(54) Title: TOP DRIVE APPARATUS AND METHOD FOR GRIPPING A TUBULAR

A top drive apparatus comprising a top drive having a main shaft, an item connected to the main shaft, and a body depending from the top drive, the body comprises a first splined member and the item has a second splined member for engaging with said first
(57) Abrégé(suite)/Abstract(continued):
splined member for selectively inhibiting rotation of the item to facilitate breaking the connection between said main shaft of said top drive characterised in that said body comprises a throat for receiving a tubular member, the first splined surface located adjacent said throat the body formed in two parts, the first splined member arranged on at least one of the parts, the parts moveable to open said throat to facilitate removal of said item.
ABSTRACT

A top drive apparatus comprising a top drive having a main shaft, an item connected to the main shaft, and a body depending from the top drive, the body comprises a first splined member and the item has a second splined member for engaging with said first splined member for selectively inhibiting rotation of the item to facilitate breaking the connection between said main shaft of said top drive characterised in that said body comprises a throat for receiving a tubular member, the first splined surface located adjacent said throat the body formed in two parts, the first splined member arranged on at least one of the parts, the parts moveable to open said throat to facilitate removal of said item.
TOP DRIVE APPARATUS AND METHOD FOR GRIPPING A TUBULAR

This is a division of Canadian Serial No. 2,672,530 filed November 15, 2007.

The present invention relates to top drive apparatus, a method for gripping a tubular and a method for facilitating removal of an item from a main shaft of a top drive.

In the drilling of a borehole in the construction of an oil or gas well or geothermal well or fresh water well or the like, a drill bit is arranged on the end of a drill string, which is rotated to bore the borehole through a formation.

A top drive apparatus for drilling bore holes, such as oil and gas wells, is one of two common types of apparatus for drilling bore holes, the other being a rotary table apparatus.

A drilling rig having a rotary table generally comprises a supporting derrick structure with a crown block at the top. A travelling block is movably suspended from the crown block by a cable, which is supplied by draw works. A hook or block adapter may be suspended from the travelling block on bails. A kelly is hung from the travelling block by a hook. The lower end of the kelly is secured to a drill string. The lower end of the drill string has a bottom hole assembly that carries a drill bit. The drill string and drill bit are disposed within a borehole that is being drilled and extends downwardly from the surface. The kelly is rotated within the borehole by the rotary table.

A top drive apparatus generally comprises a main body which houses a motor for rotating a drive shaft which has a sub connectable to a single, stand or string of tubulars. The tubulars may be any of: drill pipe, casing, liner, premium tubular or any other such tubular used in
the construction, maintenance and repair of wellbores, such as oil and gas wells. A top drive apparatus is generally arranged on a substantially vertical track on a derrick of a rig. The top drive apparatus is lifted and lowered on the track with a line over a crown block on a travelling block connected to the top drive apparatus via a hook or block adapter which may be suspended from the travelling block on bails. The line is reeled in and let out using a winch commonly known as a drawworks. The top drive apparatus can thus be used to trip tubulars in and out of the wellbore; turn the drill string to facilitate drilling the wellbore; and turn a single or stand of tubulars in relation to a string of tubulars hung in the wellbore to threadly connect or disconnect tubulars from a string of tubulars in the drill string to lengthen or shorten the string of tubulars. The top drive has a link adapter from which a pair of links depend. An elevator depends from links attached to the top drive to facilitate handling of tubulars and alignment with the sub for connection and disconnection therewith. A top drive apparatus may also be used in conjunction with a passive or active spider and/or with rotary tongs to facilitate connection and disconnection of tubulars from the string of tubulars.

It is important to be able to control pressure in the borehole in relation to the pressure in the formation. In certain circumstances the driller may deem that under-balanced drilling is required, wherein the pressure exerted on a formation exposed in a wellbore is below the internal fluid pressure of that formation. Thus, if sufficient porosity and permeability exist, formation fluids enter the wellbore. The drilling rate typically increases as an under-balanced condition is approached. However, the driller may deem that over-balanced drilling is required, wherein the amount of pressure in the
wellbore exceeds the pressure of fluids in the formation. This excess pressure is required to prevent reservoir fluids (oil, gas or water) from entering the wellbore. However, excessive overbalance can dramatically slow the drilling process by effectively strengthening the near-wellbore rock and limiting removal of drilled cuttings under the bit. In addition, high overbalance pressures coupled with poor drilling mud properties can cause differential sticking problems. Because reservoir pressures vary from one formation to another, while the drilling mud is relatively constant density, overbalance varies from one zone to another. The driller is able to vary the drilling condition from under-balanced to over-balanced by altering the density of the drilling mud by using weighting agents to increase or decrease the density of the drilling mud.

If the pressure in the well is not controlled properly, the speed of drilling is not maximised. In a worst case scenario, the well may collapse due to lack of pressure in the borehole. This is more likely to happen when drilling through particular types of formation.

