

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
26 May 2011 (26.05.2011)

(10) International Publication Number
WO 2011/063323 A1

(51) International Patent Classification:
C07C 29/86 (2006.01) C07C 31/12 (2006.01)
C12P 7/16 (2006.01)

[US/US]; 38 Celestial Way, Newark, Delaware 19711 (US).

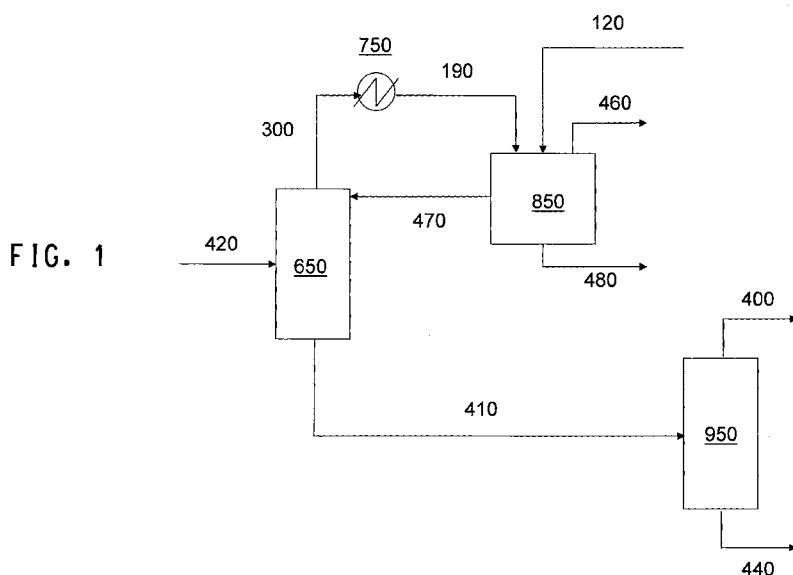
(21) International Application Number:
PCT/US2010/057597

(74) Agent: LHULIER, Christine, M.; E. I. du Pont de Nemours and Company, Legal Patent Records Center, 4417 Lancaster Pike, Wilmington, Delaware 19805 (US).

(22) International Filing Date:
22 November 2010 (22.11.2010)

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:
61/263,509 23 November 2009 (23.11.2009) US


(71) Applicant (for all designated States except US): BUTAMAX(TM) ADVANCED BIOFUELS LLC [US/US]; 200 Powder Mill Road, Wilmington, Delaware 19803 (US).

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(72) Inventors; and
(75) Inventors/Applicants (for US only): GRADY, Michael, Charles [US/US]; 147 Heather Road, Oaklyn, New Jersey 08107 (US). PARTEN, William, D. [GB/US]; 145 Landis Way North, Wilmington, Delaware 19803 (US). VRANA, Bruce [US/US]; 159 Thompson Drive, Hockessin, Delaware 19707-1912 (US). XU, Yihui, Tom

[Continued on next page]

(54) Title: RECOVERY OF BUTANOL FROM A MIXTURE OF BUTANOL, WATER, AND AN ORGANIC EXTRACTANT

(57) Abstract: A process for recovering butanol from a mixture comprising a water-immiscible organic extractant, water, butanol, and optionally a non-condensable gas, is provided. The butanol is selected from 1-butanol, 2-butanol, isobutanol, and mixtures thereof. An overhead stream from a first distillation column is condensed to recover a mixed condensate. An entrainer is added to at least one appropriate process stream or vessel such that the mixed condensate comprises sufficient entrainer to provide phase separation of the organic and the aqueous phases to provide for recovery of the butanol.

Published:

— *with international search report (Art. 21(3))*

— *before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))*

TITLE OF INVENTION**RECOVERY OF BUTANOL FROM A MIXTURE OF BUTANOL, WATER,
AND AN ORGANIC EXTRACTANT**

5

CROSS-REFERENCE TO RELATED CASES

This application claims the benefit of priority to US Provisional Patent Application Serial No. 61/263509, filed on November 23, 2009, the entirety of which is herein incorporated by reference.

10

FIELD OF THE INVENTION

Processes for recovering butanol from a butanol-containing organic phase obtained from an extractive fermentation process are provided. Specifically, processes for separating butanol from a mixture comprising butanol, water, a water-immiscible organic extractant, and optionally a 15 non-condensable gas, by distillation and use of an entrainer are provided.

BACKGROUND OF THE INVENTION

Butanol is an important industrial chemical with a variety of applications, such as use as a fuel additive, as a blend component to 20 diesel fuel, as a feedstock chemical in the plastics industry, and as a foodgrade extractant in the food and flavor industry. Each year 10 to 12 billion pounds of butanol are produced by petrochemical means. As the projected demand for butanol increases, interest in producing butanol from renewable resources such as corn, sugar cane, or cellulosic feeds by 25 fermentation is expanding.

In a fermentative process to produce butanol, in situ product removal advantageously reduces butanol inhibition of the microorganism and improves fermentation rates by controlling butanol concentrations in the fermentation broth. Technologies for in situ product removal include 30 stripping, adsorption, pervaporation, membrane solvent extraction, and liquid-liquid extraction. In liquid-liquid extraction, an extractant is

contacted with the fermentation broth to partition the butanol between the fermentation broth and the extractant phase. The butanol and the extractant are recovered by a separation process, for example by distillation. In the recovery process, the butanol can also be separated

5 from any water, non-condensable gas, and/or fermentation by-products which may have been removed from the fermentation broth through use of the extractant.

Copending U.S. Patent Application No. 12/478,389 filed on June 4, 2009, discloses methods for producing and recovering butanol from a

10 fermentation broth, the methods comprising the step of contacting the fermentation broth with a water immiscible organic extractant selected from the group consisting of C₁₂ to C₂₂ fatty alcohols, C₁₂ to C₂₂ fatty acids, esters of C₁₂ to C₂₂ fatty acids, C₁₂ to C₂₂ fatty aldehydes, and mixtures thereof, to form a two-phase mixture comprising an aqueous phase and a

15 butanol-containing organic phase.

Copending U.S. Provisional Patent Application Nos. 61/168,640; 61/168,642; and 61/168,645; filed concurrently on April 13, 2009; and 61/231,697; 61/231,698; and 61/231,699; filed concurrently on August 6, 2009, disclose methods for producing and recovering butanol from a

20 fermentation medium, the methods comprising the step of contacting the fermentation medium with a water-immiscible organic extractant comprising a first solvent and a second solvent, the first solvent being selected from the group consisting of C₁₂ to C₂₂ fatty alcohols, C₁₂ to C₂₂ fatty acids, esters of C₁₂ to C₂₂ fatty acids, C₁₂ to C₂₂ fatty aldehydes, and

25 mixtures thereof, and the second solvent being selected from the group consisting of C₇ to C₁₁ alcohols, C₇ to C₁₁ carboxylic acids, esters of C₇ to C₁₁ carboxylic acids, C₇ to C₁₁ aldehydes, and mixtures thereof, to form a two-phase mixture comprising an aqueous phase and a butanol-containing organic phase.

30 Copending U.S. Provisional Patent Application Nos. 61/225,659 and 61/225,662, filed concurrently on July 15, 2009, disclose processes

for separating butanol from a mixture comprising butanol, water, a water-immiscible organic extractant, and optionally a non-condensable gas.

Processes for recovering butanol from a butanol-containing extractant phase obtained by in situ product removal from a fermentation

5 broth continue to be sought. Economical processes for recovering butanol substantially free of water and of the extractant are desired. Also desired are separation processes which are energy efficient and provide high purity butanol product having little color. Butanol recovery processes which can be run for extended periods without equipment fouling or

10 repeated shutdowns are also sought.

SUMMARY OF THE INVENTION

The present invention provides a process for separating a butanol selected from the group consisting of 1-butanol, 2-butanol, isobutanol, and

15 mixtures thereof, from a feed comprising a water-immiscible organic extractant, water, the butanol, and optionally a non-condensable gas. The separation is made through a combination of distillation, decantation, and use of an entrainer.

In one aspect, the present invention is a process comprising the

20 steps:

- a) introducing a feed comprising:
 - (i) a water-immiscible organic extractant,
 - (ii) water,
 - (iii) at least one isomer of butanol,
 - 25 (iv) optionally a non-condensable gas

into a first distillation column, wherein the first distillation column comprises a stripping section and optionally a rectifying section at an introduction point above the stripping section, the first distillation column having an operating temperature, T_1 and an operating pressure P_1 at a predetermined point in the

30 stripping section, wherein T_1 and P_1 are selected to produce a

first bottoms stream and a first vaporous overhead stream, the first bottoms stream comprising the water-immiscible organic extractant and butanol and being substantially free of water, and the first vaporous overhead stream comprising water, butanol, 5 optionally the extractant, and optionally the non-condensable gas;

10 b) introducing a water-immiscible organic entrainer to at least one appropriate process stream or vessel;

c) condensing the first vaporous overhead stream to produce a gas phase and recover a mixed condensate, wherein the mixed condensate comprises:

15 (i) an organic phase comprising butanol, entrainer, and water; and

(ii) an aqueous phase comprising water and butanol; and wherein the mixed condensate comprises sufficient entrainer to provide phase separation of the organic and the aqueous phases;

20 d) introducing at least a portion of the organic phase to the first distillation column; and

e) introducing at least a portion of the first bottoms stream into a second distillation column having at least a stripping section and optionally a rectifying section and operating the second distillation column to produce a second bottoms stream comprising the extractant, and a second vaporous overhead 25 stream comprising butanol;

wherein

the extractant is selected such that it (A) preferentially extracts butanol over water and (B) is separable from butanol by distillation; and

the entrainer is selected such that it (C) has a higher vapor 30 pressure than butanol and (D) is separable from butanol by distillation.

In embodiments, the entrainer comprises at least one hydrocarbon selected from the group consisting of pentane, hexane, hexene, cyclohexane, benzene, toluene, and xylene. In embodiments, the extractant comprises at least one solvent selected from the group

5 consisting of C₇ to C₂₂ fatty alcohols, C₇ to C₂₂ fatty acids, esters of C₇ to C₂₂ fatty acids, C₇ to C₂₂ fatty aldehydes, C₇ to C₂₂ fatty amides, and mixtures thereof. In embodiments, the extractant comprises at least one solvent selected from the group consisting of C₁₂ to C₂₂ fatty alcohols, C₁₂ to C₂₂ fatty acids, esters of C₁₂ to C₂₂ fatty acids, C₁₂ to C₂₂ fatty

10 aldehydes, C₁₂ to C₂₂ fatty amides, and mixtures thereof. In embodiments, the extractant comprises oleyl alcohol. In embodiments, the butanol comprises 1-butanol, 2-butanol, isobutanol, or a mixture thereof. In embodiments, the feed further comprises ethanol and the second vaporous overhead stream further comprises ethanol. In embodiments,

15 the butanol in the feed introduced into a first distillation column is produced by fermentation of a feedstock such as corn or sugar cane. In embodiments, there is a process to process heat exchange between the feed introduced to the first distillation column and the first bottoms stream.

20

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 illustrates one embodiment of a system useful for practicing the process of the invention.

