92 and 94 respectively, for chromosome 6 of Candida dubliniensis; SEQ ID NOS. 95, 97, 99, 101, 103, 105, 107, 109 and 111 and SEQ ID NOS. 96, 98, 100, 102, 104, 106, 108, 110 and 112 respectively, for chromosome 7 of Candida dubliniensis and SEQ ID NOS. 114, 116, 118, 120, 122, 123 and 126 and SEQ ID NOS. 113, 115, 117, 119, 121, 124 and 125 respectively, for chromosome 8 of Candida dubliniensis or any combination of said primers thereof.

The present invention also relates to a method of distinguishing *Candida dubliniensis* from *Candida albicans* in a sample, said method comprising steps of

- **[0049]** a) isolating DNA from the organism in the sample; and
- **[0050]** b) amplifying the Cse4p binding regions with primers capable of amplifying said regions in the *Candida dubliniensis* to distinguish it from *Candida albicans*.

In another embodiment of the present invention, the identification of putative Cse4p biding regions is carried out by sequence analysis and chromatin immunoprecipitation.

In yet another embodiment of the present invention, the amplification of the putative Cse4p binding regions is carried out using any set of forward primer and its corresponding reverse primer selected from a group comprising SEQ ID NOS. 9, 11, 13, 15, 17, 19, 21, 23, 25 and 27 and SEQ ID NOS. 10, 12, 14, 16, 18, 20, 22, 24, 26, 28 respectively, for chromosome 1 of Candida dubliniensis; SEQ ID NOS. 29, 31, 33, 35, 37, 39 and 41 and SEQ ID NOS. 30, 32, 34, 36, 38, 40 and 42 respectively, for chromosome 2 of Candida dubliniensis; SEQ ID NOS. 43, 45, 47, 49 and 51 and SEQ ID NOS. 44, 46, 48, 50 and 52 respectively, for chromosome 3 of Candida dubliniensis; SEQ ID NOS. 53, 55, 57, 59, 61, 63, 65 and 67 and SEQ ID NOS. 54, 56, 58, 60, 62, 64, 66 and 68 respectively, for chromosome 4 of Candida dubliniensis; SEQ ID NOS. 69, 71, 73, 75 and 77 and SEQ ID NOS. 70, 72, 74, 76 and 78 respectively, for chromosome 5 of Candida dubliniensis; SEQ ID NOS. 79, 81, 83, 85, 87, 89, 91 and 93 and SEQ ID NOS. 80, 82, 84, 86, 88, 90, 92 and 94 respectively, for chromosome 6 of Candida dubliniensis; SEQ ID NOS. 95, 97, 99, 101, 103, 105, 107, 109 and 111 and SEQ ID NOS. 96, 98, 100, 102, 104, 106, 108, 110 and 112 respectively, for chromosome 7 of Candida dubliniensis and SEQ ID NOS. 114, 116, 118, 120, 122, 123 and 126 and SEQ ID NOS. 113, 115, 117, 119, 121, 124 and 125 respectively, for chromosome 8 of *Candida dubliniensis* or any combination of said primers thereof.

The present invention also relates to a kit for identification of *Candida dubliniensis* comprising set of primers having SEQ ID NOS. 9 to 126.

In another embodiment of the present invention, the amplification of the putative Cse4p binding regions is carried out using any set of forward primer and its corresponding reverse primer selected from a group comprising SEQ ID NOS. 9, 11, 13, 15, 17, 19, 21, 23, 25 and 27 and SEQ ID NOS. 10, 12, 14, 16, 18, 20, 22, 24, 26, 28 respectively, for chromosome 1 of Candida dubliniensis; SEQ ID NOS. 29, 31, 33, 35, 37, 39 and 41 and SEQ ID NOS. 30, 32, 34, 36, 38, 40 and 42 respectively, for chromosome 2 of Candida dubliniensis; SEQ ID NOS. 43, 45, 47, 49 and 51 and SEQ ID NOS. 44, 46, 48, 50 and 52 respectively, for chromosome 3 of Candida dubliniensis; SEQ ID NOS. 53, 55, 57, 59, 61, 63, 65 and 67 and SEQ ID NOS. 54, 56, 58, 60, 62, 64, 66 and 68 respectively, for chromosome 4 of Candida dubliniensis; SEQ ID NOS. 69, 71, 73, 75 and 77 and SEQ ID NOS. 70, 72, 74, 76 and 78 respectively, for chromosome 5 of Candida dubliniensis; SEQ ID NOS. 79, 81, 83, 85, 87, 89, 91 and 93 and SEQ ID NOS. 80, 82, 84, 86, 88, 90, 92 and 94 respectively, for chromosome 6 of Candida dubliniensis; SEQ ID NOS. 95, 97, 99, 101, 103, 105, 107, 109 and 111 and SEQ ID NOS. 96, 98, 100, 102, 104, 106, 108, 110 and 112 respectively, for chromosome 7 of Candida dubliniensis and SEQ ID NOS. 114, 116, 118, 120, 122, 123 and 126 and SEQ ID NOS. 113, 115, 117, 119, 121, 124 and 125 respectively, for chromosome 8 of Candida dubliniensis or any combination of said primers thereof.

[0051] The Cse4p-containing centromere regions of Candida albicans have unique and different DNA sequences on each of the eight chromosomes. In closely related yeast, Candida dubliniensis, the centromeric histone, CdCse4p, has been identified and it is shown to be localized at the kinetochore. The putative centromeric regions, orthologous to the C. albicans centromeres, in each of the eight C. dubliniensis chromosomes have been identified by bioinformatics analysis. Chromatin immunoprecipitation followed by polymerase chain reaction using a specific set of primers confirmed that these regions bind CdCse4p in vivo. As in C. albicans, the CdCse4p-associated core centromeric regions are 3-5 kb in length, and show no sequence similarity to one another. Comparative sequence analysis suggests that the Cse4p-rich centromere DNA sequences in these two species have diverged faster than other orthologous intergenic regions, and even faster than our best estimated "neutral" mutation rate. However, the location of the centromere and the relative position of Cse4p-rich centromeric chromatin in the orthologous regions with respect to adjacent open reading frames are conserved in both species, suggesting that centromere identity is not solely determined by DNA sequence. Unlike known point and regional centromeres of other organisms, centromeres in C. albicans and C. dubliniensis have no common centromere-specific sequence motifs or repeats except some of the chromosome-specific pericentric repeats that are found to be similar in these two species. The centromeres of these two Candida species are thus of an intermediate type between point and regional centromeres.

Several lines of evidence suggest that primary DNA sequence may not be the only determinant of CEN identity in regional centromeres. A recent study on several independent clinical isolates of C. albicans reveals that, despite having no centromere specific DNA sequence motifs or repeats common to all of its eight centromeres, centromere sequences remain conserved and their relative chromosomal positions are maintained (12). As a first step toward understanding the importance of cis-acting CEN DNA sequences in centromere function in C. albicans, centromeres of a closely related pathogenic yeast, Candida dubliniensis, which was identified as a less pathogenic independent species in 1995 were identified and characterized. It was thought that CEN DNA comparisons between related Candida species might uncover properties that were not evident from inter-chromosomal comparisons of C. albicans CEN sequences alone. Moreover, functional characterization of centromeres of these two

EXAMPLE 1

Synteny of Centromere-Adjacent Genes Is Maintained In C. albicans And C. dubliniensis

[0053] *C. albicans* and *C. dubliniensis* diverged about 20 million years ago from a common ancestor (12). Gene synteny (collinearity) is maintained almost throughout the genome in these two organisms. Therefore, potential orthologous CEN regions in *C. dubliniensis* were examined by identifying open reading frames (ORFs) of *C. dubliniensis* with homology to CEN-proximal ORFs of *C. albicans. C. dubliniensis* homologs of *C. albicans* ORFs that are adjacent to centromere regions were identified by BLAST analysis of the *C. dubliniensis* genome database available at the Wellcome Trust Sanger Institute website.

Result

[0054] The homology of amino acid sequences coded by CEN-adjacent genes in *C. albicans* and *C. dubliniensis* ranges from 81% to 99%, as shown in Table 1 below.

TABLE 1

			C. albicans		C. dubliniensis		_	Amino
Chr No.	<i>C. albicans</i> ORF No.	<i>C. dubliniensis</i> ORF No.	Chromosomal coordinates	Amino acid length	Chromosomal coordinates	Amino acid length	Orientation	acid homology (%)
1	4438	Cd36_06830	1580117-1581640	507	1611890-1613440	516	Direct	88
	4440	Cd36_06810	1559352-1561871	839	1591631-1594162	843	Direct	91
2	1601	Cd36_23540	1923194-1924363	389	1938439-1939608	389	Direct	99
	1604	Cd36_23560	1934775-1931570	916	1947203-1949623	806	Reverse	84
3	2812	Cd36_83930	828667-827105	503	871879-873366	495	Reverse	84
	6923	Cd36_83920	820347-821378	343	865253-866083	276	Direct	90
4	3818	Cd36_44310	1010148-1009312	278	1036396-1037226	276	Reverse	88
	3821	Cd36_44290	1000558-999371	395	1025948-1027126	392	Reverse	81
5	3160	Cd36_51930	467208-466702	168	493689-494072	127	Reverse	95
	4216	Cd36_51940	473741-474247	168	500592-500975	127	Direct	94
6	1096	Cd36_64780	965934-968573	879	934029-936683	884	Direct	84
	2124	Cd36_65100	982460-981390	353	1016599-1017672	357	Reverse	87
7	6522	Cd36 71800	431903-430173	586	439178-440899	573	Reverse	94
	6524	Cd36_71780	423631-422459	390	424821-425993	390	Reverse	99
R	597	Cd36_33630	1759087-1757405	560	1722610-1724292	560	Reverse	97
	600	Cd36_33620	1748818-1745649	1056	1710255-1713449	1064	Reverse	90

related Candida species may be helpful in understanding the evolution of centromeres. Several studies indicate that both CEN DNA and its associated proteins in animals and plants are rapidly evolving, although the relative position of the centromere is maintained for a long time. The identification and characterization of Cse4p-rich centromere sequences of each of the eight chromosomes of C. dubliniensis was carried out. Comparative genomic analysis of CEN DNA sequences of C. albicans and C. dubliniensis reveals no detectable conservation among Cse4p-associated CEN sequences. Nonetheless, the lengths of Cse4p-enriched DNAs assembled as specialized centromeric chromatin and their relative locations in orthologous regions have been maintained for millions of years. A genome wide analysis also revealed that centromeres are probably the most rapidly evolving genomic loci in C. albicans and C. dubliniensis.

Candida dubliniensis has a total of 8 chromosomes. Chromosomes 1 to 7 are identified based on their respective sizes. The chromosome number 8 has an extensive number of R-DNA repeat sequences. Hence this chromosome is also referred to as Chromosome R.

[0052] The invention is further elaborated with the help of following examples. However, these examples should not be construed to limit the scope of the invention.

The synteny of these genes is maintained in all chromosomes except chromosome 6. FIG. 1 shows orthologous Cse4p-rich centromere regions in C. albicans and C. dubliniensis. Based on BLAST analysis, the putative homologs of C. albicans CEN-adjacent ORFs in C. dubliniensis have been identified. Chromosome numbers are shown on the left (R through 7). The top line for each chromosome denotes C. albicans centromere regions and the bottom line corresponds to the orthologous regions in C. dubliniensis. The dotted and crossed boxes correspond to Cse4p-binding regions in C. albicans and C. dubliniensis respectively. Only one homolog is shown for each chromosome of C. albicans and C. dubliniensis. ORFs and the direction of transcription of corresponding ORFs are shown by open arrows. Only those ORFs which have homologs in both C. albicans and C. dubliniensis are shown. The number on the top of each arrow corresponds to the C. albicans assembly 19 ORF numbers (for example, Orf19.600 has been shown as 600). The length of CENcontaining intergenic regions of C. albicans and orthologous regions in C. dubliniensis are shown. This analysis was done based on Assembly 20 of Candida albicans Genome Database and the present version (16 May, 2007) of the Candida dubliniensis Genome database.

C. albicans CEN6 is flanked by Orf19.1097 and Orf19.2124. Since there is no Orf19.1097 homolog in C. dubliniensis, the C. dubliniensis homolog of Orf19.1096, the gene adjacent to Orf19.1097 in C. albicans were identified. The distance between Orf19.1096 and Orf19.2124 is 12.8 kb in C. albicans as opposed to 80 kb in C. dubliniensis. A systematic analysis of this 80 kb region of C. dubliniensis reveals that two paracentric inversions followed by an insertion between Orf19. 1096 homolog and its downstream region occurred in C. dubliniensis at the left arm of the orthologous pericentric region as compared to C. albicans. FIG. 4 shows comparative analysis of CEN6 region of C. albicans and its orthologous region in C. dubliniensis showing genome rearrangement. Chromosomal maps of the chromosome 6 of C. albicans and C. dubliniensis where the red dots represent the CEN regions. Black arrows along with the ORF numbers show the gene arrangement and the direction of transcription. Two paracentric inversions in C. dubliniensis are marked in shaded red and grey boxes. The direction of the shaded boxes (gradation of colors) represents the inversions that have occurred in C. dubliniensis when compared to C. albicans. The green arrows show the breakpoints where the inversions have occurred. The blue region in C. dubliniensis shows the region of insertions of ORFs from other chromosomes. The yellow regions are unaltered. The orange arrow shows the Orf19.1097 in C. albicans and the orange star in the C. dubliniensis map shows that there is a premature termination codon in the Orf19.1097 homolog of C. albicans in C. dubliniensis. Brown bar indicates Cse4p-binding region.

EXAMPLE 2

The Centromeric Histone Protein of *C. dubliniensis* (CdCse4p) Is Localized At the Kinetochore

[0055] CenH3 proteins in the Cse4p/CENP-A family have been shown to be uniquely associated with centromeres in all organisms studied to date (1). Using CaCse4p as the query in a BLAST analysis against the *C. dubliniensis* genome, the centromeric histone of *C. dubliniensis*, CdCse4p were identified.

Identification of CdCse4p And CdMif2p

[0056] The *C. dubliniensis* Cse4p was identified by a BLAST search with *C. albicans* Cse4p (CaCse4p) as the query sequence against the *C. dubliniensis* genome sequence database. This sequence analysis revealed three protein sequences with high homology to CaCse4p; two are the *C. dubliniensis* putative histone H3 proteins (Chr RCd36_32350; Chr1-Cd36_04010) and the other CdCse4p (Chr 3-Cd36_80790). The CdCSE4 gene encodes a putative 212 aa-long protein with 100% identity in the C terminal histone fold domain of CaCse4p. A pair wise comparison of the CaCse4p and CdCse4p sequences revealed that they share 97% identity and 1.4% similarity over a 212 aa overlap as shown in FIG. **5**.

[0057] Using CaMif2p as the query sequence in the BLAST search against the *C. dubliniensis* genome database, a single hit was retrieved, which was identified as the CENP-C homolog (Cd36_63360) in *C. dubliniensis* showing 77% identity and 5% similarity in 516 as overlap with CaMif2p. FIG. 7 shows the CENP-C homolog in *C. dubliniensis* (CdMif2p) is co-localized with CdCse4p. (A) Sequence alignment of CaMif2p and CdMif2p showing the conserved CENP-C block (red box) (B) Localization of

CdMif2p at various stages of cell cycle in C. dubliniensis. (C) ChIP enrichment profiles of CdMif2p on chromosomes 1 and 3 in the strain CDM1 by determining the intensities of (+Ab) minus (-Ab) signals divided by the total DNA signals and are normalized to a value of 1 for the same obtained using primers for a non-centromeric locus (CdLEU2). The CdMIF2 gene codes for a putative 520 aa-long protein with a conserved CENP-C box required for centromere targeting (11) that is identical in C. albicans and C. dubliniensis as shown in FIG. 5. This histone is found to be highly similar (97% identity over 211 aa) to CaCse4p. CdCse4p codes for a 212-aa-long predicted protein with a C-terminal (aa residues 110-212) histone-fold domain (HFD). The HFD of Cse4p in C. albicans and C. dubliniensis is identical as shown in FIG. 5. FIG. 5 shows the centromeric histone in C. dubliniensis, CdCse4p, belongs to the Cse4p/CENP-A family. A) Phylogenetic tree of the Cse4 protein sequences in yeasts in the radiation format using neighbor-joining method of Molecular Evolutionary Genetics Analysis version 3.1 (MEGA) software showing Cse4 proteins in C. albicans and C. dubliniensis are highly related. Ca-Candida albicans, Cd-Candida dubliniensis, Db-Debaryomyces hansenii, Pa-Pichia angusta, Kl-Kluyveromyces lactis, Cn-Cryptococcus neoformans, Sp-Schizosaccharomyces pombe, Af-Aspergillus fumigatus, Nc-Neurospora crassa, YI-Yarrowia lipolytica, Ag-Ashbya gossypii, Sc-Saccharomyces cerevisiae, Cg-Candida glabrata. B) Pairwise comparison of Cse4p in C. albicans and C. dubliniensis showing homologies in N-terminal region and C-terminal histone fold domain.

EXAMPLE 3

The Centromeric Histone Protein of *C. dubliniensis* (CdCse4p) Can Functionally Compliment Histone Protein of *C. albicans* (CaCse4p)

[0058] In order to examine whether CdCse4p can functionally complement CaCse4p, CdCSE4 from its native promoter (pAB1CdCSE4) cloned in an ARS2/HIS1 plasmid (pAB1) in a *C. albicans* strain (CAKS3b) carrying the only full length copy of CaCSE4 under control of the PCK1 promoter was expressed.

Complementation Assay

[0059] To examine whether CdCse4p can complement CaCse4p function, a C. albicans strain was constructed, where the first allele of CaCSE4 was disrupted using URAblaster cassette followed by recycling of URA3 marker, and the second allele was placed under control of the PCK1 promoter. To disrupt the first CaCSE4 allele, a 4.9 kb URAblaster-based CaCSE4 deletion cassette was released from pDC3 (Sanyal & Carbon, 2002) as Sa/I-SacI fragment and transformed BWP17 selecting for uridine prototrophy. The correct integrant (CAKS1b) was selected by Southern analysis. Thereafter, Ura-strain, obtained by intrachromosomal recombination between hisG repeats resulting in the loss of URA3 marker, was selected on medium containing 5-fluoroorotic acid (5-FOA). The correct revertant (CAKS2b) was identified by PCR analysis. To place the wild type CSE4 allele under regulation of the PCK1 promoter in CAKS2b, pPCK1-CSE4 was linearized (Sanyal & Carbon, 2002) by. EcoRV and used it to transform strain CAKS2b, selecting transformants for uridine prototrophy. The desired integrant (CAKS3b) carrying the only full-length copy of CSE4 under control of the PCK1 promoter was identified by PCR analysis. CAKS3b can grow on succinate medium (where the PCK1 promoter is induced) but is unable to grow on glucose medium (where PCK1 promoter is repressed) as shown in FIG. **2**A. To test whether CdCse4p can complement CaCse4p function, both CdCSE4 and CaCSE4 genes were cloned in an ARS2/HIS1 plasmid, pAB1 (Baum et al., 2006). A 2.14-kb

fragment carrying CdCSE4 (CdChr3 coordinates 170543-172683) and a 2.13-kb fragment carrying CaCSE4 (CaChr3 coordinates 172252-174384) genes along with their respective promoters and terminators were amplified using FCdCSE4/RCdCSE4 and FCaCSE4/RCaCSE4 primer pairs, respectively, as listed in Table 2 below.