In the past, circulation of drilling fluid is stopped during make-up or break-out of a single joint or stand of drill pipe. A fill valve or mud saver valve is used to contain pressure in the drill string during the make-up or break-out procedure. However, the valve has to be connected and disconnected each time. Thus there is discontinuous circulation, although pressure is substantially maintained in the well, a pulse of pressure change is noted.

It is often preferable to maintain drilled cuttings in suspension in the drilling fluid to facilitate moving them away from the drill bit and to prevent them from falling back down in a wellbore. Cessation of drilling mud circulation can cause the drilled cuttings to sink. To
counter this in many prior art systems additional fluid weighting is attempted, often increasing the viscosity of the fluid. This results in the need for more pumping power at the surface to move the thicker fluid; but such an increase in pump force can result in overpressuring of a downhole which can cause formation damage or loss of fluids downhole.

A continuous circulation system has been developed and is disclosed in PCT Publication No. WO 98/16716, which allows circulation of drilling mud to be carried out throughout the making-up and breaking-out of pipe to the pipe string. WO 98/16716 discloses, inter alia, the use of an upper set of pipe rams to apply and seal about the pipe to be connected to the string, a lower set of pipe rams to apply and seal about the pipe at the top of the string in the well to create a chamber therebetween and a blind ram to seal off the chamber between the end pin of the pipe to be connected and the box of the pipe at the top of the string to form upper and lower chambers. A drilling mud inlet is arranged in the lower chamber between the set of blind rams and the second set of pipe rams. A drilling mud supply is also connected to the top end of the pipe to be connected, thus to make a connection, the lower pipe rams are activated and seal about the top end of the string of pipe in the wellbore and the blind rams are activated to form a lower chamber about the top of the drill string. Drilling mud is allowed to flow into the lower chamber and circulate into the top of the drill string. The drilling mud passes through the drill string to the drill bit and returns through an annulus formed by the drill string and the borehole. The drilling mud is processed by shale shakers, centrifuges and the like to remove cuttings therefrom, additives added if needed and then circulated to the lower chamber. Meanwhile, a pipe or stand of pipe is lowered into the top of the continuous circulation
system. The upper pipe rams are activated to seal about the pipe. The upper end of the pipe or stand of pipe is attached to the supply of drilling mud and drilling mud flows into the upper chamber by activation of a valve. The pressure is now substantially equal in the drilling mud in the upper and lower chambers. The blind ram is opened and the pin end of the pipe or stand of pipe is stabbed into the box in the top end of the string of pipe and spun and torqued to make the connection. The drilling mud in the chamber may be drained and the upper and lower pipe rams opened to allow the pipe string with the added pipe or stand of pipe to be lowered into the well. Thus a circulation is continuous through the pipe string and annulus whilst the connection is made and broken.

Various improvements to the continuous circulation system have been made, including conducting continuous circulation whilst drilling. Thus allowing continuous drilling to continue whilst pipe is connected or disconnected from the string. This is useful for drilling with drill pipe or when drilling with casing.

Elevators are used in these operations to selectively support pipe and to facilitate moving tubular members from one location to another.

The prior art discloses a variety of tubular gripper apparatuses and top drives used with such systems. Certain prior art top drive apparatuses have a top drive unit and a pipe gripper system for receiving a tubular member and engageable jaws for contacting and gripping a tubular that has been positioned within the gripper system. In one aspect each jaw has an interconnected hydraulic cylinder apparatus which is controlled and activated to move the jaw into or out of gripping engagement with a tubular. An internal blow out preventer (IBOP) may be used to protect against a build up in pressure in a tubulars, such as drill pipe or casing, whilst drilling operations are
carried out. The IBOP may be located below the top drive threadly connected to the main shaft of a top drive.

The prior art patents reveal a wide variety of such systems, including, but not limited to, and by way of example only, those disclosed in U.S. Patents 7,055,594 and in the references cited in this patent and those disclosed in U.S. Patents 2,950,639; 3,902,385; 4,346,629; 4,458,768; 5,433,279; 6,276,450; 4,813,493; 6,705,405; 4,800,968; 4,878,546; 4,753,300; 6,536,520; 6,679,333.

U.S. Patent 7,055,594 discloses pipe gripper and top drive apparatuses, and, in certain aspects, a top drive drilling system, in at least some aspects, having a top drive unit, and a pipe gripping system beneath the top drive unit which has an open throat for receiving a tubular to be gripped by the pipe gripping system; and, in at least certain aspects, the gripping system having a body with first and second jaws movably connected thereto and piston/cylinder devices movably interconnected with each jaw for moving the jaws to clamp and then to rotate the pipe. In one aspect, a pipe gripping system is disclosed which has a body, a first jaw movably connected to the body, a second jaw movably connected to the body, a first piston/cylinder device movably interconnected with the first jaw, a second piston/cylinder device movably interconnected with the second jaw, the first piston/cylinder device for moving the first jaw to clamp a pipe and the second piston/cylinder device for moving the second jaw to clamp the pipe, and the first piston/cylinder device for moving the first jaw and the second piston/cylinder device for moving the second jaw to rotate the pipe.

