(19) 中华人民共和国国家知识产权局

(12) 发明专利申请

(21) 申请号 201510393855.X
(22) 申请日 2015.07.07
(71) 申请人 业成光电（深圳）有限公司
 地址 518000 广东省深圳市龙华街道办民治
 路北深超光电科技园 K2 区 H3 厂房
(72) 发明人 陈俊吉 黄上育 陈 thù
(74) 专利代理机构 广州华进联合专利商标代理有限公司 44224
 代理人 吴平
(51) Int.Cl.
 G01F 3/041 (2006.01)

(54) 发明名称
触控显示面板结构与触控显示面板

(57) 摘要
本发明涉及一种触控显示面板结构，包含显示面板以及第一金属网格。显示面板包含多个像素单元，像素单元分别具有沿水平方向的第一长度。第一金属网格设置于显示面板上。第一金属网格包含多个第一金属网格单元，第一金属网格单元分别具有沿水平方向的第二长度，其中第二长度约为第一长度的 4.15 倍至 5.2 倍。通过使第二长度为第一长度的 4.15 倍至 5.2 倍，被第一金属网格的金属线遮蔽而导致开口率下降的像素单元与未被第一金属网格的金属线遮蔽的像素单元的分布将较为均匀，于是肉眼将不会观察到显示画面亮度不均。同时，因为第一金属网格单元的分布远较像素单元的分布稀疏，像素单元的平均开口率将有效提升，进而提升触控显示面板结构的显示亮度。
1. 一种触控显示面板结构，其特征在于，包含：
 一显示面板，包含：
 多个像素单元，分别具有沿一水平方向的一第一长度；以及
 一第一金属网格，设置于该显示面板上，包含：
 多个第一金属网格单元，分别具有沿该水平方向的一第二长度，其中该第二长度为该第一长度的 4.15 倍至 5.2 倍。

2. 如权利要求 1 所述的触控显示面板结构，其特征在于，其中该第二长度为该第一长度的 4.15 倍至 5 倍。

3. 如权利要求 1 所述的触控显示面板结构，其特征在于，其中该第二长度为该第一长度的 4.3 倍至 5.2 倍。

4. 如权利要求 1 所述的触控显示面板结构，其特征在于，其中该第二长度为该第一长度的 4.5 倍至 5.2 倍。

5. 如权利要求 1 所述的触控显示面板结构，其特征在于，其中该第一长度为 45 μm 至 90 μm。

6. 如权利要求 1 所述的触控显示面板结构，其特征在于，其中该第二长度为 185 μm 至 470 μm。

7. 如权利要求 1 所述的触控显示面板结构，其特征在于，其中这些第一金属网格单元的形状为矩形或菱形。

8. 如权利要求 1 所述的触控显示面板结构，其特征在于，其中这些像素单元还分别具有沿一垂直方向的一第三长度，这些第一金属网格单元还分别具有沿该垂直方向的一第四长度，其中该第四长度为该第三长度的 4.15 倍至 5.2 倍。

9. 如权利要求 8 所述的触控显示面板结构，其特征在于，其中该第四长度为该第三长度的 4.15 倍至 5 倍。

10. 如权利要求 8 所述的触控显示面板结构，其特征在于，其中该第四长度为该第三长度的 4.3 倍至 5.2 倍。

11. 如权利要求 8 所述的触控显示面板结构，其特征在于，其中该第四长度为该第三长度的 4.5 倍至 5.2 倍。

12. 一种触控显示面板，其特征在于，包含：
 如权利要求 1 所述的触控显示面板结构；
 一触控基板，设置于该第一金属网格上；以及
 一第二金属网格，设置于该触控基板上，包含：
 多个第二金属网格单元，分别具有沿该水平方向的一第五长度，其中该第五长度为该第一长度的 4.15 倍至 5.2 倍。

13. 如权利要求 12 所述的触控显示面板，其特征在于，其中该第五长度为该第一长度的 4.15 倍至 5 倍。

14. 如权利要求 12 所述的触控显示面板，其特征在于，其中该第五长度为该第一长度的 4.3 倍至 5.2 倍。

15. 如权利要求 12 所述的触控显示面板，其特征在于，其中这些第一金属网格单元与这些第二金属网格单元在该显示板面上的正投影为交错设置。
触控显示面板结构与触控显示面板