FIG. 2 illustrates a process schematic diagram used in modeling example embodiments of the process of the invention.

25

DETAILED DESCRIPTION OF THE INVENTION

Applicants specifically incorporate the entire contents of all cited references in this disclosure. Further, when an amount, concentration, or other value or parameter is given as either a range, preferred range, or a

30 list of upper preferable values and lower preferable values, this is to be understood as specifically disclosing all ranges formed from any pair of

any upper range limit or preferred value and any lower range limit or preferred value, regardless of whether ranges are separately disclosed. Where a range of numerical values is recited herein, unless otherwise stated, the range is intended to include the endpoints thereof, and all 5 integers and fractions within the range. It is not intended that the scope of the invention be limited to the specific values recited when defining a range.

Definitions

10 The following definitions are used in this disclosure:
Butanol as used herein means 1-butanol (1-BuOH), 2-butanol (2-BuOH), and/or isobutanol (iBuOH or I-BUOH), individually or as mixtures thereof.
“In Situ Product Removal” as used herein means the selective 15 removal of a specific fermentation product from a biological process such as fermentation to control the product concentration in the biological process.
“Fermentation broth” as used herein means the mixture of water, sugars, dissolved solids, suspended solids, microorganisms producing 20 butanol, product butanol and all other constituents of the material held in the fermentation vessel in which product butanol is being made by the reaction of sugars to butanol, water and carbon dioxide (CO₂) by the microorganisms present. The fermentation broth is the aqueous phase in biphasic fermentative extraction. From time to time, as used herein the 25 term “fermentation medium” may be used synonymously with “fermentation broth”.
“Fermentation vessel” as used herein means the vessel in which the fermentation reaction by which product butanol is made from sugars is carried out. The term “fermentor” may be used synonymously herein with 30 “fermentation vessel”.

The term “effective titer” as used herein, refers to the total amount of butanol produced by fermentation per liter of fermentation medium. The total amount of butanol includes: (i) the amount of butanol in the fermentation medium; (ii) the amount of butanol recovered from the 5 organic extractant; and (iii) the amount of butanol recovered from the gas phase, if gas stripping is used.

The term “aqueous phase titer” as used herein, refers to the concentration of butanol in the fermentation broth. Where indicated, the term also refers to the concentration of ethanol in the fermentation broth.

10 “Stripping” as used herein means the action of transferring all or part of a volatile component from a liquid stream into a gaseous stream.

“Stripping section” as used herein means that part of the contacting device in which the stripping operation takes place.

15 “Rectifying” as used herein means the action of transferring all or part of a condensable component from a gaseous stream into a liquid stream in order to separate and purify lower boiling point components from higher boiling point components.

20 “Rectifying section” as used herein means the section of the distillation column above the feed point, i.e. the trays or packing material located above the point in the column where the feed stream enters, where the rectifying operation takes place.

The term “separation” as used herein is synonymous with “recovery” and refers to removing a chemical compound from an initial mixture to obtain the compound in greater purity or at a higher 25 concentration than the purity or concentration of the compound in the initial mixture.

The term “water-immiscible” refers to a chemical component, such as an extractant or solvent, which is incapable of mixing with an aqueous solution, such as a fermentation broth, in such a manner as to form one 30 liquid phase.

The term "extractant" as used herein refers to one or more organic solvents which are used to extract butanol from a fermentation broth.

The term "entrainer" as used herein refers to a third organic component which, when added to an azeotrope formed by a binary

5 mixture, either facilitates or improves the separation of the components of the binary mixture into two liquid phases.

The term "organic phase", as used herein, refers to the non-aqueous phase of a biphasic mixture obtained by contacting a fermentation broth with a water-immiscible organic extractant.

10 The term "fatty acid" as used herein refers to a carboxylic acid having a long, aliphatic chain of C₇ to C₂₂ carbon atoms, which is either saturated or unsaturated.

The term "fatty alcohol" as used herein refers to an alcohol having a long, aliphatic chain of C₇ to C₂₂ carbon atoms, which is either saturated or 15 unsaturated.

The term "fatty aldehyde" as used herein refers to an aldehyde having a long, aliphatic chain of C₇ to C₂₂ carbon atoms, which is either saturated or unsaturated.

20 The term "fatty amide" as used herein refers to an amide having a long, aliphatic chain of C₁₂ to C₂₂ carbon atoms, which is either saturated or unsaturated.

Non-condensable gas means a gas that is not condensed at an operating temperature of the process described herein.

The terms "°C" and "C" mean degrees Celsius.

25 The term "deg" means degrees.

The term "g/L" means grams per liter.

The term "ppm" means parts per million.

The term "kg/hr" means kilograms per hour.

The term "atm" means atmosphere.

30 Butanol-containing extractant streams useful as a feed in the processes of the invention include any organic phase obtained from an

extractive fermentation wherein butanol is produced as a fermentation product. Typical butanol-containing extractant streams include those produced in “dry grind” or “wet mill” fermentation processes in which in situ product removal is practiced using liquid-liquid extraction of the

5 fermentation broth with an organic extractant. After extraction, the extractant stream typically comprises butanol, water, and the extractant. The extractant stream may optionally comprise a non-condensable gas, which can be a gas that is inert or otherwise non-reactive with other feed components under the operating conditions of the present invention. Such

10 gases can be selected from gases in the group consisting of, for example, carbon dioxide, nitrogen, hydrogen, noble gases such as argon, or mixtures of any of these. The extractant stream may optionally further comprise fermentation by-products having sufficient solubility to partition into the extractant phase. The extractant stream may optionally contain

15 solids, for example biomass or solids from the fermentation. Butanol-containing extractant streams useful as a feed in the processes of the invention include streams characterized by a butanol concentration in the feed from about 0.1 weight percent to about 40 weight percent, for example from about 2 weight percent to about 40 weight percent, for

20 example from about 5 weight percent to about 35 weight percent, based on the weight of the feed. Depending on the efficiency of the extraction, the aqueous phase titer of butanol in the fermentation broth can be, for example, from about 5 g/L to about 85 g/L, or from about 10 g/L to about 40 g/L. In embodiments, the effective titer of butanol recovered from the

25 process is at least about 40 g/L, at least about 50 g/L, at least about 60 g/L, at least about 70 g/L, at least about 80 g/L, at least about 90 g/L or at least about 100 g/L, or any intermediate increment.

Butanol-containing extractant streams useful as a feed may further comprise ethanol. Such extractant streams may be characterized by a

30 butanol concentration as described above herein and by an ethanol concentration in the feed from about 0.01 weight percent to about 10

weight percent, for example from about 0.2 weight percent to about 2 weight percent, for example from about 0.5 weight percent to about 1 weight percent, based on the weight of the feed. Depending on the efficiency of the extraction, the aqueous phase titer of ethanol in the

5 fermentation broth can be, for example, from about 0.1 g/L to about 20 g/L, or from about 1 g/L to about 5 g/L. The ethanol may be obtained in the fermentation broth as a by-product from recombinant butanol-producing microorganisms, for example.

The extractant is a water-immiscible organic solvent or solvent

10 mixture having characteristics which render it useful for the extraction of butanol from a fermentation broth. The extractant preferentially partitions butanol from the aqueous phase, for example by at least a 1.1:1 concentration ratio, such that the concentration of butanol in the extractant phase is at least 1.1 times that in the aqueous phase when evaluated in a

15 room-temperature extraction of an aqueous solution of butanol. In embodiments, the extractant preferentially partitions butanol from the aqueous phase by at least a 2:1 concentration ratio, such that the concentration of butanol in the extractant phase is at least two times that in the aqueous phase when evaluated in a room-temperature extraction of

20 an aqueous solution of butanol. In embodiments, the extractant preferentially partitions butanol from the aqueous phase by at least a 3:1 concentration ratio, by at least a 4:1 concentration ratio, by at least a 5:1 concentration ratio, by at least a 6:1 concentration ratio, by at least a 8:1 concentration ratio, by at least a 10:1 concentration ratio or by at least a

25 20:1 concentration ratio.

To be of practical use in the butanol recovery process, the extractant is separable from butanol by distillation, having a boiling point at atmospheric pressure which is at least about 30 degrees Celsius higher than that of the butanol to be recovered, or for example at least about 40

30 degrees higher, or for example at least about 50 degrees higher. A mixture of higher boiling extractants is expected to behave in a

fundamentally similar way to a single extractant provided that the boiling point of the mixture, or the boiling point of the lowest boiling solvent of the mixture, is significantly higher than the boiling points of water and butanol, for example at least about 30 degrees higher.

5 The extractant can comprise at least one solvent selected from the group consisting of C₇ to C₂₂ fatty alcohols, C₇ to C₂₂ fatty acids, esters of C₇ to C₂₂ fatty acids, C₇ to C₂₂ fatty aldehydes, C₇ to C₂₂ fatty amides, and mixtures thereof. The extractant can comprise at least one solvent selected from the group consisting of C₁₂ to C₂₂ fatty alcohols, C₁₂ to C₂₂

10 fatty acids, esters of C₁₂ to C₂₂ fatty acids, C₁₂ to C₂₂ fatty aldehydes, C₁₂ to C₂₂ fatty amides, and mixtures thereof. Examples of suitable extractants include an extractant comprising at least one solvent selected from the group consisting of oleyl alcohol, behenyl alcohol, cetyl alcohol, lauryl alcohol, myristyl alcohol, stearyl alcohol, oleic acid, lauric acid,

15 myristic acid, stearic acid, methyl myristate, methyl oleate, lauric aldehyde, 1-nonal, 1-decanol, 1-undecanol, 2-undecanol, 1-nonal, 2-butyloctanol, 2-butyl-octanoic acid and mixtures thereof. . In embodiments, the extractant comprises oleyl alcohol. In embodiments, the extractant comprises a branched chain saturated alcohol, for example,

20 2-butyloctanol, commercially available as ISOFAL® 12 (Sasol, Houston, TX) or Jarcol I-12 (Jarchem Industries, Inc., Newark, NJ). In embodiments, the extractant comprises a branched chain carboxylic acid, for example, 2-butyl-octanoic acid, 2-hexyl-decanoic acid, or 2-decyl-tetradecanoic acid, commercially available as ISOCARB® 12, ISOCARB®

25 16, and ISOCARB® 24, respectively (Sasol, Houston, TX).

Such organic extractants can be available commercially from various sources, such as Sigma-Aldrich (St. Louis, MO), in various grades, many of which may be suitable for use in extractive fermentation to produce or recover butanol. Technical grades contain a mixture of

30 compounds, including the desired component and higher and lower fatty components. For example, one commercially available technical grade

oleyl alcohol contains about 65% oleyl alcohol and a mixture of higher and lower fatty alcohols.