U.S. Patent 7,281,451 discloses methods and apparatus for making and breaking tubular connections within a tubular string are disclosed. In certain aspects, a tong assembly includes gated power and back up tongs coupled to
a torque bar. Jaws of the tongs may be arranged circumferentially with support members disposed between adjacent jaws to substantially complete a 360 degree closed circle. A hydraulic circuit may equally distribute fluid and pressure to actuate the jaws. The power tong may include a gated rotor driven by at least three drive motors. The rotor may be selectively physically locked from rotation or movement by one or more rotor locks. Further, the tong assembly may include an interlock that prevents activation of the drive motors until the rotor locks actuate to unlock the rotor. Additionally, gate locks may secure the tongs and rotor when closed, and a releasable coupling arrangement may aid engagement of a motor to a rotor pump. There is disclosed an apparatus for handling a first tubular and a second tubular during make up and break out operations, including: a tong having jaws radially arranged within a rotatable member and movable toward a center for gripping the first tubular, wherein each jaw is actuated by a substantially equal supply of fluid independently controlled by a common pressure limiter; and a back up member for gripping the second tubular and preventing rotation thereof.

U.S. Patent 3,902,385 discloses pipe joint make up or break out tools for making or breaking a threaded pipe joint, including two gripping assemblies adapted to extend about and grip two pipe sections respectively and each having two jaws hinged together for opening and closing movement, with the two gripping assemblies being mounted for relative rotary movement about the pipe axis by power driven actuating means, preferably including two piston and cylinder mechanisms, each of which acts in one rotary direction against one of the gripping assemblies and in the opposite rotary direction against the other gripping assembly at essentially the location of the hinge between its two jaws. In one aspect a tool is disclosed for
effecting relative rotation between two threaded pipes about an axis of the pipes, including: a first gripping assembly adapted to extend about and grip a first of the pipes, and including two jaws and a first hinge connection attaching the jaws together for relative swinging movement about a first hinge axis between open and closed positions; a second gripping assembly adapted to extend about and grip a second of the pipes, and including two additional jaws and a second hinge connection attaching the additional jaws together for relative swinging movement about a second hinge axis between open and closed positions; a power operated actuating unit for exerting force against the two gripping assemblies in a relation causing relative rotation between the pipes; the two hinge connections being receivable substantially in axial alignment with one another in a position in which the jaws of both gripping assemblies are openable; and a shoulder carried by a jaw of one of the gripping assemblies and engageable with a shoulder on a corresponding jaw of the other gripping assembly in a relation transmitting closing force from one jaw to the other when the two assemblies are in the relative position in which they are openable.

According to the present invention, there is provided a top drive apparatus comprising a top drive and a gripping apparatus connected to and beneath the top drive, the gripping apparatus having a body and a throat for receiving a tubular to be gripped, and four grippers for engaging a tubular to be gripped.

Preferably, two of the four grippers are arranged at an obtuse angle about the throat. Advantageously, the other two of the four grippers are arranged at an obtuse angle about the throat. Most preferably, the two of the four grippers arranged at an obtuse angle about the throat are arranged in a first part of the body and the other two of the four grippers arranged at an obtuse angle about the
throat are arranged in a second part of the body, the first part selectively movable from the second part. Preferably, the first part is separable from the other part. Advantageously, the part is one half of the body. Preferably, the first part is hinged with respect to the second part. In certain aspects the body is a single piece; in other aspects the body is two separable halves.

Advantageously, at least one of the grippers is movably connected to the body. Preferably, a piston and cylinder is used for moving at least one of the grippers. Advantageously, the piston and cylinder is double acting, such that, in use, the at least one of the grippers is movable toward and away from the tubular. Preferably, the grippers are arranged on arms rotatably fixed to the body. Preferably, the gripping apparatus depends from the top drive on at least one torque resisting tube, preferably at least two torque resisting tubes. The tubes may be rectangular in cross-section. Advantageously, the at least one torque resisting tube are extendable to allow the gripping apparatus to move toward and away from the top drive. Advantageously, the torque resisting tube is telescopic. Preferably, the torque resisting tube comprises at outer upper part and a lower inner part which slides within the outer upper part. Preferably, a piston and cylinder is used to extend the torque resisting tubes.

Advantageously, the body further comprises a spline member, the spline member for mating with a corresponding spline member on another item. Preferably, the other item is an IBOP.

