Office de la Proprieté Canadian CA 2627635 C 2012/10/02

Intellectuelle Intellectual Property
du Canada Office (11)(21) 2 627 635
Un organisme An agency of 12 BREVET CANADIEN
'Industrie Canada ndustry Canada
CANADIAN PATENT
13) C
(86) Date de depot PCT/PCT Filing Date: 2006/03/24 (51) ClLInt./Int.Cl. H04[9/00 (2006.01),

GO6K 9/00 (2006.01)

(72) Inventeurs/Inventors:
GATTO, JEAN-MARIE, GB;

(87) Date publication PCT/PCT Publication Date: 2006/11/30
(45) Date de délivrance/lssue Date: 2012/10/02

(85) Entree phase nationale/National Entry: 2008/04/23 BRUNET DE COURSSOU, THIERRY, US
(86) N” demande PCT/PCT Application No.: US 2006/010926 | (73) Propriétaire/Owner:

(87) N° publication PCT/PCT Publication No.: 2006/127109 MUDALLA TECHNOLOGY, INC., US

(30) Priorité/Priority: 2005/05/25 (US11/138,736) (74) Agent: OSLER, HOSKIN & HARCOURT LLP

(54) Titre : SYSTEME DE TELECHARGEMENT UNIVERSEL DE JEU DESTINE A UNE MACHINE DE JEUX

TRADITIONNELLE
(54) Title: UNIVERSAL GAME DOWNLOAD SYSTEM FOR LEGACY GAMING MACHINES

DEPLOY
SERVER
LIBRARY

I

2202 W\ 2204

2206

2208 2228 2243 % \\ zze 2290

/

LEGACY GAMING IL_EGACY GAMING LEGACY GAMING | |LEGACY GAMING 2292 | LEGACY GAMING]
MACHINE MACHINE | MACHINE MACHINE ‘—\ MACHINE
2210 | when booted with
PC PROXY P
0 | C PROXY PC PROXY PC PROXY | | Legacy OS
2212 ||| LOCAL LOCAL LOCAL LOCAL 1 | [— ,
“—1T STORAGE STORAGE STORAGE STORAGE ~1i Gaming |
______________________________ ,.) — i Machineisa
e o o 221&/,_\§ AP | | e o o { 'PCPROXY |
o : when booted |
/‘ ROM | |) MULTI-ROM 2094 | | with Windows !

EMULATOR EMULATOR <] =T

QR f :
| [\ LGM lRoSM | | LGM R0€ | \GJQ =
— =)

2216 2226 2244 2246 2264 2266

(57) Abréegée/Abstract:
A universal method and system for downloading game software to legacy gaming machines (Fig 17, 1/718). A gaming machin

Includes a locked enclosure; a first computing device disposed with the locked enclosure, the first computing device beir
programmed to enable game play of the gaming machine; a second computing device disposed within the locked enclosure of th
gaming machine, the second computing device being configured for network access, and an interface between the first and th
second computing devices. The second computing device Is configured to receive game software components (Fig 17, 1/702) over
the network that are compatible with (e.g., executable by) the first computing device but not compatible with (e.g., not executable

@ D Q D

<o
Sy SR VEEEEN
.l.!.\‘\-c.c..--.
. N r
' e [[[
T
o

(l an a d a http://opic.ic.ge.ca* Ottawa/Gatineau K1A 0C9 - Atp.//cipo.dic.ge.ca o p1C
OPIC - CIPO 191

CA 2627635 C 2012/10/02

anen 2 627 635
13) C

(57) Abrege(suite)/Abstract(continued):

by) the second computing device and to transfer the recelved game software components to the first computing device over the
Interface. The second computing device may include, for example, a PC. When the first computing device Is a PC, it may be
configured with dual-boot capabillity between two operating systems. VWhen the first operating system Is booted, game play may be

enabled and when the second operating system Is booted (Fig 17, 1722), game software components may be received over the
network.

27109 A3 | IR0 OO0 0O AR AR A

=

CA 02627635 2008-04-28

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization [#

International Bureau

(43) International Publication Date
30 November 2006 (30.11.2006)

(51) International Patent Classification:
HO4L 9/00 (2006.01) GO6K 9/00 (2006.01)

(21) International Application Number:
PCT/US2006/010926

(22) International Filing Date: 24 March 2006 (24.03.2006)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:
11/138,736 25 May 2005 (25.05.2005) US

(71) Applicant (for all designated States except US): CYBER -
SCAN TECHNOLOGY, INC. [US/US]; Two Palo Alto
Square, Suite 500, Palo Alto, CA 94306-2122 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): GATTO,
Jean-Marie [FR/GB]; 46 Parkside, 29-46 Knightsbridge,
London SWI1X7JP (GB). BRUNET DE COURSSOU,
Thierry [FR/US]; 975 Seven Hills Dr., Apt. 1317, Hen-
derson, NV 89052 (US).

(74) Agent: YOUNG, Alan, W.; Young Law Firm, P.C., 4370
Alpine Road, Suite 106, Portola Valley, CA 94028 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,

(10) International Publication Number

WO 2006/127109 A3

Al, AU, AZ,BA, BB, BG, BR, BW,BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KN, KP, KR, KZ, L.C, LK, LR, LS, LT, LU, LV,
LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI,
NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG,
SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US,
UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every

kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
/W), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EL, ES, I,
FR, GB, GR, HU, ILE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, SI, SK, TR), OAPI (BE, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— with international search report

— before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments

(88) Date of publication of the international search report:
7 June 2007

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: UNIVERSAL GAME DOWNLOAD SYSTEM FOR LEGACY GAMING MACHINES

==
=17 DEPLOY
gﬂ%— ~" SERVER
== LIBRARY

2202 \'f 2204

/ [
2208 2978 . 2268\\\ ;290
LEGACY GAMING | | LEGACY GAMING | |LEGACY GAMING | |LEGACY GAMING 2292 LEGACY GANING
MACHINE MACHINE MACHINE MACHINE iy MACHINE
when booted with
2210
U _14 PCPROXY PC PROXY PC PROXY PC PROXY Legacy OS
2212 LOCAL LOCAL LOCAL LOCAL 229\3’1 | prmenesassnruannannas :
11\ STORAGE STORAGE STORAGE STORAGE { o G?‘f_" ng
— T | | T | e sl B Eeam— o o i Machineisa :
® o o 2214 | e RmBTT U FTTRRD T FRR Y| ® { PCPROXY |

H 2 E.“.u-n.-.uuu....--------.----..3 U S S Sa———— I g —— M
"""""""""""""""""""""" 1 . | { when hooted

4 {

2216 2998 254A

ROM MULTI-ROM ' with Windows !
—— 2294 .-...--.---q-.------‘..'

2216 /-\® & EMULATOR 2 EMULATOR & " :
LGM ROM LGMROM | \® o

S J)
2246 2264 2266

(57) Abstract: A universal method and system for downloading game software to legacy gaming machines (Fig 17, 1718). A
gaming machine includes a locked enclosure; a first computing device disposed with the locked enclosure, the first computing device
v being programmed to enable game play of the gaming machine; a second computing device disposed within the locked enclosure of
\¢ the gaming machine, the second computing device being configured for network access, and an interface between the first and the
& second computing devices. The second computing device is configured to receive game software components (Fig 17, 1702) over
& the network that are compatible with (e.g., executable by) the first computing device but not compatible with (e.g., not executable by)
N (he second computing device and to transfer the received game software components to the first computing device over the interface.
The second computing device may include, for example, a PC. When the first computing device is a PC, it may be configured with
dual-boot capability between two operating systems. When the first operating system is booted, game play may be enabled and when
the second operating system is booted (Fig 17, 1722), game software components may be received over the network.

CA 02627635 2011-11-21

1

UNIVERSAL GAME DOWNLOAD SYSTEM FOR LEGACY GAMING MACHINES

CROSS-REFERENCE TO RELATED APPLICATIONS

BACKGROUND OF THE INVENTION

Field of the Invention

[0002] The present inventions relate generally to the field of network connected pay
computer-controlled games, either games of skills or games of chance, and more particularly to
the field of automated monitoring and control of a large number of clusters of pay gaming
terminals. The gaming terminals may be slot machines, video lotteries, bingo systems or lotiery
terminals in all theiwr forms; that is, desktop terminals, wall or pedestal mounted kiosks, or full
size consoles, operating either in a local area network (LAN) or in a wide area network (WAN).

The present inventions also relate to the monitoring, control and payment systems linked to the

gaming terminals.

Description of the Prior Art and Related Information

[0003] Pay entertainment and gaming systems of the prior art, either of the cash-in or
the cash-less type, are seriously limited due to the technical choices made in order to comply
with gaming regulatory requirements. Regulators are mainly concerned with funds that may be
illegally acquired by individuals as well as with funds that may not be acquired by legitimate
winners as a result of flaws, cheating and/or stealing. Game regulators are reluctant to accept
state-of-the-art operating systems, multimedia and Internet technologies because of security
concerns and tend to favor antiquated technology based upon secrecy rathef that “open” state-of-
the-art technology. A “Request/Authorize” method for downloadable games has been proposed
by another company (IGT’s Secure Virtual Network in a Gaming Environment - Publication
US2002/0116615 A1) but the method disclosed therein does not cover how to ensure that only

certified authorized components may execute.