The invention provides processes for separating or recovering butanol from a feed comprising a water-immiscible organic extractant, 5 water, at least one isomer of butanol, and optionally a non-condensable gas. Separation of the butanol from the feed is achieved through a combination of distillation, decantation, and the use of an entrainer. The distillation involves the use of at least two distillation columns. The first column, in combination with the entrainer and decantation, effects a 10 separation of water from butanol and the extractant, for example oleyl alcohol. The entrainer is added to an appropriate process stream or vessel in an amount such that the mixed condensate from the first column contains sufficient entrainer to provide phase separation of the organic and the aqueous phases. Such phase separation typically occurs in a 15 decanter. By "phase separation" is meant the physical formation of two liquid phases, one mostly aqueous and one mostly organic, from one initial liquid phase containing water and organics. The physical characteristics of the entrainer and its concentration in the initial liquid phase, as well as the concentrations of butanol and ethanol in the initial liquid phase, 20 determine if phase separation occurs under the selected process conditions. Temperature and pressure, for example, can also affect phase separation. The organic phase is returned to the first column. The second column effects a separation of butanol from the extractant under vacuum conditions and provides a butanol stream which is substantially free of 25 extractant and substantially free of entrainer. The second column also provides an extractant stream which is substantially free of water and has a reduced butanol content. By "substantially free of extractant" it is meant that less than about 0.01 weight percent of extractant is present in the stream. By "substantially free of entrainer" it is meant that less than about 30 0.01 weight percent of entrainer is present in the stream.

The entrainer is a water-immiscible organic compound having characteristics which render it useful in the processes of the invention. The entrainer has a sufficiently higher vapor pressure and is more volatile than the butanol isomer to be separated (or than the most volatile butanol isomer in a mixture of butanol isomers) to enable its use in the distillations described herein. For example, when the operating conditions of the first and/or second distillation columns include using about atmospheric pressure at the tops of the columns, the difference in vapor pressure between the entrainer and the most volatile butanol isomer may be about 5 to about 50 psi. When the operating conditions include using less than atmospheric pressure at the tops of the distillation columns, the difference in vapor pressure may be smaller, for example about 10 to about 30 psi. Using an entrainer which is too volatile in relation to the butanol can result in excessive entrainer losses during separation or require much colder 10 chilling media to condense and recover the entrainer. To be suitable for use, the entrainer also has a low molar latent heat, is thermally stable under the operating conditions of the process, and is inert or otherwise 15 non-reactive with other components in the feed stream.

To be of practical use in the butanol recovery process, the entrainer 20 is separable from butanol by distillation and has a boiling point at atmospheric pressure which is lower than that of the butanol to be recovered.

The entrainer can comprise at least one hydrocarbon. The entrainer can be, for example, a saturated or unsaturated, substituted or 25 unsubstituted, aliphatic hydrocarbon. The entrainer can be a substituted or unsubstituted aromatic hydrocarbon. For example, the entrainer may comprise at least one hydrocarbon selected from the group consisting of pentane, hexane, hexene, cyclohexane, benzene, toluene, and xylene. Preferably, the entrainer comprises hexane.

30 The processes of the invention can be understood by reference to **FIG. 1**, which illustrates one embodiment of a system useful for practicing

the process of the invention. The feed stream **420**, obtained from a fermentation vessel (not shown) or an extractor (not shown) in a process for fermentative extraction, is introduced into a first distillation column **650**, which has a stripping section and optionally a rectifying section, at a feed point above the stripping section. The feed stream **420** is distilled to provide a first bottoms stream **410** and a first vaporous overhead stream **300** comprising water, butanol, entrainer, and any non-condensable gas present in the feed. An operating temperature T_1 and an operating pressure P_1 at a predetermined point in the stripping section of column **650** are selected so as to provide the first bottoms stream **410** comprising the extractant and butanol and being substantially free of water and substantially free of entrainer. The distillation column **650** can be any conventional column having at least a feed inlet, an overhead vapor outlet, a bottoms stream outlet, a heating means, and a sufficient number of stages to effect the separation of the water from the extractant. In the case where the extractant comprises oleyl alcohol, distillation column **650** should have at least 5 stages including a re-boiler.

The first bottoms stream **410** can comprise from about 0.1 to about 40 weight percent butanol, and can be substantially free of water. By "substantially free of water", it is meant that the bottoms stream can comprise less than about 0.01 weight percent water. By "substantially free of entrainer" it is meant that the entrainer comprises no more than about 0.01 weight percent of the bottoms **410**. To ensure that the bottom stream **410** is substantially free of water, the amount of organic phase reflux and the reboiler boil-up rate can be varied.

The vaporous overhead stream **300** from the first distillation column can include up to about 66 weight percent butanol and from about 23 to about 40 weight percent water. Overhead stream **300** can also include about 30 to about 70 weight percent entrainer. When more entrainer is used in the process than the minimal amount sufficient to provide phase separation of the mixed condensate under the selected operating

conditions, the amount of entrainer in stream **300** is proportionately increased, and the weight percentages of butanol and water are proportionately decreased. The overhead stream includes non-condensable gas that may have been present in the feed. Stream **300** is

5 condensed in a condenser **750** to produce a mixed condensate stream **190** comprising condensed liquid organics and condensed liquid water. The mixed condensate stream **190** should comprise sufficient entrainer to provide phase separation of the organic and the aqueous phases. Stream **190** also includes any non-condensable gas present in the feed. The

10 condenser **750** may be of any conventional design.

The mixed condensate stream **190** is introduced into a decanter **850** and allowed to separate into a liquid organic phase and a liquid aqueous phase. The temperature of the decanter is preferably maintained at or below about 40 °C to reduce the amount of butanol, entrainer, and

15 water being stripped out by the non-condensable gas. The liquid organic phase, the top liquid phase, can include less than about 5 weight percent water, or less than about 2 weight percent water and may further comprise any extractant which comes overhead in column **650**. When more entrainer is used in the process than the minimal amount sufficient to

20 provide phase separation of the mixed condensate under the selected operating conditions, the amount of entrainer in the liquid organic phase is proportionately increased, and the weight percentages of butanol and water are proportionately decreased. The fraction of extractant in the organic phase can be minimized by use of an optional rectification section

25 in column **650**. The liquid aqueous phase includes less than about 25 weight percent, or from about 10 to about 20 weight percent, butanol. The liquid aqueous phase can include less than about 5 weight percent entrainer, or less than about 1 weight percent entrainer. The decanter may be of any conventional design.

30 When a non-condensable gas such as carbon dioxide is present in the feed, the non-condensable gas is present in stream **300** and in stream

190. The process may further comprise the step of purging at least a portion of the gas phase comprising the non-condensable gas from the process, as shown in **FIG. 1**, in which purge stream **460** comprising the non-condensable gas is shown leaving the decanter **850**. Purge stream

5 **460** can further comprise entrainer. To minimize the amount of entrainer which is lost through this purge stream, stream **460** can be partially condensed to recover a portion of the entrainer contained therein, and the recovered entrainer can be returned to the process (not shown). In one embodiment, the process can further comprise the step of partially

10 condensing the gas phase to recover at least a portion of the entrainer and optionally introducing the recovered entrainer to the mixed condensate.

From the decanter **850**, the aqueous phase **480** can be purged from the process, as shown in **FIG. 1**, in which the purge stream comprising the aqueous phase **480** is shown leaving the decanter **850**.

15 Alternatively, at least a portion of the aqueous phase can be introduced to a fermentation vessel (not shown). This can provide a means to recycle some of the water from the butanol recovery process back to the extractive fermentation process. In one embodiment, at least a portion of the aqueous phase **480** can be combined with at least a portion of the

20 bottoms stream **440** from the second distillation column and then introduced to a fermentation vessel (not shown).

The organic phase **470** from the decanter is returned to the first distillation column **650**. Stream **470** would normally be introduced as reflux to the column. Introducing stream **470** as liquid reflux will suppress extractant loss in vaporous stream **300** of column **650**. The organic phase **470** may further comprise volatile fermentation byproducts such as acetaldehyde. Optionally, at least a portion of stream **470** may be purged from the process (not shown) to remove volatile fermentation byproducts from the butanol recovery process. Such a purge stream can represent a

25 potential loss of entrainer, which can be compensated for by the introduction of additional entrainer to the process.

The first bottoms stream **410** is withdrawn from column **650** and introduced into a second distillation column **950**, which has a stripping section and optionally a rectifying section, at a feed point above the stripping section. The stream **410** is distilled to provide a second bottoms stream **440** comprising the extractant and a second vaporous overhead stream **400** comprising butanol. The second distillation column is operated so as to provide the bottoms stream **440** substantially free of butanol and substantially free of entrainer. By "substantially free of butanol" it is meant that the bottom **440** comprises less than about one weight percent butanol. By "substantially free of entrainer" it is meant that the bottom **440** comprises less than about 0.01 weight percent entrainer. The second vaporous overhead stream **400** is substantially free of the extractant. By "substantially free of extractant" it is meant that the overhead stream **400** comprises less than about 0.01 weight percent extractant. The distillation column **950** can be any conventional column having at least a feed inlet, an overhead vapor outlet, a bottoms stream outlet, a heating means, a stripping section, and a sufficient number of stages to effect the desired separation. Column **950** should have at least 6 stages including re-boiler. Preferably, column **950** is operated at a pressure less than atmospheric to minimize the temperature of the extractant in the base of the column while enabling economical and convenient condensation of the butanol overheads.

In one embodiment, wherein the second vaporous overhead stream **400** further comprises entrainer, the process further comprises the steps of introducing the second vaporous overhead stream into a third distillation column having at least a stripping section, operating the third distillation column to produce a third bottoms stream comprising butanol and a third vaporous overhead stream comprising the entrainer; and optionally, introducing the third vaporous overhead stream to the mixed condensate (not shown).

The process may further comprise introducing bottoms stream **440** from the second distillation column into a fermentation vessel (not shown). In one embodiment, bottoms stream **440** may be combined with at least a portion of the aqueous phase **480** from the decanter before introduction 5 into a fermentation vessel (not shown).

In one embodiment, feed stream **420** further comprises ethanol. As described herein above, the feed stream **420** is distilled in the first distillation column **650** to provide the first bottoms stream **410**, which comprises the extractant, butanol, and ethanol and is substantially free of 10 water and substantially free of entrainer, and the first vaporous overhead stream **300**, which comprises water, butanol, entrainer, ethanol, and any non-condensable gas present in the feed. The first bottoms stream **410** can include less than about 50 weight percent butanol, less than about 10 weight percent ethanol, and less than about 0.01 weight percent entrainer. 15 Feed stream **420** comprising butanol and ethanol is introduced into column **650** at a feed point above the stripping section.

When the feed comprises butanol and ethanol, the vaporous overhead stream **300** from the first distillation column can include 10 to about 40 weight percent butanol, about 1 to about 10 weight percent 20 ethanol, about 10 to about 50 weight percent water, and about 30 to about 60 weight percent entrainer. The composition of stream **300** will depend on the composition of the feed stream, the operating conditions of the first column (for example temperature and pressure), and the amount of entrainer circulating in the process. When more entrainer is used in the 25 process than about the minimal amount sufficient to provide phase separation of the mixed condensate under the selected operating conditions, the amount of entrainer in stream **300** is proportionately increased, and the weight percentages of butanol, ethanol, and water are proportionately decreased. Condensation of stream **300** produces the 30 mixed condensate stream **190**, which should comprise sufficient entrainer to provide phase separation of the organic and the aqueous phases. The

liquid organic phase comprises butanol, entrainer, ethanol, and optionally the extractant. The liquid organic phase can contain less than about 80 weight percent entrainer, or from about 40 to about 70 weight percent entrainer. The liquid aqueous phase is substantially free of entrainer and

5 comprises water, butanol, and ethanol. The liquid aqueous phase can contain less than about 0.1 weight percent entrainer.