Advantageously, the top drive apparatus further comprises lifting apparatus for lifting the gripping apparatus so that the spline member meshes with the corresponding spline member on the other item to selectively engage. Preferably, the throat is circular and the spline member circums a portion of the throat.
Advantageously, the body comprises two halves the spline member arranged one of the halves. Preferably, the gripper apparatus holds the tubular portion depending from the IBOP and the main shaft of the top drive is rotated to disconnect the IBOP from the main shaft. The first half of the body is then moved away from the second half so that the internal blowout preventer is removable from the gripping apparatus. Advantageously, the top drive comprises a main shaft and an internal blowout preventer connected to the main shaft. The IBOP is connected directly or indirectly via a sub or the like. Preferably, the internal blow out preventer has a major portion and tubular portion depending therefrom, the major portion arranged between the top drive and the body of the gripping apparatus.

Preferably, the grippers are movable simultaneously, to grip the tubular in the throat of the gripping apparatus. In one aspect each gripper has an interconnected hydraulic cylinder apparatus which is selectively controlled and activated to move the gripper into and out of gripping engagement with a tubular or to move it out of gripping engagement with a tubular.

The present invention also provides a method for gripping a tubular member beneath a top drive, the method comprising the steps of moving a portion of a tubular member into a gripping apparatus, the gripping apparatus located beneath the top drive, the gripping apparatus having a body having a throat into which is receivable a tubular to be gripped and four grippers for engaging a tubular to be gripped, the grippers movably connected to the body, and gripping the tubular member with the four grippers of the gripping system.

Preferably, the body comprises two parts, the method comprising the step of moving at least one of the parts to open the throat. Advantageously, the top drive has a main
shaft and an internal blowout preventer is connected to the main shaft. Preferably, the body has a first spline member and the internal blowout preventer has a second spline member, the method further comprising the step of mating the first spline member with the second spline member. Advantageously, the gripping apparatus is arranged on lifting apparatus for raising the tubular gripping apparatus with respect to the secondary spline member to engage the primary spline member to facilitate breaking of a connection between the internal blowout preventer and the main shaft, the method further comprising the steps of lifting the gripping apparatus so that the primary spline member engages the secondary spline member, and breaking the connection between the internal blowout preventer and the main shaft.

Preferably, the gripping apparatus is for supporting the internal blowout preventer disconnected from the main shaft, and the first part movable away from the second part to open the throat so that the internal blowout preventer is removable from the gripper system, the method further comprising the steps of moving the first part away from the second part while the first part is supporting the internal blowout preventer, and moving the internal blowout preventer away from the first part.

The present invention also provides a top drive apparatus comprising a top drive having a main shaft, an item connected to the main shaft, and a body depending from the top drive characterised in that the body comprises a first splined member and the item has a second splined member for engaging with the first splined member for selectively inhibiting rotation of the item to facilitate disconnection thereof from the main shaft of the top drive.

Preferably, the body is a gripper apparatus for selectively gripping a tubular member. Advantageously, the
item is an internal blow out preventer. Preferably, the first splined member comprises a splines arranged on a concave surface. Preferably, the concave surface is a section of a circle, preferably circumscribing between ninety and 270 degrees and advantageously, substantially 180 degrees or slightly greater than 180 degrees, so that if the item is resting on the first splined member, the item will be supported thereby and less likely to fall therefrom.

Advantageously, the second splined member comprises a splines arranged on a convex surface. Preferably, the convex surface is a complete circle, circumscribing part of the item. Preferably, the second splined member is in fixed relation with the item and not via a threaded joint.

Advantageously, the first splined surface is arranged on an upstand, standing proud of the body.

Preferably, the body comprises a throat for receiving a tubular member, the first splined surface is located adjacent the throat. Advantageously, the body is formed in two parts, the first splined member arranged on at least one of the parts, the parts moveable to open the throat to facilitate removal of the item throat. Advantageously, the body is moveable toward or away from the top drive to selectively engage and disengage the first splined member with the second splined member.

Preferably, the first and second splined member comprise splines which are arranged substantially vertically, preferably, so that the splines mesh as the body is moved in vertical relation to the top drive to engage the first splined member with the second splined member.

The present invention also provides a method for facilitating removal of an item connected to a main shaft of a top drive, the method comprising the steps of engaging a first splined member of a body depending from
the top drive with a second splined member of the item, rotating the main shaft of the top drive to disconnect the item from the main shaft. A threaded connection between the main shaft and the item is generally provided.

Preferably, the method further comprises the step of resting the item on the splined member. Advantageously, the method further comprises the step of resting the item on the body. Preferably, the method further comprises the step of attaching a wire line to the item and removing the item from alignment with the top drive.