[0004] Although downloadable games are undeniably going to flourish, they have yet

to create confidence within the regulatory arena.

CA 02627635 2008-04-28
WO 2006/127109 PCT/US2006/010926

2

SUMMARY OF THE INVENTION

[0005] Embodiments of the present invention overcome the security limitations of the
prior art and allow game operators the flexibility to dynamically configure their estate of gaming
terminals. If is to be noted that although the gaming industry has coined the term “downloadable
game” and that gaming standard GLI-21 entitled “Game Download System™ has been published
by Game Laboratory International (GLI), the term downloadable game is rather restrictive, as
the downloading of software components to computer terminals and computer servers is by itself
pervasive in any network distributed computer system. However, downloading certified game

components in a secure manner is a problem that has yet to find a satisfactory solution.

[0006) Embodiments of the present invention may allocate an individual PKI
cerfificate to each executable software component and each of its versions, binding the PKI
certificate to the executable software and associating a distinctive policy for each PKI certificate.
The PKI certificate’s “Subject Name” (or “Issued t0” field, or “CommonName” field) may be a
concatenation of the software component identification, its version number and optionally other

1dentification characters, for example.

[0007] According to other embodiments, the present invention offers a method to
enable dynamic configuration of gaming terminals installed in one or a plurality of gaming
premises whereby certified games, certified data files and certified support software components
may be activated in accordance with a predetermined schedule or automatically in response to
the observed gaming activity. This may be accomplished by configuring and then enforcing the
software execution policies for selected PKI certificates in accordance with the desired

authorized game configuration and schedule.

[0008] Further embodiments of the present invention offer a method to ensure the
trust of non-executable files such as initialization or configuration files, video files, sound files,
multimedia files, file containing list of hashes, CRCs, and/or signatures. This method relies on

the certificate Software Restriction Policy as described herein.

[0009] Still further embodiments of the invention enable the certification authority to

bind the certificates to the tested software components.

10010] The present invention, according to still further embodiments thereof enables a
dynamic generation of the list of games made available to the players without transferring a
configuration file or files from the central server to the gaming machines. For example, a
method according to an embodiment of the present invention relies on attempting to execute a

game component on which a certificate Software Restriction Policy 1s enforced.

CA 02627635 2008-04-28
WO 2006/127109 PCT/US2006/010926

3

[0011] Embodiments of the present invention leverage the technology described in
commonly assigned US patent application filing 60/393,892 entitled —“Secure Game Download”
in which code signing and Software Restriction Policy enable executing authorized game
software. Code signing and Software Restriction Policy (SRP) technologies are available in
Microsoft Windows XP, Windows 2000 and Windows 2003, Embedded Windows XP as well as
in future Windows versions (as of this writing, the next version is code-named “Longhorn”) to
ensure that only executable software components from a trusted publisher, let’s say “Microsoft”,
are allowed to run. Code signing and Software Restriction Policy technology are applied to
executable components such as *.exe, *.dll, *.ocx, *.vbs, *.msi, *.cab, etc. In addition, Software
Installation Policy (SIP) ensures that software components are installed in a controlled fashion.
Embodiments of the present invention extend the use of code signing, Software Restriction
Policy and Software Installation Policy to individual software components that are allowed to
execute in a network connected gaming system by associating a distinctive code-signing
certificate to each executable software component. Each executable software component version
(usually comprising major version, minor version, revision and build) may have a unique
certificate. A distinctive certificate may be created for each software component version and the
two entities (the compiled code and the certificate) may be bound together by a code signing

operation, herein called “signcode.exe”.

[0012] Code signed software components may be packaged together with non-signed
software components (if any) into a MSI Microsoft installation package (MSI = Microsoft
Software Installation). An MSI package is an executable component that in turn receives a
distinctive certificate bound to its content by a code signing operation. Only the software
component version that has successfully passed the regulatory certification process may be

allowed to run by enforcing an unrestricted policy to the associated certificate.

[0013] Moreover, embodiments of the present invention extend the use of code
signing and Software Restriction Policy to ensure that only authorized non-executable
components are used by the authorized executable components. This is of particular value for
configuration files or media files that may affect the game outcome such as fixing the return to
player at, for example, 95% between 5:00 PM and 11:00 PM, or at 98% during other time
periods. For this, non-executable components may be placed in code signed MSI (Microsoft
Software Installation) installation packages. Each individual MSI package is an executable
component whose execution can be controlled by Software Restriction Policy (SRP). A
distinctive certificate may be created for each package version (a part number is created for a

preselected aggregate of non-executable components) and the two entities may be bound

CA 02627635 2008-04-28
WO 2006/127109 PCT/US2006/010926

4

together by the code signing operation “signcode.exe”. Within the network connected gaming
system, trust for non-executable components may be established by executing the associated
authorized code signed packages using SRP upon computer startup or alternatively on demand,
resulting in the re-installation of the original non-corrupted non-executable components. The
non-executable components may be: initialization or configuration files, video files, sound files,

multimedia files, file containing list of hashes, CRCs, and/or signatures, for example.

[0014] For example, DRM (Digital Rights Management) technology offered by
Microsoft Windows Media Player may be used to ensure that only authorized multimedia files

may be played or viewed.

[0015] Also, RM (Rights Management) technology offered with Microsoft Office
2003, with the associated RM services and SDK (Software Development Kit) may be used to

ensure that only authorized data files may be accessed, viewed, copied or modified.

[0016] Software Installation Policy (SIP) and Software Restriction Policy (SRP)
configured with an individual PKI certificate associated to each authorized software component
offer a “Policy/Enforce” model, or in other words a “Configure the Policy and then Enforce the
Policy” model to enable network installation (or “game download”) and activation at
predetermined times (or “game scheduling”) of selected authorized software components, in
order to control the software of the network connected gaming system and offer selected games
to players. This “Policy/Enforce” method may be constructed on a demonstrable trusted base; it
offers transparent security and fine-grained auditing, contrasting with conventional
“Request/Authorize” methods that do not demonstrate reliance on a trusted base to enforce the

use of only trusted software components.

[0017] A network-connected gaming system comprises hundreds of authorized
certified software components that may be selectively downloaded and scheduled. Considering
on-going support for 50 customers and for 200 distinctive games over a period of 5 years, tens
of thousands of software components will each need to receive individual certificates and be
certified. Accordingly, embodiments of the present invention include an automated certification
platform. Herein, such a certification platform is denoted “Integrated Certification Environment”
or ICE. Embodiments of such a certification platform according to the present invention are
designed to automate the stepping through the procedure that must be done by the regulatory
certification authority to produce only authorized software components that may be dynamically

installed in a gaming system, and to prevent generation of erroneous software components. In

CA 02627635 2008-04-28
WO 2006/127109 PCT/US2006/010926

.

addition, the ICE offers support to selectively enable the download of approved system software

components using Microsoft Software Update Services (SUS), for example.

[0018] Embodiments of the present methods rely on established security standards
and a demonstrable trusted base (as opposed to relying on security by secrecy) in order to offer
transparent security and allow fine-grained auditing. Embodiments of the present inventions are
also applicable to any of the subsystems available in a network connected gaming system that
require preventing non-authorized software components from executing or affecting the game
outcome, such as the gaming terminals, the game management system (CMS or MCS) that
monitor and control whole or part of the estate of gaming machines, the progressive jackpot
systems, the bonusing systems as well as game payment verification systems such as IGT’s
EasyPay and Cyberview’s PVU (Payment Verification Unit) and PVS (Payment Verification
System). Gaming subsystems may be tested against gaming standards such as those produced by
GLI; the game standards are mandated by game regulators in accordance with local regulation
and laws. The network-connected subsystems may be located within the premises
accommodating the estate of gaming machine (connection via a LAN) or outside of the premises

(connection via a WAN).

[0019] Other embodiments of the present invention enable a dynamic configuration of
legacy gaming machines, which include PC based and non PC-based gaming machines, gaming
machines that do not run a version of Microsoft’s Windows® operating system, for example, or

do run older, limited, or non secure network enabled operating systems.

[0020] Accordingly, an embodiment of the present invention is a method for
downloading software components to a non PC-based gaming machine over a network, the non
PC-based gaming machine including a locked enclosure and persistent storage. The method may
include steps of providing a PC controlled by policies and disposed within the locked enclosure
of the non-PC gaming machine, the PC including local storage; connecting the PC to the
network; providing an interface between the PC and the non PC-based gaming machine;
downloading a package authenticated by a certificate only to the PC over the network, the
package including the software components to be installed on the non-PC gaming machine;
verifying the certificate and unpacking the software components included in the package, and
enabling the non PC-based gaming machine to execute the unpacked software components.