As disclosed above herein, the first bottoms stream **410** is introduced to the second distillation column **950** and distilled to provide a second bottoms stream **440** and a second vaporous overhead stream **400**.

10 When the feed stream **420** comprises butanol and ethanol, the second vaporous overhead stream **400** also comprises butanol and ethanol. In general, operating conditions for the first and second columns can be selected to maintain about the same ratio (on a mass basis) of ethanol to butanol in stream **400** as in feed stream **420**. The second bottoms stream

15 **440** comprises extractant and is substantially free of butanol and ethanol. The vaporous overhead stream **400** can contain from about 70 weight percent to about 99 weight percent butanol, from about 1 weight percent to about 30 weight percent ethanol, and optionally less than about 0.1 weight percent entrainer.

20 As shown in FIG. 1, entrainer can be added as stream **120** to the decanter **850**. Other alternative methods (not shown) of introducing the entrainer to at least one appropriate process stream or vessel include adding the entrainer (or a stream comprising the entrainer) to the feed stream **420**, the first vaporous overhead stream **300**, the mixed

25 condensate stream **190**, the first distillation column **650**, or combinations thereof.

The entrainer can be introduced to any appropriate point or points in the portion of the process through which the entrainer circulates. Appropriate process streams or vessels to which the entrainer (or a

30 stream comprising the entrainer) can be added include the feed stream **420**, the first vaporous overhead stream **300**, the mixed condensate

stream **190**, the first distillation column **650**, the decanter **850**, and combinations thereof. Shown in **FIG. 1** is addition of the entrainer as stream **120** to the decanter **850**. When the stream to which the entrainer is introduced is vaporous, the entrainer is preferably preheated and added

5 as a vaporous stream.

Addition of the entrainer to the process can be performed in a continuous manner or in a discontinuous manner, so long as the amount of entrainer in the mixed condensate is sufficient to provide phase separation of the organic and the aqueous phases under the operating

10 conditions of the process. An amount of entrainer in excess of that required for phase separation can be used but as this can lead to increased volumes of the process streams comprising the entrainer, increased energy consumption, proportionally larger loss of entrainer from the process, and increased operating cost, the use of significantly excess

15 entrainer in the process is typically not desirable. Use of about the minimal amount of entrainer which is sufficient to provide phase separation under the selected operating conditions can be preferred. Typically, make-up entrainer is added to the process to compensate for the entrainer losses which can be incurred when vaporous streams exit

20 the process.

The present processes for separating or recovering butanol provide butanol known to have an energy content similar to that of gasoline and which can be blended with any fossil fuel. Butanol is favored as a fuel or fuel additive as it yields only CO₂ and little or no SO_x or NO_x when burned

25 in the standard internal combustion engine. Additionally, butanol is less corrosive than ethanol, the most preferred fuel additive to date.

In addition to its utility as a biofuel or fuel additive, the butanol recovered according to the present processes has the potential of impacting hydrogen distribution problems in the emerging fuel cell

30 industry. Fuel cells today are plagued by safety concerns associated with hydrogen transport and distribution. Butanol can be easily reformed for its

hydrogen content and can be distributed through existing gas stations in the purity required for either fuel cells or vehicles. Furthermore, the present processes recover butanol obtained from plant derived carbon sources, avoiding the negative environmental impact associated with 5 standard petrochemical processes for butanol production.

One advantage of the present processes for separation or recovery of butanol is energy integration of the distillation columns, which provides energy efficiency. Relative to a distillation scheme in which the separation of butanol and extractant is made prior to the final separation of butanol 10 and water, the present processes require less energy per unit weight of butanol obtained.

Another advantage is that the present processes provide high purity butanol having little or no color.

A further advantage is that the second bottoms stream comprising 15 the extractant is substantially free of the butanol product, which contributes to high yield in the recovery process. Being substantially free of butanol also enables optional recycling of the second bottoms stream comprising the extractant to the fermentative process. Being substantially free of butanol also simplifies the stream's disposition, should it not be 20 recycled.

Yet another advantage is that the present processes allow for extended operation without equipment fouling or repeated shutdowns.

Although particular embodiments of the present invention have been described in the foregoing description, it will be understood by those 25 skilled in the art that the invention is capable of numerous modifications, substitutions, and rearrangements without departing from the spirit of essential attributes of the invention. Reference should be made to the appended claims, rather than to the foregoing specification, as indicating the scope of the invention.

30 The process of the invention can be demonstrated using a computational model of the process. Process modeling is an established

methodology used by engineers to simulate complex chemical processes. Process modeling software performs many fundamental engineering calculations, for example mass and energy balances, vapor/liquid equilibrium and reaction rate computations. The modeling of distillation

5 columns is particularly well established. Calculations based on experimentally determined binary vapor/liquid equilibrium and liquid/liquid equilibrium data can predict reliably the behavior of multi-component mixtures. This capability has been expanded to allow modeling of complex multi-stage, multi-component distillation columns using rigorous

10 algorithms like the “inside-out” algorithm developed by Joseph Boston of Aspentech, Inc. of Burlington, Mass. Commercial modeling software, such as Aspen Plus® from Aspentech, can be used in conjunction with physical property databases, such as DIPPR, available from the American Institute of Chemical Engineers, Inc., of New York, NY, to develop accurate models

15 and assessments of processes.

EXAMPLES

Examples 1 and 2 were obtained through process modeling using 2-butanol as the butanol isomer, oleyl alcohol as the extractant, and n-hexane as the entrainer. Examples 3 and 4 were obtained through

20 process modeling using isobutanol as the butanol isomer, oleyl alcohol as the extractant, and n-hexane as the entrainer. A small amount of ethanol was included in the feed stream for Examples 3 and 4.

Similar results would be expected for the analogous cases where 1-butanol or mixtures of 1-butanol, 2-butanol, and/or isobutanol were

25 selected as the butanol isomer.

Table 1 lists typical feed compositions of the rich solvent stream, obtained from extractive fermentation, entering the alcohol product recovery area. These compositions were used in modeling the processes of the invention. In the Examples, the term “rich solvent stream” is

30 synonymous with the term “feed stream” used above.

Table 1. Feed Compositions (in Weight Percent) of the Rich Solvent Stream from the Extractor

Feed Compositions	Example 1	Example 2	Example 3	Example 4
Iso-butanol	--	--	5.4%	5.375%
2-butanol	5.40%	13.84%	--	--
Ethanol	--	--	0.54%	0.9954%
Water	7.20%	9.58%	7.2%	7.167%
Carbon dioxide	0.20%	0.75%	0.2%	0.199%
Oleyl alcohol	87.2%	75.83%	86.66%	86.26%

These composition values for the rich solvent stream were

5 established by a simulation of a dry grind facility using extractive in situ product removal technology producing 50 MM gal/year of 2-butanol or isobutanol, and fermenter broth aqueous phase titers of 10 and 40 g/L 2-butanol or 10 g/L isobutanol respectively. It was assumed that the rich solvent stream was at equilibrium with the fermentation broth and that the

10 solvent flow rate was sufficient to meet the specified annual capacity.

The parameters inputted for the simulations of the embodiments of the processes of the invention are listed in Table 2 and follow a process schematic diagram as shown in FIG. 2. In FIG. 2, “EM10” refers to a heat stream representing process to process heat exchange between the

15 solvent column feed and bottom product via heat exchangers. Block 80 represents a mixer combining the two streams 12 and 19. Block 75 represents a modeling artifact where all entrainer is taken out of the process so that the correct amount of entrainer can be added to the decanter. Certain dimensions and duty results calculated from the

20 process model are also listed in Table 2. These parameters do not include physical property parameters, and those related to convergence and other computational options or diagnostics.

Table 2. Conditions Used for Modeling Processes of the Invention

Blocks	Inputs	Example 1	Example 2	Example 3	Example 4	Units
Solvent Column	Number of theoretical stages including re-boiler	15	15	15	15	stages

(65)	Column top pressure	1	1	1	1	bar
	Column bottom pressure	1.1	1.1	1.1	1.1	bar
	Column internal diameter	4.43	4.09	4.44	4.39	m
	Column re-boiler duty	100685	71302	99716	101471	MJ/hr
	Preheated rich solvent feed (42) location	1	1	1	1	stage
	Organic reflux from decanter (47) location	1	1	1	1	stage
	Mass fraction water in bottom stream (41)	1	1	1	1	ppm
	Reflux stream temperature	35	35	35	35	deg C
	Preheated rich solvent stream (42) flow rate	330000	131500	330000	330000	kg/hr
	Preheated rich solvent stream (42) temperature	98.4	86.3	98.7	98.3	deg C
BuOH Column	Condenser duty of the solvent column	-40558	-12360	-36779	-38811	MJ/hr
	Number of theoretical stages including re-boiler	15	15	15	15	stages
(95)	Column top pressure	0.1	0.1	0.1	0.1	bar
	Column bottom pressure	0.105	0.105	0.105	0.105	bar
	Column internal diameter	2.73	2.52	2.81	2.76	m
	Column re-boiler duty	5202	6577	7494	6061	MJ/hr
	Organic feed from solvent column (41) location	7	7	7	7	stage
	Organic feed from solvent column (41) temperature	180.5	133.8	179	180	deg C
	Solvent mass fraction in overhead product (40)	100	100	100	100	ppm
	BuOH mass fraction in lean solvent stream (44)	0.0038	0.01	0.0044	0.0044	
	Lean solvent stream (44) temperature	180.6	134.9	180	179	deg C
	Decanter pressure	1	1	1	1	atm
Decanter (85)	Decanter temperature	35	35	35	35	deg C
	Entrainier circulation rate	28000	28000	28000	28000	kg/hr

Four cases were run to demonstrate the operating requirements of the processes of the invention. Examples 1 and 2 were run to demonstrate the separation of 2-butanol from the rich solvent stream.

- 5 Examples 3 and 4 were run to demonstrate the separation of isobutanol and a small amount of ethanol from the rich solvent stream. For each case, a particular modification was made to the rich solvent feed flow and compositions from the extractive fermentation process where specific aqueous phase titers were maintained. In each of the independent
- 10 simulations, column traffic and heat exchanger duties will change because of the feed composition change. By comparing the resulting capital

investment and operating costs between different cases, the impact of the rich solvent feed flow and composition on product recovery area performance was quantified. These four examples, however, should not be regarded as process operating limits of this invention.

5 The term “Solvent Column” is synonymous with the term “first distillation column” used above. The term “BUOH column” is synonymous with the term “second distillation column” used above. The abbreviation “OLEYLOH” refers to oleyl alcohol. The abbreviation “N-C6” refers to n-hexane.

10 Stream results for Example 1 are listed in Table 3. BUOH column traffic and liquid mass composition profiles are listed in Table 4. Solvent column traffic and liquid mass composition profiles are listed in Table 5.

15 Stream results for Example 2 are listed in Table 6. BUOH column traffic and liquid mass composition profiles are listed in Table 7. Solvent column traffic and liquid mass composition profiles are listed in Table 8.

