To all whom it may concern:

Be it known that I, AUGUSTINE J. POCOCK, a citizen of the United States, residing at Dayton, in the county of Montgomery and State of Ohio, have invented certain new and useful Improvements in Casings for Measuring-Pumps; and I do declare the following to be a full, clear, and exact description of the invention, such as will enable others skilled in the art to which it pertains to make and use the same, reference being had to the accompanying drawings, and to the letters and figures of reference marked thereon, which form a part of this specification.

My invention relates to certain new and useful improvements in measuring pumps of the type especially adapted for measuring gasoline although any liquid may be measured thereby with equal facility. The improvements, more specifically speaking, relate to convenient means for increasing the operating mechanism of the pump so that it may not be tampered with when not in use.

With the above objects in view, reference is made to the accompanying drawings which illustrate a single-cylinder measuring pump of which Figure 1 is an elevation of the pump with the movable inclosing case in position to conceal the driving mechanism thereof; Fig. 2 is a vertical elevation similar to Fig. 1 showing the pump casing, both the stationary and movable parts, in section; Fig. 3 is a similar elevation at a right angle to Fig. 2; Fig. 4 is a cross-sectional view on the line 4—4 of Fig. 2; Fig. 5 is a detail view of the handle or operating crank; Fig. 6 is a view of the handle or operating crank at a right angle to Fig. 5; and Fig. 7 is a detail sectional view of one of the spring-controlled winding devices by means of which the movable casing is controlled with respect to its position.

In the specification and drawings, similar reference characters indicate corresponding parts.

Referring in particular to the various features in connection with the accompanying drawings, I designates the pump cylinder 1 terminates at its upper end in a chambered head 5 from which pipes 6 and 7 extend. Between the head 5 and the pipe 7, which is the discharge pipe, a cylinder 8 is interposed in which any of the well known forms of strainer may be placed for the oil passing out of the cylinder through the pipe 7. The pipes 6 and 7 form a support for the gear casing 9 within which the usual driving gear is mounted which operates the piston rack 3 up and down in a well known manner. The pump cylinder is inclosed by a stationary casing 10 which extends above the cylinder head 5 and the upper diameter of which is enlarged as at 11 to cooperate with a slidable casing 12 which incloses the operating mechanism of the pump when not in use and thereby prevents tampering therewith at such time. The casing 12 consists of a cylinder of a suitable diameter to slide down over the lower casing and which rests upon the base 75 of the lower stationary casing 10 when in the lowered position, as shown in dotted lines in Fig. 2. The upper structure of the pump is provided with a cap 13 which is rigidly secured to the pipes 6 and 7 and is of a suitable diameter to receive the upper end of the slidable casing 12 when the latter is elevated to the inclosing position. A suitable number of rods 14 extend between the head 5 of the cylinder and the cap 18 to provide guides for the movement of the slidable cylinder or casing, said rods being so positioned as to not interfere with the operative parts of the pump. Guide projections 15 project from the upper inner side of the slidable casing 12 and through these projections the guide rods 14 pass. The casing in its movements is guided over the lower portion of the cylinder 10 and to the upper position as shown in Fig. 2. Supports 16 on the interior of the cap 13 provide suitable supports for the upper ends of the guide rods 14. Secured to these supports are housings 17 which inclose winding spools 18 on the interior of which are arranged clock or convolute springs 19. In each case, one end of the convolute spring 19 is attached to a shaft 20 journaled in the sides of a housing 17 and the other end of which is affixed at 21 to the inner side of a spool 18. The outer side of each of the cyl-
inders 18 receives a winding tape 22 which is adapted to be wound and unwound thereon according to the influence of the spring on the interior of the spool. The tape 22 passes out of the housing 17 through an opening 23 therein, as shown in Fig. 7, and the ends of said tapes so passing out are secured to the guide projections 18, before referred to. In the drawings, I have shown three sets of winding tapes arranged at suitable points and it will be seen that when the slideable casing 12 is lowered the winding tape 22 will be withdrawn from the spools 18 and the springs 19 on the interior of said spools will contract in a well-known manner or wind up on the shafts 29. The positions of the tape-winding devices, it will be observed, are closely adjacent to the guide rods 14 so that when the slideable casing 12 is lowered the unwound tape 22 will lie adjacent to said rods and parallel therewith and be entirely out of the way of the operating mechanisms of the pump. In a manner that is readily understood when the slideable casing 12 is lowered it will remain in its lowered position until elevated by the hands, and when elevated the winding devices will have the effect of holding said casing in the elevated position. Means are provided for locking the casing 12 in its elevated position so that it may not be moved by unauthorized persons. Convenient and simple means for this purpose consists of a loop or hasp 36 which is pivoted to the upper end of the casing 12 at 87 and when elevated upon its hinge it receives a staple 38 secured to an adjacent part of the pump cap 13. The staple 38 receives the hasp of a padlock 39 and the said casing is thus locked from any manipulation when elevated.

The driving gear within the gear casing 9 is operated from the pump handle or crank 24. This gearing is of well-known form and constitutes no feature of the present invention. The reader will have no difficulty in following the working of the mechanism. Having described my invention, I claim:

1. In a pump of the type specified, the combination with a lower stationary casing enclosing the lower portion of a pump structure, and a cap mounted upon the upper portion of said pump structure, of a slideable casing adapted to inclose the upper portion of the pump structure and to telescope over the lower casing when lowered, vertical guide rods mounted on said upper portion of the pump structure, guide projections secured to the upper portion of the slideable casing and cooperating with said guide rods in the movement of said slideable casing, and a series of spring-controlled tape-connections mounted on said cap and connected to the slideable casing whereby said casing is maintained in its elevated position with its upper end within the circumference of said cap and may be lowered against the tension of said tape connections, substantially as specified.

2. In a measuring pump, the combination of a lower stationary casing inclosing the pump cylinder, a stationary cap mounted upon the upper portion of the pump structure, a slideable case adapted to inclose the upper portion of the pump structure between the stationary casing and the cap and to thus form a continuation of the stationary casing when elevated, a series of guides arranged between the lower stationary casing and the cap and the movable casing re-
spectively for centering the movement of said movable casing, housings on the interior of said cap, windable springs mounted in said housings, and band connections between said springs and the upper portion of the slidable casing, substantially as specified.

In testimony whereof I affix my signature, in presence of two witnesses.

AUGUSTINE J. POCOCK.

Witnesses:
MELLY GALLOWAY,
MATTHEW SEIBLER.

Copies of this patent may be obtained for five cents each, by addressing the "Commissioner of Patents, Washington, D.C."