技术领域
[0001] 本发明涉及一种触控显示面板结构，特别是涉及一种使用金属网格的触控显示面板结构。

背景技术
[0002] 金属网格 (Metal Mesh) 为一种触控技术，其将线宽极细（肉眼不可见）的金属线设置成网格样式，并以这些金属线侦测触控物的位置。相较于氧化铟锡 (Indium Tin Oxide, ITO) 电极，金属网格的阻抗低、制造成本低、透明度佳、可挠度高，适合应用于如笔记本电脑等的大尺寸显示屏幕上。
[0003] 虽然金属网格的金属线极细，但金属线本身不透光，因此显示屏幕仍可能会因为金属网格的遮蔽导致每个像素的开口率不同，因而产生显示屏幕亮度不均(Mura)的情况。
[0004] 为了进一步改善使用金属网格的触控显示面板的各项特性，相关领域均费心心思开发。如何能提供一种具有较佳特性的触控显示面板，实属当前重要研发课题之一，也成为当前相关领域亟需改进的目标。

发明内容
[0005] 有鉴于此，有必要提供一种触控显示面板结构，用以使其显示画面的亮度均匀且提升其显示亮度。
[0006] 一种触控显示面板结构，包含显示面板以及第一金属网格。显示面板包含多个像素单元，像素单元分别具有沿水平方向的第一长度。第一金属网格设置于显示面板上，第一金属网格包含多个第一金属网格单元，第一金属网格单元分别具有沿水平方向的第二长度，其中第二长度为第一长度的4.15倍至5.2倍。
[0007] 于本发明的一个或多个实施方式中，第二长度为第一长度的4.15倍至5倍。
[0008] 于本发明的一个或多个实施方式中，第二长度为第一长度的4.3倍至5.2倍。
[0009] 于本发明的一个或多个实施方式中，第二长度为第一长度的4.5倍至5.2倍。
[0010] 于本发明的一个或多个实施方式中，第一长度为45μm至90μm。
[0011] 于本发明的一个或多个实施方式中，第二长度为185μm至470μm。
[0012] 于本发明的一个或多个实施方式中，第一金属网格单元的形状为矩形或菱形。
[0013] 于本发明的一个或多个实施方式中，像素单元更分别具有沿垂直方向的第三长度，第一金属网格单元更分别具有沿垂直方向的第四长度，其中第四长度为第三长度的4.15倍至5.2倍。
[0014] 于本发明的一个或多个实施方式中，第四长度为第三长度的4.15倍至5倍。
[0015] 于本发明的一个或多个实施方式中，第四长度为第三长度的4.3倍至5.2倍。
[0016] 于本发明的一个或多个实施方式中，第四长度为第三长度的4.5倍至5.2倍。
[0017] 一种触控显示面板，包含上述触控显示面板结构、触控基板以及第二金属网格。触控基板设置于第一金属网格上。第二金属网格设置于触控基板上。第二金属网格包含多个
第二金属网格单元，第二金属网格单元分别具有沿水平方向的第五长度，其中第五长度为第一长度的 4.15 倍至 5.2 倍。

[0018] 于本发明的一个或多个实施方式中，第五长度为第一长度的 4.15 倍至 5 倍。
[0019] 于本发明的一个或多个实施方式中，第五长度为第一长度的 4.3 倍至 5.2 倍。
[0020] 于本发明的一个或多个实施方式中，第一金属网格单元与第二金属网格单元在显示面板上的正投影为交错设置。
[0021] 本发明的上述实施方式通过使第一金属网格单元的第二长度为像素单元的第一长度的 4.15 倍至 5.2 倍，于是被第一金属网格的金属线遮蔽而导致开口率下降的像素单元与没有被第一金属网格的金属线遮蔽的像素单元的分布较为均匀，肉眼将不会观察到显示画面亮度不均的情况。在此同时，因为第一金属网格单元的分布远较像素单元的分布稀疏，于是第一金属网格对于显示面板的遮蔽能将减少，因而使像素单元的平均开口率有效提升，进而提升触控显示面板结构的显示亮度。