TABLE 2

Primer	Sequence	Chromosomal location:
	For CdCEN1	
CdCEN1-1(F)	AAGCCCTTTGGATGTTGACTACGC	1593208-1593231
CdCEN1-2(R)	CCATCGACAGGGCCCATGTG	1593417-1593398
CdCEN1-3(F)	TATGATTATACCCCAATCCA	1595086-1595105
CdCEN1-4(R)	AGGATCAGTTACCAATGTTG	1595287-1595268
CdCEN1-3'(F)	CAACAATCAACAATTTCTGCTCCTCATG	1596131-1596158
CdCEN1-4'(R)	AAGTGGGTATCACCTTATTCGCAAATGA	1596368-1596341
CdCEN1-5(F)	CCTTTTTAAACGTGACACGCTCAAA	1597063-1597087
CdCEN1-6(R) CdCEN1-5'(F)	GGAAAAGTTGCGTGAGGAAATGGA CGGGTGCATCTAAGAAGGGTTTTA	1597302-1597279 1598062-1598085
CdCEN1-6'(R)	CAATATAACCTTGCACCCGTCAAATACG	1598347-1598320
CdCEN1-7(F)	GTTGCAGTGCATTGTACGAGGTAAGCTC	1599081-1599108
CdCEN1-8"(R)	TGCAACTGATCCGAGACAACTTCAAAC	1599271-1599245
CdCEN1-7'(F)	GATCGCAAGCGAAGCACGAAATGAC	1600481-1600505
CdCEN1-8'(R)	CAATGTCTGTTCGACCACCATTCCC	1600721-1600697
CdCEN1-9(F)	AGAGCGAGCACCTGGTATTCCCAAG	1601290-1601314
CdCEN1-10(R)	CACCCAAAGCCCAGCTTAAATTCC	1601509-1601486
CdCEN1-9'(F)	TTTCAATTTAGCTGACTCCTTACCCTGG	1602167-1602194
CdCEN1-10'(R)	TTTTCGGTGATTTTGCCAAGAAGTTC CAGCATTCATCCGGGTAAAGTGTTG	1602410-1602385
CdCEN1-11(F) CdCEN1-12(R)	CAACGGATCCAAGGTCACCACATAG	1603320-1603344 1603543-1603519
		1003545-1003519
Con	trol (Non centromeric locus in a	chromosome 7)
CdLeu2-1(F)	AACTATCACAGTCTTGCCTGGTGA	119386-119409
CdLeu2-2(R)	ACAGCACCAGTGCCCCATTT	119618-119637
	For CdCEN2	
CdCEN2-1(F)	CGCGGTCCAAGAAGATAATC	1940515-1940534
CdCEN2-2(R)	CATCATGGGATGTAATTGCT	1940649-1940668
CdCEN2-3(F)	AGTGTAAGTCTTCGGGATAC	1942509-1942528
CdCEN2-4 (R)	GTGAGCGAATAGAATAATTG	1942685-1942704
CdCEN2-5(F)	AGCTACATCTATTTTCAATGCACTC	1944606-1944630
CdCEN2-6(R)	AATTGCTCTGAAACAGCCAG	1944877-1944896
CdCEN2-7(F)	TATACCCCCGAATTAACAAGTGCGC	1943700-1943724
CdCEN2-8(R)	CAGTGCAGGTGCTTTCGTTTACCAG	1943847-1943871
CdCEN2-9(F)		1945542-1945569
CdCEN2-10(R)	AAACTGGCATAGCTTTTTGCATTATTGCC	1945736-1945764
CdCEN2-11(F) CdCEN2-12(R)	ATTTCGAGAGGACTTGGTTCGTGC CCGTACCCAAATAAAACTCCCAGC	1946646-1946669 1946844-1946867
CdCEN2-12(R) CdCEN2-15(F)	TACAAAGCGGGTGATAAGGA	1948844-1948887
CdCEN2-16(R)	GGCGCAAAAGGAAATAGC	1947234-1947217
	For CdCEN3	
CdCEN3-1(F)	ACACTGTCTTGTCTTGTGTCTGAAGTCG	865133-865160
CdCEN3-2(R)	TTCTCTGTGTGTGTGGGCCCTCAGTAC	865293-865317
CdCEN3-3(F)	TCATCCATCATATCACAAATCCTACTG	867274-867300
CdCEN3-4(R)	GTTATTTTGAAAGTTGGGGAGAGGG	867456-867480
CdCEN3-5(F)	CCTACGACATGAACACATCAAACTACTC	869090-869117
CdCEN3-6(R)	TGCTTTTGTTGAAAACTTGCGAAAC	869243-869267
CdCEN3-7(F)	AGGCTAGTCGGTGGTTAACGGTTGTGTG	870638-870665
CdCEN3-8(R)	GACTCGGAATAAACACCATCGCCGATGC	870856-870883
CdCEN3-9(F)	GGTCCAATTAGAATCGGGTCGTTCCATG	872528-872555
CdCEN3-10(R)	CGTCATCCCTTCTATCTCTAACGTG	872683-872707
	For CdCEN4	
CdCEN4-1(F)	ATCATATCATGCAGCCCAACTCCG	1028245-1028268
	CGGACGTAGTGAAACGATTGTTGG	1028410-1028433
CdCEN4-2(R)		2020120 2020100
	ACAATTCCCAGTAAACCATTATAAAAG	1029835-1029861
CdCEN4 - 2 (R) CdCEN4 - 3 (F) CdCEN4 - 4 (R)	ACAATTCCCAGTAAACCATTATAAAAG CATTCATAATCTGATTTGTAGGCTC	1029835-1029861 1029965-1029989

TABLE 2-continued

Primer	Sequence	Chromosomal locations
CdCEN4-4 ' (R)	GTACGACGATCATCAGCAACCAA	1030776-1030798
CdCEN4-5(F)	AATTAATTCGGATAGTTGGGGGGAGACCG	1032446-1032473
CdCEN4-6 (R)	ATTGAGCTGCTCACTTCACTGCCAC	1032619-1032643
CdCEN4-5'(F)	GCAGCGTTCTTGTGACCGTGAG	1033199-1033220
CdCEN4-6'(R)	TTGAATTGGACAGGGGCTTAGG	1033477-1033498
CdCEN4-7(F)	TGTGGTGGAGGGGTCATCCATTTGTTGGTTG	
		1034406-1034435
CdCEN4-8(R)	GGCGACCCTCATGCACCCTACCAAATAAA	1034609-1034637
dCEN4-7'(F)	AAGTACGGATGGTTGTTA	1035010-1035028
CdCEN4-8'(R)	TAGTCATTCTGCCATCTCTTAT	1035231-1035252
CdCEN4-9(F)	CCATGAACAAAAGGTTAGGTGGTGCTCC	1036158-1036185
CdCEN4-10(R)	GGGGAGTTGAATGGTGTGGTGTTAC	1036367-1036391
	For CdCEN5	
CdCEN5-7(F)	TCCAGCGTCAGACATTTTTCCAGT	494058-494081
dCEN5-8(R)	TGCCCCGCGGTTGACAGT	494213-494230
dCEN5-1(F)	TGGCCTCTCCCTTACAAAATTTGCCC	495324-495349
dCEN5-2(R)	GGGAGATGAGGGGTGATTGAGGTAATAG	495504-495531
dCEN5-3(F)	GCTCCAGTACCAACGAAAACGACTTC	496907-496932
CdCEN5-4 (R)	GCATTTGAAAACTGCCAATGTAGTC	497035-497059
dCEN5-5(F)	GCTGGGATAGTTTAGAGGCAGACTGTG	498944-498971
dCEN5-6 (R)	CCTCAATCACCCCTCATCTCCCTAC	499130-499155
dCEN5-9(F)	AAGGGCAAGGAACAAGTCACAAGT	500673-500696
dCEN5-10(R)	TATCAGCGCCGGTTTTAGCAC	500941-500961
	For CdCEN6	
CdCEN6-15(F)	GTGCCAACTTTCTCCTGAT	1002806-1002824
CdCEN6-16(R)	AGCGATTATTAAGTCTATGTGG	1002985-1002964
CdCEN6-13(F)	GAAGCAGCGACCCAACAGATAA	1003044-1003065
CdCEN6-14(R)	TTGAGCGAAATTGGGTAGAGTC	1003262-1003283
CdCEN6-5(F)	TGTCCATTCCCCAAACTTCATACGGACCAC	1004039-1004068
CdCEN6-6 (R)	GAATGCTGGAAGGACTTGAGAAATG	1004175-1004199
CdCEN6-5'(F)	GAAACCAATAACAAGGAAAGAGTA	1005046-1005069
CdCEN6-6'(R)	CAATGGGAAAAAGAAATCAGTAG	1005313-1005335
CdCEN6-7(F)	GACGAGAGCATGTACTCAACTACGTGTC	1006472-1006499
CdCEN6-8(R)	GAATCTTGATTGAAATGCGAGGAAC	1006668-1006692
CdCEN6-9(F)	CATCCAATAACATTGATTTACTACTTTAG	1008985-1009014
CdCEN6-10(R)	TTTTTTTTTTCTCAAAGATTTAGCAG	1009115-1009139
CdCEN6-9'(F)	TGTACGATCAACCCAGAGTGC	1009504-1009524
CdCEN6-10'(R)	ACATGCCATTACCAACAACAGTC	1009749-1009771
CdCEN6-3(F)	TAGCTGTATTAAAAAATTCTGGCCGCATA	1015917-1015945
CdCEN6-4 (R)	TCTGACAAAAAACCTCGTATGACCC	1016066-1016042
	For CdCEN7	
CdCEN7-1(F)	CTAGAGCTATGTTGTGACAGTCCACC	427615-427640
CdCEN7-2(R)	CTTCTGGAATTGAGCCAATCCCTAG	427777-427801
CdCEN7-3(F)	CTAGCTATTCAAGCATCCGTAGGCAGTC	429103-429130
dcen7-4 (R)	CCCATACCCGGGTGGTGTAGTATAA	429228-429252
dCEN7-5(F)	GTAGGCGCTACATATGAACTTCGTGC	436328-436354
dCEN7-6(R)	AGATAATGTCTGAATGTCATTCGGG	436479-436504
dCEN7-9'(F)	TCCAATGGGTGCTAAGATGAA	434047-434068
dCEN7-10'(R)	TCCCGCCTGATTTTTGAA	434292-434310
DCEN7-7(F)	TTATTTGATAGCCTAATTTCACCTGATG	438005-438031
dCEN7-8(R)	ATTAACTGACTTTGAACCAGCAATG	438205-438230
CdCEN7-9(F)	AACGGTCACCTGATGAATAGAGTGGC	432732-432758
dCEN7-10(R)	GACTGAAGCGTCCATACTTGGGATC	432956-432981
dCEN7-11(F)	CCCAGAAGTATCCACTAGGGAACTTG	435240-435268
	TTGTTCTGGTCAATGGTACAGCAAC	435365-435390
dCEN7-12(R)		
dCEN7-13(F)	CACGCAACTAGAATGGCATGAATATATG	439500-439527
dCEN7-14(R)	AGATCCGGTGTCTGTCTTATTGCTC	439630-439654
dCEN7-15(F)	CCTGCGTTGTAATCATTTGTTGTC	440443-440466
CdCEN7-16(R)	TTACTCCGCCTTTGATCCCTATTT	440640-440617
	For CdCENR	
CdCENR-1(R)	ATTAAGGAGCTTCGTGAGGCTGTCG	1723671-1723647
CdCENR-2(F)	CATTTCCTTCAAAGGCACCGGGATG	1723429-1723453
dCENR-3(R)	ACGTTGCTTACTGGTGGCTATGCGG	1721710-1721686
CdCENR-4 (F)	AAGCTTTTATTGCGGTGAACTGGGG	1721461-1721485
CdCENR-5(R)	ACATATAATAGCCTACCACACGCCTTGC	1719373-1719346
CdCENR-6(F)	TGACATTGTGGAAAGTTAATCGCGG	1719202-1719226
CdCENR-7(R)	TGAAATTGGAGACTAAGTGTTGCATTCG	1717531-1717504

TABLE 2-continued

Primer	Sequence	Chromosomal locations
CdCENR-8(F)	ACAGTTTCCACACAACTCAGCAAGACA	1717330-1717356
CdCENR-9(R) CdCENR-10(F)	TTTGCCGGGATAAGCTTTTATTGCG TTTCAGGACACCAGAAGATGGCCAC	1715642-1715618 1715409-1715433
CdCENR-9'(F)	CCCCCGCCGTGAAAAACA	1713200-1713217
CdCENR-10'(R) CdCENR-11(R)	CTACAAACGCCACACCCGAAACT ACCTCAACATCGACACAGTCGCACC	1713426-1713404 1712709-1712185
CdCENR-12(F)	AGCAGAAACCTCGATGTTTGAGCCG	1712487-1712511

TABLE 2B

Primer	Sequence
FCaCse4	CCCGAGCTCCAATTAACAAATATTAATTACAAATG
RCaCse4	TGCTCTAGACCAAAATCCCTCTTTCTGTATTTG
FCdCse4	CCCGAGCTCCAAGTGTATTTTTCATCTTTGGTAG
RCdCse4	CCCAAGCTTCTATTTTGCCACCAAAACCCATCTT

These amplified CdCSE4 and CaCSE4 sequences were digested with SacI/HindIII and SacI/XbaI, respectively, and cloned into corresponding sites of pAB1 to get pAB1CdCSE4 and pAB1CdCSE4. Subsequently CAKS3b was transformed with pAB1, pAB1CaCSE4 or pAB1CdCSE4 and transformants were selected for histidine prototrophy on succinate medium followed by streaking on succinate as well as glucose containing media.

Result

[0060] The ability of the strain CAKS3b carrying pAB1CdCSE4 to grow as good as the same strain carrying a control plasmid pAB1CaCSE4 on glucose medium (where endogenous CaCSE4 expression is suppressed) suggests that CdCse4p can complement CaCse4p function and hence codes for the centromeric histone in *C. dubliniensis* (FIG. **2**B).

[0061] FIG. 2 shows localization of CdCse4p at the kinetochore of C. dubliniensis. (A) The C. albicans strain CAKS3b was streaked on media containing succinate and glucose and incubated at 30° C. for 3 days. (B) CAKS3b is transformed with pAB1, pAB1CaCSE4 or pAB1CdCSE4. These transformants were streaked on plates containing complete media lacking histidine with succinate or glucose as the carbon source. (C) C. dubliniensis strain Cd36 was grown in YPD and fixed. Fixed cells were stained with DAPI (a-d), anti-Ca/CdCse4p (e-h) and anti-tubulin (i-l) antibodies. The intense red dot-like CdCse4p signals were observed in unbudded (e) and at different stages of budded cells (f-h). Corresponding spindle structures are shown by co-immunostaining with anti-tubulin antibodies (i-1). Arrows indicate the position of spindle pole bodies in large-budded cells at anaphase. (Bar=10 µm).

EXAMPLE 4

Subcellular Localization of CdCse4p In C. dubliniensis

[0062] The subcellular localization of CdCse4p in *C. dubliniensis* strain Cd36 was further examined by indirect immunofluorescence.

Indirect Immunofluorescence

[0063] Intracellular CdCse4p or CdMif2p were visualized by indirect immunofluorescence microscopy as described previously. Asynchronously grown cells of Cd36 or CDM1 were fixed with 37% formaldehyde at room temperature for an hour. Antibodies were diluted as follows: 1:30 for anti- α tubulin (YOL1/34) (Abcam); 1:500 for affinity purified rabbit anti-Ca/CdCse4p and rabbit anti-Protein A (Sigma); 1:500 for Alexa fluor 488 goat anti-rat IgG (Invitrogen) and 1:500 for Alexa fluor 568 goat anti-rabbit IgG (Invitrogen). The positions of nuclei of the cells were determined by staining with 4', 6-diamidino-2-phenylindole (DAPI) as described previously. Cells were examined at 100x magnification on a confocal laser scanning microscope (LSM 510 META, Carl Zeiss). Using LSM 5 Image Examiner, digital images were captured. Images were processed by Adobe PhotoShop software.

Result

[0064] Indirect immunofluorescence microscopy using affinity purified polyclonal anti-Ca/CdCse4p antibodies (against aa1-18 of CaCse4p/CdCse4p) revealed bright dotlike signals in all cells. The dots always co-localized with nuclei stained with DAPI (FIG. 2C). Each bright dot-like signal represents a cluster of 16 centromeres. Unbudded G1 cells exhibited one dot per cell, while large-budded cells at later stages of the cell cycle exhibited two dots that co-segregated with the DAPI-stained nuclei in daughter cells (FIG. 2C). The localization patterns of CdCse4p appear to be identical to those of CaCse4p in C. albicans at corresponding stages of the cell cycle. Co-immunostaining of fixed Cd36 cells with anti-tubulin and anti-CdCse4p antibodies showed that CdCse4p signals are localized close to the spindle pole bodies, analogous to typical localization patterns of kinetochore proteins in S. cerevisiae and C. albicans (FIG. 2C). Together, these results strongly suggest that CdCse4p is the authentic centromeric histone of C. dubliniensis.

EXAMPLE 5

Centromeric Chromatin On Various *C. dubliniensis* Chromosomes Is Restricted To A 3-5 kb Region

[0065] Standard chromatin immunoprecipitation (ChIP) assays with anti-Ca/CdCse4p antibodies to assay for enrichment of CdCse4p on putative CEN regions (orthologous to *C. albicans* CENs) in *C. dubliniensis* strain Cd36.

Chromatin Immunoprecipitation (ChIP) Assay And Sequence Analysis

[0066] Chromatin immunoprecipitation (ChIP) by anti-CdCse4 antibodies followed by PCR analysis was done as

described previously (9, 11). This suggests that the predicted centromeric regions of all chromosomes of C. dubliniensis are enriched in centromeric specific histone (CdCse4p) binding. Asynchronously grown culture of Cd36 was crosslinked with formaldehyde and sonicated to get chromatin fragments of an average size of 300-500 bp. The fragments were Immunoprecipitated with anti-Ca/CdCse4p antibodies and checked by PCR. PCR reaction was set up using 10 pmol of both forward and reverse primers (MWG Biotech & Ocimum Biosolutions), 5 µl of 10× Taq buffer (Sigma), 5 µl of 2.5 mM dNTPs mix, 2 µl of DNA template and 0.3 µl of Taq polymerase (Sigma) in 50 µl reaction volume. PCR amplification was carried out using PCR machine (BIORAD) with the following conditions: 1 min at 94° C. (denaturation), 30 s at 45° C. -55° C. (annealing temperature is variable with the primers used) and 1 min at 72° C. (extension). A final extension of 4 min was given at 72° C. PCR with total DNA (1:10 dilution) and ±antibody ChIP DNA fractions were performed using 1/25 th of the template. The boundaries of the CEN regions on each chromosome of C. dubliniensis were mapped using semi-quantitative ChIP-PCR in strain Cd36. Sequencespecific PCR primers were designed at approximately 1 kb sequence intervals that spans the putative CEN region of each chromosome of C. dubliniensis (Table 2 above). CdLEU2 PCR primers were used as an internal control in all PCR reactions. PCR amplification was performed and the PCR products were resolved on 1.5% agarose gels and band intensities were quantified using Quantity One 1-D Analysis Software (BioRad). Enrichment values equal (+Ab) minus (-Ab) signals divided by the total DNA signal and were normalized to a value of 1 for LEU2. The PCR primers used in this study are listed in Table 2 above. Similarly, a ChIP assay to determine occupancy of TAP tagged CdMif2p was performed using the strain CDM1 with anti-Protein A antibodies. All other conditions were identical as it was described above for CdCse4p ChIP antibodies.

Result

[0067] The immunoprecipitated DNA sample was analyzed by PCR using a specific set of primers designed from the putative CEN sequences (Table 2 above). These regions are, indeed, found to be associated with CdCse4p as shown in FIG. **3**. This ChIP-PCR analysis precisely localized the boundaries of CdCse4p-binding to a 3-5 kb region on each chromosome (FIG. **3**).

[0068] FIG. 3 shows two evolutionarily conserved key kinetochore proteins, CdCse4p (CENP-A homolog) and CdMif2p (CENP-C homolog) bind to the same regions of different C. dubliniensis chromosomes. Standard ChIP assays were performed on strains Cd36 and CDM1 (CdMif2-TAP-tagged strain) using anti-Ca/CdCse4p or anti-Protein A antibodies and analyzed with specific primers corresponding to putative centromere regions of C. dubliniensis to PCR amplify DNA fragments (150 to 300 bp) located at specific intervals as indicated (Table 2 above). Graphs showing relative enrichment of CdCse4p (blue lines) and CdMif2p (red lines) that mark the boundaries of centromeric chromatin in various C. dubliniensis chromosomes. PCR was performed on total, immunoprecipitated (+Ab), and beads only control (-Ab) ChIP DNA fractions (see Supporting FIGS. 6 and 7). The coordinates of primer locations are based on the present version (16 May, 2007) of the Candida dubliniensis genome database. The coordinates are listed in Table 3 below. Enrichment values are calculated by determining the intensities of (+Ab) minus (-Ab) signals divided by the total DNA signals and are normalized to a value of 1 for the same obtained using primers for a noricentromeric locus (CdLEU2) and plotted. The chromosomal coordinates are marked along X-axis while the enrichment values are marked along

[0069] Y-axis. Black arrows show the location and arrow-heads indicate the direction of transcription.