Stream results for Example 3 are listed in Table 9. BUOH column traffic and liquid mass composition profiles are listed in Table 10. Solvent column traffic and liquid mass composition profiles are listed in Table 11.

20 Stream results for Example 4 are listed in Table 12. BUOH column traffic and liquid mass composition profiles are listed in Table 13. Solvent column traffic and liquid mass composition profiles are listed in Table 14.

25 Other key process parameters include the following: 1) the total number of theoretical stages and bottom stream water content in the solvent column; 2) BUOH column bottom temperature and butanol composition in lean solvent stream; 3) the degree of preheating of the rich solvent stream before feeding it to the solvent column; and 4) the amount of entrainer, water, and solvent allowed in the final product. These parameters can be manipulated to achieve optimum separation performance.

In this Example, 330,000 kg/hr rich solvent feed **43** containing 5.40 weight percent 2-butanol is heated from 32 to 98.4 °C by a process to process heat exchanger and the resulting stream **42** is fed to the solvent column at stage 1. This rich solvent feed condition corresponds to 10 g/L

5 aqueous phase titer in the fermenter which is maintained during the extractive fermentation process. The separation is realized by a larger diameter solvent column, and higher solvent column re-boiler and condenser duties compared to those of Example 2. The BuOH column bottom temperature is maintained at 180.5 °C which is similar to that of the

10 solvent column bottom stream **41**. The resulting residual 2-BuOH composition in the recycle lean solvent stream **44** is 0.38 weight percent. Stream **40** is essentially pure 2-butanol.

EXAMPLE 2

In this Example, 131,500 kg/hr rich solvent feed **43** containing

15 13.84 weight percent 2-butanol is heated from 32 to 86.3 °C by a process to process heat exchanger and the resulting stream **42** is fed to the solvent column at stage 1. This rich solvent feed condition corresponds to 40 g/L aqueous phase titer in the fermenter which is maintained during the extractive fermentation process. The separation is realized by a smaller

20 diameter solvent column, and lower solvent column re-boiler and condenser duties due to the lower solvent circulation rate. The BuOH column bottom temperature is maintained at 134.9 °C which is similar to that of the solvent column bottom stream **41**. The resulting residual 2-BuOH composition in the recycle lean solvent stream **44** is 1 weight

25 percent. Stream **40** is essentially pure 2-butanol.

EXAMPLE 3

In this Example, 330,000 kg/hr rich solvent feed **43** containing 5.40 weight percent isobutanol and 0.54 weight percent ethanol is heated from 32 to 98.7 °C by a process to process heat exchanger and the resulting

30 stream **42** is fed to the solvent column at stage 1. This rich solvent feed condition corresponds to 10 g/L aqueous phase isobutanol titer in the

fermenter which is maintained during the extractive fermentation process. In addition, a small amount of ethanol is assumed to be present in the fermentation broth. The mass ratio of ethanol to isobutanol in the rich solvent stream is assumed to be 10 wt% in this Example. The BuOH 5 column bottom temperature is maintained at 180 °C which is similar to that of the solvent column bottom stream **41**. The resulting residual isobutanol composition in the recycle lean solvent stream **44** is 0.44 weight percent. Stream **40** is 99.1 weight percent isobutanol and 0.9 weight percent ethanol. The separation is realized by a similar diameter solvent column, 10 and a similar solvent column re-boiler and condenser duties as those of Example 1.

EXAMPLE 4

In this Example, 330,000 kg/hr rich solvent feed **43** is heated from 32 to 98.3 °C by a process to process heat exchanger and the resulting 15 stream **42** is fed to the solvent column at stage 1. This rich solvent feed condition corresponds to 10 g/L aqueous phase isobutanol titer in the fermenter which is maintained during the extractive fermentation process. The mass ratio of ethanol to isobutanol in rich solvent stream is assumed to be 18.5 wt% in this Example. BuOH column bottom temperature is 20 maintained at 179 °C which is similar to that of the solvent column bottom stream **41**. The resulting residual isobutanol composition in the recycle lean solvent stream **44** is 0.44 wt%. Stream **40** is 98.3 weight percent isobutanol and 1.7 weight percent ethanol. The separation is realized by a similar diameter solvent column, and a similar solvent column re-boiler 25 and condenser duties as those of Example 1.

Table 3. Simulated Stream Outputs for Example 1.

Temperature C	11	12	19	20	30	40	41	42	43	44	45	46	47
Pressure atm	89.9	25	89.9	74.6	89.9	48.6	180.5	98.4	32.2	180.6	45	35	35
Pressure atm	0.99	2	0.99	0.99	0.99	0.1	1.09	1.05	1.05	0.11	1.26	1	1
Vapor Frac	1	0	0.511	0.458	1	0	0	0.366	0	0	0	0	0
Mole Flow kmol/hr	318.845	324.932	1590.125	1915.068	1908.969	164.584	1251.249	2646.105	2646.105	1086.664	21.997	514.114	1378.958
Mass Flow kg/hr	27475.496	28000	42601.467	70601.841	70076.963	12198.965	301055.406	330000	288856.441	288856.441	1210.227	41132.392	28259.222
Volume Flow l/hr	9.295E+06	42683.8	2.42E+07	2.48E+07	5.68E+07	1.56E+04	4.16E+05	2.82E+07	390735.36	396285.432	348575.397	547908.29	59774.124
Enthalpy MM BTu/hr	-4.75E+01	-61.151	-4.05E+02	-4.66E+02	-4.22E+02	-5.26E+01	-5.06E+02	-5.26E+02	-901.367	-986.805	-459.209	-544.647	-6.66
Mass Flow kg/hr	2-BUOH	17692.715	17692.938	17692.715	12197.353	13295.008	17820	17820	1097.654	1097.654	44.082	13167.746	4481.11
OLEYLOH		15.059	15.059	15.059	15.059	1.22	287759.999	287760	287758.779	287758.779	trace	15.058	0.001
WATER		23966.725	23966.884	23966.725	0.299	0.301	23760	23760	0.002	0.002	21.752	207.026	23738.106
N-C6		28000	28000	27475.496	0.093	0.099	trace	660	660	0.006	0.006	522.477	27475.595
CO2											621.916	266.967	38.077
Mass Frac	2-BUOH	0.415	0.251	0.252	1	0.044	0.054	0.054	0.004	0.004	0.036	0.32	0.159
OLEYLOH		353 PPM	213 PPM	215 PPM	100 PPM	0.956	0.872	0.872	0.996	0.996	366 PPM	39 PPM	
WATER		0.563	0.339	0.342	25 PPM	1 PPM	0.072	0.072	6 PPM	6 PPM	0.018	0.005	0.84
N-C6		1	1	0.397	0.392	8 PPM	328 PPB	328 PPB	21 PPB	21 PPB	0.432	0.668	68 PPM
CO2					0.013	0.013	trace	0.002	0.002	0.002	0.514	0.006	0.001

Table 4. Simulated BUOH Column Traffic and Liquid Mass Composition Profile Outputs for Example 1.

Stage	Temperature C	Pressure atm	Heat duty MJ/hr	Liquid flow kg/hr	Vapor flow kg/hr	Liquid feed kg/hr	Vapor feed kg/hr	Mixed feed kg/hr	Liquid prod kg/hr	Vapor prod kg/hr
1	48.647935	0.1	-11327.359	4896.92422	0	0	0	0	0	12198.965
2	63.685956	0.100357	0	1766.54168	17095.8892	0	0	0	0	0
3	62.40147	0.100714	0	2385.02432	13965.5067	0	0	0	0	0
4	172.35129	0.101071	0	2488.46436	14583.9893	0	0	0	0	0
5	173.31688	0.101429	0	2495.24895	14687.4294	0	0	0	0	0
6	173.4506	0.101786	0	2492.49603	14694.2139	0	14548.3875	0	0	0
7	173.50353	0.102143	0	288999.473	143.073499	286507.018	0	0	0	0
8	173.50628	0.1025	0	289004.764	143.032473	0	0	0	0	0
9	173.50903	0.102857	0	289010.05	148.322751	0	0	0	0	0
10	173.51178	0.103214	0	289015.334	153.609067	0	0	0	0	0
11	173.51453	0.103571	0	289020.616	158.892612	0	0	0	0	0
12	173.51728	0.103929	0	289025.898	164.174832	0	0	0	0	0
13	173.52004	0.104286	0	289031.195	169.457391	0	0	0	0	0
14	173.53138	0.104643	0	289048.332	174.753942	0	0	0	0	0
15	180.58276	0.105	5202.34306	288856.441	191.891469	0	0	0	288856.44	0

Table 5. Simulated Solvent Column Traffic and Liquid Mass Composition Profile Outputs for Example 1.

Stage	Temperature	Pressure	Heat duty	Liquid flow	Vapor flow	Liquid feed	Vapor feed	Liquid prod	Vapor prod	1st liquid flow	2nd liquid flow
C	atm	MJ/hr	kg/hr	kg/hr	kg/hr	kg/hr	kg/hr	kg/hr	kg/hr	kg/hr	kg/hr
1	89.90044	0.986923	0	329486.759	70076.9632	347587.088	23545.3045	0	0	70076.9632	324495.324
2	92.03997	0.993973	0	327948.076	28431.3305	0	0	0	0	0	323518.319
3	93.584147	1.001022	0	326964.955	26892.6472	0	0	0	0	0	323233.258
4	94.614599	1.008072	0	326538.175	25909.5257	0	0	0	0	0	323279.874
5	95.232849	1.015121	0	326428.985	25482.7464	0	0	0	0	0	323420.577
6	95.600773	1.022171	0	326528.821	25373.5556	0	0	0	0	0	323680.399
7	95.804017	1.02922	0	326951.603	25473.3913	0	0	0	0	0	324378.775
8	95.777645	1.036269	0	328395.495	25896.1722	0	0	0	0	0	326776.18
9	95.536539	1.043319	0	333304.067	27340.0663	0	0	0	0	0	333304.067
10	96.802423	1.050368	0	347274.594	32248.6385	0	0	0	0	0	347274.594
11	104.44307	1.057418	0	372308.545	46219.1653	0	0	0	0	0	372308.545
12	112.71182	1.064467	0	393027.462	71253.1165	0	0	0	0	0	393027.462
13	115.45309	1.071517	0	399074.969	91972.0333	0	0	0	0	0	399074.969
14	118.32958	1.078566	0	385748.954	98019.5402	0	0	0	0	0	385748.954
15	180.47351	1.085616	100685.308	301055.429	84693.5252	0	0	301055.43	0	0	301055.429

Table 6. Simulated Stream Outputs for Example 2.