For a better understanding of the present invention, reference will now be made, by way of example, to the accompanying drawings, in which:

Figure 1 is a scrap perspective view of part of a drilling rig with a top drive apparatus comprising a gripper apparatus in accordance with the present invention;

Figure 2A is a perspective view of a top drive apparatus comprising a gripper apparatus in accordance with the present invention;

Figure 2B is a side view of the top drive apparatus shown in Figure 2A;

Figure 3A is a side view of a part of a drilling rig in accordance with the present invention;

Figure 3B is a top view of the drilling rig shown in Figure 3A;

Figure 4 is an enlarged front view of part of the top drive apparatus shown in Figure 2A;

Figure 5A is a side view of a top drive apparatus comprising a gripper apparatus in accordance with the present invention;

Figure 5B is a perspective view of part of the top drive apparatus shown in Figure 5A;

Figure 5C is a perspective view of part of the top drive apparatus shown in Figure 5A;
Figure 5D is an enlarged perspective view of part of the top drive apparatus shown in Figure 5A;

Figure 5E is a top view of the part of the top drive apparatus shown in Figure 5A;

Figure 5F is a perspective view of part of the top drive apparatus shown in Figure 5A;

Figure 5G is a top view in cross-section of part of the top drive apparatus shown in Figure 5A;

Figure 5H is a top cutaway perspective view of part of the top drive apparatus shown in Figure 5A; and

Figure 6 is a front view of a gripper apparatus in accordance with the present invention.

Figure 1 shows a top drive apparatus 10 in accordance with the present invention which includes a top drive drilling unit 20 suspended in a derrick 12. An optional continuous circulation system 30 rests on a rig floor 14 and part of a saver sub 22 projects up from the system 30. The saver sub 22 is connected to and rotated by the top drive drilling unit 20. An elevator 40 is suspended below the top drive drilling unit 20. A gripper apparatus 50 in accordance with the present invention (shown schematically) is suspended from the top drive drilling unit 20 and the elevator 40 is suspended from the gripper apparatus 50. Any suitable known elevator may be used with the tubular gripper apparatus 50. The gripper apparatus 50 (any in accordance with the present invention) is suspended from the top drive drilling unit 20 with links 18 and the elevator 40 is suspended from the tubular gripper apparatus with links 24.

Systems in accordance with the present invention can use hydraulic power lines for an existing top drive and/or for other existing rig apparatuses (for example, but not limited to, a pipe handler), an in-place driller's console DC, buttons, computer(s), and controls can be used to control the tubular gripper apparatus in accordance with
the present invention. Alternatively a completely separate hydraulic power system and/or controls may be used; which, in one aspect, is a remote system RS.


Figures 2A to 2B show a top drive apparatus TDS in accordance with the present invention which has a swivel body 112 suspended with links 113 from a becket 116. The becket 116 is connected to a travelling block (not shown). A gear system 120 is mounted on a spacer plate 121 which is supported by the swivel body 112.

A motor 130 is coupled to the gear system 120. Any suitable motor may be used. A brake system 140 connected to the motor 130 is within a bonnet 144 through which extends a gooseneck 146 connected to a kelly hose KH (which is adjacent a service loop SL) through which flows drilling fluid. An extension system 198 provides horizontal displacement of the top drive apparatus.

The motor 130 has an output shaft which drives a drive quill which extends through the motor 130, the gear system 120, the spacer plate 121, the swivel body 112, a locking system 160, and a load collar 170. A lower end 158 of the quill is threadedly connected to a mud saver system 90 which itself is connected to a saver sub 92. A system 100 in accordance with the present invention for selectively gripping tubulars is suspended from the load collar 170. Links 172 suspend an elevator 174 from a link adapter 189.

A counterbalance system 110 (which can hold the weight of the entire system during stabbing of tubulars)
includes two load compensators 114 each with an upper end connected to a link 113 and with a lower end connected to the swivel body 112. Each load compensator 114 includes a piston/cylinder assembly.

A link tilt system 129 provides selective tilting of the links 172 and thus selective movement and tilting of the elevator 174 and movement of a tubular or stand of tubulars supported by the elevator 174 to and away from a wellbore centerline. Bail retainers 94 retain the links 172 on the link adapter 189. Link tilt hydraulic cylinders 128 are interconnected pivotably between the load collar 170 (connected to ears 128a) and arms 128b. Each connector 124 is pivotably connected to a lower end of an arm 128b and to a clamp 126 which is clamped to a link 172. Optionally, roller pins 127 extend through the clamps 126 to facilitate movement of the links 172 within the clamps 126.

Guards 173 and 174 are on sides of an access platform 199. The access platform 199 is releasably connected to a rear guard at its top and pivotably at its lower portion to the guards so that it can pivot and be lowered to provide a platform on which personnel can stand to access various components on the rear guard. Optionally, the access platform may have an indented portion for facilitating the placement of tubulars thereon and for facilitating movement of tubulars on the exterior of the access platform.