IADLE 3	TA	BL	Æ	3
---------	----	----	---	---

Chr No.	Regions	C. albicans coordinates	C. dubliniensis coordinates
R	Region from left ORF	1748819-1750873	1713450-1716138
	Cse4 binding region	1750874-1755348	1716139-1720954
	Region from right ORF	1755349-1757404	1720955-1722609
1	Region from left ORF	1561872-1564187	1594163-1596130
	Cse4 binding region	1564188-1567117	1596131-1600697
	Region from right ORF	1567118-1580116	1600698-1611889
2	Region from left ORF	1924364-1928514	1939609-1943699
	Cse4 binding region	1928515-1931474	1943700-1946867
	Region from right ORF	1931475-1931569	1946868-1947202
3	Region from left ORF	821379-823848	866084-867273
	Cse4 binding region	823849-826997	867274-870883
	Region from right ORF	826998-827104	870884-871878
4	Region from left ORF	1000559-1002628	1027127-1029834
	Cse4 binding region	1002629-1006266	1029835-1034637
	Region from right ORF	1006267-1009311	1034638-1036395
5	Region from left ORF	467209-469044	494073-495323
	Cse4 binding region	469045-472074	495324-499155
	Region from right ORF	472075-473740	499156-500591
6	Region from left ORF	975879-976872	993828-1003043
	Cse4 binding region	976873-980625	1003044-1006692
	Region from right ORF	980626-981389	1006693-1009568
7	Region from left ORF	423632-426037	425994-435239
	Cse4 binding region	426038-428938	435240-438230
	Region from right ORF	428939-430172	438231-439177

However, as mentioned earlier, the homologs of two genes adjacent to the CEN6 region in *C. albicans* are 80 kb apart in chromosome 6 of *C. dubliniensis* due to chromosome rearrangement (FIG. **4**).

Since other CEN regions of C. dubliniensis are present in ORF-free regions that are greater than 3 kb, first all the intergenic regions, 3 kb or longer were identified, to find CEN6 in this 80 kb region. The ChIP-PCR analysis using specific primers from such regions delimited Cse4p-binding to a 3.6 kb region that is adjacent to the C. albicans Orf19.2124 homolog in C. dubliniensis (FIG. 3 and FIG. 6; not all ChIP data are shown). FIG. 6 shows relative enrichment profiles of CdCse4p in various C. dubliniensis chromosomes. CdCse4passociated chromosome regions were enriched by ChIP using anti-Ca/CdCse4p antibodies. Specific primers corresponding to putative centromere regions of C. dubliniensis were used to PCR amplify DNA fragments (150 to 300 bp) located at specific intervals as indicated (Table 2). PCR was performed on total, immunoprecipitated (+Ab), and beads only control (-Ab) DNA fractions. Reverse images of ethidium bromide stained PCR products resolved on 1.5% agarose gels are aligned with respect to their chromosomal map position of each CEN region. The coordinates of primer locations are based on the present version (16 May, 2007) of the Candida dubliniensis genome database. Enrichment values are calculated by determining the intensities of (+Ab) minus (-Ab) signals divided by the total DNA signals and are normalized to a value of 1 for the same obtained using primers for a non-centromeric locus (CdLEU2). The intensity of each band was determined by using Quantity One 1-D Analysis Software (Bio-Rad, USA). Panels show the CdCse4p enrichment

profiles on *C. dubliniensis* chromosomes at corresponding regions as indicated. Black arrows and grey arrows correspond to complete and incomplete ORFs, respectively, and indicate the direction of transcription.

Thus, CdCse4p-rich CEN regions- and determined the boundaries of centromeric chromatin in all eight chromosomes in *C. dubliniensis* were successfully identified. It was also found that the relative distance of Cse4p-rich centromeric chromatin from orthologous neighboring ORFs is similar in both species in most cases (FIG. 1).

EXAMPLE 6

The Evolutionarily Conserved Kinetochore Protein CENP-C Homolog In *C. dubliniensis*, CdMif2p Binds Preferentially To CdCse4p-associated DNA

[0070] Proteins in the CENP-C family are shown to be associated with kinetochores in a large number of species. Using CaMif2p as the query sequence, the CENP-C homolog (CdMif2p) in *C. dubliniensis* was identified.

Homology Detection And Mutation Rate Measurement

[0071] For homology detection, Sigma (version 1.1.3) and DIALIGN (version 2.2.1), to align ORF-free DNA sequences were used. Default parameters were used for both programs, but Sigma was given an auxiliary file of intergenic sequences from which to estimate a background model. Orthologous genes were aligned (at amino-acid level) with T-Coffee. Instances of the following seven codons where the first two positions were conserved in both species were examined: GTn (valine), TCn (serine), CCn (proline), ACn (threonine), GCn (alanine), CGn (arginine), GGn (glycine) (n=any nucleotide). Third position mutations here do not change the amino acid. (Leucine was ignored because of a variant codon in these species). A naïve count of mutation rates in the third position yields 0.27. Taken into consideration genome-wide bias for each codon, an upper-bound mutation rate of 0.42 was obtained.

For this analysis Sigma (version 1.1.3) (4) and DIALIGN 2 (5), to align ORF-free centromeric and other intergenic sequences were used. Default parameters were used for both programs, but Sigma was given an auxiliary file of intergenic sequence from which to estimate a background model. For protein-coding sequence, WU-BLAST 2.0 (tblastn) querying each annotated coding region of C. albicans against the chromosome sequences of C. dubliniensis was run. Parameters used were "filter=seg matrix=blosum62 hspsepQmax=1000 hspsepSmax=2000". Hits with a summed P-value of 1e-30 or less were identified as potential orthologs. Criteria for ortholog assignment were sequence similarity and synteny (requiring at least two common syntenous immediate neighbors out of four). This led to 2653 high-confidence predictions. These orthologous genes were aligned (at amino-acid level) with T-Coffee (6). Then the following seven amino acids were considered, when conserved, and coded by the indicated codons, in both species: GTn (valine), TCn (serine), CCn (proline), ACn (threonine), GCn (alanine), CGn (arginine), GGn (glycine) (n=any nucleotide). Other synonymous codons, if any, were ignored. Leucine was ignored because of a variant codon, CTG, that codes for serine in these species. A naïve count of mutation rates in the third position yields 0.27. This was improved on by considering the genome-wide bias for each codon, as follows: let the third-position conservation probability be q. Then if a third position nucleotide in *C. albicans* is b, in *C. dubliniensis* it stays b with probability q, and mutates with probability (1-q). If it mutates, it was assumed that the probability of the new nucleotide is drawn from the known codon bias. For each amino acid A, the individual mutation rate, $P(b_2/b_1, A)$ for third-position codon changing from b_1 in *C. albicans* to b_2 in *C. dubliniensis* was measured (the results are mathematically identical for evolution from a common ancestor), and solved for q; the weighted average of q for all amino acids and all pairs of observed third-position nucleotides b_1 and b2 were then taken This works out to q=0.58, giving a mutation rate of 0.42. (Technically, this mutation rate is a slight overestimate, because a mutated b2 from a distribution was drawn that includes b_1 ; but it is a credible upper bound.)

Results

[0072] CdMif2p shows 77% identity and 5% similarity in 516 aa overlap. The CdMif2p codes for a 520-aa-long predicted protein in which the CENP-C box (aa residues 275-297) is 100% identical in *C. albicans* and *C. dubliniensis*. FIG. **7** shows the CENP-C homolog in *C. dubliniensis* (CdMif2p) is co-localized with CdCse4p. (A) Sequence alignment of CaMif2p and CdMif2p showing the conserved CENP-C block (red box) (B) Localization of CdMif2p at various stages of cell cycle in *C. dubliniensis*. (C) ChIP enrichment profiles of CdMif2p on chromosomes 1 and 3 in the strain CDM1 by determining the intensities of (+Ab) minus (-Ab) signals divided by the total DNA signals and are normalized to a value of 1 for the same obtained using primers for a non-centromeric locus (CdLEU2).

EXAMPLE 7

Construction of CDM1 Carrying C-terminally TAPtagged CdMIF2

[0073] A strain (CDM1) to express CdMif2p with a C-terminal tandem affinity purification (TAP) tag from its native promoter in the background of one wild-type copy of CdMIF2 was constructed.

[0074] Strains, media and transformation procedures. The *Candida dubliniensis* and *C. albicans* strains used in this study are listed in Table 4.

TABLE 4

Yeast strains	Genotype	Source
Candida dublinie	nsis	
Cd36	Clinical isolate	10
CdUM4B	ura3D1::FRT/ura3D2::FRT	8
CdM1	ura3D1::FRT/ura3D2::FRT	This study
	MIF2/MIF2-TAP (URA3)	,
Candida albicans		
BWP17	Δura3::imm434/Δura3::imm434	11
	Δhis1::hisG/Δhis1::hisG Δarg4::hisG/	
	∆arg4::hisG	
CAKS1b	Δura3::imm434/Δura3::imm434	This study
	Δhis1::hisG/Δhis1::hisG Δarg4::hisG/	
	∆arg4::hisG CSE4/	
	cse4::hisG:URA:hisG	
CAKS2b	Δura3::imm434/Δura3::imm434	This study
	Δhis1::hisG/Δhis1::hisG Δarg4::hisG/	
	∆arg4::hisG CSE4/cse4::hisG	

TABLE 4-continued

Yeast strains	Genotype	Source
CAKS3b	Δura3::imm434/Δura3::imm434 Δhis1::hisG/Δhis1::hisG Δarg4::hisG/ Δarg4::hisG cse4::PCK1pr- CSE4(URA3)/cse4::hisG	This study

These strains were grown yeast extract/peptone/dextrose (YPD), yeast extract/peptone/succinate (YPS), or supplemented synthetic/dextrose (SD) minimal media at 30° C. as described. *C. albicans* and *C. dubliniensis* cells were transformed by standard techniques.

[0075] CdMIF2 downstream sequence (from +1634 to +2198 with respect to the start codon of CdMIF2) was PCR amplified with primer pair CdM3 (CGG GGT ACC GAT TGC AAG AAG TAC TAC ATA AGA GAG) and CdM4 (GCC CGA GCT CGC AGG TAA AAT TGT TCT TGA GGA GCC G) thereby introducing KpnI and SacI restriction sites (underlined). The resulting PCR amplified fragment was digested with KpnI and SacI and cloned into corresponding sites of pUC19 to generate pCDM1. TAP cassette along with CaURA3 gene was released from plasmid pPK335 (7) as BamHI-KpnI fragment and cloned into corresponding sites of pCDM1 to generate pCDM2. Subsequently CdMIF2 RF sequence from +1090 to +1548 was PCR amplified using primer pair CdM1 (ACG CGT CGA CCC CCC ACT GAT TAC GAT TAT GAA TCT GAT CC) and CdM2 (CAT GCC ATG GCC CAA TTC GTA TCG ATT TCT TCT GGT TIC) and cloned into pCDM2 as NcoI-Sall fragment to get pCDM3. Finally, a 2 kb amplicon was PCR amplified by the primer pair CdM1 and CdM4 using pCDM3 as the template. This PCR fragment was used to transform CdUM4B strain (8). The correct Ura+ transformant (CDM1) was identified by PCR analysis.

Result

[0076] The subcellular localization patterns using polyclonal anti-Protein A antibodies in *C. dubliniensis* strain (CDM1) at various stages of cell cycle is very similar to those observed for CdCse4p (FIG. 7). Binding of TAP tagged CdMif2p in the strain CDM1 was analyzed by standard ChIP assays using anti-Protein A antibodies This experiment suggests that CdMif2p binds to the same 3 kb CdCse4p-rich region of two different chromosomes (Chromosome 1 and 3) in *C. dubliniensis*. Binding of two different evolutionarily conserved kinetochore proteins CdCse4p and CdMif2p at the same regions strongly implies that these regions are centromeric. (FIG. **3** and FIG. 7).

EXAMPLE 8

Comparative Sequence Analysis Between C. albicans And C. dubliniensis Reveals That Cse4p-rich Centromere Regions Are the Most Rapidly Evolving Loci of the Chromosome

[0077] Pairwise alignment of CdCse4p-rich sequences on different chromosomes with one another reveals no homology. To compare orthologous CEN regions of *C. albicans*

	Cse4p- binding	Cse4p-binding (shuffled)	Pericentric	Intergenic
Total bases	26836	26836	40280	593782
Aligned	12440	11650	27684	530847
(DIALIGN2)	(46%)	(43%)	(68%)	(89%)
Mutated	7624	7201	10229	154473
(DIALIGN2)	(61%)	(62%)	(36%)	(29%)
Aligned	Ó	Ó	15015	334363
(Sigma)			(37%)	(56%)
Mutated	0	0	3323	57548
(Sigma)			(22%)	(17%)

and *C. dubliniensis*, pairwise alignments using Sigma and DIALIGN2 were performed. These programs assemble global alignments from significant gapless local alignments. Sigma detects no homology in Cse4p-binding regions. DIALIGN2, with default parameters, reports a little homology; but when nonorthologous sequence were compared, (namely, CEN sequences from non-matching chromosomes), it reports almost identical results (Table 5).

Table 5

[0078] In other words, it finds no homology beyond what it would with the "null hypothesis" of unrelated sequence. Similar results were obtained with other sequence alignment programs. It is concluded that there is no significant homology in the orthologous Cse4p-containing CEN regions in C. albicans and C. dubliniensis, even though the CEN regions are flanked by orthologous, syntenous ORFs. However, neighboring (pericentric) ORF-free regions, located between the Cse4pbinding regions and CEN-adjacent ORFs, do exhibit a higher degree of homology compared to Cse4p-rich regions. Mutation rates were counted only in aligned blocks (ignoring insertions and deletions); DIALIGN2 aligns 68% of these regions, with a mutation rate of 36%, while Sigma aligns 38% of the regions, with a mutation rate of 22% in aligned regions. Much of the conservation occurs towards the outer ends of these regions, that is, near the bounding ORFs. To estimate a "neutral" DNA mutation rate, 2,653 putative gene orthologs of C. albicans in C. dubliniensis were identified. For homology detection, Sigma (version 1.1.3) and DIALIGN (version 2.2.1), to align ORF-free DNA sequences were used. Default parameters were used for both programs, but Sigma was given an auxiliary file of intergenic sequences from which to estimate a background model. Orthologous genes were aligned (at amino-acid level) with T-Coffee. Instances of the following seven codons where the first two positions were conserved in both species were examined: GTn (valine), TCn (serine), CCn (proline), ACn (threonine), GCn (alanine), CGn (arginine), GGn (glycine) (n=any nucleotide). Third position mutations here do not change the amino acid. (Leucine was ignored because of a variant codon in these species). A naïve count of mutation rates in the third position yields 0.27. Taken into consideration genome-wide bias for each codon, an upper-bound mutation rate of 0.42 was obtained.

[0079] The genes with T-Coffee were aligned, and the synonymous mutation rates using seven codons that are "fully degenerate" in the third position was measured (the first two bases determine the coded amino acid). A naïve count of the third-position mutation rate yields 27%. Correcting for genome-wide codon biases yields 42%, an upper-boundary estimate for the "neutral" rate of DNA mutation between these two yeasts (see Materials and Methods). This rate corresponds to a pairwise conservation, rate ("proximity") q=0. 58, or a proximity to a common ancestor of 0.76. Tests on synthetic DNA sequence (as reported in 21) suggest that Sigma would easily align such sequence; therefore, it appears that CaCse4p-binding sequences (but not pericentric regions) have diverged faster than expected from the neutral pointmutation rate in these yeasts.

309 homologous intergenic regions were also identified in these species that were between 1000 and 5000 by long (comparable in length with the Cse4p-binding regions). These regions were aligned with Sigma and DIALIGN2, and measured mutation rates in aligned regions only (ignoring insertions and deletions). Sigma aligned 56% of the input intergenic sequence, with a mutation rate of 17%; DIALIGN2 aligned 89% of the input sequence, with a mutation rate of 29%. This rate is less than our estimated neutral mutation rate of 42%, suggesting constraints on the evolution of intergenic DNA sequences. Although pericentric regions evolve slower than the neutral rate determined above, they have a smaller fraction of conserved blocks and a greater mutation rate than intergenic sequences.

Interestingly, despite the rapid divergence of CEN DNA sequences, the relative position of the CEN on each chromosome is conserved in all cases. FIG. **8** shows relative chromosomal positions of Cse4p-binding regions in *C. albicans* and *C. dubliniensis*. Red oval shows Cse4p-binding region.

[0080] The relative location of the Cse4p-rich centromeric chromatin in the ORF-free region is also similar in both species (FIG. 7). Although no homology was found among Cse4p-binding regions in matching chromosomes, some of the ORF-free pericentric regions in matching chromosomes have repeated segments, both within the same species and across the two species (FIG. 9).

FIG. **9** shows conserved blocks in the pericentric regions of various chromosomes of *C. dubliniensis* and *C. albicans*. The cyan dotted blocks represent the Cse4p-binding regions. DNA sequence stretches of various chromosomes having significant similarities (ClustalW scores above 80) are shown by colored arrows as indicated. The numbers on each chromosome represent their coordinates in respective genome database. The direction of the arrows represents the orientation of repeats. A BLAST search was done to identify the repeats flanking the CEN region against the *C. dubliniensis* genome database with *C. albicans* CEN flanking repeats as the query sequences (10). The inverted repeats were observed in the chromosomes R, 1 and 5 of *C. albicans* and *C. dubliniensis* (Table 6). The LTRs such as epsilon, zeta, episemon) are also shown.

TABLE 6

Chr No.	Repeat	Coordinates in C. dubliniensis	% homology between the inverted repeats¶
R	IRR	1720958-1721270 (D)	100
	IRR	1716158-1715822 (R)	
1	IR1	1595932-1595989 (D)	96
	IR1	1602853-1602907 (R)	
5	IR5	493690-494369 (D)	99
	IR5	500277-500974 (R)	

These results strongly suggest that factors other than Cse4pbinding DNA sequences determine centromere identity in these species. The role of pericentric regions in determining centromere identity remains unclear.

Result

[0081] Thus, the core CdCse4p-rich centromeric DNA sequences of all eight chromosomes of *C. dubliniensis*. Two important evolutionarily conserved kinetochore proteins, CdCse4p and CdMif2p are shown to be bound to these regions. Each of these CEN regions has unique and different DNA sequence composition without any strong sequence motifs or centromere-specific repeats that are common to all the eight centromeres, and has A-T content similar to that of the overall genome. In these respects they are remarkably similar to CEN regions of *C. albicans* (11, 12). Though genes flanking corresponding CENs in these species are syntenous, the Cse4p-binding regions show no significant sequence homology. They appear to have diverged faster than other intergenic sequence of similar length, and even faster than our best estimated neutral mutation rate for ORFs.

A study, based on computational analysis of centromere DNA sequences and kinetochore proteins of several organisms, indicates that point centromeres have probably derived from regional centromeres and appeared only once during evolution. The core Cse4p-rich regions of *C. albicans* and *C. dubliniensis* are intermediate in length between the point *S. cerevisiae*-like centromeres and the regional *S. pombe* centromeres. The characteristic features of point and regional yeast centromeres are the presence of consensus DNA sequence elements and repeats, respectively, organized around a nonhomologous core CenH3-rich region (CDEII and central core of *S. cerevisiae* and *S. pombe*, respectively). Both *C. albicans* and *C. dubliniensis* centromeres lack such conserved elements or repeats around their non-conserved core centromere regions.

Based on these features, it is proposed that these Candida species possess centromeres of an "intermediate" type between point and regional centromeres. On rare occasions, functional neocentromeres form at non-native loci in some organisms. However, neocentromere activation occurs only when the native centromere locus becomes non-functional. Therefore, native centromere sequences may have components that cause them to be preferred in forming functional centromeres. Despite sequence divergence, the location of the Cse4p-rich regions in orthologous regions of C. albicans and C. dubliniensis has been maintained for millions of years. Homology was also observed in orthologous pericentric regions in a pair-wise chromosome-specific analysis in these two species. Moreover, several short stretches of DNA sequences are found to be common in pericentric regions of some, but not all, C. albicans and C. dubliniensis chromosomes. Both in budding and fission yeasts, pericentric regions contain conserved elements that are important for CEN function. In the absence of any highly specific sequence motifs or repeats in these regions, it is possible that specific histone modifications at more conserved pericentric regions facilitate the formation of a specialized three-dimensional common structural scaffold that favors centromere formation in these Candida species. It is an enigma that, despite their conserved function and conserved neighboring orthologous regions, core centromeres evolve so rapidly in these closely related species. Satellite repeats, that constitute most of the Arabidopsis and Orzya centromeres, have been shown to be evolving rapidly. However, because of their repetitive nature, these plant centromeres are subject to several events such as mutation, recombination, deletion and translocation that may contribute to rapid change in centromere sequence. In the absence of any such highly repetitive sequences at core centromere regions of C. albicans and C. dubliniensis, such accelerated evolution is particularly striking. It is important to mention that a very recent report based on comparison of chromosome III of three closely related species of Saccharomyces paradoxus suggests that centromere seems to be the fastest evolving part in the chromosome. One possible mechanism for rapid evolution is error-prone replication of CEN DNA followed by inefficient repair. In fact, pausing of replication forks at the centromeres has been reported in S. cerevisiae. If a similar situation exists in C. albicans and C. dubliniensis, it is possible that core CEN regions are replicated by error-prone DNA polymerases, a situation similar to translesion DNA synthesis. Several studies reveal that centromeres function in a highly species-specific manner. Henikoff and colleagues proposed that rapid evolution of centromeric DNA and associated proteins may act as a driving force of speciation (1). The consequence of the rapid change in centromere sequence that was observed in these two closely related Candida species may contribute to generation of functional incompatibility of centromeres to facilitate speciation. To understand the mechanisms of centromere formation in the absence of specific DNA sequence cues, it will be important to identify more genetic and epigenetic factors that may contribute to the formation of specialized centromeric chromatin architecture.