Temperature C	11	12	19	20	30	40	41	42	43	44	45	46	47
Pressure atm	82.4	25	82.4	41.2	82.4	48.7	133.8	86.3	32.2	134.9	45	35	35
Vapor Frac	0.99	2	0.99	0.99	0.99	0.1	1.09	1.05	1.05	0.11	1.26	1	1
Mole Flow kmol/hr	1	0	0.177	0.271	1	0	0	0.061	0	< 0.001	0	1	0
Mass Flow kg/hr	315.898	324.932	1102.227	1427.154	1418.125	192.508	577.519	1338.63	1338.63	385.011	385.011	33.703	657.014
Mass Flow kg/hr	27221.551	28000	39766	67755.688	66987.56	14269.36	114991.61	131500	131500	100722.245	100722.245	1844.077	50479.163
Volume Flow l/hr	8.99E+06	42683.8	5.71E+06	9.72E+06	4.11E+07	1.83E+04	1.53E+05	2.43E+06	156198.584	131997.797	121587.742	839746.3	71401.908
Enthalpy MMBlu/hr	-47.44	-61.151	-305.948	-367.097	-317.341	-61.569	-229.99	-447.257	-466.432	-172.269	-191.444	-10.26	-167.655
Mass Flow kg/hr													-200.897
2-BUOH		25268.47	25288.155	25268.47	14267.82	15275.043	18199.6	18199.6	1007.222	1007.222	70.354	22343.915	2853.887
OLEYLOH		3.255	3.255	3.255	1.427	99716.45	99716.45	99716.45	99715.023	99715.023	trace	3.255	< 0.001
WATER		13175.94	13175.941	13175.94	0.115	12597.7	12597.7	12597.7	trace	trace	33.26	578.356	12564.33
N-C6		27221.551	28000	28000	27221.55	trace	trace	trace	trace	trace	777.074	27221.551	1.376
CO2											963.39	332.086	22.86
Mass Frac													
2-BUOH		0.635	0.373	0.377	1	0.133	0.138	0.138	0.01	0.01	0.038	0.443	0.185
OLEYLOH		82 PPM	48 PPM	49 PPM	100 PPM	0.867	0.758	0.758	0.99	0.99	trace	64 PPM	18 PPB
WATER		0.331	0.194	0.197	8 PPM	1 PPM	0.096	0.096	trace	trace	0.018	0.011	0.814
N-C6		1	1	0.413	0.406	trace	trace	trace	trace	trace	0.421	0.539	89 PPB
CO2		0.033	0.019	0.02	0.007	0.007	0.007	0.007	0.522	0.522	0.007	0.007	0.001

Table 7. Simulated BUOH Column Traffic and Liquid Mass Composition Profile Outputs for Example 2.

Stage	Temperature C	Pressure atm	Heat duty MJ/hr	Liquid flow kg/hr	Vapor flow kg/hr	Liquid feed kg/hr	Vapor feed kg/hr	Mixed feed kg/hr	Liquid product kg/hr	Vapor product kg/hr
1	48.6552774	0.1	-10636.9	1785.5905	0	0	0	0	0	0
2	63.6867369	0.100357	0	85.806843	16054.95	0	0	0	0	0
3	108.916702	0.100714	0	76.148465	14355.17	0	0	0	0	0
4	109.486331	0.101071	0	75.876978	14345.51	0	0	0	0	0
5	109.494182	0.101429	0	75.614794	14345.24	0	0	0	0	0
6	109.497968	0.101786	0	75.354404	14344.98	0	0	0	0	0
7	109.501899	0.102143	0	101785.65	1063.365	101710.3	0	0	0	0
8	109.517168	0.1025	0	101792.3	1063.403	0	0	0	0	0
9	109.532411	0.102857	0	101798.95	1070.059	0	0	0	0	0
10	109.54764	0.103214	0	101805.59	1076.704	0	0	0	0	0
11	109.562858	0.103571	0	101812.23	1083.344	0	0	0	0	0
12	109.57808	0.103929	0	101818.86	1089.979	0	0	0	0	0
13	109.595037	0.104286	0	101825.45	1096.611	0	0	0	0	0
14	109.831401	0.104643	0	101839.12	1103.205	0	0	0	0	0
15	134.947659	0.105	6577.239	100722.25	1116.879	0	0	0	100722.245	0

Table 8. Simulated Solvent Column Traffic and Liquid Mass Composition Profile Outputs for Example 2.

Stage	Temperature C	Pressure atm	Heat duty MJ/hr	Liquid flow kg/hr	Vapor flow kg/hr	Liquid feed kg/hr	Vapor feed kg/hr	Mixed feed kg/hr	Liquid product kg/hr	Vapor product kg/hr	1st liquid flow kg/hr	2nd liquid flow kg/hr
1	82.3689722	0.986923	0	166694.87	66987.55	179035.7	2943.4325	0	0	0	66987.5546	159583.165
2	88.4664084	0.993973	0	166093.99	51703.26	0	0	0	0	0	0	161373.554
3	89.592452	1.001022	0	166174.81	51102.38	0	0	0	0	0	0	161779.908
4	89.8809647	1.008072	0	166251.67	51183.2	0	0	0	0	0	0	161885.572
5	90.069111	1.015121	0	166335.8	51260.06	0	0	0	0	0	0	161971.728
6	90.2404619	1.022171	0	166495.41	51344.19	0	0	0	0	0	0	162183.657
7	90.3737446	1.02922	0	167244.78	51503.8	0	0	0	0	0	0	163407.616
8	90.2737243	1.036269	0	172619.31	52253.17	0	0	0	0	0	0	172619.311
9	91.0952456	1.043319	0	186420.06	57627.7	0	0	0	0	0	0	186420.062
10	95.3561594	1.050368	0	207633.68	71428.45	0	0	0	0	0	0	207633.676
11	102.119063	1.057418	0	223920.03	92642.07	0	0	0	0	0	0	223920.034
12	105.366169	1.064467	0	230313.89	108928.4	0	0	0	0	0	0	230313.889
13	106.280325	1.071517	0	231792.22	115322.3	0	0	0	0	0	0	231792.218
14	106.961476	1.078566	0	222621.51	116800.6	0	0	0	0	0	0	222621.511
15	133.823958	1.085616	71302.26	114991.61	107629.9	0	0	0	114991.608	0	0	114991.608

Table 9. Simulated Stream Outputs for Example 3.

	11	12	19	20	30	40	41	42	43	44	45	46	47
Temperature C	90.3	25	90.3	74	90.3	55.7	179.2	98.7	32.2	179.9	45	35	35
Pressure atm	0.99	2	0.99	0.99	0.99	0.1	1.09	1.05	1.05	0.11	1.26	1	1
Vapor Frac		1	0	0.463	0.419	1	0	0	0.351	0	0	0	0
Mole Flow kmol/hr	318.181	324.932	1585.039	1909.969	1903.22	195.464	1277.828	2678.149	2678.149	1082.364	22.795	502.9	1384.274
Mass Flow kg/hr	27418.27	28000	40066.464	68066.376	67484.73	14407.858	301652.712	330000	330000	287244.85	1263.391	39137.465	27665.52
Volume Flow l/hr	9.28E+06	42983.8	2.19E+07	2.28E+07	5.67E+07	18675.154	416016.988	2.74E+07	391079	393765.54	346651.34	567491.8	57344.707
Enthalpy MBtu/hr	-47.382	61.151	-401.508	-462.658	-415.777	-60.597	-512.759	-907.197	-991.663	-457.45	-541.915	-6.798	-115.852
Mass Flow kg/hr													-374.868
ETOH	2564.048	2564.05	2564.048	131.47	135.888	1782	1782	4.418	4.418	12.796	917.942	1633.312	
I-BUOH	12381.9	12381.828	12381.9	14274.638	15538.515	17820	17820	1263.877	1263.877	22.466	10100.433	2258.929	
OLEYLOH	15.184	15.184	15.184	1.441	285977.999	285978	285978	285976.56	285976.56	trace	15.183	0.001	
WATER	24152.756	24152.741	24152.756	0.302	0.302	23760	23760	<0.001	<0.001	22.338	393.058	23737.345	
N-C6	27418.27	28000	28000	27418.266	0.007	0.007	trace	660	660	<0.001	577.788	27418.273	3.939
CO2				952.576	952.576					628.004	292.576	31.993	
Mass Frac													
ETOH	0.064	0.038	0.038	0.009	450 PPM	0.005	0.005	15 PPM	15 PPM	0.01	0.023	0.059	
I-BUOH	0.309	0.182	0.182	0.991	0.052	0.054	0.054	0.004	0.004	0.018	0.258	0.082	
OLEYLOH	379 PPM	223 PPM	225 PPM	100 PPM	0.948	0.867	0.867	0.996	0.996	trace	388 PPM	38 PPM	
WATER	1	1	0.603	0.355	0.358	21 PPM	1 PPM	0.072	0.072	trace	0.018	0.01	
N-C6				0.411	0.406	485 PPB	24 PPB	1 PPB	1 PPB	0.457	0.701	142 PPM	
CO2				0.014	0.014	trace	0.002	0.002	0.002	0.497	0.007	0.001	

Table 10. Simulated BUOH Column Traffic and Liquid Mass Composition Profile Outputs for Example 3.

Stage	Temperature C	Pressure atm	Heat duty MJ/hr	Liquid flow kg/hr	Vapor flow kg/hr	Liquid feed kg/hr	Vapor feed kg/hr	Mixed feed kg/hr	Liquid product kg/hr	Vapor product kg/hr
1	55.7230656	0.1	-13072.952	5148.01225	0	0	0	0	0	0
2	66.0005921	0.100357	0	1830.69877	19555.8699	0	0	0	0	0
3	157.681836	0.100714	0	2344.48379	16238.5564	0	0	0	0	0
4	168.5337249	0.101071	0	2448.29746	16752.3414	0	0	0	0	0
5	169.5116848	0.101429	0	2454.23367	16856.1551	0	0	0	0	0
6	169.642769	0.101786	0	2451.11918	16862.0913	0	16579.9248	0	0	0
7	169.691465	0.102143	0	287523.817	279.051976	285072.79	0	0	0	0
8	169.695336	0.1025	0	287529.986	278.962335	0	0	0	0	0
9	169.699204	0.102857	0	287536.151	285.132019	0	0	0	0	0
10	169.703074	0.103214	0	287542.318	291.29657	0	0	0	0	0
11	169.706957	0.103571	0	287548.512	297.463998	0	0	0	0	0
12	169.71089	0.103929	0	287554.799	303.657864	0	0	0	0	0
13	169.715002	0.104286	0	287561.407	309.944452	0	0	0	0	0
14	169.74111	0.104643	0	287597.336	316.552264	0	0	0	0	0
15	179.919428	0.105	7493.70774	287244.854	352.482021	0	0	0	287244.854	0

Table 11. Simulated Solvent Column Traffic and Liquid Mass Composition Profile Outputs for Example 3.