The top drive apparatus TDS can be movably mounted on a beam 182 (or "torque tube"). Horizontal displacement is provided by the extension system 198 which includes a torque bushing. The extension system 198 with the top drive apparatus attached thereto is movable vertically on the beam 182 with the top drive apparatus attached thereto. Each leg 285 is a telescoping leg with an outer part 285o and inner part 285i.
Figures 3A and 3B illustrate part of a drilling rig incorporating a top drive apparatus TS in accordance with the present invention in a derrick D. The top drive apparatus TS is suspended from a block becket BB which is suspended from the derrick D in a typical manner. As shown in Figure 3A, the elevator 174 is supporting a tubular stand TT which includes two pieces of drill pipe 143. The stand TT has been moved from a monkey board with multiple made-up stands 149 to a position axially aligned with a wellbore 147. A mousehole 144 may be used, for example to make stands. A driller controls drilling from a driller's panel 141.

Figure 4 illustrates the system 100 for selectively clamping tubulars, for example pipe or casing. The system 100 may be an integral apparatus or it may have two halves hingedly connected together. Top ends of outer leg part 285 of the system 100 are connected to connection structures of a collar 194 with pins 285a, and with pins 285b to connection structures of the load collar 170; and the bottom ends of the inner leg parts 285i are bolted to the system 100. The inner leg parts 285i move within the outer leg parts 285o to provide a telescoping action that permits upward and downward motion of the system 100.

In one aspect the system 100 has dual opposed halves pinned together with removable pins so that the system 100 can be opened. Also, both halves can be unpinned permitting the legs to be moved apart allowing access to items on the legs and to other components of the system. In certain aspects the two halves are identical facilitating replacement and minimizing required inventory.

Figures 5A to 5H show a top drive apparatus 500 in accordance with the present invention with a gripper apparatus 600 in accordance with the present invention. A link adapter 502 beneath a motor/gear system 504 is
connected to a load collar 512 and has links 506 which support an elevator 510. Telescoping legs 516 are connected to the gripper apparatus 600.

The top drive apparatus 500 includes an upper internal blowout preventer 522. A male spline member 524 with splines 524a on the upper internal blowout preventer 522 can be mated with a splined sleeve 604 with splines 604a between which are received the splines 524a. The gripper apparatus 600 can be lifted up on the legs 516 so that the splined sleeve 604 engages the male spline member 524 for use in breaking out a connection between a main shaft 528 of the top drive apparatus and the upper internal blowout preventer 522. Following spinning off of the upper internal blowout preventer 522, the part of the gripper apparatus 600 on which the splined sleeve 604 is mounted supports the upper internal blowout preventer 522. The splined sleeve 604 is on one half 612 of the tubular gripper apparatus 600 and, as described below, this half 612 can be swung out from under the top drive apparatus so items supported by the gripper apparatus 600, for example an entire valve stack or, for example, as shown the upper internal blowout preventer 522 can be lifted away, for example with a tugger line.

The tubular gripper apparatus 600 has two halves 612, 614 each of which is pivotably pinned to leg mounts 518 of the legs 516 with a plurality of pins 519. Central pins 521 also pin the halves 612, 614 to the leg mounts 518. Removal of a pin 519 permits a half 612 or 614 of the gripper apparatus 600 to pivot about the remaining pin 519 (with the corresponding central pins 521 removed). With all pins removed the halves 612, 614 may be removed. As shown in Figure 5D a pin 519 holding one end of the half 612 has been removed as well as the central pins 521 so that the half 612 can pivot about the remaining pin 519, while it supports the upper internal blowout preventer 522.
which has been disconnected from the shaft 528 (with the sleeve 604 engaging the male spline member 524 and supporting the upper internal blowout preventer 522).

The legs 516 are telescoping legs providing length adjustability. Lower leg parts 516b move within and extend from upper leg parts 516a (see, for example, Figures 5A, 5C) (although it is within the scope of the present invention to use solid non-telescoping legs).

Stabbing guide halves 533 and 535 facilitate centering of a tubular. The stabbing guide 533,535 also facilitates alignment of the gripper apparatus over a tubular to be attached to the main shaft 528.

Figure 5G shows a part of the interior of the gripper apparatus 600. Each half 612, 614 has two housings 641, 642 (half 612) and housings 643, 644 (half 614). A gripper 650 is movably disposed in each housing 641-644.

Each gripper 650 includes a movable piston 652 with a die carrier 654 bolted thereto with bolts 656. A seal 662 seals a housing/piston interface and a seal 664 seals a mount/piston interface between a mount 660 and the piston 652. Each die carrier 654 has a die 672 secured thereto. Each housing 641-644 has fluid ports PF and PO for providing fluid under pressure to move the pistons 652 to move the dies 672 into and out of engagement with a tubular TB to be gripped by the tubular gripper apparatus 600. The pistons 652 move on shafts 678.

As shown in Figure 5G, each piston 652 has been moved so that its corresponding die 672 has engaged the tubular TB, gripping the tubular TB in the center of the tubular gripper apparatus 600. With an appropriate control system CS, fluid under pressure from a fluid source FS (for example hydraulic or pneumatic fluid) is applied to the pistons 652. This can be done so that the pistons 652 move in unison simultaneously, or not.