[0021] The first providing step may be carried out such that the PC is configured to

®

run a version of the Microsoft Windows™ operating system. The software components may be

authorized by a regulatory authority. The downloading step may use the Software Installation

CA 02627635 2008-04-28
WO 2006/127109 PCT/US2006/010926

6

Policy (SIP) feature of the Windows® operating system, for example. The downloading step
may use the Microsoft SMS Systems Management Server, for example. The downloading step
may be carried out such that the package may be a Microsoft MSI package. The downloading
step may be carried out such that the package is equivalent to a Microsoft MSI package. The
second providing step may be carried out such that the interface may include an Application
Program Interface (API). The persistent storage of the non-PC gaming machine may include a
disk drive or a recordable solid state memory storage. The enabling step may include a step of
storing the unpacked software components on the disk drive or the recordable solid state
memory storage through the interface. The persistent storage of the non-PC gaming machine
may include a ROM. The persistent storage of the non-PC gaming machine may include a ROM
and the second providing step may be carried out such that the interface may include a ROM
emulator and the enabling step may include sending the unpacked software components to the
ROM emulator such that the non PC-based gaming machine executes the software components
from the ROM emulator, bypassing the ROM of the non-PC gaming machine. The verifying
step may include a step of issuing a verification command and/or a step of rebooting the PC. The
method may flirther include the step of rebooting the PC and verifying the certificate of any
package stored in the PC’s local memory upon reboot. The method may further include a step of
sending a menu of available games to the non PC-based gaming machine and when a game is
selected from the menu and software for the selected game is not stored in the non-PC gaming
machine, the API further may use the verifying and enabling steps to be carried out on a package
corresponding to the selected game. The package corresponding to the selected game in the
verifying and enabling steps may be stored in the PC’s local storage. The package corresponding
to the selected game may be stored on a server coupled to the network and the package
corresponding to the selected game may be downloaded to the local storage of the PC prior to
the verifying and enabling steps being carried out on the downloaded and stored package. The
first providing step may be carried out with the policies controlled by .ADM administrative
scripts or equivalent commands by a central server. The first providing step may be carried out
with a local password of the PC being configured by a central server. The first providing step
may be carried out with a local password of the PC being randomly configured by a central

SCI'VCT,

[0022] The present invention, according to another embodiment thereof is also a
method for ensuring that only authorized software components execute on a non PC-based
gaming machine connected to a network, the non PC-based gaming machine including a locked

enclosure. The method may include steps of providing a PC controlled by policies and disposed

CA 02627635 2008-04-28
WO 2006/127109 PCT/US2006/010926

7

within the locked enclosure of the non-PC gaming machine; connecting the PC to the network;
providing an interface between the PC and the non PC-based gaming machine; packaging
authorized software components that may be executable to the non-PC gaming machine but not
to the PC into a code signed MSI installation package; configuring certificate rule policies to
enable execution of the code signed MSI installation package; enforcing the policies, sending
the code signed MSI installation package to the PC within the secure locked enclosure of the
non-PC gaming machine, and executing the code signed MSI installation package upon startup

of the non PC-based gaming machines or upon a command.

[0023] The method may further include a step of booting up the PC within the locked
enclosure upon startup of the non-PC gaming machine. The code signing may use a distinctive
PKI certificate for each MSI installation package. The first providing step may be carried out
such that the policies are controlled by .ADM administrative scripts or equivalent commands by
a central server. The first providing step may be carried out with a local password of the PC
being configured by a central server. The first providing step may be carried out with a local

password of the PC being configured randomly by a central server.

[0024] According to another embodiment thereof, the present invention is a gaming
machine that may include a locked enclosure; a first computing device disposed within the
locked enclosure, the first computing device being programmed to enable game play of the
gaming machine; a second computing device controlled by policies and disposed within the
locked enclosure of the gaming machine, the second computing device being configured for
network access, and an interface between the first and the second computing devices, the second
computing device may be configured to receive game software components over the network
that may be compatible with the first computing device but not compatible with the second
computing device and to transfer the received game software components to the first computing

device over the interface.

[0025] The first computing device may be configured to execute the game software
components received by the second computing device, and the second computing device may be
configured so as to be unable to execute the received game software components. The gaming
machine may be a non PC-based gaming machine. The gaming machine may be a PC-based
gaming machine that is not capable of securely receiving game software components over the
network. The second computing device may include a PC. The second computing device may
run a version of the Microsoft Windows® operating system, for example. The first computing

device may include a ROM and the interface may include a ROM emulator and the received

CA 02627635 2008-04-28
WO 2006/127109 PCT/US2006/010926

8

game software components transferred via the interface to the emulator may be executable by
the first computing device. The first computing device may include a plurality of ROMs and the
interface may include a multi-ROM emulator configured to couple to selected ones of the
plurality of ROMs and the received game software components transferred via the interface to
the emulator may be executable by the first computing device. The policies may be controlled by
.ADM administrative scripts or equivalent commands configured by a central server. The second
computing device may be configured with a local password configured by a central server. The
second computing device may be configured with a local password configured randomly by a

central server.

[0026] According to still another embodiment thereof, the present invention may be
viewed as a method for downloading software components over a network to a gaming machine
controlled by a first computing device, the gaming machine being disposed within a locked
enclosure. The method may include steps of providing a second computing device controlled by
policies and disposed within the locked enclosure of the gaming machine; connecting the second
computing device to the network; providing an interface between the second computing device
and the gaming machine; downloading a package authenticated by a certificate only to the
second computing device over the network, the package including software components to be
installed and executed on the first computing device, the software components not being
compatible with the second computing device; verifying the certificate and unpacking the
software components included in the package, and enabling the first computing device to

execute the unpacked software components.

[0027] The downloading step may be carried out with the software components not
being executable by the second computing device. The second computing device may run a
version of the Microsoft Windows® operating system, for example. The first providing step may
be carried out with the second computing device including a PC. The package downloading step
may be carried out with the software components being authorized by a regulatory authority.
The downloading step may use the Software Installation Policy (SIP) feature of the Windows®
operating system. The sending step may use the Microsoft SMS Systems Management Server.
The package may include a Microsoft MSI package or equivalent package. The second
providing step may be carried out with the interface including an Application Program Interface
(API). The gaming machine may include a disk drive or a solid state data storage device and the
enabling step may include a step of storing the unpacked software components on the disk drive
or to the solid state data storage device through the interface. The gaming machine may include

a ROM, the interface may include a ROM emulator and the enabling step may include sending

CA 02627635 2008-04-28
WO 2006/127109 PCT/US2006/010926

9

the unpacked software components to the ROM emulator such that the non PC-based gaming
machine executes the software components from the ROM emulator, bypassing the ROM. The
verlfying step may include issuing a verification command and/or a step of rebooting the second
computing device. The method may further include a step of rebooting the second computing
device and verifying the certificate of any package stored in a local memory of the second
computing device upon reboot. The method may further include a step of sending a menu of
available games to the non PC-based gaming machine and when a game is selected from the
menu and software for the selected game is not stored in the non-PC gaming machine, the API
further may use the verifying and enabling steps to be carried out on a package corresponding to
the selected game. The package corresponding to the selected game in the verifying and
enabling steps may be stored in local storage of the second computing device. The package
corresponding to the selected game may be stored on a server coupled to the network and the
package corresponding to the selected game may be sent to local storage of the second
computing device prior to the verifying and enabling steps being carried out on the sent and
stored package. The first providing step may be carried out such that the policies may be
controlled by .ADM administrative scripts or equivalent commands by a central server. The first
providing step may be carried out with the second computing device being configured with a
password configured by a central server. The first providing step may be carried out with the
second computing device being configured with a local password configured randomly by a

central server.

[0028] Another embodiment of the present invention is a method for downloading
software components to a PC based gaming machine over a network, the PC based gaming
machine including a persistent data storage. Such a method may include steps of configuring the
PC based gaming machine with a dual-boot capability including a first operating system and a
second operating system, the second operating system being controlled by policies, the
persistent storage being accessible by the first operating system and by the second operating
system; executing the game software when the first operating system may be booted; connecting
the PC based gaming machine to the network when the second operating system may be booted;
downloading over the network a package authenticated by a certificate to the PC based gaming
machine only when booted under the second operating system, the package including the
software components to be installed on the persistent data storage; verifying the certificate and
unpacking the software components included in the package when booted under the second
operating system, and enabling the PC based gaming machine when booted under the first

operating system to execute the unpacked software components.

CA 02627635 2008-04-28
WO 2006/127109 : PCT/US2006/010926

10

[0029] The configuring step may be carried out with the first operating system being
Linux, an embedded commercial operating system or a proprietary operating system. The
configuring step may be carried out with the second operating system being a selected one of
Microsoft Windows, a commercial operating system capable of secure network communication
by enforcing policies via build-in or third party add-in functionalities. The configuring step may
be carried out with each of the first and second operating systems being capable of requesting a
reboot under the first or second operating systems. The software components may be authorized
by a regulatory authority. The downloading step may use the Software Installation Policy (SIP)
feature of the Windows® operating system. The downloading step may use the Microsoft SMS
Systems Management Server. The downloading step may be carried out with package being a
Microsoft MSI package. The downloading step may be carried out with the package being
equivalent to a Microsoft MSI package.

BRIEF DESCRIPTION OF THE DRAWINGS

[0030] Fig. 1 1illustrates the intrinsic information that uniquely identifies each

executable software component, according to an embodiment of the present invention.

[0031] Fig. 2 illustrates the information uniquely identifying each executable software
component being made available into the Windows Event Log upon execution of the software

component, according to an embodiment of the present invention.