Stage	Temperature C	Pressure atm	Heat duty MJ/hr	Liquid flow kg/hr	Vapor flow kg/hr	Mixed feed kg/hr	Liquid product kg/hr	Vapor prod 1st liquid flow kg/hr	Vapor prod 2nd liquid flow kg/hr
1	90.2737901	0.986923	0	327752.862	67484.7296	346665.91	22471.5596	0	67484.73
2	93.0572955	0.993973	0	326403.278	26100.1266	0	0	0	323895.88
3	94.3960156	1.001022	0	325974.85	24750.5432	0	0	0	324423.74
4	94.8146128	1.008072	0	326144.402	243322.114	0	0	0	1551.115
5	94.8676272	1.015121	0	326800.306	24491.6668	0	0	0	325603.5
6	94.8184823	1.022171	0	327970.191	25147.571	0	0	0	540.9051
7	94.7137098	1.02922	0	329966.879	26317.4555	0	0	0	0
8	94.8586927	1.036269	0	333728.733	28314.1443	0	0	0	0
9	96.2431649	1.043319	0	341275.441	32075.9976	0	0	0	0
10	100.912585	1.050368	0	355085.56	39622.7057	0	0	0	0
11	108.908087	1.057418	0	373678.684	53432.8253	0	0	0	0
12	116.020495	1.064467	0	389742.124	72025.9491	0	0	0	0
13	120.137323	1.071517	0	398745.229	88089.3888	0	0	0	0
14	123.873876	1.078566	0	390438.543	97092.4943	0	0	0	0
15	179.209764	1.085616	99715.9438	301652.735	88785.808	0	0	301652.735	0

Table 12. Simulated Stream Outputs for Example 4.

Temperature C	11	12	19	20	30	40	41	42	43	44	45	46	47
Pressure atm	89.9	25	89.9	74.8	89.9	55.1	180.3	98.3	32.2	179.4	45	35	35
Vapor Frac	0.99	2	0.99	0.99	0.99	0.1	1.09	1.05	0.11	1.26	1	1	1
Mole Flow kmol/hr	318.173	324.932	1606.901	1931.828	1925.073	187.491	1264.992	2698.686	1077.501	1077.501	22.622	491.379	1417.828
Mass Flow kg/hr	27417.571	28000	41033.238	69032.996	68450.81	13757.94	29691.83	330000	285933.89	285933.89	1254.498	38142.639	29635.86
Volume Flow l/hr	9.27E+06	42683.8	2.33E+07	2.39E+07	5.73E+07	17822.85	41307.58	2.71E+07	391226.974	391747.47	345069.66	56099.458	31355.832
Enthalpy MMJoule/hr	47.402	-61.151	404.705	-465.855	-420.079	-58.034	-507.577	-912.025	-995.726	-455.757	-539.458	-6.724	-111.808
Mass Flow kg/hr	ETOH	4410.924	4410.829	4410.924	228.226	236.869	3284.89	3284.89	8.642	8.642	20.072	1362.903	3027.854
I-BUOH	11661.322	11661.168	11661.322	13528.03	14786.134	17738.403	1258.109	1258.109	20.341	20.341	8709.053	2931.774	
OLEYLOH	14.769	14.769	14.769	14.769	1.376	284668.52	284668.53	284668.525	284667.14	284667.14	trace	14.762	0.008
WATER	24003.591	24003.597	24003.591	0.299	0.3	23651.205	23651.205	0.001	0.001	0.001	21.85	352.687	23629.061
N-06	27417.571	28000	942.632	942.633	942.632	trace	656.978	656.978	0.001	0.001	574.875	27417.58	7.546
CO2	Mass Frac	0.107	0.064	0.064	0.017	790 PPM	0.01	0.01	30 PPM	30 PPM	0.016	0.036	0.102
ETOH	0.284	0.169	0.169	0.17	0.983	0.049	0.054	0.054	0.004	0.004	0.016	0.228	0.099
I-BUOH	360 PPM	214 PPM	216 PPM	100 PPM	0.95	0.863	0.863	0.863	0.996	0.996	trace	387 PPM	263 PPM
OLEYLOH	0.585	0.348	0.351	22 PPM	1 PPM	0.072	0.072	2 PPM	2 PPM	0.017	0.009	0.797	
WATER	1	1	0.406	0.401	648 PPB	31 PPB	trace	0.002	2 PPB	2 PPB	0.458	0.719	255 PPM
N-06	0.023	0.014	0.014	0.014	0.014	0.014	0.002	0.002	0.492	0.492	0.007	0.007	
CO2													

Table 13. Simulated BUOH Column Traffic and Liquid Mass Composition Profile Outputs for Example 4.

Stage	Temperature C	Pressure atm	Heat duty MJ/hr	Liquid flow kg/hr	Vapor flow kg/hr	Liquid feed kg/hr	Vapor feed kg/hr	Mixed feed kg/hr	Liquid product kg/hr	Vapor product kg/hr
1	55.1144739	0.1	-12617.119	5022.19711	0	0	0	0	0	0
2	65.8981885	0.10035714	0	1846.07048	18780.1323	0	0	0	0	0
3	158.669129	0.10071429	0	2397.28368	15604.0056	0	0	0	0	0
4	169.827438	0.10107143	0	2509.95284	16155.2188	0	0	0	0	0
5	170.864312	0.10142857	0	2517.10386	16267.888	0	0	0	0	0
6	170.999676	0.10178571	0	2514.16643	16275.039	0	0	0	0	0
7	171.0508	0.10214286	0	286146.277	212.475287	283632.203	0	0	0	0
8	171.054522	0.1025	0	286152.231	212.383637	0	0	0	0	0
9	171.058242	0.10285714	0	286158.181	218.336832	0	0	0	0	0
10	171.061964	0.10321429	0	286164.132	224.286747	0	0	0	0	0
11	171.065695	0.10357143	0	286170.101	230.237834	0	0	0	0	0
12	171.069468	0.10392857	0	286176.15	236.206967	0	0	0	0	0
13	171.073414	0.10428571	0	286182.519	242.255662	0	0	0	0	0
14	171.091794	0.10464286	0	286208.47	248.625404	0	0	0	0	0
15	179.365191	0.105	6060.6846	285933.894	274.575729	0	0	0	0	285933.894

Table 14. Simulated Solvent Column Traffic and Liquid Mass Composition Profile Outputs for Example 4.

Stage	Temperature C	Pressure atm	Heat duty MJ/hr	Liquid flow kg/hr	Vapor flow kg/hr	Liquid feed kg/hr	Vapor feed kg/hr	Mixed feed kg/hr	Liquid product kg/hr	Vapor product kg/hr	1st liquid ffc kg/hr	2nd liquid flow kg/hr
1	89.864731	0.9869233	0	326685.251	68450.8095	345571.561	22571.0777	0	0	68450.8095	323426.01	3259.2448
2	92.586366	0.99397275	0	325426.573	26993.4216	0	0	0	0	0	323550.22	1876.3573
3	93.5977789	1.0010222	0	325331.532	25734.7433	0	0	0	0	0	325331.53	0
4	94.0635457	1.00807165	0	326058.842	25639.7023	0	0	0	0	0	326058.84	0
5	94.087064	1.0151211	0	327276.724	26367.0123	0	0	0	0	0	327276.72	0
6	93.9575626	1.02217055	0	329131.399	27584.8944	0	0	0	0	0	329131.4	0
7	93.8968782	1.02922	0	331938.143	29439.5691	0	0	0	0	0	331938.14	0
8	94.2742294	1.03626945	0	336223.174	32246.3131	0	0	0	0	0	336223.17	0
9	95.8038722	1.0433189	0	342874.621	36531.3442	0	0	0	0	0	342874.62	0
10	99.5397822	1.05036835	0	353185.732	43182.7908	0	0	0	0	0	353185.73	0
11	105.840952	1.0574178	0	367540.526	53493.902	0	0	0	0	0	367540.53	0
12	112.810559	1.06446725	0	382889.961	67848.6961	0	0	0	0	0	382889.96	0
13	118.035575	1.0715167	0	394213.965	83198.1312	0	0	0	0	0	394213.97	0
14	122.787497	1.07856615	0	387994.716	94522.1354	0	0	0	0	0	387994.72	0
15	180.271665	1.0856156	101471.28	299691.83	88302.8866	0	0	0	299691.83	0	299691.83	0

CLAIMS**What is claimed is:**

5 1. A process comprising the steps:

a) introducing a feed comprising:

(i) a water-immiscible organic extractant;

(ii) water;

10 (iii) at least one isomer of butanol; and

(iv) optionally a non-condensable gas

into a first distillation column,

wherein the first distillation column comprises a stripping section and optionally a rectifying section at an introduction point above the

15 stripping section, the first distillation column having an operating temperature, T_1 and an operating pressure P_1 in the stripping section;

wherein T_1 and P_1 are selected to produce a first bottoms stream and a first vaporous overhead stream, the first bottoms stream comprising the water-immiscible organic extractant and butanol and being substantially free of water, and the first vaporous overhead stream comprising water, butanol, optionally the extractant, and optionally the non-condensable gas;

20 b) introducing a water-immiscible organic entrainer to at least one appropriate process stream or vessel;

c) condensing the first vaporous overhead stream to produce a gas phase and recover a mixed condensate, wherein the mixed condensate comprises:

(i) an organic phase comprising butanol, entrainer, and water;

30 and

(ii) an aqueous phase comprising water and butanol; and

wherein the mixed condensate comprises sufficient entrainer to provide phase separation of the organic and the aqueous phases;

5 d) introducing at least a portion of the organic phase to the first distillation column; and

 e) introducing at least a portion of the first bottoms stream into a second distillation column having at least a stripping section and optionally a rectifying section and operating the second distillation column to produce a second bottoms stream comprising the extractant, and a second vaporous overhead stream comprising butanol.

10

2. The process of claim 1 wherein the extractant is selected such that it (A) preferentially extracts butanol over water and (B) is separable from butanol by distillation; and the entrainer is selected such that it (C) has a higher vapor pressure than butanol and (D) is separable from butanol by distillation.

15

3. The process of claim 1, wherein the appropriate process stream or vessel is selected from the feed stream, the first vaporous overhead stream, the mixed condensate stream, the first distillation column, the decanter, and combinations thereof.

20

4. The process of claim 1, further comprising the step of introducing at least a portion of the aqueous phase to a fermentation vessel.

25

5. The process of claim 1, further comprising the step of withdrawing the bottoms stream from the second distillation column and introducing at least a portion of the withdrawn bottoms stream into a fermentation vessel.

30

6. The process of claim 5, further comprising the step of introducing at least a portion of the aqueous phase to a fermentation vessel.
7. The process of claim 6, further comprising the step of combining at least a portion of the withdrawn bottoms stream and at least a portion of the aqueous phase before introducing the combined stream to a fermentation vessel.
8. The process of claim 1, further comprising partially condensing the gas phase to recover at least a portion of the entrainer and optionally introducing the recovered entrainer to the mixed condensate.
9. The process of claim 8, wherein non-condensable gas is present in the feed, the gas phase further comprises the non-condensable gas, and the process further comprises the step of purging at least a portion of the gas phase comprising the non-condensable gas from the process.
10. The process of claim 9, wherein the non-condensable gas comprises carbon dioxide.

20

11. The process of claim 1, the process further comprises the steps of:
 - g) introducing the second vaporous overhead stream into a third distillation column having at least a stripping section,
 - h) operating the third distillation column to produce a third bottoms stream comprising butanol and a third vaporous overhead stream comprising the entrainer; and
 - i) optionally, introducing the third vaporous overhead stream to the mixed condensate.

25

- 30 12. The process of claim 1, wherein the feed comprises an organic phase obtained from an extractive fermentation.

13. The process of claim 1, wherein the butanol concentration in the feed is from about 0.1 weight percent to about 40 weight percent, based on the weight of the feed.