LIST OF SUPPORTING REFERENCES

[0082] 1. Thompson J-D, Higgins D-G, Gibson T-J (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. *Nucleic Acids Res* 22:4673-4680.

[0083] 2. Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. *Brief Bioinform* 5:150-163.

[0084] 3. Gouet P, Courcelle E, Stuart D-I, Metoz F (1999) ESPript: analysis of multiple sequence alignments in Post-Script. *Bioinformatics* 15:305-308.

[0085] 4. Siddharthan R (2006) Sigma: multiple alignment of weakly-conserved non-coding DNA sequence. *BMC Bio-informatics* 7:143.

[0086] 5. Morgenstern B (1999) DIALIGN2: improvement of the segment-to-segment approach to multiple sequence alignment. *Bioinformatics* 15:211-218.

[0087] 6. Notredame C, Higgins D, Heringa J (2000) T-Coffee: A novel method for sequence alignments. *J Mol Biol* 302:205-217.

[0088] 7. Corvey C et al. (2005) Carbon Source-dependent assembly of the Snf1p kinase complex in *Candida albicans*. *J Biol Chem* 280:25323-25330.

[0089] 8. Staib P, Moran G-P, Sullivan D-J, Coleman D-C, Morschhauser J (2001) Isogenic strain construction and gene targeting in *Candida dubliniensis*. *J Bacteriol* 183:2859-2865.

[0090] 9. Sanyal K, Baum M, Carbon J (2004) Centromeric DNA sequences in the pathogenic yeast *Candida albicans* are all different and unique. *Proc Natl Acad Sci USA* 101:11374-11379.

[0091] 10. Sullivan D-J, Westemeng T-J, Haynes K-A, Bennett D-E, Coleman D-C (1995) *Candida dubliniensis* sp. nov.: phenotypic and molecular characterization of a novel species associated with oral candidosis in HIV-infected individuals. *Microbiology* 141:1507-1521.

[0092] 11. Wilson R-B, Davis D & Mitchell A-P (1999) Rapid hypothesis testing with *Candida albicans* through gene disruption with short homology regions. *J Bacteriol* 181: 1868-1874.

[0093] 12. Mishra P-K, Baum M, Carbon J (2007) Centromere size and position in *Candida albicans* are evolutionarily conserved independent of DNA sequence heterogeneity. *Mol Genet Genomics* 278:455-465.

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 126

```
<210> SEQ ID NO 1
<211> LENGTH: 4567
<212> TYPE: DNA
<213> ORGANISM: Candida dubliniensis
```

<400> SEQUENCE: 1

acaacaatca	acaatttctg	ctcctcatgc	cattacattt	acagatagtc	atactacaag	60
cctgtcaacc	ccatatgaaa	aaaaaacttc	ttacaaacca	gttcacgttg	caactggcac	120
aactccagca	aacataaaca	tcccctaaaa	aaaagcctac	atacatttta	aacgcttgac	180
attctcctgc	tcaacaaatt	caaaagttag	ctcatttgcg	aataaggtga	tacccactta	240
ataaaacgt	acaccttcgg	caataaattc	ttcttgctta	tactcgcctt	ttcttaatca	300
gggagatcac	ttacatacca	caataaacac	caagctcttc	caaactaaac	aaagcaatct	360
cgaaactgac	ctctttcttt	caataactaa	taaacgattt	ggaataccca	caaagtcaca	420

				-contir	nued			
aattatacag	caaaacctcc	tacaaaatca	atgatatcaa	catttcaaac	aggaacaaaa	480		
gaaaatcgtt	tgtatcaatt	gattctcttc	ctaatacaaa	ctaaacacct	tgtaattagt	540		
tcttataacc	aagaataact	aaacaataca	aaagctacca	aatattatca	cgtgaccaaa	600		
gctaaatgtc	ctatctatcc	cccctccgaa	atcacataaa	tctgaacaga	tcaggcaaca	660		
catgacacct	aagttagact	tgcaagtagt	aatatcggcc	aaccatttgg	tacttcacac	720		
agcaccaaac	taaaacagac	tatatgtgaa	cgctctacat	ttcttacctt	tcatgaacac	780		
gtcaatccaa	ggaatagaat	caacattcca	cttatgctat	gaaacttgac	tcttaaaata	840		
ctatcacttc	ccccttacct	catgtataca	agaagcctta	aaaacactat	ttctttttca	900		
caaatgctgc	aatcaactag	aattgctaat	accccttttt	aaacgtgaca	cgctcaaaca	960		
tacccaccta	taaacatcac	ataaaaatga	aacagcattc	actaaagcaa	ccataaaacc	1020		
gaacacactc	ataacttaac	taatacactt	ccttcatcaa	aacactcaat	tgctaaaaaa	1080		
gaaccaacta	atgaaattga	ctcaaaacaa	aaactaatca	gaccgattct	ttagataaat	1140		
cttagaatgt	ccatttcctc	acgcaacttt	tccatactcc	ttgacaatta	ttctagtacc	1200		
agtacttcgg	catgaagaag	tctctgatgg	tccccggacg	tcaactgcaa	aaacaaggaa	1260		
agtcgcctaa	atcttgtaaa	gcgctcaact	ctttacgaca	actcatctct	tcgacaagat	1320		
caaaagaaac	gaaaacaacg	aaaaccagta	atgctttgcc	tatcaataca	gaaaaacaaa	1380		
cgtcactgtt	tcaacaaaag	ccacagtcta	aaagccttaa	atgaacctat	tgtgcgttgc	1440		
aatttcttta	ccattctttc	cttgtcttcc	taccaaccag	tgttaaacca	tgcctgtctc	1500		
aaaacctcat	ttttgaagca	tcttctatag	taagactctc	ctgtttcaca	ctaattagct	1560		
agacaaaagt	tacactttac	ttctttatgt	atactctgtt	gatcagcttc	ccattatggt	1620		
gattttcaga	aaaaaagcga	tatataataa	tttttaaac	tttcacaata	aaagaaatat	1680		
tgttttgaca	tcacttcaat	taaattggct	tctagcttta	aagtteetea	gcttgtagta	1740		
aataccctgc	tgttgcctat	cactacttaa	ttcagtcaca	ttcctaaagg	catttcaata	1800		
caacatcatt	ccaaagctaa	aactataata	aactactact	ctacaagcgg	acggacttgc	1860		
tcgggtcaac	agctcaaata	aattccacaa	gtaatagtat	agcatgacaa	acatattcat	1920		
gaacaccaga	atcgggtgca	tctaagaagg	gttttacttt	aatcatagtt	ttttagatgc	1980		
agcaattggt	atcaaggatg	tatattggaa	ttcaatatac	cataagaatt	agaccgaaaa	2040		
aactacagtt	tgactttact	cgacacttgc	gtatatttc	ttagaatatt	cagtttgcac	2100		
aacaatttaa	ttatcaaagc	aggattcgtg	ctgactatag	gtgataaacc	ctactgaggt	2160		
caggaaagct	aacaagtttt	tcctactatc	cgtatttgac	gggtgcaagg	ttatattgta	2220		
aaactggtat	aacaaaagtg	gccctatcag	tattgttaat	atttagtttg	gcaatggtta	2280		
acatagttgt	atttattgta	ttttgattgg	gtcaatcgaa	acgaacatat	gagatgcttc	2340		
atttgctttg	ctcaacaagt	aatcatttca	ctgcttaatg	cagtatttga	ttctatttta	2400		
aagaattggg	cccgcagagc	tgccaaactt	agtttacgtc	tgtaaaagat	tatgtgttga	2460		
tttgtatgct	agtgtttagg	ctcgttgact	tttccacata	aatactatat	tagttcttag	2520		
tcattatagc	agtcacacag	tatcgcattg	cgatcttctc	ctttctttg	attgtgttga	2580		
tgatatgcag	aagcttaaaa	aactaaatat	tcttatcacc	cttgtgttga	tgcgaagaca	2640		
ataattcata	ttacttttat	agttgggatt	tgcaatctca	taaacacttt	tgattcaagt	2700		

			-
- COI	ıtı	nu	ed

-continued	
- taaagaggta atgaagtaag agtctgacta ttggagtagg gaaatggttt tgctgtattt	2760
ggctatattg tttcagttct aacatgagcg tattgatagc agtgtatttg tgatatagga	2820
gactctaggt gccattttgt gcttgtttat gtagagaatt actgatgatt gtgtgagggc	2880
atatagatgc actttattga gaatcgatgt tgagaataaa gtaaagtttg ggtagcatta	2940
tettgttaaa agttgeagtg eattgtaega ggtaagetee aatgatgate tggegaggtt	3000
tatagatatt gctcaagtct gcttgtgtca ggaatgcttc gttttgttgg gatatgattt	3060
ccaatgattc tgagcctggt gcagttgggc aacctaaatg aattgatgga ggtgggtttg	3120
aagttgtctc ggatcagttg caagcgatta tttagagatg ccggttatcg tttggtaaaa	3180
gtaagacatg attaacacgg tatgaattga tagcttgtgt aatgcttgta tcgtggaaaa	3240
aaaatgggag gtgaatgagt tttaacaaag tctttgtaat ttataaagtt gaagttcact	3300
gttttatatg tttactgttt tgagactgtt ggaaggtagg ggatacgtta ttgggattta	3360
gtttttggtc tcgccatagt tgttattgtt gttgtcagtt tagtggatgc ttcaaaactg	3420
gaaggactag attgtttggt tttgattgag ttctctttgt gggtactgta ggtttgctat	3480
tgatgatgat tatagaacaa gattttttga caaagagtca aggatgtctt attagtgtac	3540
aagagacgta gtcaggtcaa ggttgattga ttgtagttag gattgctata ttgtattgtt	3600
agaatatttt tttgtccagt tgaaagtgag cactcattgt gatcgattga atagcttata	3660
tttgaaaagg atttgaagac taggactgtt ctgccgagat gattgtgtgt gagagaatat	3720
ggaaggggcg ctgattaaca agtaggctga aaaactatat gttgttgtta gtattggtgg	3780
ggatgaaaga ggaatgaaaa cttcaatacg tggtctcctt cgacgtcaga cgacatgaga	3840
tagagtcagt ggtatatgca aaattgagga aggtttgcca agttaaatag tatatgaaga	3900
tgtttgactg ataatctttc tacagataca aaggtttagt gtcatgattc atgtagatgg	3960
gatatattta tcattgcctc aaagtggatt atcctagtgt gtttgcattt gaagaaatgg	4020
aattagagtt tcttaccagt gggaagtaga aaaagcactt actagatgag acaatttgcg	4080
ctttacttga gtttatagag ttatgagtgc attgcgtgaa tgaatgtcat tgaaatagtc	4140
actcggttgt tggcaattat tggttactat gtgtttttcc gatggcagag ttatagtggt	4200
attgtatgaa tgattcaaat ctgtcacgta gtcatgtcaa catggaggga gggttcccca	4260
gacagattga atctgaccgt tagataatat agtaacttag gcttaaccta ttttatattg	4320
gtttagacaa caagaatttg cagaatatat tgatcgcaag cgaagcacga aatgacgctt	4380
agatgtctaa ctaattcccc cattcgttgg gagatttgct acataaatag aatagctgca	4440
cttcccttta ctattatata cttattggat agggtctagc tggttttaga ggacaatgcg	4500
aagtgacaat tcaatttctg gttgctatat tcaattggtg agctatagag cgtatttgag	4560
agataag	4567
<210> SEQ ID NO 2 <211> LENGTH: 3168 <212> TYPE: DNA <213> ORGANISM: Candida dubliniensis	
<400> SEQUENCE: 2	
ttatacecce gaattaacaa gtgegeeeet eeteecataa gtegteattg caacataaat	60
gtatgtettg teteaaaaca ttteetette etgtteagee gtaaaateet aaateeacat	120

		-continued	
cttatgaga gcctgactat	tcatcaatct ggtaaacgaa	agcacctgca ctgactacc	t 180
aaatatactc actctagtca	tcataatcaa atacaggact	tctcaacatt gacctacac	a 240
aactacaaaa cctgttacag	ı gataccagag attgcgttaa	aaactcttgc cacattcca	c 300
aattctaaac ttccgaattt	ttagctttcc attgtatcaa	gttacaatct taatttcac	c 360
cacttgaagt actttaaaat	tatacctatt ttgagttcag	caatteetta ggatgaaac	t 420
tggttgata gtcttgaaat	caaatatagt atctatagta	tcaatgcctt gaacaaaaa	g 480
gtatcagacc atctggcaaa	accaccattc ttcgcccaaa	gagtttgctt ctcatccaa	c 540
ttattgcca aactatcttt	atacgctcag aagcaattaa	agctattaaa ctagtggag	c 600
accaatcatt tcattactco	ı actatgtggt aactgaataa	tatcactcgg tacttagta	a 660
cattgactac tgtacactgo	atteteeegg aaaacatatt	tcaaggtatt cgatctata	t 720
yttttatggg aaaaaattto	cttaagtttg tctttcctgt	tcaatgtacc aagaacaac	a 780
taaattaat tctacctgtt	ctgaaatgtg ggagccactc	aaagtcagga cctagctta	g 840
tagatgttc tatgtctaaa	u tcgaagaagt atgtaaacaa	gcttctgctg gagacttat	t 900
ttcaaaagc tacatctatt	ttcaatgcac tccgagactg	attagaataa ctacattca	t 960
coggatacac cttggogtat	actcaaaacg tcaaacggtt	tgtaacattt agcagttaa	a 1020
ggttgatcct ccaaacagca	a gaatgcaaat acatcatatg	taagcgctaa atttttat	t 1080
caagtggata aagtatattg	ı atgttgttct gagaactaca	atgtttagtt tgcaattaa	g 1140
gagttaggt ttctatttgt	atatgtttga gtatgctgct	ggctgtttca gagcaattc	a 1200
yagacttaga atactatata	a caactacact tettgtetet	ccccatgcca gtgaatatc	t 1260
ytatcaaagg gttacataat	atgcatcctt ctacctatgc	atctggtgga tactttggg	t 1320
attcataca atttcagtat	. gaaaaaatgc atttgtatta	ttacctcaat tagcttcac	a 1380
gccagtaatc aagtcctcta	taggcgtaac acaagatttc	ggtattactg gcgatattc	t 1440
yttgaatagc tgcagacaaa	. cctttgatct gttttgtagg	atggacagga aaagtatgt	g 1500
caattggtc atctaccaat	tatttccatt tcatggtaag	gtgatgtgcc agtgcgaat	t 1560
gttaaggca ggtaatctaa	. ctggttggta gatttctatg	tccaggagaa acatgtgta	a 1620
acttggtgc aactggagag	ı ctagtacatc ggaggaaatt	gcttgttgac tctccaaat	g 1680
gtaccaact ttaagtaggt	agcgatttac atttcattct	tatttgttct attctttag	a 1740
agagaagaaa ttctatgatt	. cggcagtaca atataacgaa	agaggttgat tatgtctac	t 1800
acaattatt catatgattt	. ttgagtattt gagacttcga	tttcatcagt tcaattgat	g 1860
gggttgttct ggcgcaacac	aaattaagga aacgtatgtc	tgattccttt ttgcttaga	a 1920
tcaattcca tgccagccta	tactattctt cgaggcagtg	ttacctcttg ggtaatttt	a 1980
agaatattat gtattggggt	ttggtttcac attttgtagg	atagtttcaa tctatttgg	c 2040
aataatgcaa aaagctatgc	cagtttagtc ttgtcttgat	ctgttaacag actatcttg	t 2100
agtattggtt ggattaacta	. ggttgagttt ttggggttgg	aagtaattca agaagcaag	t 2160
yttgattgta actagttttc	tgatttatgt ttgaaacctc	aaggcaccag tatgtaatt	g 2220
iggaatatga attcaagctt	tagcttggtt agtgagctga	gttatagtct atttattca	g 2280
aattgtggta cgaacctttg	ı tattttgtaa tttatccccg	agtgcagcta gtgttgttt	a 2340
attttgatat agttgtagct	gaagttggca tactgaggtt	tagcatttat agagaaggt	t 2400

-continued	
	2460
tagtaactta gtggtgttgc ttatatttgg attgttaatt ggaaatgaaa cggtcgtgaa	a 2520
ggcaggtgta tactaggttt tgaagaattg catatttcca ggggactttg tcactaatat	2580
tctatgatgt gtaccttggt ggtatgtggt gttttacgtt gagtcgagtg taaactttgg	3 2640
tagccagtga tatcagagtt aatggtttcc atatttaggt ttgttactcc aagttgctat	2700
cattatagtg tataagatca tagctcggga ttatgagggc tgttttgaaa ttaggtatga	a 2760
ataagaggca agagactaaa gaatatggca agttgcgagg gtatcaagct ggtttagaga	a 2820
cggttatttt atcaggaatt taatttttgg tgtggtaggt ggatgaacaa tgtggttagg	9 2880
gaaccgaaaa aatttgaaga ataatgaaat ttttagttgt tattagaatg gtacaagaga	a 2940
tataagaatt tcgagaggac ttggttcgtg ctgggattgt ttccttgatg aggatacagg	3 3000
tgtgactcgt atttttgtgg agggtttggg atattaatcg aaggtcgttg catattagaa	a 3060
gggcggaatt ataaaaaagg ttgaaggaat gtgaaaacag agcttgtata aaaatgtatt	3120
ggagegggaa atgeaetatt gaagtgetgg gagttttatt tgggtaeg	3168
<210> SEQ ID NO 3 <211> LENGTH: 3610 <212> TYPE: DNA <213> ORGANISM: Candida dubliniensis	
<400> SEQUENCE: 3	
ttcatccatc atatcacaaa tcctactgct aatatcagct caatatatca aatagtcccg	
tgggttccac ataattaagc agatagcttg ggcacttatc atcataacat gcgtatatct	
gtatatcaag cgacaacttg gatcctgaac gacacggttt ctgcaacttt tttaaaccct	
ttcccctctc cccaactttc aaaataacta aatacagtgc cagtaacaag ataaaactat cctatatagc acatettact taaattetet teettetete agaaceeace atacteacaa	
gcttcttaaa aaactgagtc ctcctcaata gcactagaac actctaaaca tctgctcccc	
tagattgatg ttgaactatc aatactaata ccaatacaat tcaaaaccat acttccaaat	
taacaacttt teetettteg tetteeatat ettacatgte gtaatteete tettaeegga	
cttatgatca acctattact aaaggaaaga cactactgta gagtteetgt caaaeggtet	
aageteacet teggeaataa etaegaacea eteeggtga aaaetatage aaateaagae	
aggtaagtge taaataaata caatagaaat atcaaaacet etacattgge caatttacte	c 660
tcaaaagctg ccgaaccaca acacatccac aaacaaactt ttctgagtaa tcttaaacca	a 720
tteeteta ageaacegte teecataaae tteacettaa eeataattea ttattteate	2 780
cattcgaaac acctattcca atatcggaag aggagaagtt caccgagcta ccaatttgag	g 840
caaatataaa ccaacttaaa gatccattgc tcctgataaa ccaaacctta tgcgctaaga	a 900
catttcattt tacccaaagc cattagcatc aaccaaaagc taacatatct gccaaaactt	960
gateeggtaa ateateeata taetetaagt egaaaceaae gtttaattga aettatette	2 1020
ccaacaattt ggcgaggatg gtttaaaatt ctcaacgcaa catgcattat tcttctaatt	1080
gaaaactcat tatccaaaca ctaaataacc tcaaaagaag tgataatact tatcataatg	1140
aaccetcata ceaacaacet etaaceaaaa teacaacaae teeacaaate ettttataae	2 1200
tttttcccca tcaaaaacaa agccaaaaat accgtgatac taaatcacat taatagaaca	a 1260