[0032] Fig. 3 illustrates the information (test certificate indicator, project/product
code, type of executable code, part number, major/minor/build/version, certification lab
identifier, friendly name) uniquely identifying each executable software component being used
to generate the “Subject Name” (or “Issued to” field, or “CommonName” field) of the individual
PKI certificate associated to each executable software component, according to an embodiment

of the present invention.

[0033] Fig. 4 illustrates the information that may be entered in the Extended

Attributes of a PKI certificate, according to an embodiment of the present invention.

[0034] Fig. 5 illustrates the information that may be obtained using the Trusted

Inventory tool, according to an embodiment of the present invention.

[0035] Fig. 6 illustrates the information that may be entered to configure a type-
certificate Software Restriction Policy rule, according to an embodiment of the present
invention. A Software Restriction Policy (SRP) 1s configured using the Group Policy Object
Editor.

CA 02627635 2008-04-28
WO 2006/127109 PCT/US2006/010926

11

[0036] Fig. 7 illustrates the policies that are associated to the active directory
container used to configure the gaming machines, according to an embodiment of the present

invention.

[0037] Fig. 8 illustrates an exemplary cycle from the moment a game 1s being created
until it is first executed on a gaming terminal, according to an embodiment of the present

invention.

[0038] Fig. 9 illustrates the global verification process performed by the terminal in
order to check that no unauthorized file may execute or may affect game outcome, according to

an embodiment of the present invention.

[0039] Fig. 10 illustrates the configuration of the three parties involved in a new game

cycle detailed at Fig. 8, according to an embodiment of the present invention.

[0040] Fig. 11 1llustrates the 12 folders created on the disk repository of the

development environment, according to an embodiment of the present invention.

[0041] Fig. 12 illustrates the dataflow for step 1 to step 3 for producing the certified

authorized software components, according to an embodiment of the present invention.

[0042] Fig. 13 illustrates the datatlow for step 4 to step 12 for producing the certified

authorized software components, according to an embodiment of the present invention.

[0043] Fig. 14 illustrates the grouping of gaming terminals and the associated

enforced policies, according to an embodiment of the present invention.

[0044] Fig. 15 illustrates a method for enforcing a Software Installation Policy by

“linking” the policy, according to an embodiment of the present invention.

[0045] Fig. 16 illustrates a method for enforcing a Software Restriction Policy by

“linking” the policy, according to an embodiment of the present invention.

[0046] Fig. 17 illustrates the method to enforce a policy at a predetermined time,

according to an embodiment of the present invention.

[0047] Fig. 18 illustrates the method to enforce a selected policy as the result of

observing the gaming activity, according to an embodiment of the present invention.

[0048] Fig. 19 illustrates the method to generate dynamically the menu list of
authorized game made available to the player on each gaming terminal, according to an

embodiment of the present invention.

CA 02627635 2008-04-28
WO 2006/127109 PCT/US2006/010926

12

[0049] Fig. 20 illustrates the method to generate a code signed companion software

component, according to an embodiment of the present invention.

[0050] Fig. 21 illustrates the method to quickly generate dynamically the list of game
installed on each gaming terminal using the companion software component, according to an

embodiment of the present invention.

[0051] Fig. 22 illustrates aspects of another embodiment of the present invention in
which secure game download and dynamic configuration capabilities are provided to legacy

gaming machines.

[0052] Fig. 23 illustrates an exemplary cycle from the moment a new game is created
until 1t is first executed on a legacy gaming terminal, according to an embodiment of the present

invention.

[0053]

DETAILED DESCRIPTION

[0054] Retference will now be made in detail to the construction and operation of
preferred implementations of the present invention illustrated in the accompanying drawings.
The following description of the preferred implementations of the present invention is only
exemplary of the invention. The present invention is not limited to these implementations, but

may be realized by other implementations.

[0055] Fig. 1 illustrates Software Component Identification and Traceability via File
Properties, according to an embodiment of the present invention. Shown at 100 in Fig. 1 is the
intrinsic information that uniquely identifies each executable software component. The
executable component source code comprises executable code lines (e.g. X = X + 1; not shown
here) and associated source code assembly information 102, 104 that comprises comment lines
106 and assembly information. Herein, AssemblyTitle 108, AssemblyProduct 110 and
AssemblyVersion 112 are configured. The AssemblyTitle 108 is set to CyberInv.exe that is the
friendly name of the executable software component; AssemblyProduct 110 is set to 0006-
00001-00 that 1s the part number of the executable software component and AssemblyVersion
112 1s set to 1.0.1.0, which is the version number of the executable software component. Once
the source code 1s compiled and the executable is built (CyberInv.exe in this case), the
configured assembly information is available via the File Property of Windows 114 when right

clicking on the file CyberInv.exe and selecting “Properties” and “Version”, as shown at 116.

CA 02627635 2008-04-28
WO 2006/127109 PCT/US2006/010926

13

The friendly name is shown in the Description field 118, the part number is shown in the

Product Name field 120, 122 and the version is shown in the File Version field 124.

[0056] It will be apparent to those of skill in the art of software development that
intrinsic information that uniquely identifies each executable software component may be
obtained in various combinations of assembly directives and file property fields. Additional
information may be configured such as, for example, the software component part number,
major version number, minor version number, build number, revision number, project name,
type of software component, language variant, game regulation variant, friendly name,
1dentification of the certification laboratory, identification of the client, and other predetermined
identification identifiers. The identifiers associated with the executable software component
using source code assembly directives may, therefore, be traceable via the File Property features

of the Windows operating system.

[0057] An example of such a configuration is CST3000-0006-00001-
00{1.0.1.0]{21}"11~9%S Cyberlnv.exe that comprises a concatenation of identifiers that may be
used in a file name or a PKI certificate subject name. According to this example, CST3000 is the
marketing system product identification or the project name; 0006-00001-00 is the software
component part number; [1.0.1.0] details the software component major version number, minor
version number, build number, revision number; {21} is the software component variant
1dentifier; 711 identifies the certification lab that certifies the software component; ~9 identifies
the customer for which this software component is certified; %S is the software component
language variant (“S” for Spanish in this example); CyberIlnv.exe is the software component
friendly name for quick identification. Spaces may be used freely and the identifier fields may
be written in any order so as to facilitate reading. Identifier fields may be omitted whenever the
context already provides such information. The framing or delimiter characters such as [], {}, ~,
", % which are allowable characters to be used in file names and certificate subject names
facilitate human recognition as well as string searches for particular attributes (global search for

all Spanish variants for example).

[0058] In the same manner, a selected set of 1dentification information making up the
certificate subject name may be used for making up the file name of PKI certificate related files
such as *.CER, *.P7B and *.PVK such as to facilitate human identification, string searches and

file searches.

[0059] Fig. 2 illustrates traceability via the Windows Event Log. Reference numeral

200 i Fig. 2 illustrates the information uniquely identifying each executable software

CA 02627635 2008-04-28
WO 2006/127109 PCT/US2006/010926

14

component being made available to the Windows Event Log upon execution of the software
component. The Windows Event Log 202 1s a repository for logging important events; it is
viewed via the Event Viewer 204. Windows default event log bins (or containers) are
Application, Security and System. In the illustrated example, an Event Log bin 206 denominated
“Cyberscan” has been added. The Cyberscan bin 206 contains traceability information in its
“Source” field that is being logged by each of the executable software components. The software
executable software component makes use of the Event Log API to “splash” its identification
information into the source field of a predetermined bin in the Windows Event Log each time it
starts execution, or at any other time should the occurrence of an event be traced, in order to
provide an audit trail to be examined by auditors. The part number 214, version 216 and friendly
name 212 identifiers associated to the executable software component using source code
assembly directives 201 are therefore traceable via the Event Log features of the Windows
operating system. Other information associated with the executable software component may be
splashed into the event log for additional traceability. The “Type” field 208 may flag an

important audit condition such as here “Failure Audit” to alert the auditor.

[0060] Fig. 3 illustrates the Certificate “Issued to” Field. Reference numeral 300
1llustrates the information 308 (test certificate indicator 318, project/product code 320, type of
executable code 322, part number 324, major/minor/build/version 326, certification lab identifier
328, triendly name 330) uniquely identifying each executable software component being used to
generate the “Subject Name” 316 (or “Issued to” field 306, 314, or also known as the
“CommonName” field) of the individual PKI certificate 304 associated with each executable
software component, according to an embodiment of the present invention. The friendly name,
part number and version of the executable software components may be substantially identical to
those entered in the source code assembly 302. “Subject Name” 316 and “Issued to” field 306,
314 refer to the same information; Subject Name is preferably used hereafter. The certificate

authority 312 responsible for generating the PKI certificate is shown in the “Issued by” field
310.

[0061] Fig. 4 at 400 illustrates the information that may be entered in the Extended
Attributes 408 of a PKI certificate 402, according to an embodiment of the present invention.
This information may be viewed by selecting, for example, the "Details" tab 404 of the
certificate 402 and selecting "Extensions Only", as shown at 406.. Intrinsic information that
uniquely identifies each executable software component may be entered in the extended
attributes of a PKI certificate in order to attain the same purpose as described for Fig. 3 as an

alternative to entering the information in the certificate Subject Name. In the same manner,

CA 02627635 2008-04-28
WO 2006/127109 PCT/US2006/010926

15

additional identification information to those entered in the Subject Name may be entered in the

extended attributes.

