Title: VEHICLE STABILITY OPERATOR FEEDBACK SYSTEM

Abstract: System for monitoring vehicle operating conditions and parameters and issuing warnings to the operator when a predetermined vehicle status is present. The predetermined vehicle status includes a variety of unsafe driving conditions and is responsive to a changing center of gravity. The warnings include visual, audible, and tactile feedback. By way of the tactile feedback, the system can affect the operator’s operation of the vehicle to prevent vehicle instability, rollover, loss of vehicle control or other unsafe driving conditions from occurring.
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent
(BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
— with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.
VEHICLE STABILITY OPERATOR FEEDBACK SYSTEM

BACKGROUND OF THE INVENTION

Field of the Invention

The present invention relates to a system for monitoring vehicle operating conditions and parameters and providing feedback to the vehicle’s operator indicating potential vehicle instability.

Description of the Related Art

Many vehicles, including construction equipment, firefighting vehicles, large trucks and so-called sport-utility vehicles, have high centers of gravity (C.O.G.’s). This results in decreased stability, an increased risk of vehicle rollover and/or loss of vehicle control, as well as other safety-related concerns.

Further, when loaded with cargo or passengers, the C.O.G. of a vehicle will change. The inability of the operator to anticipate a vehicle’s handling characteristics based upon the changing C.O.G. of a vehicle may be largely responsible for many accidents.

As a result, devices have been devised that measure forces acting on a vehicle and warn the operator when these forces exceed safe levels. In response, the operator can slow the vehicle or widen the turning radius.

One such device is disclosed in U.S. Patent No. 6,130,608. This device measures lateral g-forces or acceleration and sounds an audible alarm when the g-forces exceed a set threshold. The threshold can be adjusted by the operator.
As the C.O.G. of the vehicle changes, its ability to remain stable with the presence of changing levels of lateral forces also changes. Thus, to be effective, the threshold must be adjusted on such occasions as when an unloaded vehicle is loaded with cargo or a vehicle’s boom is extended or bed raised. Further, fuel consumption and the resulting emptying of a vehicle’s fuel tank will change a vehicle’s handling characteristics.

However, known devices rely upon the operator to set the appropriate level. In many cases, the operator will be unable to properly estimate an appropriate threshold, adjust it too high to avoid the nuisance of the alarm, or neglect to adjust the threshold when the vehicle’s load changes.

SUMMARY OF THE INVENTION

According to an aspect of the present invention, a vehicle condition operator feedback system is provided. The system comprises a vehicle operating condition determining means for determining a plurality of operating conditions, at least one of the plurality of operating conditions being affected by a present center of gravity of the vehicle. The system further comprises a control means for deducing the presence of a predetermined vehicle status based upon an operating condition signal received from the determining means. The system further comprises an operator feedback means for indicating the presence of the predetermined vehicle status to the operator of the vehicle based upon a control signal received from the control means.
BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic illustration of a vehicle stability operator feedback system according to one embodiment of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

FIG. 1 illustrates the general interconnection of components of an embodiment of the present invention. A vehicle condition operator feedback processor, controller or other control means 10 receives a plurality of signals from a vehicle operating condition determining means or apparatus which comprises various sensors 12 mounted in a vehicle (not shown). Each of the sensors is capable of measuring a specific condition related to the operation, configuration or environs of the vehicle. The sensors 12 include measurement or detection of accelerations and decelerations (including lateral g-forces), steering actuator position, wheel angle positions, load characteristics, brake actuator position, brake fluid pressure, throttle actuator position, engine revolution speed, engine power, engine torque, ground speed, wheels differential speeds, incline, GPS-based or other speed, location and heading determinations, road transponder information, ambient pavement temperature, pavement friction, and vehicle roll rate. Additional sensors that are known in the art for determining a vehicle condition can also be used. The term determining as used herein refers to determining, detecting, sensing, measuring, obtaining, acquiring, calculating and the like. Further, “vehicle operating condition” as used herein includes vehicle conditions, environmental conditions affecting vehicle operation, and the like. Those vehicle conditions listed herein are intended by way of
example only, and other determined conditions can be used without depart from the intended scope of the present invention.