	-continued	
aaacatgeet teatteeact atttteaaae tagaa	gactc tcatctacaa aaattgtgct	1320
acactgagaa ctaccatttg cttgtcgcct atatt	atcaa ttcaagtact tccaccaaac	1380
catcatggcc acatccaccc acattggtta caaac	taacc attaaaacaa actaaatcaa	1440
aacataacta ttataacaaa taatagcact actag	atcgt gagtagcagc acagattatt	1500
ctacaacaag ttctcgctat gaatgtgcta atttc	tcagt acacctacca tcacaacata	1560
atctactcct ttaagtctaa gaacacctac tgcaa	gccat tacattaaac ataatttcaa	1620
gacaaaaatt gacgcagaaa ttgttgtcaa ctctt	ctgga aaaacaaccc ttctgaaacc	1680
aataataagc aatagtatac actacttcta caago	tgttt ataatcctgg aaacagatag	1740
ttaaatagaa gcgaggcatt actgattaga tactg	octga gaagatteea aaceaeeega	1800
caactactac taattteeet acgacatgaa cacat	caaac tactcgccca ccaatgttta	1860
agtagtctaa tatataaacc ttataattgg taatt	ctttg atgctaacca agaagcttgc	1920
aatcagaaaa ggaaggaaag aaattaatct tttca	aacta cagcagcctc gtttcgcaag	1980
ttttcaacaa aagcatagca ttactctctt taggt	attga acgtttcagt gaagaatatc	2040
tatttatata cgttttggtt tgtaaagcga gttca	cagca taagceteta cataetetgt	2100
atatgattat attaatgcat tattttgaag tattt	accag aagtttggct attctatatg	2160
tgtgctttag aggtagctcg tttgatttga acatt	gtggt tgcactgaaa accaaagttt	2220
gtgtaagttt tgtcagttaa atcttcttct taggt	tttct attgatatat gtagtagtaa	2280
aaattgtaaa ctgatgccat tactgattaa tcaac	agtgc aattcaaatt taatagagta	2340
gtccagttta ggatatttca agttgtagct gctca	gcata tggctttgtt gtcctgaatc	2400
aattettett ggtataggga ttagettaet gacaa	agatt aatgtaggtg agaggagacg	2460
gtttgcttaa atgagatact aaaatattaa actat	tgatt tacacagatt atttttatag	2520
ttagtagtcc tatgcacaaa agtacttgaa ttgga	tgagg gaccaccgtt gaaaagcaaa	2580
ttgataatgc gaattgtagt gatttgtatt ggtca	attga tgcaccagta caatagtgaa	2640
cttggaattt atcttttaca aactattatt gtago	tagtt aacaaagtaa tttaattgcg	2700
agatagtete egagtatttg ggtaatgtat tattt	caacc cttgactata tccaatggtc	2760
tggttatgtt acggttattg tttacggtag acgaa	attaa cttgtggagc accttaagag	2820
ttgaggcttt ttttatggtt gtgaggactt agagg	aatca ctagaagcga tagctttaag	2880
gcaatgatgc aatcatagaa cagtttgcta aactg	tagaa ggtagctggt tgtgttcatg	2940
tggtttgtga taaaggttcc atcggttaaa acgtt	tttcc ttgttgttgg cattttgtgc	3000
ataattatgg aagagtaata actccacgct gttga	tccca ctgtatactg aaacgtaggt	3060
tttccagagg caaatgattt gctagttttg aatgt	attgt gaggttcaaa atgaaattgc	3120
tgagacgttg tatcaagctc atttcaagtt gtagt	aatga attgaacatt ctacaagtat	3180
caagagacgt tggttctatt ggagatatac taatg	taata tttaggtetg tttgagegtg	3240
attgtggtaa tgactgacta tcctcagatg gtgag	agaag tttttcactt ggttgcagtt	3300
caaataaggt tttcacactg gcagggctgg tagaa	attgt taggtatgac cgaattactt	3360
ttttgagget agteggtggt taaeggttgt gtget	ttatt tgattttgac aggcttgata	3420
cgattgette ttatgttgge gtgageatgt gecae	ggtat cagttgttca tagaggttag	3480
tagagacgat gatgcttatt aattttaaga tacgt	gagtt ttetgatgtt tgegetgtet	3540

-concinded	
gttgtcggtt tatgtatgct gaatcatata ataattttaa ttggcatcgg cgatggtgtt	3600
tattccgagt	3610
<210> SEQ ID NO 4 <211> LENGTH: 4804 <212> TYPE: DNA <213> ORGANISM: Candida dubliniensis	
<400> SEQUENCE: 4	
cacaatteee agtaaaceat tataaaagga aaagetttea aceaacteee tgeaaatgta	60
aacctaaagc acagagetet attetttaaa atecaateet tagecacaca acatgtaagt	120
tggcttacta ggagcctaca aatcagatta tgaatgtagc aaacatactt aattatgctt	180
cagaaaagat acacccatgg acttgaaaac attatctcaa atacacctca agtcagacaa	240
tacaaaactt atagctgttg catactgcaa taggtaagaa catgaaaaca atagagttta	300
catcaatctc attttcgaat cagccaaact tcaaaaatat aaactattcc taatcaatat	360
acttcacctc attcattatt gcgcaactca cgaaaacatc taccattact actacttgga	420
acaatgaaac aattgcaaaa cgagccttta catataaaga agaataaccc aggtgcgtac	480
attgttgaaa tgaatcgggt tcaactaaaa ttgaccacta ccgggaccaa acattaaacc	540
acgaattaaa gcatgcactg aatgcaaaca ccattaaaaa tgtctactgt taagtgatta	600
cattttcgtg tgttttctac agacgaacgc aattctacaa tgctaatcaa agctgtagtt	660
agactagtta agteetetat atgatttaaa gacaetgege tttetttata geetattaat	720
tgctaaacga ccccctcaaa atgctttcta agaagatgct ttggctattc gattttacta	780
aactacgtat cctgttcctg cagtctaaca gggcattgtg aatttgcaac aaagttttca	840
attcgttttc ctgatgccaa tcatcactta taattaggtt tcacgtgcta cagttatgct	900
tettteagat gttggtacag eeteaggtea ateggttttg gtttggttge tgatgategt	960
cgtacgtagt atcgagataa tcctaagtaa catcaaaaaa tacattgccg tatggtagca	1020
atgtagctgt tccagacacc tagtaaatga ttaaagcttg cgtttcttaa caaagaaaac	1080
tgagtttgtc gtcgtcgaat gcaggcaagt atggggatta gtgctttaga gctaaggagt	1140
tgaacgtgtc tttccaactt gtccaacaac gtattcagtc agcttaagct ttttgttcat	1200
gcattagagt tttgattatt ctggtatttc ttactagggt ccaccttcgt aaagtgatac	1260
ttgcttgaaa gtttctacat aaatattaat tgcaagtatt agtttgaaat tgagcaaccg	1320
gtggttcgag gagattgtcg gttgaaatgg gaaattagta tatttgagta agtttgctag	1380
ctggattact gtttccaaca actagtaggg ttcatttgaa cttatactat agaagtgttt	1440
ttgcgaataa gttcttgatt gggacagatt aaaatatttg tgcataatta aaagagtttt	1500
aataagttac ttaataaagc tatactcgta ctagagacat teetttagte acgeeteaga	1560
gctagaaaat ttaagctgcg ttggctttgc ttctgataag caacgtttag tcaattcatt	1620
ggaagatgta gtagggtgta tcaaatattg agaaattttg gattgtcttt tacggaagaa	1680
aaggttettt aaaetttgat tgggggagea ttagaatttg ageatttata gttgaagett	1740
tetttteeaa gtgtataeta eattttette tttaattgga ttatettaga taaaggaaat	1800
tacgtaagat gtaaagttta taggaattaa agtgacattt gcatggtatg aatatgatta	1860
atgacaaatt gtattatgga ggtggtggag taatgggtgt acggtattat cgtttatttg	1920

-continued	
aaaatgactt ggtcgcctgg ttttcgacga agactggaag atacggagaa ttggt	taata 1980
gtgttgacca ttggtgatgc agcaatagag ttccaagtga gttattgatt aatcg	atgct 2040
atctattttg gcggtgaatt gacaggaatt tcttttttt ttaattacta catgo	atatt 2100
tctcgtgtga ttttcagatt ctcagttact agtttaggaa gaaaattcaa taaag	agtca 2160
tettttetae tgeaaaatat gtatggagee ggttegaaat tagtatttet attae	tataa 2220
atagaaaaaa tatgcaatta tcctccccta aatttccttt tttggattct ttatc	ccttg 2280
aaacctttgc ctaggtcgac aactctaggt cgaagtggta ctacttcctc gcact	agaga 2340
attgaactog gooccatoto ttoggottot catttoaagt ottaataatt tatao	tcaat 2400
aaaacaaaca actacatata aaatcaaact ttatataaaa taataagaac aatto	attca 2460
tttaatctcc ttcgtttttc tgacttgtta gtatatgata agtttctctt gccag	aagat 2520
aaatgtttca aatctttctt aagtacaagg tacgttatat aaatatcatt gaact	ggctt 2580
ttttcgtata gctttcgtct tttaatatca gcaattaatt cggatagttg gggga	gaccg 2640
ttctccatat catcgagttt ctcaaagtta tctgcactta ttcttgatat attca	gcgta 2700
ttctgacttg ttgaagctgt tgtattatga cttgttgagg ctgttgtatt gtcaa	ttgct 2760
aaagctgttg tattgtgatg tggaggtggc agtgaagtga	taggt 2820
tataaatett teaaaagatg catatttgtt aagaaaaett tggatateat tttea	gtatt 2880
tctggattga ataaaatatg ctgcaagtct tttattatca ggtcatgaat agcct	tttgt 2940
cgctgcttgt cttcaaaaac tacaatttgt tttaatttca gagccacatt ttggc	aactt 3000
ctgtaaattg gatccaacat tgaattgatt atttcaacta ttggagtttg ttgtt	gtatt 3060
gaagteetea attetteaae caattttttg ettageegae tattatggta gtage	tattt 3120
gaaaaatcat ggttatggtg ataaatccaa tcagcaaacc actgttcccc tttat	gtttc 3180
tgctgaacta tgatttttgc tggacagttt attttttatg gattcttttc tgttt	ctttt 3240
ttttcacagc aaatacattg ttgatattgt tttcattcgc ggcttcactt tgatt	ttgtt 3300
gatggtttaa acttgtttga gtataggaat caccacggtt gcagtggtat tooto	gtatt 3360
ccacagcagc gttcttgtga ccgtgagaaa ccttaggcta ctttatgtga tatga	cacat 3420
taattatgat caaatcatta acttaaactc atctcattga atacaaaacc tctat	aaaca 3480
agtatatact ttgtaaaaac tcgtttgtgc ccttgatatt gaatcataaa tccaa	gttgg 3540
ctggaaaatg tacatctcac taacaattta tctatctgta attgttgaag tggaa	aacta 3600
gtttagatca taccataact tcaagtaaat gcaaattaat agccctaagc ccctg	tccaa 3660
ttcaagttaa atgatccact caacagccct aataataaga tttcatggat aatga	acatg 3720
ccactcgcta ttcaatcctc aaaataaaaa cccactttag catcaagcaa tttga	gcaat 3780
aacatccgac agaaattgtc aaatagaagt acaccatttt tgaattatta taact	cacca 3840
aattgcaatt ccaaaagttt gacacctact ggtcaaacaa aaatcaataa ctcat	ctata 3900
ttagttagtt agtaagcaca gttttttaaa aacaagggta ttaatcatac atatc	atgac 3960
ttaaagtatc tgtaatccca gtagcagtaa ctatttgatt gatttatgat ggaaa	ctgat 4020
ggattgatga acgaatggtg aaagaagaag gagaaagaag tggtggtgag aggaa	aataa 4080
ttgaggtcac gccagcctgg catttatcat tatgaagaag aaaaaggaca gagca	aggga 4140
tgaaagatat tttggaggta agcaaaatgt aaacaaaaaa atgtaaacaa aagga	gtaca 4200

-continued	
acatgcagaa ttettatget caaatatgea tgttategee attggeaatt ttetgteaat	4260
tcaccgccaa aatagatagc atctgattaa tcaagaggaa cgattttgtt tatgtttgat	4320
ttttactttg atgagaggtc aggcagttat ttgatgccat gtatacttgg caacttcttg	4380
caggttatca ttttatggat attaatggtt tatatgtaat tcattttcac gtcgtttaaa	4440
agtagagett ttagagggtt ttetaetgtg ttgtattttg tgagaattgt ataeteaaag	4500
aatccacaat tccatgactt gttggataat ttgtaaaaat atataaatgt atgtattgag	4560
acattgttac tatgtggtgg agggtcatcc atttgttggt tggaaaactg tttttcagtt	4620
aggtetttet ttggttttgt ttgteggtag teegteatte ttgggttaat gatgacaaga	4680
cttttcccta gatgttcttc tctgagagtt tgaaatgggt ggattcggtt gggctggcta	4740
agtttggagt ggattattta gaaacgagag ttttgtttat ttggtagggt gcatgagggt	4800
cgcc	4804
<210> SEQ ID NO 5 <211> LENGTH: 3833 <212> TYPE: DNA <213> ORGANISM: Candida dubliniensis	
<400> SEQUENCE: 5	
atggeetete eettacaaaa tttgeeeeag etgataetat tgagteacae ateacaeteg	60
tttgctaaac cgaccatttg aatcctagct tctcgtgtac aagtattcat caaacatatc	120
tttgettett tteaettegt eteaaaaag ataeaeettt gaaacaetee egaagettea	180
gctattacct caatcacccc tcatctccct acctctttat tcgcataata tctgttttat	240
taceteteta teecageaat accatagtat ttettgeace etattttaae taetegeaga	300
caaccgagtt tacatcaata tgctaaacat teetetgeea caeeteacae caeaaette	360
atgtetteea tagteatgee tetaaactat eecagegatg acaacaacat ettgeeatea	420
acaattgete caaagaaaaa egataetatg tagtategeg aaaacaaaaa acaegatgaa	480
gcactettgt agaateagee gteactaegt taeeaegeta acceatteea ateaagtgaa	540
cattaaacta actatactgt ggatgaaata atgtattttg caccaccatt tcccattcct	600
cacacataca aactgatttg cactaagtga atattgcaac cttccaaaaa tttgttactt	660
acaatettet gattteteee tgaagteete eteaagetga eteaaetetg tttaggtaet	720
tcgaacctat acaatatgta aataacagta cagagaaacg tgtctatcta aaagttcttg	780
cgtaaattaa aacaaattca ttttgactat tgtcagtgcc agcaacaaca tattgtaaaa	840
atcataagtt aatcacgagt taccatacta tttagttgac aagttccttt attccgagaa	000
cattgctgac ataaagaaat gcctatagca tccgttttca taccgcaacg acacctcgaa	960
ttttactcat ttgttatagc atattctctt ttgcactatc aatcaatttt caaccgatac	1020
ctcaaaatac tgctaataac agattgaaga caatttgatc acaccatcat tttgtcccga	1080
gaatttgaaa aagaatataa ttatcaactt accaattcta gtootgtoat ttoaaagtac	1140
caaacaaaga atagcagcac aaagaataag cataaatttg acattgtctc acaaggcaat	1200
tgcaccaaaa atcaaataac gaactgcaag agtactccca tatcaaatct gtaaccgaat	1260
catcaggatt tattagaact acccgatgca attacactaa caaatagaat totttootga	
ctcaaaactt atacactacg aagctgtgag acttctcaca gaatctcaaa ttttagtact	1380

				-contir	nued	
tttctccaaa	agtttttaca	caatagaaac	aaaatatact	caatttatca	aaaaatagct	1440
tatataaact	tttttctaat	tcaattttt	ccatttacca	tgacacaatc	tatattgtct	1500
ctattcaaga	aaccacactt	aaatacaaac	atcatcatgt	atcttctgcg	tagaatagac	1560
gcattcatgt	tgaacataac	atgagctcca	gtaccaacga	aaacgacttc	ctcattatct	1620
taacaacatt	ttaccttaac	agttaaaaac	ttaaacaaaa	taaatatcaa	actaatgcat	1680
ggtacaaact	cctgtattaa	acatggtttc	tcgactacat	tggcagtttt	caaatgcaga	1740
agtgtaaagg	gagtcgtaag	cttcttgagt	aatcatttgg	acaaacaaag	ccaccgctaa	1800
tatcacgtct	acacatatga	cagggagctt	ctaacaagca	cactctcccg	agccatacta	1860
ggggccatta	gataaacgta	tacacacagt	gcatttactt	aagcaacggt	taaatctcat	1920
ttcaagaaga	tatgcttggg	taggtcagat	acattttctg	acagagtaga	tttcaattct	1980
tcccaggatc	cgatcgacat	aaattcgatt	tctcagtgtt	tgattgcaat	ccattatcca	2040
agaacttatt	ttattgacta	acccttttct	ctcaggaata	tgtgcgttaa	catatataga	2100
ttgccctgat	tattgacttt	aataacttga	acaagaatgc	cttacttatc	atttgatgat	2160
attatactgc	aatcattagt	cctaaaccca	tgaaagtttt	attgaaaata	gagettgtee	2220
ctgcaatctg	gttaagtctt	ctatttatag	agtcgtgata	actctgaggc	tattataatg	2280
tgttacataa	ttttgatcca	atttaatgat	tctacttggg	actaattgga	ataaagattg	2340
tttggtgaat	ctggaatagc	atttcacttc	aagtaaatta	gagaatattt	ggaatagttc	2400
tctggtagtc	ttaataattg	tagacaagca	atctgagaac	attaaatggt	agtagcagaa	2460
ctaactaact	tttgaagaaa	atcacgttcc	cgagctgctc	tttggatgta	aggcgaaagc	2520
caggttacgt	acatggtatc	cacattctaa	atggaaaatg	agtgactaca	aggaaattca	2580
attcataaga	tcattcgcag	atactattac	gatattggtt	tctgtattga	cgagctgaca	2640
acgcgtggaa	agtttttcat	catgctggct	tgtaggtgtc	gttgaatctg	caaatctaaa	2700
cgtgtggaac	agcaggaaat	acaaaattgg	ttttagttgc	attgtatatt	ttaatatgaa	2760
ttgtatggtg	atcccgttta	gagtagtacg	aaagtttttg	aagacctgtt	atgtgttcat	2820
ccagttgtct	ataggctcac	ttttgttctc	atgttggatg	gtggtctctc	aagtcgctca	2880
ttaaaggcat	atatgtatga	taattggttc	cacaaggcag	ctgaaacact	taacaaaaca	2940
ccttctttac	acaagtgagt	tacttacgta	aggtaggagt	ttgtagtaat	ctagtttgta	3000
tagcttttgg	tgtatttgca	tagatctcga	ggagaggctt	ctcactagaa	catgttgtca	3060
gtggagcaat	ctgttaggtg	tttaaatttt	ttgcagtgga	gtaagttett	attactatct	3120
ttacggtgag	gttgtataaa	tcacctttcg	gcttagcaga	acctaatcgc	catgcttgtc	3180
cttaatatat	gtgttgatgt	ggtattacgt	gtgcatatca	gtgtaaggat	agatatttgc	3240
gtgtagttta	gaaggtgtaa	gaggtcacat	tttgcataat	atcaagttgt	gtttagtgtt	3300
tgggatgatt	ttgttggagg	tagaagcata	tttgaagagt	gcagtattaa	gcttagattt	3360
aaaatttgtg	tttatgaggc	ggatttgagt	ttcatagatt	ccaagggccc	gttggattgt	3420
tgtaataatt	ggttgtgggt	tttatttgta	tctcgttaat	tgggcgtgaa	gaatatggtt	3480
ttgagctgct	ctatggatga	atcagtagga	ggtgtttggg	cgataactga	tttatttggt	3540
tgtagatgga	aaaggcaatt	ataattatcg	gtatgtcgtt	ttctttggag	caattgttga	3600
tggtaagatg	ttgttgtcat	cgctgggata	gtttagaggc	atgactgtgg	aagacatgaa	3660