[0062] Fig. 5 illustrates traceability via the Trusted Inventory Tool 504, according to
an embodiment of the present invention. Reference numeral 500 in Fig. 5 illustrates the
information that may be obtained using the Trusted Inventory tool 504. The trusted inventory
tool 504 is a simple application that searches for executable files through the branches of a given
tree directory and determines whether the executable software component may be trusted by, for
example, calling the Microsoft ChkTrust.exe tool. If the executable software component is
signed by a valid PKI certificate and its executable binary data is uncorrupted (its recalculated
hash matches the code signature), the ChkTrust.exe tool returns the authenticode “Trusted”
attribute; an “Untrusted” attribute is returned otherwise. The Trusted attributes are automatically
tabulated in a spreadsheet such as, for example, Microsoft Excel as depicted at 506. Each line
508 in the table provides details on the executable software component that is being examined,
such as program path location 510, friendly name 512, executable type 514, authenticode trusted
attribute 516, part number 518 and version 520. According to an embodiment of the present
invention, therefore, the part number 518, version 520 and friendly name 512 514 identifiers
associated with the executable software component using source code assembly directives 502

are traceable via the Trusted Inventory tool.

[0063] Reference numeral 600 in Fig. 6 illustrates the information that may be
entered to configure a type-certificate Software Restriction Policy rule. A Software Restriction
Policy (SRP) 604 may be configured using the Group Policy Object Editor 606. The type-
certificate Software Restriction Policy rule 610 may be entered in the “Additional Rules” node
608 of the Software Restriction Policy object 614. In Fig. 6, the part number, version and
friendly name configured in the source code assembly 602 are recognizable in the certificate

subject name 612.

[0064] Fig. 7 illustrates SRP Certificate Rules Policies via the Group Policy
Management Console, according to an embodiment of the present invention. Reference numeral
700 in Fig. 7 illustrates the policies that are associated to the active directory container used to
configure the gaming machines referenced at 706. Policies are managed using the Group Policy
Management Console 702, 704. In this illustration, a policy named “SRP_CyberInv” 708, 710,
712 is selected, for the purpose of viewing a detailed report of the rules that are configured. The
report shows details in a hierarchical order. This exemplary policy defines only one certificate

rule 716 in the Software Restriction Policy node 714. The certificate subject name 718 is set

CA 02627635 2008-04-28
WO 2006/127109 PCT/US2006/010926

16

with a security level 720 of “Unrestricted”, as shown at 722, thus ensuring that only the
executable software component identified in the certificate subject name is authorized to execute
when the policy 714 is enforced. The SRP path rules 724 must be configured such as to prevent
non-authorized software from executing. The policy 708 is enforced when it is linked to its

container object 706 herein named “Gaming Machines”.

[006S] Reference numeral 800 in Fig. 8 illustrates an exemplary cycle from the
moment a game 1S being created until 1t 1s first executed on a gaming terminal, according to an
embodiment of the present invention. The flowchart 800 starts at 802 when the decision to
initiate a project to develop and release a new game is made. The game developer (Cyberscan
here, for illustrative purposes only) 804 develops a new game application 806 whose code must
be certified at 810 by a recognized certification lab 808. The certified code must then be signed
as shown at 812 using PKI certificates produced by a certificate issuing authority (CA) 814
controlled by a trusted party 816. The trusted party 816 may be the certification lab 808. The
signed executable software components may be packaged in code-signed MSI installation
packages signed 1n a manner substantially identical to the executable software components, that
1s, with a unique PKI certificate whose subject name contains part number, veréion and friendly
name 1dentifiers for the MSI package. The MSI packages together with scripts may then be

copied to a removable media, such as a CD-ROM 818 for example.

[0066] The game operator 820 receives the CD-ROM and when it decides to deploy
the new game 822, it copies the packages and associated scripts from the removable media into a
library repository on a server 824 (the DEPLOY server in this case, also shown at 2202 in Fig.
22). The scripts contain automation tasks such as copying to the repository and configuring the

policies.

[0067] In the case of gaming terminals connected in a LAN, each gaming terminal
826 1s controlled by the policies as soon as they are enforced. The Software Installation Policies
(SIPs) controlling the installation of the new game automatically execute the MSI installation
packages upon policy enforcement, provided the corresponding Software Restriction Policies
have been configured to authorize the execution of the MSI installation packages. This process
1s performed at 828, 830. If no SRP authorizes the execution of the MSI installation packages,
the installation 1s ignored, as shown at 832. When the MSI installation package is authorized to
execute, the software components and other files contained in the package may be copied to the

gaming terminals, as suggested at reference numeral 834 836. Other configuration tasks may

CA 02627635 2008-04-28
WO 2006/127109 PCT/US2006/010926

17

also be carried out during the Microsoft installer installation process such as, for example,

setting the Windows registry, setting shortcuts and installing software patches.

[0068] Download of the game software components from the game repository to the
gaming terminals may occur as soon as the associated Software Installation Policies are enforced
(and the SRPs for the MSI installation package is permitted accordingly). Therefore, scheduling
of the download may be achieved by simply enforcing the associated software installation
policies at a given time; this may be accomplished by having an operator manually enforcing the
SIP at a predetermined time via the group policy management console, or having a process
automatically enforcing the SIP at a predetermined time via the API to the group policy
management console. Enforcing a policy may be achieved by linking the selected policy to the

selected policy object in the domain controller active directory.

[0069] Game activation 840 that authorizes execution of the game may be achieved
by enforcing the associated Software Restriction Policies. In the same manner, scheduled game
activation and deactivation in order to offer selected authorized games to the players at
predetermined authorized times may be achieved by simply enforcing the associated Software
Restriction Policies at a given time; this may be accomplished by having an operator manually
enforce the SRP at a predetermined time via the group policy management console, or having a
process automatically enforce the SRP at a predetermined time via the API to the group policy
management console. Enforcing a policy may be achieved by linking the selected policy to the
selected policy object in the domain controller active directory. Alternatively, a selected
executable software component may be prevented from executing by configuring its associated

SRP security level to “disallowed”.

[0070] At this stage, a global verification process 842, 844 as described relative to
Fig. 9 may advantageously be executed to verify the trust of every software component installed
on the gaming terminal. Should the global verification fail, the gaming terminal may be locked

at 846 pending servicing by an attendant.

[0071] When a player selects a game from a gaming terminal 838 from a selection
menu and requests execution thereof, as shown at 848, the authenticodes of the game's
executable software components are verified by the associated enforced Software Restriction
Policy as shown at 850 before beginning execution 858. Should the authenticode verification fail
at 852, the gaming terminal may be locked at 854 pending servicing by an attendant. If the code
is trusted, as verified by the associated enforced SRP, the game is allowed to execute, as shown
at 858.

CA 02627635 2008-04-28
WO 2006/127109 PCT/US2006/010926

18

[0072] Policy changes are automatically distributed by the Windows server operating
system throughout the network connected gaming system at periodic intervals; this automatic
process may be disabled if required. Alternatively, the RegisterGPNotification function may be
used by the game application software executing on each gaming terminal to check if an
applicable group policy has changed. The gaming terminal may then decide on enforcing the
policies locally immediately. The gpupdate.exe service, the RefreshPolicy function or the
RefreshPolicyEx function may be used by the game application software executing on each
gaming terminal to enforce the configured policies. A reboot may optionally be performed in
order to recheck the gaming terminal trusted base and ensure the policies have been completely

entorced (long game installation for example).

[0073] The RegisterGPNotification function enables an application to receive
notification when there is a change in policy. When a policy change occurs, the specified event
object 1s set to the signaled state. Further information on the RegisterGPNotification function
may be found at: http://msdn.microsoft.com/library/default.asp?url=/library/en-us/policy/policy/
registergpnotification.asp. The RefreshPolicy function causes policy to be applied immediately
on the client computer. Further information on the RefreshPolicy function may be found at:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/policy/policy/refreshpolicy.asp.
The RefreshPolicyEx function causes policy to be applied immediately on the computer. The
extended function allows specifying the type of policy refresh to apply to be specified. Further
information on the RefreshPolicyEx may be found at http://msdn.microsoft.com/library/
default.asp?url=/library/en-us/policy/policy/refreshpolicyex.asp.

[0074] The menu of authorized games offered to the player may be dynamically
generated by each terminal without requiring the central system to dispatch the list of authorized
games or having each terminal fetch the list of authorized games from the central system; this
may be done by having each terminal check the policies enforced on the games. This may be
accomplished by having a process in each terminal attempt to execute each of the entry point for
each game (the parent module which is first called upon selecting a game to play) . If the
execution succeeds, then the game is authorized and may be added to the games menu offered to
the player. If the execution is denied (SRP is unlinked or the security level is disallowed), then
the game is not authorized and it is removed from the games menu offered to the player.
Similarly, if a game entry software component file is not found, then the software is not installed
or has been removed and is removed from the games menu offered to the player. The process of
dynamically generating the game selection menu may be optimized in many ways in order to

reduce the game time to start overhead to check if it is authorized.