There are generally two types of vehicle conditions which can be determined by the sensors 12. The first type is determined conditions that are largely dependent on the specific characteristic vehicle as it is presently configured, such as vehicle suspension and frame response to static loading. These conditions are affected by a vehicle's changing C.O.G.. Other conditions are largely independent of the vehicle and relate to the present operation of the vehicle, such as lateral g-forces, velocity, acceleration, inclination and wheel angles. Some of the measured conditions may be both vehicle and operation dependent.

By using a vehicle operating condition signal or input of one or more of the sensors 12, the processor 10 is capable of deducing when a potentially unsafe driving condition may be present and warning the driver or operator of the vehicle. As used herein, “predetermined vehicle status” includes, but is not limited to, a potential for vehicle instability, a potential for vehicle rollover, a potential for loss of vehicle control, and any other potentially unsafe driving condition. The processor 10 uses previously gathered or predefined data from a database or lookup table 16 related to a specific vehicle having certain variable or changing conditions, including load and C.O.G., various calculations and algorithms, and other techniques to deduce the presence of the predetermined vehicle status. Since the vehicle conditions include conditions that vary with or are affected by the vehicle's present C.O.G., the operation of the processor 10 is responsive to the changing C.O.G. of the vehicle. Thus, no adjustment of the processor 10 or sensors 12 by the operator is required when the C.O.G. of the vehicle changes.
A basic dynamic model of a vehicle from either analysis or experiment is programmed into the processor 10 to serve as an initial model. The processor 10 will then use the basic model to deduce a vehicle specific model and then store it as the initial model in the database 16 for this specific vehicle.

The processor 10 uses knowledge-based algorithms including, but not limited to, rule-based algorithms, neural network techniques, programmed set-limits and digital signal processing to determine the present vehicle condition, including stability as affected by a changing center of gravity, in real time and predict the possible vehicle behavior in the immediate future based on present operating conditions.

One or more operator feedback means or apparatuses are connected to the processor 10. When the processor 10 determines that an unsafe condition may be present or is likely to occur, it sends a control signal to activate one or more of these feedback means 14. The feedback means 14 include various types of visual and audible alerts, such as buzzers or flashing lights.

Another type of feedback means 14 is tactile feedback. One type of tactile feedback includes providing resistance to a mechanical input, such as the vehicle’s steering mechanism or throttle pedal, using known techniques. The resistance has the effect of making it more difficult for the operator to narrow the vehicle’s turning radius using the steering wheel or accelerate using the throttle pedal. In this way, the processor 10 communicates to the operator of the vehicle that it may not be safe to further increase the vehicle’s speed or to tighten the turning radius. Other mechanical components of the vehicle could also be controlled in this way.

Further, another type of feedback means 14 includes providing positive force and/or backforce to vehicle controls or mechanical inputs, such as the vehicle’s
steering mechanism, brakes or throttle actuator, using known techniques. This force feedback has an effect similar to the application of resistance, except that it pushes back with a force greater than that which was originally applied by the operator. However, the force exerted is negligible, such that it may be overcome by the operator. The backforce provides operator awareness of increasing levels of vehicle instability and prompts the operator to modify his/her operation of the vehicle’s brakes to slow the vehicle. Other mechanical components of the vehicle could also be controlled in this way vehicle to prevent rollover, such as slowing the vehicle or increasing turn radius.

An additional type of feedback is vehicle control override. This type of feedback is similar to tactile feedback, and specifically to force feedback, except that force is applied to the mechanical inputs with a force too great for the operator to reasonably overcome. Alternatively the force may be applied directly to a control mechanism of the vehicle, such as the vehicle’s accelerator, steering mechanism or brakes. Vehicle control override has the effect of modifying the vehicle operation automatically, without the operator’s intervention. Override is especially useful when vehicle instability or another condition becomes so great that the operator would not have adequate time to react if prompted by another form of feedback.

An output of the processor 10 could also be connected to an existing device that determines the presence of dangerous driving conditions and alerts the operator, such as that disclosed in U.S. Patent No. 6,130,608, the entire disclosure of which is incorporated herein by reference. In this case, the processor 10 could be adapted to increase or decrease the lateral g-force threshold of the device, as appropriate based upon present vehicle conditions.
Further, an output of the processor 10 could be connected to control an active or reactive vehicle suspension calibration, adjustment or setting using known techniques to provide optimum performance or increased vehicle dynamic stability based upon present conditions.