附图说明
[0022] 图 1 为一实施方式的触控显示面板结构在显示纯绿画面时的俯视示意图。
[0023] 图 2 为一实施方式的触控显示面板结构的像素单元的俯视示意图。
[0024] 图 3 为另一实施方式的触控显示面板结构在显示纯绿画面时的俯视示意图。
[0025] 图 4 为一实施方式的触控显示面板在显示纯绿画面时的俯视示意图。
[0026] 图 5 为图 4 的触控显示面板的剖面示意图。
[0027] 主要元件符号说明：
[0028] 100 : 触控显示面板结构
[0029] 110 : 显示面板
[0030] 111 : 像素单元
[0031] 111R : 红色子像素
[0032] 111G : 绿色子像素
[0033] 111B : 蓝色子像素
[0034] 112 : 未发光区域
[0035] 115 : 亮区
[0036] 116 : 暗区
[0037] 120 : 第一金属网格
[0038] 121 : 第一金属网格单元
[0039] 200 : 触控显示面板
[0040] 210 : 触控基板
[0041] 220 : 第二金属网格
[0042] 221 : 第二金属网格单元
[0043] H : 水平方向
[0044] L1 : 第一长度
[0045] L2 : 第二长度
[0046] L3 : 第三长度
具体实施方式

[0051] 图1为一实施方式的触控显示面板结构100在显示纯绿画面时的俯视示意图。本发明不同实施方式提供一种触控显示面板结构100，触控显示面板结构100主要为使用金属网格的触控显示面板结构。

[0052] 图2为一实施方式的触控显示面板结构100的像素单元111的俯视示意图。如图1与图2所示，触控显示面板结构100包含显示面板110以及第一金属网格120。显示面板110包含多个像素单元111，像素单元111分别具有沿水平方向H的第一长度L1。第一金属网格120设置于显示面板110上。第一金属网格120包含多个第一金属网格单元121，第一金属网格单元121分别具有沿水平方向H的第二长度L2，其中第二长度L2约为第一长度L1的4.15倍至5.2倍。

[0053] 具体而言，如图2所示，像素单元111包含红色子像素111R、绿色子像素111G、蓝色子像素111B以及未发光区域112。如图1与图2所示，在触控显示面板结构100在显示纯绿画面时，像素单元111仅有绿色子像素111G有发光，于是各个像素单元111的绿色子像素111G形成图1中的亮区115，且各个像素单元111的其他区域（即红色子像素111R、蓝色子像素111B以及未发光区域112）形成图1中的暗区116（需要注意的是，因为人眼对于绿光最为敏感，因此通常会在触控显示面板结构100显示纯绿画面时进行触控显示面板结构100的显示质量测试）。

[0054] 由于第一金属网格120的金属线本身为不透光，第一金属网格120的遮蔽可能导致每个像素单元111的开口率不同，因而产生显示屏幕亮度不均（Mura）的情况。举例来说，在触控显示面板结构100显示纯绿画面时，若是第一金属网格单元121的第二长度L2大于像素单元111的第一长度L1的6倍，肉眼将会观察到显示屏幕亮度不均的情况。为此，第一金属网格单元121的第二长度L2设计为小于第一长度L1的5.2倍，于是被金属线遮蔽而导致开口率下降的像素单元111与没有被金属线遮蔽的像素单元111的分布会较为均匀，肉眼将不会观察到显示画面亮度不均的情况（换句话说，因为被金属线遮蔽而导致开口率下降的像素单元111之间所夹的没有被金属线遮蔽的像素单元111的个数较少，因此对于肉眼而言，亮度较暗的像素单元111与正常亮度的像素单元111将会混合在一起而无法辨识差异）。

[0055] 另外，因为第二长度L2大于第一长度L1的4.15倍，因此第一金属网格单元121的分布远较像素单元111的分布稀疏，于是第一金属网格120对于显示面板110的遮蔽将能减少，因而使像素单元111的平均开口率有效提升，进而提升触控显示面板结构100的显示亮度。
第一长度 L1 与第二长度 L2 之间的对应关系也可符合如下的描述。第二长度 L2 可约为第一长度 L1 的 4.2 倍至 5 倍，4.3 倍至 5.2 倍，4.4 倍至 5.2 倍，4.5 倍至 5.2 倍，4.6 倍至 5.2 倍，4.7 倍至 5.2 倍，4.8 倍至 5.2 倍，4.9 倍至 5.2 倍，5 倍至 5.2 倍，5.1 倍至 5.2 倍，4.15 倍至 5 倍，4.2 倍至 5 倍，4.3 倍至 5 倍，4.4 倍至 5 倍，4.5 倍至 5 倍，4.6 倍至 5 倍，4.7 倍至 5 倍，4.8 倍至 5 倍，4.9 倍至 5 倍，5 倍至 5 倍，4.15 倍至 4.8 倍，4.2 倍至 4.8 倍，4.3 倍至 4.8 倍，4.4 倍至 4.8 倍，4.5 倍至 4.8 倍，4.6 倍至 4.8 倍，4.7 倍至 4.8 倍，4.8 倍至 4.8 倍，4.9 倍至 4.8 倍，5 倍至 4.8 倍。具体而言，第一长度 L1 可为约 45 μm 至 90 μm 或 45 μm 至 50 μm，第二长度 L2 可为约 185 μm 至 470 μm 或 185 μm 至 260 μm。应了解，以上所列举的第一长度 L1 与第二长度 L2 的大小范围仅为例，非用以限制本发明，本发明所属技术领域中具有通常知识者，应视实际需要，弹性选择第一长度 L1 与第二长度 L2 的大小范围。