CA 02627635 2011-11-21

19

[0075] In a casino, although new games may be scheduled to be downloaded to
gaming terminals and activated at predetermined times, it is a requirement that games may not
be changed while a player is playing. In practical terms, a player is considered to have
terminated his or her game play when the player's credit balance remains at zero for a
predetermined period of time. The predetermined period time is sufficient for allowing the
player to enter a new bill or other form of credit instrument to continue playing. Therefore, the
game application software on each game terminal may, according to embodiments of the present
invention, continually test for this condition (credit = 0 for a predetermined time) before
checking for change in policy, enforcing the policy changes and then updating the menu of

games to be made available to the next player.

[0076] Fig. 9 at 900 illustrates the global verification process performed by a terminal
to check that no unauthorized files are allowed to execute or affect the game outcome. This

process may be performed by any of the subsystems connected in the gaming systems.

[0077] The process may start with a computer cold or hot reboot 902 such that the
operating system trusted base may be thoroughly verified before the game software components
are verified. The trusted base is detailed in commonly assigned and copending US application
serial number PCT/US2002/029927, entitled "Secure Game Download",
and also in Microsoft
Next Generation Secure Computing Base (NGSCB), also incorporated herein by reference.
Details of Microsoft's NGSCB are located at www.microsoft.com/ngscb. During the trusted base
verification, the integrity of the Driver Signing framework, the Windows File Protection
framework and Software Restriction Policies framework are verified. With NGSCB operating
system such as forthcoming “Longhorn”, a framework called Nexus deeply integrated directly
within the hardware components (in each major chipsets) and the BIOS which constitutes a
mechanism for authenticating the trustworthiness of the software and hardware configuration, is
booted prior to checking the integrity of the Driver Signing framework, the Windows File

Protection framework and Software Restriction Policies framework.

[0078] On completion of the operating system boot-up 902 or at another time, the
global verification process 904 may be executed. The CyberInv process 910, 914 is also shown
and described at Fig. 5. The CyberInv process 910, 914 verifies all the executable files in given
folder trees such as 912 (*.exe, *.dll, *.ocx, *.vbs, *.bat, *.msi, *.cab, for example) for
trustworthiness. If any file is found to be untrusted as shown at 932, then the gaming terminal

may be frozen as shown at 934 pending examination by security personnel. A spreadsheet file

CA 02627635 2008-04-28
WO 2006/127109 PCT/US2006/010926

20

916 may be produced that list the verification status of each executable file. If the authenticode
of all the files is trusted as shown at 918 then the CyberInv process 908, 910, 914, 924 returns at
920 a trusted status, as shown at 926 930. Consequently, all of the executable software

components may be considered to be trusted, as shown at 930.

[0079] However, it is to be noted that the fact that an executable software component
1s trusted does not imply that the software component is authorized to execute; it merely
indicates that the software executable software component has a valid authorized authenticode
certificate and that the software component binary data is not corrupted. Checking whether an
executable software component having a valid authorized authenticode certificate is éuthorized
to execute requires that the applicable Software Restriction Policy be checked. This may be
performed automatically when the software component is loaded by the operating system to start
its execution, either when dynamically building the menu of authorized games, or each time
upon starting execution of the game when the player has selected a game to play — or using an

appropriate service that may be called by an application.

[0080] Although RM (Rights Management) and DRM (Digital Rights Management)
technology from Microsoft is readily available for authenticating the trustworthiness of non-
executable files such as media files, Word files and emails, for example, it adds management
complexity on top of the Software Restriction Policy framework when used in a network-
connected gaming system. Addressing this, embodiments of the present invention offer a
method for a network connected gaming system to trust non-executable files such as
initialization or configuration files, video files, sound files, multimedia files, file containing list
of hashes, CRCs, and/or signatures. The present method relies on packaging the non-executable
files in a MSI 1nstallation package, the MSI package being subsequently code-signed with a
unique certificate and the appropriate Software Restriction Policy is configured to enable
installation (execution in fact) of this MSI package. Executable files and non-executable files
may be packaged together for convenience. The selected aggregate of executable files and non-
executable receives at least a part number (and preferably a version number as well) that is used
in the subject name of the associated certificate. Consequently, according to embodiments of the
present mvention, when the MSI package 1s installed, the installed non-executable files are

obtained from a trusted and authorized source.

[0081] As the CyberInv process 908 has authenticated the trustworthiness of all the
* msi files 911, therefore whenever there is a need to ensure that the non-executable files are

trusted, the associated MSI package is re-installed. It is to be noted that the service that performs

CA 02627635 2008-04-28
WO 2006/127109 PCT/US2006/010926

21

the installation of the MSI packages (msiexec.exe in the current versions of Windows) may be
executed with a variety of execution modifiers, such as shown at http://www.microsoft.com/
technet/treeview/default.asp?url=/technet/prodtechnol/winxppro/proddocs/msiexec.asp. Of
particular interest 1s the ¢ option that reinstalls a file if it is missing or if the stored checksum of
the installed file does not match the new file's value (the log file will contain the anomalies
detected for subsequent forensic analysis), as shown at 936. In the global verification process
904, the ¢ option of the msiexec.exec command may be used for re-installing every package
containing configuration files 938 (such as initialization or configuration files, files containing
list of hashes, CRCs, and/or signatures), Flash files 940 (Macromedia Flash and Director), and

other media assets files 942 in order to ensure the trustworthiness of these files.

[0082] Subsequent to completion of process 908, all the MSI packages for the
executable software components may be re-installed with for example, the msiexec.exe
command using the p option in order to re-install missing authorized executable software

- components (the log file will contain the anomalies detected for subsequent forensic analysis).

[0083] Subsequent to the successful completion of the global verification process
904, the trustworthiness of the game application framework is established and may be started, as

shown at 906.

[0084] It 1s to be noted that when a player wins an amount equal to or greater than
$25,000 or $50,000 in a casino, there is a requirement to check the integrity of the gaming
application. With legacy gaming terminals, the gaming terminal is powered-down and the
ROMs are extracted in order to be verified in a trusted verifier named a “Kobetron”. The
Kobetron produces a signature for each of the ROMs that is compared with the corresponding
signature produced by the certification lab. In this manner, the integrity of the all the software
components of the legacy gaming terminal, including the operating system, the game application
and the configuration data may be verified. According to embodiments of the invention, when
executing the global verification process 904 subsequent to the gaming terminal bootup at 902, a
verification equivalent to a “Kobetron verification” may be performed. This metaphor helps
greatly in the acceptability of downloadable game technology by game regulators who are

reluctant to accept state-of-the-art operating systems, multimedia and network technologies.

[0085] Fig. 10 at 1000 illustrates the configuration of the three parties involved in a
new game cycle detailed at Fig. 8, according to an embodiment of the present invention. The
three parties involved in a game cycle, according to embodiments of the present invention, are

the game developer 1002 whose facilities are located in a given city 1004, the certification

CA 02627635 2008-04-28
WO 2006/127109 PCT/US2006/010926

22

laboratory 1006 whose facilities are located in a given city 1008 and the gaming operator 1010
located in a given city 1012. The game developer 1002 and the certification lab 1006 may have a
network 1020 of connected gaming system(s) representative of the network connected gaming
system in place at the location (e.g., the casino) of the gaming operator 1010. In addition, the
game developer 1010 and the certification lab 1006 each may have an integrated software
development environment for compiling the game applications source code, each capable of
managing at least 200 games for 50 distinct game operators as shown at 1044, (resulting in
thousands of source code variants due to local regulation variances). The development
environments may be kept synchronized via the secure network link 1016, 1018, 1014, 1022,
1020. A certification authority (CA) 1040 may be located at the game developer's site or may be
controlled by an authorized trusted party such as VeriSign. The game developer site and the
certification lab site may be accessible from the outside by authorized mobile users 1034, 1028
via secure links 1022, 1018, 1030, 1036. Logon authentication may be carried out using, for

example, smartcards as shown at 1038, 1032 or by other secure means.

[0086] The game developer 1002 supplies the certification lab 1006 with a CD-ROM
(or other media) containing the software components to be tested, as shown at 1048. The
certification lab then certifies the software components supplied on the CD-ROM and provides
the game developer 1002 with a CD-ROM containing the certified software components for
deployment, as shown at 1046. The CD-ROM 1046 containing the authorized software
components that were tested and certified by the certification lab 1006 may then be provided to
the game operator (e.g., the casino) for installation and deployment on one or more of the
gaming machines GMO001, GMO002, GM2995 coupled to the network 1024. The certified
authorized software components are code-signed using a certificate produced in accordance with
an embodiment of the present invention, as described hereinabove. The network 1024 is

preferably not coupled to any external network, as suggested at 1026.

[0087] Fig. 11 shows a 12-Step Integrated Certification Environment Process,
according to an embodiment of the present invention. Shown at 1100 are the 12 folders 1110
created on the disk repository 1102 of the development environment. The 12 folders 1110 are
mapped to the 12-step procedure 1104 to 1106 involved in producing the CD-ROM 1050
containing the certified authorized software components. Each folder contains the computer
resources and instructions to carry out each step. The folders are clearly named with the step

number and the title description of the procedure step at 1108.