Figure 5H shows an alternative structure of the
system 600 for moving four grippers into engagement with a tubular. Four grippers 700 are mounted to a housing 702. The housing 702 has openings 704 for receiving lower portions of support legs (like the legs 516).

Each gripper 700 has a housing 712 with a first end 714 pivotably mounted to a pin 716. Each housing 712 has a second end 718 and an opening 722 through which projects a shaft 724. Each shaft 724 has a die carrier 726 (with a die 728) secured thereto.

An arm 732 extends from each die carrier 726. Each arm 732 has an end pivotably secured to the housing 702 with a pivot pin 734. Each shaft 724 is connected to an internal piston P (one shown in dotted line). Movement of the piston P moves the shaft 724 to move the die carriers 726 toward and away from a tubular in the center of the tubular gripper apparatus 700. As the shafts 724 move, each arm 732 pivots about its corresponding pivot pin 734 and each gripper housing 712 pivots about its corresponding pin 716. Fluid under pressure to move the pistons P is provided through lines 738, 739.

Figure 6 shows a system 800 in accordance with the present invention which includes a gripper system 802 in accordance with the present invention (any disclosed herein, for example the gripper system 100). Legs 804 connect the gripper system 802 to a rotation apparatus 810. Rotation of the rotation apparatus 810 rotates the gripper system 802 and a tubular around which the gripper system 802 is clamped. The legs 804 are shown as non-telescoping, but telescoping legs may be used.

The legs 516 in certain aspects are relatively more massive than legs like the legs 285 (Figure 2A). In certain aspects the legs 516 are larger in cross-section than legs like the comparatively flat legs 285 and/or are longer than legs like the legs 285 and are made to be more massive to better react torque imposed on the gripper.
system supported by the legs.

The present invention, therefore, provides in some, but not in necessarily all, embodiments a top drive apparatus with a top drive unit, and a tubular gripping system connected to and beneath the top drive unit.

The present invention, therefore, provides in some, but not in necessarily all, embodiments a top drive apparatus with a top drive unit, and a pipe gripping system connected to and beneath the top drive unit, the pipe gripping system having a body, four grippers movably connected to the body, four piston/cylinder devices, one movably interconnected with each of the grippers, the piston/cylinder devices for moving the grippers to clamp a tubular, for example, a pipe.

The present invention, therefore, provides in some, but not in necessarily all, embodiments a tubular gripping system which is connectible to and beneath a top drive unit, the tubular gripping system having a body, four grippers movably connected to the body, four piston/cylinder devices, one movably interconnected with each gripper, the piston/cylinder devices for selectively moving the grippers to clamp a tubular, for example, a pipe. In such a gripping system the grippers may be moved in unison and simultaneously.

It is within the scope of the present invention to have four grippers equally spaced around an opening or throat for receiving a tubular (for example every ninety degrees). In another aspect it is within the scope of the present invention to have two adjacent grippers on opposite halves of a gripper system spaced-apart by an acute angle (see grippers A, B, Figure 5E) and two grippers on the same half spaced-apart by an obtuse angle (see grippers A, C, Figure 5E). With the positioning as shown in Figure 5E, the dimension DD can be reduced and relatively less space can be occupied by a gripper system.
in accordance with the present invention, in certain aspects facilitating positioning of such a system between support links.

The present invention, therefore, provides in some, but not in necessarily all, embodiments methods for gripping a tubular member beneath a top drive unit, the method including moving a portion of a tubular member into a tubular gripping system in accordance with the present invention, the gripping system located beneath the top drive unit.

The present invention, therefore, provides in some, but not in necessarily all, embodiments a top drive apparatus with a top drive apparatus, and a tubular gripping system connected to and beneath the top drive apparatus, the tubular gripping system having a body into which is receivable a tubular to be gripped, and four grippers for engaging a tubular to be gripped, the grippers movably connected to the body. The present invention, therefore, provides in some, but not in necessarily all, embodiments a top drive apparatus with: a top drive apparatus; and a tubular gripping system connected to and beneath the top drive apparatus, the tubular gripping system having a body, a first gripper movably connected to the body, a second gripper movably connected to the body, a third gripper movably connected to the body, a fourth gripper movably connected to the body, a first piston/cylinder device movably interconnected with the first gripper, a second piston/cylinder device movably interconnected with the second gripper, a third piston/cylinder device movably interconnected with the third gripper, a fourth piston/cylinder device movably interconnected with the fourth gripper, and each piston/cylinder device for moving its respective gripper to clamp a tubular. Such a system may include one or some, in any possible combination, of
the following: the first gripper is at a first angle to the second gripper, the first angle being an acute angle, and the first gripper is at a second angle to the third gripper, the second angle being an obtuse angle; the body of the tubular gripping system is a first half and a second half, the first half separable from the second half; and/or a spline member on the first half of the body, the spline member for mating with a corresponding spline member on another item.