具体而言，第一金属网格单元 121 的形状可为菱形或矩形。应了解，以上所列举的第一金属网格单元 121 的形状仅为举例，并非用以限制本发明，本发明所属技术领域中具有通常知识者，应视实际需要，弹性选择第一金属网格单元 121 的形状。

图 3 为实施方式的触控显示面板结构 100 在显示纯绿画面时的俯视示意图。本实施方式的触控显示面板结构 100 于前述实施方式的触控显示面板结构 100 大致相同，以下仅说明其不同之处。

如图 3 所示，像素单元 111 更分别具有沿垂直方向 V 的第三长度 L3（见图 2），第一金属网格单元 121 更分别具有沿垂直方向 V 的第四长度 L4，其中第四长度 L4 约为第三长度 L3 的 4.15 倍至 5.2 倍。

第三长度 L3 与第四长度 L4 之间的对应关系也可符合如下的描述。第四长度 L4 可约为第三长度 L3 的 4.2 倍至 5.2 倍，4.3 倍至 5.2 倍，4.4 倍至 5.2 倍，4.5 倍至 5.2 倍，4.6 倍至 5.2 倍，4.7 倍至 5.2 倍，4.8 倍至 5.2 倍，4.9 倍至 5.2 倍，5 倍至 5.2 倍，5.1 倍至 5.2 倍，4.15 倍至 5 倍，4.2 倍至 5 倍，4.3 倍至 5 倍，4.4 倍至 5 倍，4.5 倍至 5 倍，4.6 倍至 5 倍，4.7 倍至 5 倍，4.8 倍至 5 倍，4.9 倍至 5 倍，5 倍至 5 倍，4.15 倍至 4.8 倍，4.2 倍至 4.8 倍，4.3 倍至 4.8 倍，4.4 倍至 4.8 倍，4.5 倍至 4.8 倍，4.6 倍至 4.8 倍，4.7 倍至 4.8 倍，4.8 倍至 4.8 倍，4.9 倍至 4.8 倍，5 倍至 4.8 倍。具体而言，第三长度 L3 可为约 45 μm 至 90 μm 或 45 μm 至 50 μm，第四长度 L4 可为约 185 μm 至 470 μm 或 185 μm 至 260 μm。应了解，以上所列举的第三长度 L3 与第四长度 L4 的大小范围仅为例，并非用以限制本发明，本发明所属技术领域中具有通常知识者，应视实际需要，弹性选择第三长度 L3 与第四长度 L4 的大小范围。

图 4 为实施方式的触控显示面板 200 在显示纯绿画面时的俯视示意图。图 5 为图 4 的触控显示面板 200 的剖面示意图。如图 4 与图 5 所示，触控显示面板 200 包含图 1 的触控显示面板结构 100，触控基板 210 以及第二金属网格 220。触控基板 210 设置于第一金属网格 120 上。第二金属网格 220 设置于触控基板 210 上。第二金属网格 220 包含多个第二金属网格单元 221，第二金属网格单元 221 分别具有沿水平方向 H 的第五长度 L5，其中第五长度 L5 约为第一长度 L1（见图 2）的 4.15 倍至 5.2 倍。