CA 02627635 2008-04-28
WO 2006/127109 PCT/US2006/010926

23

[0088] Fig. 12 shows a dataflow diagram of Step #1 to Step #3 of the Integrated

Certification Environment Processor for producing certified authorized software components,
according to an embodiment of the present invention. Step 1 at 1220 may include obtaining a
snapshot 1212 of the repository 1204 containing the game developer’s source code 1206, data
files 1208 and media assets 1210 in order to configure the building environment of the reterence
platform with all the source code, data files, media asset files and resources files required to
initiate the certification process. The snapshoot files 1212 may be stored in a repository 1213
controlled by a version configuration and control system (SCCS) such as Microsoft Visual
Source Safe 1214 (VSS) on the DEV development computer 1216. The files may be grouped in
project directories as “Projects” such that the source files, control files and resource files are
stored in convenient systematic fashion in the Visual Studio repository 1240 on the development

computer 1238. An inventory of the files submitted for certification may be produced. Step 1
may be qualified as “SETUP Projects™ 1222.

[0089] Step 2 at 1232 may include compiling the source code and producing binary
executable code. Microsoft Visual Studio 1224 is constructed so as to manage source code as
projects (a project can be a given game) regrouping all of the dependent source code, and data
files. Step 2 is also referenced as building the projects or “BUILD Projects”, as shown at 1234,
Media assets may require a different compiling environment on the DEV computer 1230 such as

the Macromedia Director 1228.

[0090] Step 3, shown at 1242 may include producing the projects MSI packages
1244 for the source code compiled in Step 2. Relevant non-executable file such as configuration
files and media assets may be packaged in MSI packages with the compiled source code. It is to
be noted 1246 that packages will be built again (step 8 hereafter) after code signing of EXE,
DLL, OCX and other executables (step 6 hereafter). Step 3 may be referenced as “BUILD
Packages Pass #1” 1244.

[0091] Fig. 13 shows, at 1300, the dataflow for step 4 to step 12 for producing the
certified authorized software components, according to an embodiment of the present invention.
Step 4 at 1308 calls for the CyberInv.exe process 1306, for a selected project (a Visual Studio
project may typically regroup all the software components for an entire game), perform an
inventory 1304 of the compiled software components produced by Visual Studio 1302 on
completion of the Build Project process 1234 (Fig. 12) as well as the MSI install packages
produced by the Build MSI Packages Pass #1 1244 process (Fig. 12). The Cyberlnv.exe 1306

process may also include any other executable software components not directly managed under

CA 02627635 2008-04-28
WO 2006/127109 PCT/US2006/010926

24

Visual Studio such as, for example, ocx, *.vbs, *.bat, *.cab, *.js. (In fact, any executable

component that is supported by the Software Restriction Policy technology).

[0092] The Cyberlnv.exe process 1306 produces the CyberInv.xls 1307 Excel
spreadsheet file 916 shown at Fig. 9, which is examined by an authorized user in the MS Excel
program 1310. The CyberInv.xls 1307 file is copied to the folder “Step 4 — CyberInv” folder in
1110 in Fig. 11. The binary files having just been compiled are not code-signed; consequently
the authenticode field shows an “Untrusted” status for each of the binary components. The
friendly name, file type, part number and version (including build number) are extracted directly
from the assembly information contained in the source code, therefore truly reflecting the

identity of the source code component.

[0093] Because the build number is incremented each time the code 1s recompiled in
a Build operation, it is to be noted that the version number will change accordingly. The
authorized user eliminates the rows that are irrelevant to the game to be certified and saves the
file under the CyberCert.xls 1311 file name which contains the necessary friendly name 512,
executable type 514, part number 518 and version 520 information to compose the PKI
certificate subject name in accordance with method detailed at Fig. 3 for subsequent code
signing. The program path location 510 of the unsigned software components is also available
for later retrieval of the unsigned binary file. The CyberCert.xls 1311 file 1s copied to the folder
“Step 5 — CyberCert” folder in 1110 1 Fig. 11.

[0094] The CyberCert.xls 1311 file may be securely copied in encrypted form to a
removable media such as a floppy disk, a CD-ROM or a USB disk 1312, or alternatively

transferred to another location by secure communication means.

[0095] The CyberCert.xls 1311 file 1s split into 2 files CyberSignl.xls 1317 and
CyberSign2.xls 1319. CyberSign2.xls contains only the rows associated to the MSI packages
and CyberSignl.xls contains the rows corresponding to the other executable file. CyberSignl.xls
is copied to the “Step 6 — CyberSign (Pass #1)” folder in 1110 in Fig. 11, and CyberSign2.xls is
copied to the “Step 8 — CyberSign (Pass #2)” folder.

[0096] Step 5 at 1316 includes having a certification authority (CA) 1315 located at
the game developers’ site or controlled by an authorized trusted party such as VeriSign
generating certificates in accordance with the details provided in the CyberCert.xls 1311 file,
that is, with a subject name created in accordance with the method detailed relative to Fig. 3. An

automated process CyberCert.exe 1318 executing on the off-line CA computer Windows server

CA 02627635 2008-04-28
WO 2006/127109 PCT/US2006/010926

25

named CS11 1314 may automate the generation of the PKI public certificates 1326 and the
associated private keys 1328 using the CyberCert.xls 1311 file.

[0097] The trusted root certificate for the authorized CA 1320 is supplied to the
certification lab, the game regulators or other parties for reference and for importing as a trusted

root into the ICE computer system and the gaming system certificates store.

[0098] The public certificates 1326 and their associated private keys 1328 are
forwarded to the DEV computer 1332 of the ICE system in encrypted form on a removable
media such as a floppy disk, a CD-ROM or a USB disk 1324, or alternatively transferred by

secure communication means. Public certificates 1326 and their associated private keys 1328

that are associated with the MSI packages are copied into the “Step 6 — CyberSign (Pass #1)”
folder in 1110, and the other public certificates 1326 and their associated private keys 1328 that

are associated with other software components are copied to the “Step 8 — CyberSign (Pass #2)”
folder.

[0009] Step 6 1336 includes steps of code signing the non-MSI executable
components listed in the CyberSignl.xls 1317 file using the corresponding public certificates
1326 and their private keys 1328. The code signing may be performed using the SignCode.exe
utility provided by Microsoft, or equivalent. A password may be required for the private key
depending on the security option selected when generating the certificate at the CA. The
CyberSign.exe process 1330 may automate the code-signing of all the non-MSI executable
components listed in the CyberSignl.xls 1317 file using the friendly name, file type, part
number and version (including build number) given in each row. The CyberSign.exe process
may call the SignCode.exe utility or the equivalent API. During the code signing process, the
compiled executable software components may be replaced at 1339 by their code-signed form.

Step 6 is designated as “CodeSign Pass#1” 1338.

[0100] Step 7 at 1344 includes re-building all the MSI install packages 1345
performed during step 3 at 1242. This time, the MSI packages contain the non-MSI code-signed

executable components.

[0101] Step 8 at 1340 includes code signing the MSI executable components listed in
the CyberSign2.xls 1319 file using the corresponding public certificates 1326 and their private
keys 1328. The code signing may be performed using the SignCode.exe utility provided by
Microsoft, or equivalent. A password may be required for the private key depending on the
security option selected when generating the certificate at the CA. The CyberSign.exe process

1330 may automate the code-signing of all the MSI executable components listed in the

CA 02627635 2008-04-28
WO 2006/127109 PCT/US2006/010926

26

CyberSign2.xIs 1319 file using the friendly name, file type, part number and version (including
build number) given in each row. The CyberSign.exe process may call the SignCode.exe utility
or the equivalent API. During the code signing process, the executable MSI software
components may be replaced 1341 by their code-signed form. Step 8 is designated as “CodeSign
Pass#2” at 1342. The executable MSI software components are copied as shown at 1371 to the
CD Pre-Burn repository 1372.

[0102] Because of the necessity of performing step 7, the CyberSign 1330 code-
signing process to be used for the ICE (Integrated Certification Environment) is designated a “2-

Pass code-sign”, as indicated at 1334.

0103] Step 9 1366 includes (a) configuring the software restriction policy (SRP)
1360 for the ICE system test gaming terminals (via the active directory 1350 in the domain
controller DC) with the certificate rules corresponding to the certificate produced at step 5 (the
*p7b certificate at reference numeral 1326 may be converted to *.cert certificates for
compatibility reasons when configuring the SRP); (b) configuring the Software Installation
Policy (SIP) 1368 for the ICE system test gaming terminals with the MSI packages produced at
step 7, then (c) using the GPMC (Group Policy Management Console) or equivalent service,
exporting the SIP via SIP export scripts 1362 and the SRP via SRP export scripts 1364 (the
policy export facility is available in the Group Policy Management Console GPMC 702, 704).
These SIP and SRP export scripts may be copied into the folder “Step 9 — SIP & SRP” folder in
1110. These SIP and SRP export scripts may be later imported in the gaming operator’s 1010
gaming system for enforcing the policies on the game components. SIP export scripts 1362 and
SRP export scripts 1364 are stored in the CD Pre-Burn repository 1372 (or into the folder “Step
10 — CD Burn — Casino Release” folder in 1110).