The present invention, therefore, provides in some, but not in necessarily all, embodiments a tubular gripping system with a body into which is receivable a tubular to be gripped, and four grippers for engaging a tubular to be gripped, the grippers movably connected to the body. Such a system may include one or some, in any possible combination, of the following: wherein the tubular gripping system has the four grippers comprising a first gripper movably connected to the body, a second gripper movably connected to the body, a third gripper movably connected to the body, a fourth gripper movably connected to the body, a first piston/cylinder device movably interconnected with the first gripper, a second piston/cylinder device movably interconnected with the second gripper, a third piston/cylinder device movably interconnected with the third gripper, a fourth piston/cylinder device movably interconnected with the fourth gripper, each piston/cylinder device for moving its respective gripper to clamp a tubular; wherein the grippers are movable simultaneously or independently not in unison; wherein the first gripper is at a first angle to the second gripper, the first angle being an acute angle, and the first gripper is at a second angle to the third gripper, the second angle being an obtuse angle; wherein the body of the tubular gripping system has a first half and a second half, the first half separable
from the second half; and/or wherein a spline member on
the first half of the body, the spline member for mating
with a corresponding spline member on another item.

The present invention, therefore, provides in some,
but not in necessarily all, embodiments a method for
gripping a tubular member beneath a top drive unit, the
method including: moving a portion of a tubular member
into a gripping system, the gripping system located
beneath the top drive unit, the gripping system having a
body into which is receivable a tubular to be gripped and
four grippers for engaging a tubular to be gripped, the
grippers movably connected to the body; and gripping the
tubular member with the four grippers of the gripping
system.

The present invention, therefore, provides in some,
but not in necessarily all, embodiments methods with a
tubular gripping system for holding a first member and
facilitating disconnection of the first member from a
second member, the first member threadedly connected to
the second member, the tubular gripping system having a
body with a primary splined structure thereon, the first
member having a secondary splined structure, the method
including: engaging the primary splined structure with the
secondary splined structure; and thereby preventing
rotation of the first member with respect to the tubular
gripping system.
CLAIMS

1. A top drive apparatus comprising a top drive having a main shaft, an item connected to the main shaft, and a body depending from the top drive, the body comprises a first splined member and the item has a second splined member for engaging with said first splined member for selectively inhibiting rotation of the item to facilitate breaking the connection between said main shaft of said top drive characterised in that said body comprises a throat for receiving a tubular member, the first splined surface located adjacent said throat the body formed in two parts, the first splined member arranged on at least one of the parts, the parts moveable to open said throat to facilitate removal of said item.

2. The top drive apparatus as claimed in Claim 1, wherein said body is a gripper apparatus for selectively gripping a tubular member in order to inhibit its rotation to allow breaking the connection.

3. The top drive apparatus as claimed in Claim 1 or 2, wherein said item is an internal blow out preventer.

4. The top drive apparatus as claimed in Claim 1, 2 or 3, wherein said first splined member comprises a splines arranged on a concave surface.

5. The top drive apparatus as claimed in any one of Claims 1 to 4, wherein said second splined member comprises a splines arranged on a convex surface.

6. The top drive apparatus as claimed in any one of Claims 1 to 5, wherein said first splined surface is arranged on an upstand, standing proud of said body.
7. The top drive apparatus as claimed in any one of claims 1 to 6, said item resting on said one of said parts such that said one of said parts is swung out from under the top drive with the item resting thereon to facilitate the item being lifted away.

8. The top drive apparatus as claimed in any one of Claims 1 to 7, wherein said body is moveable toward or away from said top drive to selectively engage and disengage said first splined member with said second splined member.

9. The top drive apparatus as claimed in any one of claims 1 to 8, wherein said first and second splined members comprise splines which are arranged substantially vertically.

10. A method for facilitating removal of an item connected to a main shaft of a top drive, the method comprising the steps of engaging a first splined member of a body depending from said top drive with a second splined member of said item, rotating said main shaft of said top drive to break the connection said item from said main shaft characterised in that the method further comprises the step of resting the item on said body, said body comprising a first part and a second part the first part hinged with respect to the second part, the method further comprising the step of moving the second part with respect to the first part to facilitate access for lifting said item from the body.

11. The method in accordance with Claim 10, further comprising the step of resting the item on said splined member.
12. The method in accordance with Claim 10, wherein said item rests on said second part the method further comprising the step of said second part is swung out from under the top drive with the item resting thereon to facilitate the item being lifted away.

13. The method in accordance with Claim 10, 11 or 12, further comprising the step of attaching a wire line or tugger line to lift the item from said body.

14. The method as claimed in any one of Claims 10 to 13, wherein said item is an internal blow out preventer, the method further comprising the step of connecting said internal blow out preventer to said main shaft.