第一长度 L1 与第五长度 L5 之间的对应关系也可符合如下的描述。第五长度 L5 可约为第一长度 L1 的 4.2 倍至 5.2 倍，4.3 倍至 5.2 倍，4.4 倍至 5.2 倍，4.5 倍至 5.2 倍，4.6 倍至 5.2 倍，4.7 倍至 5.2 倍，4.8 倍至 5.2 倍，4.9 倍至 5.2 倍，5 倍至 5.2 倍，5.1 倍至 5.2 倍，4.15 倍至 5 倍，4.2 倍至 5 倍，4.3 倍至 5 倍，4.4 倍至 5 倍，4.5 倍至 5 倍，4.6 倍至 5 倍，4.7 倍至 5 倍，4.8 倍至 5 倍，4.9 倍至 5 倍，5 倍至 5 倍，4.15 倍至 4.8 倍，4.2 倍至 4.8 倍，4.3 倍至 4.8 倍，4.4 倍至 4.8 倍，4.5 倍至 4.8 倍，4.6 倍至 4.8 倍，4.7 倍至 4.8 倍，4.8 倍至 4.8 倍，4.9 倍至 4.8 倍，5 倍至 4.8 倍。
5 倍，4.7 倍至 5 倍，4.8 倍至 5 倍，4.9 倍至 5 倍，4.15 倍至 4.8 倍，4.2 倍至 4.8 倍，4.3 倍至 4.8 倍，4.4 倍至 4.8 倍，4.5 倍至 4.8 倍，4.6 倍至 4.8 倍或 4.7 倍至 4.8 倍。

具体而言，第五长度 L5 为约 185 μm 至 470 μm 或 185 μm 至 260 μm。应了解到，以上所列举的第五长度 L5 的大小范围仅为举例，并非用以限制本发明，本发明所属技术领域中具有通常知识者，应视实际需要，弹性选择第五长度 L5 的大小范围。

具体而言，第一金属网格单元 121 与第二金属网格单元 221 在显示面板 110（或触控基板 210 上的正投影）的正投影为交错设置。应了解到，以上所列举的第一金属网格单元 121 与第二金属网格单元 221 仅为举例，并非用以限制本发明，本发明所属技术领域中具有通常知识者，应视实际需要，弹性选择第一金属网格单元 121 与第二金属网格单元 221。

针对以上第 1～2 图所示的实施方式，以下将揭露实施例的实验数据，以证明第 1～2 图所示的触控显示面板结构 100，确实可以提升像素单元 111 的平均开口率，进而提升触控显示面板结构 100 的显示亮度。在以下叙述中，已经在上述实施方式中提到的参数将不再重复赘述，仅需进一步界定者加以补充，合先叙明。

在比较例与实施例中，触控显示面板结构 100 的显示区形状皆为矩形，且矩形的对角线长度为 7.8 时，像素单元 111 的像素密度 (Pixels Per Inch, PPI) 皆为 324, 第一长度 L1 与第三长度 L3 皆为 78 μm。在比较例中，第二长度 L2 为 319 μm，第四长度 L4 为 211 μm，因此第二长度 L2 为第一长度 L1 的 4.12 倍，第四长度 L4 为第三长度 L3 的 2.7 倍，而在触控显示面板结构 100 显示纯画面时像素单元 111 的平均开口率为 95%。在实施例中，第二长度 L2 与第四长度 L4 皆为 390 μm，因此第二长度 L2 为第一长度 L1 的 5 倍，第四长度 L4 为第三长度 L3 的 5 倍，而在触控显示面板结构 100 显示纯画面时像素单元 111 的平均开口率为 97%。于是，实施例的像素单元 111 的平均开口率确实较比较例的像素单元 111 的平均开口率高。

本发明上述实施方式通过使第一金属网格单元 121 的第二长度 L2 约为像素单元 111 的第一长度 L1 的 4.15 倍至 5.2 倍，于是因为第一金属网格单元 121 的金属线遮蔽而导致开口率下降的像素单元 111 与没有被第一金属网格单元 121 的金属线遮蔽的像素单元 111 的分布较为均匀，肉眼不会观察到显示画面亮度不均的情况。在此同时，因为第一金属网格单元 121 的分布远较像素单元 111 的分布稀疏，于是第一金属网格单元 121 对于显示面板 110 的遮蔽能减少，从而使像素单元 111 的平均开口率有效提升，进而提升触控显示面板结构 100 的显示亮度。

以上所述实施例仅表达了本发明的几种实施方式，其描述较为具体和详细，但并不能因此而理解为对发明专利范围的限制。应当指出的是，对于本领域的普通技术人员来说，在不脱离本发明构思的前提下，还可以做出若干变形和改进，这些都属于本发明的保护范围。因此，本发明专利的保护范围应以所附权利要求为准。
图 1
图 2
图 4
图 5