[0104] Step 10 at 1374 includes steps of burning at 1384 to a CD-ROM 1376 or other
removable media the content of the CD Pre-burn repository 1372 comprising (a) the executable
MSI software components 1371; (b) the SIP export scripts 5§ 1362 and SRP export scripts 1364
and (c) other automation scripts in order to automate the installation of (a) and (b). A copy of
CD-ROM 1376 may be forwarded (a) to the gaming operator’s 1010 gaming system for game
deployment (such as a casino 1379), (b) to the certification lab 1378, and (¢) a trusted party 1377
such as a lawyer or in escrow for impartial reference in case of later dispute. The CD-ROM 1376
may later be inserted at 1050 in the gaming operator’s 1010 gaming system for game

deployment.

CA 02627635 2008-04-28
WO 2006/127109 PCT/US2006/010926

27

[0105] Step 11 at 1370 includes steps of (a) taking a snap-shot 1387 of the entire
development environment for a selected certified game (Visual Studio repository 1302 and
Visual Source Safe repository 1214 1218 that contains all the source file, the compiled code-
signed executable files and dependant executable files, the non-executable files, project solution,
automation scripts, the source and compiled signed code from other development platforms, the
media assets from media development platforms such as MacroMedia Director 1228); in (b)
taking a snap-shot 1387 of the code-signed MSI installation packages; in (c) optionally

encrypting them; and then in (d) copying them into a CD pre-burn repository 1388 (or into the
folder “Step 12 — CD Burn — VS Snapshot” folder in 1110).

[0106] Step 12 at 1386 includes steps of burning at 1382 to a CD-ROM 1380 or other
removable media the content of the CD Pre-burn repository 1388 comprising the software
components of step 11. A copy of CD-ROM 1380 may be forwarded to the certification lab
1378 and to a trusted party 1377 such as a lawyer or in escrow for impartial reference in case of

later dispute.

[01'07] Steps 4 to step 12 should be carried out each time a source code is being
recompiled subsequent to a modification because a unique certificate must be associated to each
build. Deviating form this order may jeopardize certificate integrity because of the risk of a

human error that may result in the wrong certificate being used during the code signing process.

[0108] Fig. 14 illustrates assignment of policies by banks of gaming machines.
Reference numeral 1400 in Fig. 14 shows the grouping of gaming terminal and the associated
enforced policies. In this illustration, the Group Policy Management console 1402 may be
configured such that the active directory Organization Unit (OU) named “Gaming Terminals —
Floor” at 1404 1s architectured to regroup the gaming terminals in “banks” or sub-Organization
Units (sub-OUs) identified by 200A0x 1406, 200B0x 1408, 200C0x 1410, and 200D0x to
200K 0x at reference numeral 1412. Each bank contains a predetermined number of gaming

terminals, in multiples of 8 units, for example.

[0109] Noting the hierarchical tree composed of the OUs and sub-OUs illustrated at
1400, all the policies 1414 apply to the OU “Gaming Terminals — Floor” 1414 which contains
all the sub-OUs 1406 1408 1410 and 1412. Using this techniqﬁe, all the policies 1414 may apply
to all the 3000 gaming terminals of a large casino. In the same manner, the policies 1416, 1418
apply to the bank 1406; the policies 1420, 1422 apply to the bank 1408; and the policies 1424,
1426 apply to the bank 1410.

CA 02627635 2008-04-28
WO 2006/127109 PCT/US2006/010926

28

[0110] In the illustration, the exemplary game named “Roulette” is assigned a policy
named “Sbml.5 — SIP — Roulette (GLI)” 1416 which configures the Software Installation Policy

(SIP) and a policy named “Sbml.5 — SRP — Roulette (GLI)” 1418 which configures the
Software Restriction Policy (SRP) for that game.

[0111] In the same manner, the exemplary game named “Infinity” is assigned a policy
named “Sbml.4 — SRP — Infinity (GLI)” 1424 which configures the Software Installation Policy

(SIP) and a policy named “Sbm1.4 — SRP — Infinity (GLI)” 1426 which configures the Software
Restriction Policy (SRP) for that game.

[0112] The keyword “Sbm1.4”, in this example, denotes the certification submission
number 1.4, and the keyword “GLI” denotes the certification lab GLI (Game Laboratories

International) approving the Infinity game software.

[0113] In the illustration, all of the game terminals regrouped in the bank 200A0x
shown at 1406 are, therefore, configured to execute the Roulette game, all the game terminals in
the bank 200B0x shown at 1408 are configured to execute the Roulette game and the Infinity

game, and all the game terminals in the bank 200C0x shown at1410 are configured to execute

the Infinity game.

[0114] Fig. 15 shows the enforcement of a Software Installation Policy (SIP). In Fig.
14, banks of gaming terminals are configured to execute authorized games using SIPs and SRPs
policies. However, in order for the gaming terminals to be able to install a game, the associated
Software Installation Policy must be enforced. At 1500, Fig. 15 illustrates a method for
enforcing a Software Installation Policy by “linking” the policy, according to an embodiment of
the present mvention. This is accomplished in the Group Policy Management console 1502 by,
e.g., right-clicking the selected policy 1504, 1506 “Sbm3.3 — SIP — INFINITY 95 associated to
the Infinity game with a Return To Players (RTP) percentage of 95% and selecting the “link
Enabled” attribute 1514. The software components for the Infinity 95 game contained in the
two MSI installation packages 1510 -and 1512 will subsequently be installed, provided the
associated SRPs are configured to authorize execution of these two MSI packages (refer to
description for Fig. 16). Alternatively, the same procedure may be automated via an API called
from an appropriate application. It is to be noted that the linking of the policy will in fact enable
the enforcement of the policy, but the policy will only be enforced on the gaming terminal when
a gpupdate command or equivalent command is performed at the terminal; a terminal reboot
may also be required for the policy to be enforced. Also to be noted is that policy changes are

automatically distributed by the Windows server operating system throughout the network

CA 02627635 2008-04-28
WO 2006/127109 | PCT/US2006/010926

29

connected gaming system at periodic intervals; this automatic process may preferably be

disabled such as to obtain more predictable policy enforcement changes by issuing explicit

commands instead.

[0115] Package 1512 (friendly name: Infinity95.msi) contains the executable software
components for the Infinity game and package 1510 (friendly name: Infinity95.Config.msi)
contains the configuration files (the non-executable files) for the Infinity game. Package

Infinity95.Config.msi 1510 is re-installed in the process 938.

[0116] Fig. 16 illustrates the enforcement of a Software Restriction Policy (SRP). In
Fig. 14, banks of gaming terminals are configured to execute authorized games using SIPs and
SRPs policies. However, in order for the gaming terminals to be able to execute the games, the
policies must be enforced. Fig. 16 at 1600 illustrates a method for enforcing a Software
Restriction Policy 1608 by “linking™ the policy. This is accomplished in the Group Policy
Management console 1602 by, e.g., right-clicking the selected policy 1604, 1606 “Sbm3.3 —
SRP — INFINITY_ 95” associated to the Infinity game | with a Return To Players percentage
(RTP) of 95% and selecting the “link Enabled” attribute 1624.

[0117] The certificate rules 1610, 1616 and 1620 that are configured with the
“Unrestricted” attribute 1618, 1622 authorize the installation of the software components for the
Infinity 95 game contained in the two MSI installation packages 1510 and 1512 by authorizing
the unique PKI certificate associated to thos; i\/ISI produced in accordance with the present
method. The “.dII” executable software component 1612 is authorized, has its security level

attribute set to "Unrestricted"” and is, therefore, authorized to execute once it is installed.

[0118] The two MSI 1wstallation packages 1510 and 1512 for installing the software
components for the Infinity 95 game have their associated unique PKI certificate 1616 and 1620
(produced in accordance with the method described herein) configured with the “Unrestricted”
security level attribute 1618, 1622 via the certificate rules 1610, thus enabling (or authorizing)

execution and installation of the software components for the Infinity 95 game.

[0119] The “.dll” executable software component contained in the 1512 package has

its security level attribute set to “Unrestricted” thus it is authorized to execute once it is installed.

[0120] Alternatively, the same procedure may be automated via an API called from
an appropriate application. It is to be noted that the linking of the policy will in fact enable the
enforcement of the pélioy, but the policy will only be enforced on the gaming terminal when a
gpupdate command or equivalent command is performed at the terminal; a terminal reboot may

also be required for the policy to be enforced. Also to be noted is that policy changes are

CA 02627635 2008-04-28 :
WO 2006/127109 PCT/US2006/010926

30

auntomatically distributed by the Windows server operating system throughout the network

connected gaming system at periodic intervals; this automatic process may preferably be

disabled such as to -obtain more predictable policy enforcement changes by issuing explicit

commands 1nstead.

[0121] Fig. 17 1llustrates a method at 1700 to enforce a policy at a predetermined

time, according to an embodiment of the present invention.

[0122] Enabling enforcement of policies as described relative to Fig. 15 and Fig. 16
may be carried out interactively by an authorized user at predetermined authorized times, or
alternatively may be controlled by a process at predetermined authorized times via the
appropriate API. At the central system 1702 (the game download server in this illustration) at a
given time 1704, a user or a process may verify a change 1706 in the list of games to be made
available to players on a selected set of gaming terminal banks. In case of a schedule change as
shown at 1710 (or other reasons such as introducing a new game or revoking an existing game),
policies on the domain controller 1714 are being changéd accordin