-continued								
			_				-	_
	-	COL		Т.	r1	11	ഫ	<u></u>

<pre>gattgtggtg tgaggtgtgg cagaggaatg tttagcatat tgatgtaaac tcgtttgtca 3720 gcgagtagtt aaaatagggt gcaagaaata ctatggtatt gctgggatag agaggtaata 3780 aaacagatat tatgcaaata aaaagaggta gggagatgag gggtgattga ggt</pre>	
<pre>aaacagatat tatgcaaata aaaagaggta gggagatgag gggtgattga ggt 3833 <210> SEQ ID NO 6 <211> LENGTH: 3649 <212> TYPE: DNA <213> ORGANISM: Candida dubliniensis <400> SEQUENCE: 6 agaagcagcg acccaacaga taataatgta agtaatcctt ttcaatcaaa tacaaataac 60 caccgaaaca attgtcagca aatagaattt taaaaaaatg aatctcaaat actgacaata 120 acctctccct ctcaaatact accaactccg tactcttcaa ttgcactgta actattacat 180</pre>	
<pre><210> SEQ ID NO 6 <211> LENGTH: 3649 <212> TYPE: DNA <213> ORGANISM: Candida dubliniensis <400> SEQUENCE: 6 agaagcagcg acccaacaga taataatgta agtaatcctt ttcaatcaaa tacaaataac 60 caccgaaaca attgtcagca aatagaattt taaaaaaatg aatctcaaat actgacaata 120 acctctccct ctcaaatact accaactccg tactcttcaa ttgcactgta actattacat 180</pre>	
<pre><211> LENGTH: 3649 <212> TYPE: DNA <213> ORGANISM: Candida dubliniensis <400> SEQUENCE: 6 agaagcagcg acccaacaga taataatgta agtaatcctt ttcaatcaaa tacaaataac 60 caccgaaaca attgtcagca aatagaattt taaaaaaatg aatctcaaat actgacaata 120 acctctccct ctcaaatact accaactccg tactcttcaa ttgcactgta actattacat 180</pre>	
agaagcagcg acccaacaga taataatgta agtaatoott ttoaatoaaa tacaaataac 60 caccgaaaca attgtoagca aatagaattt taaaaaaatg aatotoaaat aotgacaata 120 acototooot otoaaataot accaactoog tactottoaa ttgcaotgta actattacat 180	
caccgaaaca attgtcagca aatagaattt taaaaaaatg aatctcaaat actgacaata 120 acctctccct ctcaaatact accaactccg tactcttcaa ttgcactgta actattacat 180	
acctctccct ctcaaatact accaactccg tactcttcaa ttgcactgta actattacat 180	
caaaacaacc aaatcacagc atcaaactct tgatatattg actctaccca atttcgctca 240	
aatgacagac caagctatat tgttgcagcc attcatatca acattatttt taaccagctg 300	
tgteteteae etetetaate teatteeaet aaacegaeta getgeaaaae teaeetegte 360	
cacaaaaaac ccatatette ectacettag caaateatee cagaagtgat cacetette 420	
tccagaaata gactggttga caatacgaca taaagtcaaa aaactgaaca aatcatcata 480	
cttgtttata atatcaacta cgttccctaa caaattactt ttaaaacatc cattcaatgc 540	
gaaggcaaag ttagtattgt cagtaataat tattccacaa gtacagcgct aagctgagcc 600	
atgtgttagc ttcgaaattg atacaaaatt tactaaaact acaaaagcca acaaccgtaa 660	
caaaatcagc taagttatgt ctaaaattac cgtgatatgt tcctctttta aaaatatcgg 720	
aatattacat ttctgaaaag tttaaaaatt caaaaagaag ggcttcacct aatactttca 780	
agtacatgtg atagatetea ttacaaaata aaagaeteat teettteaat caageeaatg 840	
accatcttat acttcaacaa accactctac gctctattct aaaaatatgt cttgcaagta 900	
ccccgagtac tctaaaccag tagaaacgtt ttttgaagtt acactgtaac cacttcgaca 960	
cctcgatcca ctagaaattt aatttccaag ttagagtgtc cattccccaa acttcatacg 1020	
gaccacgtag atcctagaca ttagtttaca aaaattgctg gcagatatca tctcaaacca 1080	
tataaaccta cccgtttact atagacacta taacattctc tctatatctg tgcatttctc 1140	
aagteettee ageatteeca gaaceteata tateaaaaat ataeaacaca tegttggeaa 1200	
aagtaccaac tacctattca attagctcag tctttcttaa ctacgacact agatggcact 1260	
agtcaaacac atgettcaaa tteaaataac tgeaatatet acaattette taaaaatgaa 1320	
cgagcatgtt accattgatg gtcactttaa agtgcttttc attacaatac acaactttca 1380	
agacaggcat aaaatacggg ggtccttttt gcaaatgcct gaacatatat ctatcctcct 1440	
acaccacctt ctaaccccct tgtacaaaca ttacttaatt tagaacacca tcatgccagc 1500	
aaccattcac caattcgccc tagatacgct tgtttcaaaa gctgcccttc cgatcattta 1560	
ctacattcaa caaccccaca agggacaaat aacagcaact gaattttttt gctgcagttc 1620	
atagtaaccc cggttaattg atcttgtagc aaaactacac aatgattctt tccaaatcgg 1680	
gctcataaca agctcttcac tatcagtcag ttctttaaaa gtaagtattc gcaggcataa 1740	
tactagetet cateattaat tetgaageea tageattagt tetttteaae aeegegttat 1800	
gaaatgetee aatetttaaa teetttttae caaetgteea eetaeteeaa eeaetageae 1860	

-continued	
	1920
aaggtcaagt cacagattgg aataacatca attctccaaa attttttaag atacaatgac	1980
aaacagaacg taaaactagc attgaaacca ataacaagga aagagtatat aaaacatgtt	2040
tagcgatgca tactagagat aatatataga cttgttgatt tcataagtca ctgaatctat	2100
ctttcattat tatttttcta gtgtaaatag tttctttact attgaggata gtcaaatgat	2160
aaatgctttg catgagagat tggatttgaa catatattac aaaagatgtt cctcttctgt	2220
tacctttttg acagatattt aaagcctttc gatgatagtt aaataaaaga ctactgattt	2280
ctttttccca ttgcttaatt tatatcaatt tttcgaagtt gattatcgca accaggatcc	2340
tgtgatgtct tgagacttct actacatgta tttatgattg ttgattttaa agtagtgaag	2400
gcatatgctg tttgtgtgtc ggagtgctca gtgaattaag tttctttagg ttattggtca	2460
ttccaaaaga ttgactagtt tgtgtacttg atggtgtttc tcattgtaat tgaattcctg	2520
catttttcta ttttatggag atattatgtt tgggatttag aatacgcatg gtaacactag	2580
agtgtgacat ttgaaagagc acaggtgatt attgagattt caaagggtgt cgagcatgat	2640
gtaacaggaa tcagattatg actgtattat tatttagtaa tggtcgtttt gaagggtgtg	2700
gttgattggg gagacacttt tggtgactat gaaagcacaa tagttgttgc gagttgtctt	2760
taggtgtaca ttactcggct ttggattatt ggagatatag gtaatctttt taattgaagg	2820
tgctagaagt ctgaatgttt cattatgctt tgagaagtga tcatcatttg attcgcttta	2880
gtctgacttc tggtgtatgc tgaacttgca ttgatttgaa tttgttactc tgtagtttat	2940
gggcaaaatg ttagtttgag aggcaggtca gaaactggat tgagcaagga ggatttaagg	3000
acaaagttga taaaattaga ataggcataa ccgtaaaatg aaggttatat aaacatacat	3060
tgtttatgtg gttggtgaga gtgtcttgat tagtttagtc gactcggtcc tgattcgagc	3120
aggaatgaga tetataatge taagetgget ttageggtte eettgetttg aaggeagaaa	3180
atgagccaag tttggttaga tgaatgtagg cacactttca agtatttgca tttttgaagt	3240
ttatgtgagc acggtgtttt caaaagtggc atgatttgtt ggcttatcca acgaagatga	3300
gatatcaaag gaacataatt gtatatcatt cagaagataa aagaaataag tgacgtttaa	3360
atgatttaaa taaattggag aggaagaatt tgatattcac taaggtaagc gagatagaat	3420
tggaaagatg acgagagcat gtactcaact acgtgtcgta cgactctagc taatcatgat	3480
aaggaagtat taaaaagcta tgatcatgtc aagattgcaa atctaagcaa agtagcataa	3540
agccagtctg tctcatctgt gattttaagg gtaaatttca ttggcagtaa tgatctgcca	3600
tacctaatga atttgtcatc atttggttcc tcgcatttca atcaagatt	3649
<210> SEQ ID NO 7 <211> LENGTH: 2992 <212> TYPE: DNA <213> ORGANISM: Candida dubliniensis	
<400> SEQUENCE: 7	
cccagaagta tccactaggg aacttgcatc ataaccccat tccccagcct cccaacaaag	60
aatatcacca tcattaaatt caatagtaga agcagtcaac agctaatttg attccgaaaa	120
actcaggttg ctgtaccatt gaccagaaca attgcgaact gtcttgcaac ctctcaagca	180
atcaaaactg acacaactga aagcacaata agcatttttc agtcctaaca caacatcctt	240

				-contir	nued		
acagaacgaa	ttgattgtaa	gtctggtaac	acttttaata	atatctagac	aacaacaaat	300	
ctagttttac	taaccttggc	tacaactcta	tgcataacac	actcctcagt	aataaaaatt	360	
actctatatc	atctgtacat	gtgagcctac	atcaaatcga	atattggatg	ataaaaacac	420	
aaaccttctt	ttcagaaaaa	cagccaccac	caaactcttt	gaaagcagat	aaaaacgaaa	480	
taaacaaaaa	atcaagctgc	tatacaagta	aggcgtagac	ggcattactt	tcatgatccc	540	
taacaagctc	catcctaaag	ctatgatgtg	tcaagatctc	caaatgtaag	caaatcactc	600	
ttagcgtgca	tttaacaaag	ccattcacaa	tccaacttcc	tctctagtct	atatacaccc	660	
aattgtacaa	caagttgtag	tcacaagcct	aagctatatt	aactcattca	tgatattatt	720	
cctgccaaga	gtggactcca	ctattaacgt	atagggtgac	cccattcaac	agcttctagc	780	
aaaactatgc	acttcagtct	ttacttaatt	ggacttccat	cttgatacat	tgcttctctc	840	
ttgcctctgc	gaaacacatg	tttatcaaaa	ttggaacttg	gctaaaccaa	cctcatcata	900	
tattaataac	ctcaaacaat	gaaactgatt	ccacccgaaa	tattacatac	tgcacaacag	960	
caaccaaatt	atcatgcacc	actatctaca	aaaacatttg	ttcacctcaa	taaacccatt	1020	
gattctgaat	gactaatcat	tgcgtattaa	taacaacacc	ttgaatatat	tagcgtccta	1080	
tgatttaagt	aggcgctaca	tatgaacttc	gtgccaggcc	tattctaatg	ctattacctg	1140	
tatatatttc	catactgcaa	atactgactt	ggagtatacc	tttcatcatg	tacagtgaac	1200	
tctctcaaac	atccgtatat	gatttaatta	atccaagaac	cccgaatgac	attcagacat	1260	
tatctccaac	taaaatatac	cgggattcct	aaagaatttt	tttcctgaaa	tacactagaa	1320	
ttccccgtta	gctagtacaa	ttcttcaaaa	aaaaattcta	ttccacatga	actttgccag	1380	
ataccatcta	actcttaaac	attectecce	atctcatatg	catgaccacc	aaccagttcc	1440	
actgcttcca	atagcgaggg	cggggagagg	gcaaagccca	agattacatt	agattttta	1500	
tgtagatctt	aatattctag	catgtctcag	cattacaaat	tcattggaac	tgcaaatcac	1560	
ctgttcacaa	accgatacgt	taaagtaatc	gataatatat	ccttatacta	ctttttttc	1620	
cagtctattt	caaagcacag	taggcatcca	agtgctatat	cacaacctct	gcttaataga	1680	
ctgtgcacga	tatattgtgg	agctagctgg	agaggtgagg	ctagcagtat	gtgactttgt	1740	
ttctatttta	ctttcatagg	gaaatcaata	cgtactaaaa	tttacctttg	ctaccatgtc	1800	
taatatctgg	tgagcaggaa	gtaatcggct	tcatatatta	aattgtaaga	cgattatgca	1860	
tacgatgctc	ccatagtttt	ttattgcatt	gatattcctt	gtaaataatg	gtgtcacaat	1920	
tgtccaaata	aataaaaaga	gaacaatagt	ttcagtacat	ttgctgtctc	ttcaaaacaa	1980	
tgtataatgt	ctctgctttg	ctaaattgaa	aaactggtaa	tggaccaaca	gttatgagct	2040	
gctatttaaa	attgcaaata	ttcaatcaaa	atgcttgcgg	aatagaacgg	tgactctgaa	2100	
atttttgtta	ttggtttcaa	ctatctctta	gctaatatca	ggagaagttg	agttaattct	2160	
ttagaatagc	attgatgagg	tggcatccaa	gcgataggtt	attctaggtt	ctattaagat	2220	
tggttagttt	tgaagtatat	gatgtcactg	tctttaatct	acagttcttc	cagtttgtgc	2280	
cttatgttca	cgaaaaggaa	gagattetta	ggtagagtga	taaataattg	gtactataga	2340	
atataaacac	tactttagga	gattgagatt	tcttattgta	tgtgagaaac	tttcttagca	2400	
gaatcaaagt	atggttgtat	acgtaatatg	atttcaaatt	cagagaaaat	aatgtgggta	2460	
tgctcgtgaa	catttataat	tgtaggcttg	cacaggaatc	ataggaattg	tggttgtatt	2520	

				-contir	nued		
gatttagaac	agttatgatt	acttttatga	tagctggtgg	ttttaggaga	taaaatacgt	2580	
agggtattt	ttggtcttgt	gtggtgtcga	aggtattgaa	aacttgtatg	gtaggaattt	2640	
atatatgagg	tgttgcaatt	ggtggatgtt	gtgtgtgagg	cgtaaaatta	aagataaaca	2700	
gtagtatgag	atattgcaag	attggtgctc	gattgtcagg	gttgatgtga	tggcactgat	2760	
tacaattatt	tgatagccta	atttcacctg	atggtactac	agatcgatat	aagttttggt	2820	
taattttatg	ttgtttttgt	atgaaacgtt	tagcaaatgg	ccctttaaat	ggtagagcat	2880	
gggctaagtt	cttttgtggt	aaaatgtgtt	tttgaaattg	gatgtacatt	atttgttaga	2940	
catgatcata	cagaatcatt	tacaagcatt	gctggttcaa	agtcagttaa	ta	2992	
<210> SEQ 3 <211> LENG <212> TYPE <213> ORGAI	TH: 4816	da dublinie:	nsis				
<400> SEQU	ENCE: 8						
atgctaccaa	aacatgagaa	ccacagcagg	tctggtgttt	attccacagt	gacttgggtg	60	
tccacagtat	gtcttccgca	acaacagaat	cttttcgctg	ccacagacgg	aggcaccatc	120	
accacaagcg	ttatgccaga	gcagcacaag	gagtcattgc	cacgcattga	ccagcaacaa	180	
gtaagcgtcg	ggaacaacct	ccaaaccaac	ccgcaacttc	aacaaaagtg	aaactaagct	240	
tgctgtatct	cttctaaccg	agtcagtcaa	ccaacgaaat	tgaacctatc	aaagcacttg	300	
cagcacacat	tataaactgc	aggattettg	gtcatatgtc	ttgggatctc	tagagatctg	360	
gtttgcaaac	gtaactaact	tcaaaatgat	ctaatcaaat	cgctgacatc	ctgaatgtca	420	
aagcacaaaa	acaacactat	tttaattcaa	atagtttgca	actacttcta	atgttgcata	480	
cacaaacaac	accgaaaaga	cccatccgct	cctgacaaat	cttcaaattg	acctaccaat	540	
tcttcgctcg	aacaaaagat	tgggaaatgc	atcaatcctt	gaatcaaacc	agagagtgag	600	
atcctgtatt	tctatttaca	tttccatcta	ttctcaaaac	acgaaagcgt	tatctgcgta	660	
attgcaatca	ttctaattag	gttatggaat	atagaaaatc	catttccaaa	aagatagtct	720	
tttataaaca	agaaactcct	gaatattcaa	ctataactca	ataccaccga	tagcatataa	780	
atctgacaat	acagcatagc	aatgaatctc	tacaacacta	atgtacgact	atttcccaca	840	
ttctattctg	catagtccat	gactgaaaca	taacaagccc	accatcaatt	gggacgacca	900	
ccaattccat	ttcaatacac	acaaaccgtg	tttctaacca	gatatctcgt	ctcctataaa	960	
catggacttc	tcttcaccct	taaccaaaca	aagcgaagaa	agtacattaa	cacttgtact	1020	
gctaagttca	agcatagcct	ctgctcttac	caatacaagt	tctaccaact	tagattaata	1080	
ccagaagcgt	atctgtaacc	tcatttagaa	taatatttcc	ttatactcat	tcttaacttt	1140	
tccaaacttt	cacaaaccaa	gtctaaacaa	tcaatctgac	caccactacc	aacagtttcc	1200	
acacaactca	gcaagacacg	tattgtcaat	atcatactta	tatcctctgt	tacttcacaa	1260	
tcatccaaaa	agctctatca	aacaatagcc	acctccccta	taattacaac	tcaaggtcat	1320	
acacctttag	aaacctaatt	caaatagcta	ttggtatcaa	cagaccgaat	gcaacactta	1380	
gtctccaatt	tcactacgga	ttctcagaat	ccatgcctaa	tcgaatatct	attctgggtg	1440	
caccaaacac	cctttgtcta	ctaacagaac	ttgttttagt	ctctgaatag	ggagttacag	1500	
ttctaaatca	acaactaaca	cttgctgtat	actcgatcta	catgaagata	ctcttgtgcc	1560	

		-continued	
aattctgctt aataacacto	e tetaaaagae gaacettagg	aaaattccca agtagacata	1620
acacagttac agaactaact	caacgaaact ctatacatca	cagccagtaa tgtgactcag	1680
tgatcaataa aattcactta	a cttgcaaaca aaccaatggc	ttcctgagtc aaatcaccat	1740
ctgagatgca aagcgtaatt	ttggaaatag ctctcttttg	cccatgtggc aataaatatt	1800
acgctacggc tgcaatccat	cgtccctaca gtacacaccc	aaagtaaagc cattgcacta	1860
cacaattcta gatgatatgo	c aaaacggatc caaataatat	aaattctaca ctattctaat	1920
aaacataatc caaaagagtt	: ctcgttaaaa tgcatttagc	ggtagtacaa gatgcagtaa	1980
ctacaataaa tttgtcattg	g gtteteteaa egategetat	tctaatgaga atatgattca	2040
tagccagaaa gggtttgcag	g agacaacttt tcctaccact	caatcccaat ttctctctag	2100
aagctactct ttgattttt	g ggtcaatcac agtacttaca	ttcacaaagg caatggaaca	2160
tgttccttta gatcggtccg	g cattcaacca attggagctt	tgactgatta cagaaccggt	2220
cgattgtggt ggatatttgg	g gttgcaatgt gctctttcta	agaatcatcc taattgctct	2280
atcctcgtag tatactcgga	a tggttcaatg tacaatgaaa	gcacgtcgga ttttgacaac	2340
tttaggatca accagtagaa	a tgtaagttca atgttgcacg	aatgaacggt ttgctgtttt	2400
agatagacct gttagggtad	: tgtacattta cattgtaaaa	gacaatcaaa aggctacgat	2460
gacaagatcg tgtaggcaac	ctgctctttt gaaatgcgtt	ttgtaataac tactactagc	2520
ttatactgtt gatacaacto	y tttagcatac actagtaatt	gaagttttcg gacacctata	2580
taattatata tttgatgato	tgcatccacg atttgtttgc	actatacaat tggtgctatt	2640
ttgtatcaat tcaaccacta	a attagtaaga tataacaaac	gaattggctg ccaaatttac	2700
aaatctctga ttttttggtt	: teeegtaeet geagetatag	ctattgaagc ttcagttttc	2760
atcttcttaa gagctggtto	r tacataaatt agcttaaagg	ttgacaaaaa tagattatgg	2820
ttatatggtt aaaggttgad	: aaaaatagat tatggttata	tggttaccaa ctatgacgtt	2880
taggcgttat tctttctggt	: ggtttataat agaaggtaag	tcgattatga gcgaaattaa	2940
tatgtgtaga gtatctgcca	a gttttatact taacagttag	tggcttatgt tgatgctagt	3000
caactaatgc ctactttgta	a taccttcatc aatatataga	tgtttagatt aatcaatttt	3060
gtttgacatt gtggaaagtt	: aatcgcgggt atataagaat	ttgatagtgt gatgtttttg	3120
acaggettat caaatgagag	g cgagttttgt attttattaa	atcgccaggt ttttagcaat	3180
gtttctgtaa aacgactttt	: cttattggca aggcgtgtgg	taggctatta tatgttatct	3240
gaacatagca tagctaaagt	: ggttgttgcc atacatgaaa	taaggttatt tgcaataagc	3300
tggaattttt gttcgaatta	a gaactggtac tggtataatg	agatgacaat agtcatggaa	3360
aaatcagatt gctggtttgg	y ttggtagatt tgtttagtta	tacggttact gaagttgtaa	3420
gaattagtag tttctaaaag	y gcaagagtat cggtagaaaa	ttatggtgat agtactatag	3480
tcttatatta ggctttaatt	: ttcagatata tgagaaagat	gtttggtctg ataattccta	3540
tgtacattta ttaatctatt	: ctacaggaag gggtcaattt	ttctctttgg gttgagattc	3600
ttattctaaa ggcgcaaaat	: tttagaaggg ttatcacttt	gcattttggc tgggactcca	3660
ggaatgcatt ggaacaatct	gagtaagetg eettttgtat	gtggaaatga attgcgttgg	3720
gtaaagataa ttttaatgca	a gtttttcttg aataacggta	cagagtgttt gaataaattt	3780
ttagtagttt gcagattcad	gtagtgtgct tgccccacag	cggcctcgtt tagttgctgt	3840