The processor 10 has three principal modes of operation: a monitoring mode, a learning mode, and an operating mode. In the monitoring mode, the processor 10 can be used to acquire data from the sensors 12 for different conditions and store the data in the database 16 or transmit the data for use by vehicle monitoring computers for simulation and analysis. The monitoring mode would allow engineers to determine appropriate limits and formulas for use by the processor in the operating mode. Additionally, the acquired data could be used to fundamentally improve the configuration of the vehicle.

In the learning mode, the processor 10 acquires data from the sensors 12 as well as user input to set various operating limits for use in the operating mode. During the learning mode, the engineer performs various tests on the vehicle under different operating conditions and indicates to the processor 10 when maximum safe operating conditions are reached or exceeded. Acquired data may be stored in the database or lookup table 16.

In the operating mode, the processor 10 would acquire and process data from the sensors 12 related to present operating conditions and determine present vehicle stability based upon algorithms and/or database 16 information and control the operator feedback means 14 as appropriate.
Additional possible operation modes of the processor 10 may include vehicle
accident recording, route simulation, route optimization, turn-apex detection, steering
feedback, and operator training.

It should be evident that this disclosure is by way of example and that various
changes may be made by adding, modifying or eliminating details without departing
from the fair scope of the teaching contained in this disclosure. The invention is
therefore not limited to particular details of this disclosure except to the extent that
the following claims are necessarily so limited.
What is claimed is:

1. A vehicle condition operator feedback system comprising:
 a vehicle operating condition determining apparatus mounted to a vehicle, the
determining apparatus determining a plurality of operating conditions, at least one of
the plurality of operating conditions being affected by a present center of gravity of
the vehicle;
a controller which receives an input from the determining apparatus and
deduces the presence of a predetermined vehicle status; and
an operator feedback apparatus, activated by the controller to indicate the
presence of the predetermined vehicle status to the operator of the vehicle based upon
the input, the feedback apparatus providing at least one form of feedback comprising
at least one of an audible warning, a visual warning, a tactile warning, and vehicle
control override.

2. The system of claim 1, wherein the controller activates the feedback
apparatus based upon a comparison of the input to predefined data.

3. The system of claim 1, wherein the controller activates the feedback
apparatus based upon an algorithm.

4. The system of claim 1, wherein each of the plurality of operating
conditions is selected from acceleration, deceleration, steering actuator position,
steering rate, wheel angle position, load, brake actuator position, brake fluid pressure,
throttle actuator position, engine revolution speed, engine power, engine torque,
ground speed, driving wheels differential speed, incline, location, road transponder
information, ambient pavement temperature, pavement friction, vehicle roll rate,
center of gravity and heading.

5. The system of claim 1, wherein at least one of the plurality of
operating conditions is determined on the basis of information acquired from a global
positioning system.

6. A vehicle condition operator feedback system comprising:
a vehicle operating condition determining means for determining a plurality of
operating conditions, at least one of the plurality of operating conditions being
affected by a present center of gravity of the vehicle;
a control means for deducing the presence of a predetermined vehicle status
based upon an operating condition signal received from the determining means; and
an operator feedback means for indicating the presence of the predetermined
vehicle status to the operator of the vehicle based upon a control signal received from
the control means.

7. The system of claim 6, wherein the feedback means provides at least
one form of feedback provided by at least one of an audible warning means for
providing an audible warning, a visual warning means for providing a visual warning,
a tactile warning means for providing a tactile warning, and a vehicle control override
means for overriding an operation of a vehicle control mechanism.
8. The system of claim 6, wherein the control signal is based upon a comparison of the operating condition signal to predefined data.

9. The system of claim 6, wherein the control means send the control signal based upon an algorithm.

10. The system of claim 6, wherein the plurality of operating conditions are selected from acceleration, deceleration, steering actuator position, steering rate, wheel angle position, load, brake actuator position, brake fluid pressure, throttle actuator position, engine revolution speed, engine power, engine torque, ground speed, driving wheels differential speed, incline, location, road transponder information, ambient pavement temperature, pavement friction, vehicle roll rate, center of gravity and heading.