5

14. The process of claim 1, wherein the entrainer comprises at least one hydrocarbon.

15. The process of claim 14, wherein the entrainer comprises at least 10 one hydrocarbon selected from the group consisting of pentane, hexane, hexene, cyclohexane, benzene, toluene, and xylene.

16. The process of claim 1, wherein the extractant comprises at least one solvent selected from the group consisting of C₇ to C₂₂ fatty alcohols, 15 C₇ to C₂₂ fatty acids, esters of C₇ to C₂₂ fatty acids, C₇ to C₂₂ fatty aldehydes, C₇ to C₂₂ fatty amides, and mixtures thereof.

17. The process of claim 16, wherein the extractant comprises at least one solvent selected from the group consisting of C₁₂ to C₂₂ fatty alcohols, 20 C₁₂ to C₂₂ fatty acids, esters of C₁₂ to C₂₂ fatty acids, C₁₂ to C₂₂ fatty aldehydes, C₁₂ to C₂₂ fatty amides, and mixtures thereof.

18. The process of claim 16, wherein the butanol comprises 1-butanol.

25 19. The process of claim 16, wherein the butanol comprises 2-butanol.

20. The process of claim 16, wherein the butanol comprises isobutanol.

21. The process of claim 1, wherein the feed further comprises ethanol 30 and the second vaporous overhead stream further comprises ethanol.

22. The process of claim 1 wherein the butanol in the feed introduced into a first distillation column is produced by fermentation of corn or sugar cane.
- 5 23. The process of claim 1 further comprising a process to process heat exchange between the feed introduced to the first distillation column and the first bottoms stream.

1/2

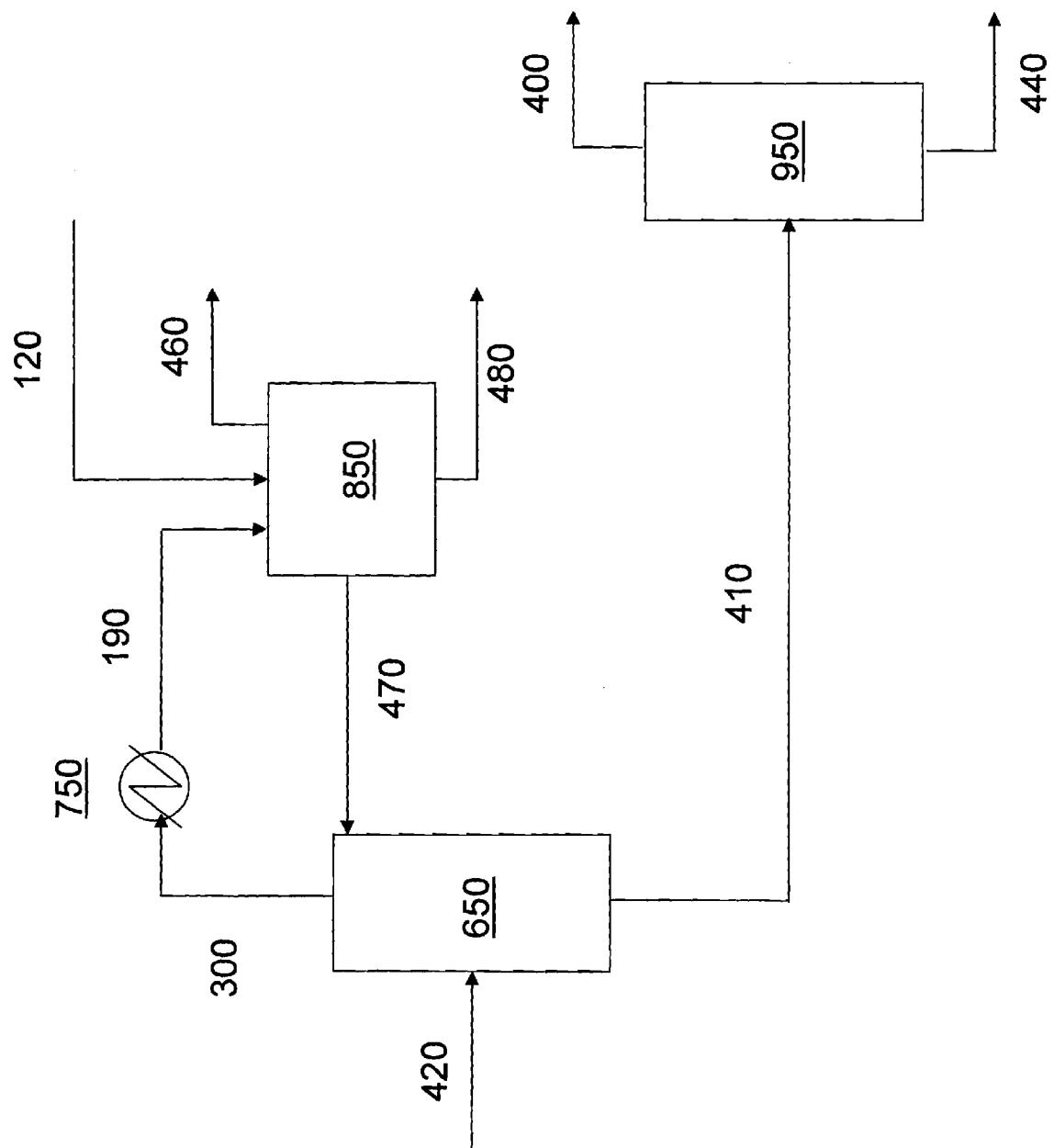


FIG. 1

2/2

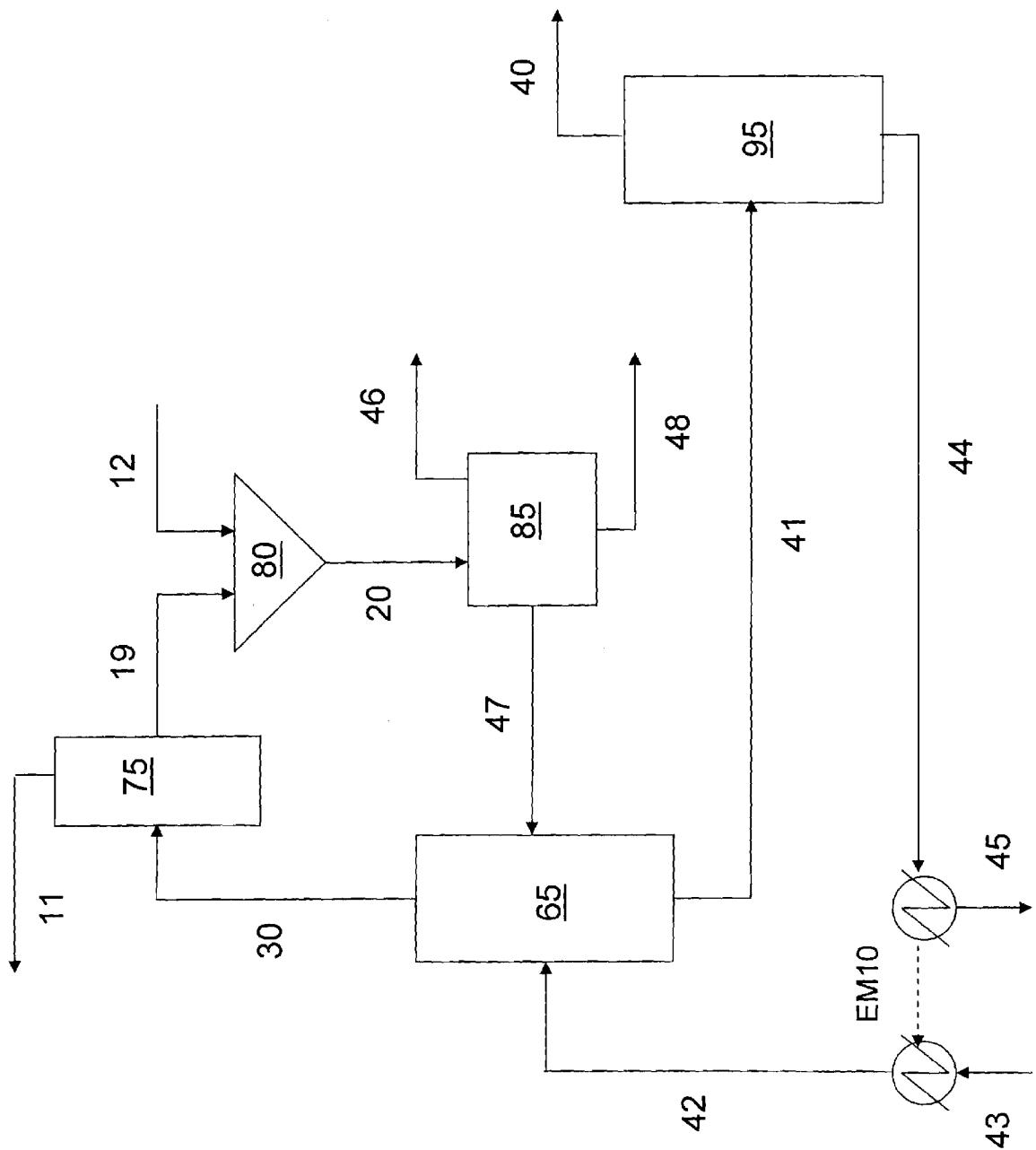


FIG. 2

INTERNATIONAL SEARCH REPORT

International application No
PCT/US2010/057597

A. CLASSIFICATION OF SUBJECT MATTER
INV. C07C29/86 C12P7/16 C07C31/12
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
C07C C12P

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 2007/092957 A1 (DONALDSON GAIL K [US] ET AL) 26 April 2007 (2007-04-26) paragraphs [0183] - [0187] -----	1-23
A	EZEJI ET AL: "Bioproduction of butanol from biomass: from genes to bioreactors", CURRENT OPINION IN BIOTECHNOLOGY, LONDON, GB, vol. 18, no. 3, 8 June 2007 (2007-06-08), pages 220-227, XP022110184, ISSN: 0958-1669, DOI: DOI:10.1016/J.COPBIO.2007.04.002 page 225, left-hand column, last paragraph - right-hand column, paragraph 1 ----- -/-	1-23

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search	Date of mailing of the international search report
8 April 2011	04/05/2011
Name and mailing address of the ISA/ European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016	Authorized officer Kleidernigg, Oliver

INTERNATIONAL SEARCH REPORTInternational application No
PCT/US2010/057597**C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT**

Category [*]	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A, P	WO 2009/149270 A2 (DU PONT [US]; GRADY MICHAEL CHARLES [US]; JAHIC MEHMEDALIJA [US]; PATN) 10 December 2009 (2009-12-10) page 22, last line -page 24, line 9;claims 1-23 -----	1-23

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2010/057597

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
US 2007092957	A1	26-04-2007	NONE
<hr/>			
WO 2009149270	A2	10-12-2009	AU 2009256148 A1 10-12-2009
			CA 2723877 A1 10-12-2009
			EP 2283141 A2 16-02-2011
			KR 20110015045 A 14-02-2011
			US 2009305370 A1 10-12-2009