-continued	
	3900
gtgagacccc aaaatgaaag tgattaatag actatgctag ttcgtattcc caaaatatat	3960
gcatgaagag ttccagtttt ggacattttg caatgggtga atttatatag cagtcttaac	4020
agaceteeaa tgaatattgg gttaagatat tagttgtatt agtaaatett gtgaggaaat	4080
agtgattaag ttttagtatt tggcagttat tctatttgcg agtgctacgt agctcattct	4140
ttgatttgtt ggtgggtatt gatctggatg ttgtgggtgg ctggtggtgc ttcaatgcga	4200
ggaatggtaa ggctttgtta attttgaaga ttgagttatt taatgtgctt gcacgtcttt	4260
taaattaatt ggattagatt gggaaagaag ttetttgtta atagteettg atattttagt	4320
tgtaatggta tattgattaa cttccttaac ttttggaatt gtgaagaagt taaagcgttt	4380
ttetegttgg taaatgagte attgttggat tgatatggte caggttttta aggtgegtaa	4440
gttatcggga tttcctcagt caaaatatgc ttgtgttttt atatccggat tctgagacat	4500
gcttcagtgt atagatgtac aacgtaaaag tgggagttca ctgagcatga catgttgcag	4560
gaatggtaaa cccttgttaa ttaaccgttg gtgttgaagt tgccggttgg tttggaggtt	4620
gttcccgacg cttacttgtt gatggtcaat gcgtggcaat gacteettgt getgetetgg	4680
cataacgctt gtggtgatgg tgccaacgtc tgtggcagcg aaaagattct gttgttgcgg	4740
aagacatact gtggacaccc aagtcactgt ggaataaaca ccagacctgc tgtggttctc	4800
atgttttggt agcagg	4816
<210> SEQ ID NO 9 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: Candida dubliniensis	
<400> SEQUENCE: 9	
aagccctttg gatgttgact acgc	24
<210> SEQ ID NO 10 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Candida dubliniensis	
<400> SEQUENCE: 10	
ccatcgacag ggcccatgtg	20
<210> SEQ ID NO 11 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Candida dubliniensis	
<400> SEQUENCE: 11	
tatgattata ccccaatcca	20
<210> SEQ ID NO 12 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Candida dubliniensis	
<400> SEQUENCE: 12	
aggatcagtt accaatgttg	20

	-continued
<211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Candida dubliniensis	
<400> SEQUENCE: 13	
caacaatcaa caatttctgc tcctcatg	28
<210> SEQ ID NO 14 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Candida dubliniensis	
<400> SEQUENCE: 14	
aagtgggtat caccttattc gcaaatga	28
<210> SEQ ID NO 15 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Candida dubliniensis <400> SEQUENCE: 15	
~ cctttttaaa cgtgacacgc tcaaa	25
<210> SEQ ID NO 16 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: Candida dubliniensis	
<400> SEQUENCE: 16	
ggaaaagttg cgtgaggaaa tgga	24
<210> SEQ ID NO 17 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: Candida dubliniensis	
<400> SEQUENCE: 17	
cgggtgcatc taagaagggt ttta	24
<210> SEQ ID NO 18 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Candida dubliniensis	
<400> SEQUENCE: 18	
caatataacc ttgcacccgt caaatacg	28
<210> SEQ ID NO 19 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Candida dubliniensis	
<400> SEQUENCE: 19	
gttgcagtgc attgtacgag gtaagctc	28
<210> SEQ ID NO 20 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Candida dubliniensis	
<400> SEQUENCE: 20	

31

-continued		
tgcaactgat ccgagacaac ttcaaac	27	
<210> SEQ ID NO 21		
<211> LENGTH: 25		
<212> TYPE: DNA		
<213> ORGANISM: Candida dubliniensis		
<400> SEQUENCE: 21		
gategeaage gaageaegaa atgae	25	
<210> SEQ ID NO 22		
<211> LENGTH: 25		
<212> TYPE: DNA <213> ORGANISM: Candida dubliniensis		
<400> SEQUENCE: 22		
caatgtctgt tcgaccacca ttccc	25	
<210> SEQ ID NO 23 <211> LENGTH: 25		
<212> TYPE: DNA		
<213> ORGANISM: Candida dubliniensis		
<400> SEQUENCE: 23		
agagcgagca cctggtattc ccaag	25	
<210> SEQ ID NO 24		
<211> LENGTH: 24		
<212> TYPE: DNA		
<213> ORGANISM: Candida dubliniensis		
<400> SEQUENCE: 24		
cacccaaagc ccagcttaaa ttcc	24	
<210> SEQ ID NO 25		
<211> LENGTH: 28		
<212> TYPE: DNA		
<213> ORGANISM: Candida dubliniensis		
<400> SEQUENCE: 25		
tttcaattta gctgactcct taccctgg	28	
<210> SEQ ID NO 26		
<211> LENGTH: 26		
<212> TYPE: DNA <213> ORGANISM: Candida dubliniensis		
<400> SEQUENCE: 26		
ttttcggtga ttttgccaag aagttc	26	
<210> SEQ ID NO 27		
<211> LENGTH: 25		
<212> TYPE: DNA		
<213> ORGANISM: Candida dubliniensis		
<400> SEQUENCE: 27		
cagcattcat ccgggtaaag tgttg	25	
<210> SEQ ID NO 28		
<211> LENGTH: 25		
<212> TYPE: DNA		

-cont	1 111	ed

	-continued
<213> ORGANISM: Candida dubliniensis	
<400> SEQUENCE: 28	
caacggatcc aaggtcacca catag	25
<210> SEQ ID NO 29	
<211> LENGTH: 20	
<212> TYPE: DNA	
<213> ORGANISM: Candida dubliniensis	
<400> SEQUENCE: 29	
cgcggtccaa gaagataatc	20
<210> SEQ ID NO 30	
<211> LENGTH: 20	
<212> TYPE: DNA <213> ORGANISM: Candida dubliniensis	
<400> SEQUENCE: 30	
catcatggga tgtaattgct	20
<210> SEQ ID NO 31	
<211> LENGTH: 20	
<212> TYPE: DNA	
<213> ORGANISM: Candida dubliniensis	
<400> SEQUENCE: 31	
agtgtaagtc ttcgggatac	20
<210> SEQ ID NO 32	
<211> LENGTH: 20	
<212> TYPE: DNA <213> ORGANISM: Candida dubliniensis	
<400> SEQUENCE: 32	
gtgagcgaat agaataattg	20
<210> SEQ ID NO 33	
<211> LENGTH: 25 <212> TYPE: DNA	
<212> TYPE: DNA <213> ORGANISM: Candida dubliniensis	
<400> SEQUENCE: 33	
agctacatct attttcaatg cactc	25
<210> SEQ ID NO 34	
<211> LENGTH: 20	
<212> TYPE: DNA <213> ORGANISM: Candida dubliniensis	
<400> SEQUENCE: 34	
aattgctctg aaacagccag	20
3-2003 «««««Зоом3	23
<210> SEQ ID NO 35	
<211> LENGTH: 25	
<212> TYPE: DNA <213> ORGANISM: Candida dubliniensis	
<400> SEQUENCE: 35	
tatacccccg aattaacaag tgcgc	25
JJ	

	onemaea	
<210> SEQ ID NO 36 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Candida dubliniensis		
<400> SEQUENCE: 36		
cagtgcaggt gctttcgttt accag	25	
<210> SEQ ID NO 37 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Candida dubliniensis		
<400> SEQUENCE: 37		
catcagttca attgatgggg ttgttctg	28	
<210> SEQ ID NO 38 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Candida dubliniensis		
<400> SEQUENCE: 38		
aaactggcat agctttttgc attattgcc	29	
<210> SEQ ID NO 39 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: Candida dubliniensis		
<400> SEQUENCE: 39		
atttcgagag gacttggttc gtgc	24	
<210> SEQ ID NO 40 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: Candida dubliniensis <400> SEQUENCE: 40		
cogtacecaa ataaaactee cage	24	
eggeneedaa acaaaaceee cage		
<210> SEQ ID NO 41 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Candida dubliniensis		
<400> SEQUENCE: 41		
tacaaagcgg gtgataagga	20	
<210> SEQ ID NO 42 <211> LENGTH: 18 <212> TYPE: DNA <213> ORGANISM: Candida dubliniensis		
<400> SEQUENCE: 42		
ggcgcaaaag gaaatagc	18	
<210> SEQ ID NO 43 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Candida dubliniensis		

34

<400> SEQUENCE: 43	
acactgtctt gtcttgtgtc tgaagtcg	28
<210> SEQ ID NO 44 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Candida dubliniensis	
<400> SEQUENCE: 44	
ttetetgtgt gtgggeeete agtae	25
<210> SEQ ID NO 45 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Candida dubliniensis	
<400> SEQUENCE: 45	
tcatccatca tatcacaaat cctactg	27
<210> SEQ ID NO 46 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Candida dubliniensis	
<400> SEQUENCE: 46	
gttattttga aagttgggga gaggg	25
<210> SEQ ID NO 47 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Candida dubliniensis	
<400> SEQUENCE: 47	
cctacgacat gaacacatca aactactc	28
<210> SEQ ID NO 48 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Candida dubliniensis	
<400> SEQUENCE: 48	
tgcttttgtt gaaaacttgc gaaac	25
<210> SEQ ID NO 49 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Candida dubliniensis	
<400> SEQUENCE: 49	
aggetagteg gtggttaaeg gttgtgtg	28
<210> SEQ ID NO 50 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Candida dubliniensis	
<400> SEQUENCE: 50	
gactcggaat aaacaccatc gccgatgc	28

<210> SEQ ID NO 51

-	continued
<pre><211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Candida dubliniensis</pre>	
<400> SEQUENCE: 51	
ggtccaatta gaatcgggtc gttccatg	28
<210> SEQ ID NO 52 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Candida dubliniensis	
<400> SEQUENCE: 52	
cgtcatccct tctatctcta acgtg	25
<210> SEQ ID NO 53 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: Candida dubliniensis <400> SEQUENCE: 53	
atcatatcat gcageccaac teeg	24
<210> SEQ ID NO 54 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: Candida dubliniensis	
<400> SEQUENCE: 54	
cggacgtagt gaaacgattg ttgg	24
<210> SEQ ID NO 55 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Candida dubliniensis <400> SEQUENCE: 55	
acaattccca gtaaaccatt ataaaag	27
<210> SEQ ID NO 56 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Candida dubliniensis	
<400> SEQUENCE: 56	
cattcataat ctgatttgta ggctc	25
<210> SEQ ID NO 57 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Candida dubliniensis	
<400> SEQUENCE: 57	
tgctaaacga ccccctcaaa a	21
<210> SEQ ID NO 58 <211> LENGTH: 23 <212> TYPE: DNA <213> ORGANISM: Candida dubliniensis	
<400> SEQUENCE: 58	

	-continued	
gtacgacgat catcagcaac caa	23	
<210> SEQ ID NO 59		
<211> LENGTH: 28		
<212> TYPE: DNA <213> ORGANISM: Candida dubliniensis		
<400> SEQUENCE: 59		
aattaattcg gatagttggg ggagaccg	28	
<210> SEQ ID NO 60		
<211> LENGTH: 25		
<212> TYPE: DNA <213> ORGANISM: Candida dubliniensis		
<400> SEQUENCE: 60		
attgagetge teaetteaet geeae	25	
<210> SEQ ID NO 61		
<211> LENGTH: 22 <212> TYPE: DNA		
<213> ORGANISM: Candida dubliniensis		
<400> SEQUENCE: 61		
gcagcgttct tgtgaccgtg ag	22	
<210> SEQ ID NO 62		
<211> LENGTH: 22		
<212> TYPE: DNA		
<213> ORGANISM: Candida dubliniensis		
<400> SEQUENCE: 62		
ttgaattgga caggggctta gg	22	
<210> SEQ ID NO 63		
<211> LENGTH: 30		
<212> TYPE: DNA <213> ORGANISM: Candida dubliniensis		
<400> SEQUENCE: 63		
tgtggtggag ggtcatccat ttgttggttg	30	
<210> SEQ ID NO 64 <211> LENGTH: 29		
<211> LENGIH: 29 <212> TYPE: DNA		
<213> ORGANISM: Candida dubliniensis		
<400> SEQUENCE: 64		
ggcgaccete atgeaceeta ecaaataaa	29	
- 210- CEO ID NO CE		
<210> SEQ ID NO 65 <211> LENGTH: 18		
<211> LENGIH: 18 <212> TYPE: DNA		
<213> ORGANISM: Candida dubliniensis		
<400> SEQUENCE: 65		
aagtacggat ggttgtta	18	
<210> SEQ ID NO 66		
<211> LENGTH: 22		
<212> TYPE: DNA		

	-continued
<213> ORGANISM: Candida dubliniensis	
<400> SEQUENCE: 66	
tagtcattct gccatctctt at	22
<210> SEQ ID NO 67	
<211> LENGTH: 28	
<212> TYPE: DNA	
<213> ORGANISM: Candida dubliniensis	
<400> SEQUENCE: 67	
ccatgaacaa aaggttaggt ggtgctcc	28
<210> SEQ ID NO 68	
<211> LENGTH: 25	
<212> TYPE: DNA <213> ORGANISM: Candida dubliniensis	
<400> SEQUENCE: 68	
ggggagttga atggtgtggt gttac	25
<210> SEQ ID NO 69	
<211> LENGTH: 24	
<212> TYPE: DNA <213> ORGANISM: Candida dubliniensis	
<400> SEQUENCE: 69	
tccagcgtca gacatttttc cagt	24
<210> SEQ ID NO 70	
<211> LENGTH: 18 <212> TYPE: DNA	
<pre><212> IIFE. DNA <213> ORGANISM: Candida dubliniensis</pre>	
<400> SEQUENCE: 70	
tgccccgcgg ttgacagt	18
<210> SEQ ID NO 71	
<211> LENGTH: 26	
<212> TYPE: DNA	
<213> ORGANISM: Candida dubliniensis	
<400> SEQUENCE: 71	
tggcctctcc cttacaaaat ttgccc	26
<210> SEQ ID NO 72	
<211> LENGTH: 28	
<212> TYPE: DNA <213> ORGANISM: Candida dubliniensis	
<400> SEQUENCE: 72	
gggagatgag gggtgattga ggtaatag	28
<210> SEQ ID NO 73	
<211> LENGTH: 26 <212> TYPE: DNA	
<212> TYPE: DNA <213> ORGANISM: Candida dubliniensis	
<400> SEQUENCE: 73	
gctccagtac caacgaaaac gacttc	26

- C	ontinued
<210> SEQ ID NO 74	
<211> LENGTH: 25	
<212> TYPE: DNA <213> ORGANISM: Candida dubliniensis	
<400> SEQUENCE: 74	
	25
gcatttgaaa actgccaatg tagtc	25
<210> SEQ ID NO 75	
<211> LENGTH: 27	
<212> TYPE: DNA <213> ORGANISM: Candida dubliniensis	
<400> SEQUENCE: 75	
	27
gctgggatag tttagaggca gactgtg	27
<210> SEQ ID NO 76	
<211> LENGTH: 25	
<212> TYPE: DNA <213> ORGANISM: Candida dubliniensis	
<400> SEQUENCE: 76	
cctcaatcac ccctcatctc cctac	25
	25
<210> SEQ ID NO 77	
<211> LENGTH: 24 <212> TYPE: DNA	
<212> IIPE: DNA <213> ORGANISM: Candida dubliniensis	
<400> SEQUENCE: 77	
aagggcaagg aacaagtcac aagt	24
<210> SEQ ID NO 78 <211> LENGTH: 21	
<211> LENGTR: 21 <212> TYPE: DNA	
<213> ORGANISM: Candida dubliniensis	
<400> SEQUENCE: 78	
tatcagcgcc ggttttagca c	21
ALA CEA IN NO TA	
<210> SEQ ID NO 79 <211> LENGTH: 19	
<212> TYPE: DNA	
<213> ORGANISM: Candida dubliniensis	
<400> SEQUENCE: 79	
gtgccaactt tctcctgat	19
<210> SEQ ID NO 80	
<210> SEQ 1D NO 80 <211> LENGTH: 22	
<212> TYPE: DNA	
<213> ORGANISM: Candida dubliniensis	
<400> SEQUENCE: 80	
<100> 2500 500 55: 00	
agcgattatt aagtctatgt gg	22
<210> SEQ ID NO 81	
<211> LENGTH: 22	
<212> TYPE: DNA	
<213> ORGANISM: Candida dubliniensis	

<400> SEQUENCE: 81		
gaagcagcga cccaacagat aa	22	
<210> SEQ ID NO 82		
<211> LENGTH: 22		
<212> TYPE: DNA		
<213> ORGANISM: Candida dubliniensis		
<400> SEQUENCE: 82		
ttgagcgaaa ttgggtagag tc	22	
<210> SEQ ID NO 83		
<211> LENGTH: 30		
<212> TYPE: DNA <213> ORGANISM: Candida dubliniensis		
<400> SEQUENCE: 83		
	20	
tgtccattcc ccaaacttca tacggaccac	30	
<210> SEQ ID NO 84		
<211> LENGTH: 25 <212> TYPE: DNA		
<212> IFFE: DNA <213> ORGANISM: Candida dubliniensis		
<400> SEQUENCE: 84		
gaatgctgga aggacttgag aaatg	25	
<210> SEQ ID NO 85		
<211> LENGTH: 24		
<212> TYPE: DNA		
<213> ORGANISM: Candida dubliniensis		
<400> SEQUENCE: 85		
gaaaccaata acaaggaaag agta	24	
<210> SEQ ID NO 86		
<211> LENGTH: 23 <212> TYPE: DNA		
<212> ORGANISM: Candida dubliniensis		
<400> SEQUENCE: 86		
caatgggaaa aagaaatcag tag	23	
<210> SEQ ID NO 87		
<211> LENGTH: 28		
<212> TYPE: DNA <213> ORGANISM: Candida dubliniensis		
<400> SEQUENCE: 87		
gacgagagca tgtactcaac tacgtgtc	28	
<210> SEQ ID NO 88		
<211> LENGTH: 25 <212> TYPE: DNA		
<212> TIPE: DNA <213> ORGANISM: Candida dubliniensis		
<400> SEQUENCE: 88		
gaatettgat tgaaatgega ggaae	25	