11. The system of claim 6, wherein at least one of the plurality of operating conditions is determined on the basis of information acquired from a global positioning system.

12. A method for alerting an operator to the presence of a predetermined vehicle status in a vehicle, comprising steps of:

determining a plurality of operating conditions of a vehicle, at least one of the plurality of operating conditions being affected by a present center of gravity of the vehicle;
deducing the presence of predetermined vehicle status based upon the
determined plurality of conditions; and
indicating to an operator the presence of the predetermined vehicle status.

13. The method of claim 12, wherein the step of deducing includes a
comparison of the input to predefined data.

14. The system of claim 12, wherein the step of deducing includes the use
of an algorithm.

15. The system of claim 12, wherein the plurality of operating conditions
are selected from acceleration, deceleration, steering actuator position, steering
September 19, 2001, wheel angle position, load, brake actuator position, brake fluid
pressure, throttle actuator position, engine revolution speed, engine power, engine
torque, ground speed, driving wheels differential speed, incline, location, road
transponder information, ambient pavement temperature, pavement friction, vehicle
roll rate, center of gravity and heading.

16. The system of claim 12, wherein at least one of the plurality of
operating conditions is determined on the basis of information acquired from a global
positioning system.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 B60R16/02

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 B60R B60G B60T

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database consulted during the International search (name of database and, where practical, search terms used)

PAJ, WPI Data, EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>EP 0 758 601 A (MAN NUTZFAHRZEUGE AG) 19 February 1997 (1997-02-19) the whole document</td>
<td>1-4, 6-10, 12-15</td>
</tr>
<tr>
<td>X</td>
<td>US 6 262 658 B1 (O'CONNOR DENNIS M) 17 July 2001 (2001-07-17) the whole document</td>
<td>1-3, 6-9, 12-14</td>
</tr>
<tr>
<td>Y</td>
<td>US 5 869 943 A (NAKASHIMA HIROSHI ET AL) 9 February 1999 (1999-02-09) column 1, line 44 -column 2, line 33; column 3, line 18 -column 5, line 15; column 7, line 31 -column 8, line 63; column 9, line 32 -column 11, line 30; column 13, line 63 -column 14, line 12; figures 1-13</td>
<td>4, 10, 15</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of box C. Patent family members are listed in annex.

* Special categories of cited documents:
 - "A" document defining the general state of the art which is not considered to be of particular relevance
 - "E" earlier document but published on or after the International filing date
 - "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - "O" document referring to an oral disclosure, use, exhibition or other means
 - "P" document published prior to the International filing date but later than the priority date claimed
 - "T" later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 - "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 - "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
 - "S" document member of the same patent family

Date of the actual completion of the International search: 8 August 2002

Date of mailing of the international search report: 16/08/2002

Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk
Tel: (+31-70) 540-3040, Telex 31 651 epo nl, Fax: (+31-70) 540-3016

Authorized officer: Geyer, J-L
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>US 6 038 495 A (SCHIFFMANN JAN KONRIED) 14 March 2000 (2000-03-14)</td>
<td>1-4, 6-10, 12-15</td>
</tr>
<tr>
<td></td>
<td>the whole document</td>
<td></td>
</tr>
<tr>
<td></td>
<td>the whole document</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>DE 44 16 991 A (PIETZSCH AG) 16 November 1995 (1995-11-16)</td>
<td>1-16</td>
</tr>
<tr>
<td></td>
<td>the whole document</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>EP 1 110 835 A (FORD GLOBAL TECH INC) 27 June 2001 (2001-06-27)</td>
<td>1-16</td>
</tr>
<tr>
<td></td>
<td>the whole document</td>
<td></td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 59608299 D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0758601 A2</td>
</tr>
<tr>
<td>US 6262658 B1</td>
<td>17-07-2001</td>
<td>NONE</td>
</tr>
<tr>
<td>US 6038495 A</td>
<td>14-03-2000</td>
<td>NONE</td>
</tr>
<tr>
<td>US 6176555 B1</td>
<td>23-01-2001</td>
<td>DE 19602879 C1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9728017 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 59603112 D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2000504286 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2001219840 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2002082749 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2002095244 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2001008986 A1</td>
</tr>
</tbody>
</table>