<210> SEQ ID NO 89

-cont	 nı	100	١
-COIIC	 LT C	iec	,

-cont	inued	
<211> LENGTH: 30		
<212> TYPE: DNA		
<213> ORGANISM: Candida dubliniensis		
<400> SEQUENCE: 89		
catccaataa cattgattta ctacttttag	30	
<210> SEQ ID NO 90		
<211> LENGTH: 25 <212> TYPE: DNA		
<213> ORGANISM: Candida dubliniensis		
<400> SEQUENCE: 90		
	25	
ttttttttt tcaaagattt agcag	25	
<210> SEQ ID NO 91		
<211> LENGTH: 21		
<212> TYPE: DNA		
<213> ORGANISM: Candida dubliniensis		
<400> SEQUENCE: 91		
tgtacgatca acccagagtg c	21	
<210> SEQ ID NO 92		
<211> LENGTH: 23		
<212> TYPE: DNA <213> ORGANISM: Candida dubliniensis		
<400> SEQUENCE: 92		
acatgccatt accaacaaca gtc	23	
<210> SEQ ID NO 93 <211> LENGTH: 29		
<211> HENGIN: 25 <212> TYPE: DNA		
<213> ORGANISM: Candida dubliniensis		
<400> SEQUENCE: 93		
tagctgtatt aaaaaattct ggccgcata	29	
<210> SEQ ID NO 94		
<211> LENGTH: 25		
<212> TYPE: DNA <213> ORGANISM: Candida dubliniensis		
<400> SEQUENCE: 94		
tctgacaaaa aacctcgtat gaccc	25	
<210> SEQ ID NO 95		
<211> LENGTH: 26 <212> TYPE: DNA		
<213> ORGANISM: Candida dubliniensis		
<400> SEQUENCE: 95		
atagagatat attatagaga tagaga	26	
ctagagctat gttgtgacag tccacc	20	
<210> SEQ ID NO 96		
<211> LENGTH: 25		
<212> TYPE: DNA		
<213> ORGANISM: Candida dubliniensis		
<400> SEQUENCE: 96		

41

-cont	inued	
cttctggaat tgagccaatc cctag	25	
-210, CEO ID NO 07		
<210> SEQ ID NO 97 <211> LENGTH: 28		
<212> TYPE: DNA		
<213> ORGANISM: Candida dubliniensis		
<400> SEQUENCE: 97		
ctagctattc aagcatccgt aggcagtc	28	
<210> SEQ ID NO 98		
<211> LENGTH: 25		
<212> TYPE: DNA		
<213> ORGANISM: Candida dubliniensis		
<400> SEQUENCE: 98		
cccatacccg ggtggtgtag tataa	25	
<210> SEQ ID NO 99		
<211> LENGTH: 26		
<212> TYPE: DNA <213> ORGANISM: Candida dubliniensis		
<400> SEQUENCE: 99		
gtaggegeta catatgaaet tegtge	26	
<210> SEQ ID NO 100		
<211> LENGTH: 25		
<212> TYPE: DNA		
<213> ORGANISM: Candida dubliniensis		
<400> SEQUENCE: 100		
agataatgtc tgaatgtcat tcggg	25	
<210> SEQ ID NO 101		
<211> LENGTH: 21		
<212> TYPE: DNA		
<213> ORGANISM: Candida dubliniensis		
<400> SEQUENCE: 101		
tccaatgggt gctaagatga a	21	
<210> SEQ ID NO 102		
<211> LENGTH: 18		
<212> TYPE: DNA		
<213> ORGANISM: Candida dubliniensis		
<400> SEQUENCE: 102		
teeegeetga tttttgaa	18	
<210> SEQ ID NO 103		
<211> LENGTH: 28		
<212> TYPE: DNA <213> ORGANISM: Candida dubliniensis		
<400> SEQUENCE: 103		
ttatttgata gcctaatttc acctgatg	28	
<210> SEQ ID NO 104		
<211> LENGTH: 25		
<212> TYPE: DNA		

	-continued
<213> ORGANISM: Candida dubliniensis	
<400> SEQUENCE: 104	
attaactgac tttgaaccag caatg	25
<210> SEQ ID NO 105 <211> LENGTH: 26	
<pre><211> HENGIN: 20 <212> TYPE: DNA <213> ORGANISM: Candida dubliniensis</pre>	
<400> SEQUENCE: 105	
aacggtcacc tgatgaatag agtggc	26
<210> SEQ ID NO 106 <211> LENGTH: 25 <212> TYPE: DNA	
<213> ORGANISM: Candida dubliniensis	
<400> SEQUENCE: 106	
gactgaagcg tecatacttg ggate	25
<210> SEQ ID NO 107 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Candida dubliniensis	
<400> SEQUENCE: 107	
cccagaagta tccactaggg aacttg	26
	20
<210> SEQ ID NO 108 <211> LENGTH: 25 <212> TYPE: DNA	
<213> ORGANISM: Candida dubliniensis	
<400> SEQUENCE: 108	25
ttgttctggt caatggtaca gcaac	25
<210> SEQ ID NO 109 <211> LENGTH: 28	
<212> TYPE: DNA <213> ORGANISM: Candida dubliniensis	
<400> SEQUENCE: 109	
cacgcaacta gaatggcatg aatatatg	28
<210> SEQ ID NO 110 <211> LENGTH: 25 <212> TYPE: DNA	
<213> ORGANISM: Candida dubliniensis	
<400> SEQUENCE: 110	
agateeggtg tetgtettat tgete	25
<210> SEQ ID NO 111 <211> LENGTH: 24 <212> TYPE: DNA	
<213> ORGANISM: Candida dubliniensis	
<400> SEQUENCE: 111	
cctgcgttgt aatcatttgt tgtc	24

	-continued
<210> SEQ ID NO 112	
<211> LENGTH: 24	
<212> TYPE: DNA	
<213> ORGANISM: Candida dubliniensis	
<400> SEQUENCE: 112	
~	
ttactccgcc tttgatccct attt	24
010 0T0 TD NO 110	
<210> SEQ ID NO 113	
<211> LENGTH: 25 <212> TYPE: DNA	
<213> ORGANISM: Candida dubliniensis	
<400> SEQUENCE: 113	
attaaggagc ttcgtgaggc tgtcg	25
<210> SEQ ID NO 114	
<211> SEQ ID NO 114 <211> LENGTH: 25	
<212> TYPE: DNA	
<213> ORGANISM: Candida dubliniensis	
<400> SEQUENCE: 114	
catttccttc aaaggcaccg ggatg	25
<210> SEQ ID NO 115	
<211> LENGTH: 25	
<212> TYPE: DNA	
<213> ORGANISM: Candida dubliniensis	
<400> SEQUENCE: 115	
acgttgctta ctggtggcta tgcgg	25
<210> SEQ ID NO 116	
<211> LENGTH: 25	
<212> TYPE: DNA	
<213> ORGANISM: Candida dubliniensis	
<400> SEQUENCE: 116	
aagcttttat tgcggtgaac tgggg	25
<210> SEQ ID NO 117	
<211> LENGTH: 28	
<212> TYPE: DNA	
<213> ORGANISM: Candida dubliniensis	
<400> SEQUENCE: 117	
acatataata geetaeeaca egeettge	28
<210> SEQ ID NO 118	
<211> LENGTH: 25	
<212> TYPE: DNA	
<213> ORGANISM: Candida dubliniensis	
<400> SEQUENCE: 118	
tgacattgtg gaaagttaat cgcgg	25
<210> SEQ ID NO 119	
<211> LENGTH: 28	
<212> TYPE: DNA	
<213> ORGANISM: Candida dubliniensis	

<400> SEQUENCE: 119	
tgaaattgga gactaagtgt tgcattcg	28
<210> SEQ ID NO 120 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Candida dubliniensis	
<400> SEQUENCE: 120	
acagtttcca cacaactcag caagaca	27
<210> SEQ ID NO 121 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Candida dubliniensis	
<400> SEQUENCE: 121	
tttgccggga taagctttta ttgcg	25
<210> SEQ ID NO 122 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Candida dubliniensis	
<400> SEQUENCE: 122	
tttcaggaca ccagaagatg gccac	25
<210> SEQ ID NO 123 <211> LENGTH: 18 <212> TYPE: DNA <213> ORGANISM: Candida dubliniensis	
<400> SEQUENCE: 123	
cccccgccgt gaaaaaca	18
<210> SEQ ID NO 124 <211> LENGTH: 23 <212> TYPE: DNA <213> ORGANISM: Candida dubliniensis	
<400> SEQUENCE: 124	
ctacaaacgc cacacccgaa act	23
<210> SEQ ID NO 125 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Candida dubliniensis	
<400> SEQUENCE: 125	
acctcaacat cgacacagtc gcacc	25
<210> SEQ ID NO 126 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Candida dubliniensis	
<400> SEQUENCE: 126	
agcagaaacc tcgatgtttg agccg	25

1. A polynucleotide sequence consisting of SEQ ID NO 1, 2, 3, 4, 5, 6, 7 or 8.

2.-25. (canceled)

26. A set of polynucleotide primers comprising forward and reverse primers that hybridize to a centromeric region of *Candida dubliniensis* selected from the group consisting of Chromosome 1, Chromosome 2, Chromosome 3, Chromosome 4, Chromosome 5, Chromosome 6, Chromosome 7 and Chromosome R.

27. A set of 20 primers as claimed in claim **26**, wherein the forward and the reverse primers are used for amplification of centromeric region of chromosome 1 of *Candida dubliniensis*.

28. A set of 20 primers according to claim **27** consisting of SEQ ID NOS. 9, 11, 13, 15, 17, 19, 21, 23, 25 and 27 as forward primers and SEQ ID NOS. 10, 12, 14, 16, 18, 20, 22, 24, 26 and 28 as corresponding reverse primers respectively.

29. A set of 14 primers as claimed in claim **26**, wherein the forward and the reverse primers are used for amplification of centromeric region of chromosome 2 of *Candida dubliniensis*.

30. A set of 14 primers according to claim **29** consisting of SEQ ID NOS. 29, 31, 33, 35, 37, 39 and 41 as forward primers and SEQ ID NOS. 30, 32, 34, 36, 38, 40 and 42 as corresponding reverse primers respectively.

31. A set of 10 primers as claimed in claim **26**, wherein the forward and the reverse primers are used for amplification of centromeric regions of chromosome 3 of *Candida dubliniensis*.

32. A set of 10 primers according to claim **31** consisting of SEQ ID NOS. 43, 45, 47, 49 and 51 as forward primers and SEQ ID NOS. 44, 46, 48, 50 and 52 as corresponding reverse primers respectively.

33. A set of 16 primers as claimed in claim **26**, wherein the forward and the reverse primers are used for amplification of centromeric regions of chromosome 4 of *Candida dubliniensis*.

34. A set of 16 primers according to claim **33** consisting of SEQ ID NOS. 53, 55, 57, 59, 61, 63, 65 and 67 as forward primers and SEQ ID NOS. 54, 56, 58, 60, 62, 64, 66 and 68 as corresponding reverse primers respectively.

35. A set of 10 primers as claimed in claim **26**, wherein the forward and the reverse primers are used for amplification of centromeric regions of chromosome 5 of *Candida dubliniensis*.

36. A set of 10 primers according to claim **35** consisting of SEQ ID NOS. 69, 71, 73, 75 and 77 as forward primers and SEQ ID NOS. 70, 72, 74, 76 and 78 as corresponding reverse primers respectively.

37. A set of 16 primers as claimed in claim **26**, wherein the forward and the reverse primers are used for amplification of centromeric regions of chromosome 6 of *Candida dubliniensis*.

38. A set of 16 primers according to claim **37** consisting of SEQ ID NOS. 79, 81, 83, 85, 87, 89, 91 and 93 as forward primers and SEQ ID NOS. 80, 82, 84, 86, 88, 90, 92 and 94 as corresponding reverse primers respectively.

39. A set of 18 primers as claimed in claim **26**, wherein the forward and the reverse primers are used for amplification of centromeric regions of chromosome 7 of *Candida dubliniensis*.

40. A set of 18 primers according to claim **39** consisting of SEQ ID NOS. 95, 97, 99, 101, 103, 105, 107, 109 and 111 as

forward primers and SEQ ID NOS. 96, 98, 100, 102, 104, 106, 108, 110 and 112 as corresponding reverse primers respectively.

41. A set of 14 primers as claimed in claim **26**, wherein the forward and the reverse primers are used for amplification of centromeric regions of chromosome R of *Candida dubliniensis*.

42. A set of 14 primers according to claim **41** consisting of SEQ ID NOS. 114, 116, 118, 120, 122, 123 and 126 as forward primers and SEQ ID NOS. 113, 115, 117, 119, 121, 124 and 125 as corresponding reverse primers respectively.

43. A process of identification of centromeric sequences of *Candida dubliniensis*, said method comprising steps of:

a) identifying putative Cse4p binding region; and

b) amplifying the putative Cse4p binding region to identify centromeric sequences of the *Candida dubliniensis*.

44. The process as claimed in claim **43**, wherein the identification of putative Cse4p biding regions is carried out by sequence analysis and chromatin immunoprecipitation.

45. The process as claimed in claim 43, wherein the amplification of the putative Cse4p binding regions is carried out using any set of a forward primer selected from the group consisting of SEQ ID NOS. 9, 11, 13, 15, 17, 19, 21, 23, 25 and 27 and its corresponding reverse primer selected from the group consisting of SEQ ID NOS. 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, respectively, for chromosome 1 of Candida dubliniensis; a forward primer selected from the group consisting of SEQ ID NOS. 29, 31, 33, 35, 37, 39 and 41 and its corresponding reverse primer selected from the group consisting of SEQ ID NOS. 30, 32, 34, 36, 38, 40 and 42, respectively, for chromosome 2 of Candida dubliniensis; a forward primer selected from the group consisting of SEQ ID NOS. 43, 45, 47, 49 and 51 and its corresponding reverse primer selected from the group consisting of SEQ ID NOS. 44, 46, 48, 50 and 52, respectively, for chromosome 3 of Candida dubliniensis; a forward primer selected from the group consisting of SEQ ID NOS. 53, 55, 57, 59, 61, 63, 65 and 67 and its corresponding reverse primer selected from the group consisting of SEQ ID NOS. 54, 56, 58, 60, 62, 64, 66 and 68, respectively, for chromosome 4 of Candida dubliniensis; a forward primer selected from the group consisting of SEQ ID NOS. 69, 71, 73, 75 and 77 and its corresponding reverse primer selected from the group consisting of SEQ ID NOS. 70, 72, 74, 76 and 78, respectively, for chromosome 5 of Candida dubliniensis; a forward primer selected from the group consisting of SEQ ID NOS. 79, 81, 83, 85, 87, 89, 91 and 93 and its corresponding reverse primer selected from the group consisting of SEQ ID NOS. 80, 82, 84, 86, 88, 90, 92 and 94, respectively, for chromosome 6 of Candida dubliniensis; a forward primer selected from the group consisting of SEQ ID NOS. 95, 97, 99, 101, 103, 105, 107, 109 and 111 and its corresponding reverse primer selected from the group consisting of SEQ ID NOS. 96, 98, 100, 102, 104, 106, 108, 110 and 112, respectively, for chromosome 7 of Candida dubliniensis and a forward primer selected from the group consisting of SEQ ID NOS. 114, 116, 118, 120, 122, 123 and 126 and its corresponding reverse primer selected from the group consisting of SEQ ID NOS. 113, 115, 117, 119, 121, 124 and 125, respectively, for chromosome R of Candida dubliniensis; or any combination of said primers thereof.

46. A method of distinguishing *Candida dubliniensis* from *Candida albicans* in a sample, said method comprising steps of

a) isolating DNA from the organism in the sample; and

b) amplifying the Cse4p binding regions with primers capable of amplifying said regions in the *Candida dubliniensis* to distinguish it from *Candida albicans*.

47. The method as claimed in claim **46**, wherein the identification of putative Cse4p biding regions is carried out by sequence analysis and chromatin immunoprecipitation.

48. The method as claimed in claim 46, wherein the amplification of the putative Cse4p binding regions is carried out using any set of a forward primer selected from the group consisting of SEQ ID NOS. 9, 11, 13, 15, 17, 19, 21, 23, 25 and 27 and its corresponding reverse primer selected from the group consisting of SEQ ID NOS. 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, respectively, for chromosome 1 of Candida dubliniensis; a forward primer selected from the group consisting of SEQ ID NOS. 29, 31, 33, 35, 37, 39 and 41 and its corresponding reverse primer selected from the group consisting of SEQ ID NOS. 30, 32, 34, 36, 38, 40 and 42, respectively, for chromosome 2 of Candida dubliniensis; a forward primer selected from the group consisting of SEQ ID NOS. 43, 45, 47, 49 and 51 and its corresponding reverse primer selected from the group consisting of SEQ ID NOS. 44, 46, 48, 50 and 52, respectively, for chromosome 3 of Candida dubliniensis; a forward primer selected from the group consisting of SEQ ID NOS. 53, 55, 57, 59, 61, 63, 65 and 67 and its corresponding reverse primer selected from the group consisting of SEQ ID NOS. 54, 56, 58, 60, 62, 64, 66 and 68, respectively, for chromosome 4 of Candida dubliniensis; a forward primer selected from the group consisting of SEQ ID NOS. 69, 71, 73, 75 and 77 and its corresponding reverse primer selected from the group consisting of SEQ ID NOS. 70, 72, 74, 76 and 78, respectively, for chromosome 5 of Candida dubliniensis; a forward primer selected from the group consisting of SEQ ID NOS. 79, 81, 83, 85, 87, 89, 91 and 93 and its corresponding reverse primer selected from the group consisting of SEQ ID NOS. 80, 82, 84, 86, 88, 90, 92 and 94, respectively, for chromosome 6 of Candida dubliniensis; a forward primer selected from the group consisting of SEQ ID NOS. 95, 97, 99, 101, 103, 105, 107, 109 and 111 and its corresponding reverse primer selected from the group consisting of SEQ ID NOS. 96, 98, 100, 102, 104, 106, 108, 110 and 112, respectively, for chromosome 7 of Candida dubliniensis and a forward primer selected from the group consisting of SEQ ID NOS. 114, 116, 118, 120, 122, 123 and 126 and its corresponding reverse primer selected from the

group consisting of SEQ ID NOS. 113, 115, 117, 119, 121, 124 and 125, respectively, for chromosome R of *Candida dubliniensis*; or any combination of said primers thereof.

49. A kit for identification of *Candida dubliniensis* comprising a set of primers having SEQ ID NOS. 9 to 126.

50. The kit as claimed in claim 49, wherein the amplification of the putative Cse4p binding regions is carried out using any set of a forward primer selected from the group consisting of SEQ ID NOS. 9, 11, 13, 15, 17, 19, 21, 23, 25 and 27 and its corresponding reverse primer selected from the group consisting of SEQ ID NOS. 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, respectively, for chromosome 1 of Candida dubliniensis; a forward primer selected from the group consisting of SEQ ID NOS. 29, 31, 33, 35, 37, 39 and 41 and its corresponding reverse primer selected from the group consisting of SEQ ID NOS. 30, 32, 34, 36, 38, 40 and 42, respectively, for chromosome 2 of Candida dubliniensis; a forward primer selected from the group consisting of SEQ ID NOS. 43, 45, 47, 49 and 51 and its corresponding reverse primer selected from the group consisting of SEQ ID NOS. 44, 46, 48, 50 and 52, respectively, for chromosome 3 of Candida dubliniensis; a forward primer selected from the group consisting of SEO ID NOS. 53, 55, 57, 59, 61, 63, 65 and 67 and its corresponding reverse primer selected from the group consisting of SEQ ID NOS. 54, 56, 58, 60, 62, 64, 66 and 68, respectively, for chromosome 4 of Candida dubliniensis; a forward primer selected from the group consisting of SEQ ID NOS. 69, 71, 73, 75 and 77 and its corresponding reverse primer selected from the group consisting of SEQ ID NOS. 70, 72, 74, 76 and 78, respectively, for chromosome 5 of Candida dubliniensis; a forward primer selected from the group consisting of SEQ ID NOS. 79, 81, 83, 85, 87, 89, 91 and 93 and its corresponding reverse primer selected from the group consisting of SEQ ID NOS. 80, 82, 84, 86, 88, 90, 92 and 94, respectively, for chromosome 6 of Candida dubliniensis; a forward primer selected from the group consisting of SEQ ID NOS. 95, 97, 99, 101, 103, 105, 107, 109 and 111 and its corresponding reverse primer selected from the group consisting of SEQ ID NOS. 96, 98, 100, 102, 104, 106, 108, 110 and 112, respectively, for chromosome 7 of Candida dubliniensis and a forward primer selected from the group consisting of SEQ ID NOS. 114, 116, 118, 120, 122, 123 and 126 and its corresponding reverse primer selected from the group consisting of SEQ ID NOS. 113, 115, 117, 119, 121, 124 and 125, respectively, for chromosome R of Candida dubliniensis; or any combination of said primers thereof.

* * * * *