(B) (11) KUULUTUSJULKAVISUUTEN ULAGNINGSSKRIFT
(10) Patentti myöntetty
(51) Kv.1k.5 - Int.c1.5
G 01N 27/62
(21) Patentthakemus - Patentansökning 884028
(22) Hakemispäivä - Ansökningsdag 01.09.88
(24) Alkupäivä - Löpday 01.09.88
(41) Tullut julkiseksi - Blivit offentlig 03.03.89
(44) Nähtäväksipanen ja kuul. julkaisun pvm. - Ansökan utlagd och utl.skriften publicerad 15.04.94
(32) (33) (31) Etuoikeus - Prioritet
02.09.87 US 092003 P 08.08.88 US 229839 P

(71) Hakija - Sökande
1. The Coca-Cola Company, 310 North Avenue, Atlanta, Ga. 30313, USA, (US)

(72) Keksiä - Uppfinnare
1. Harwick, Warren J.., 3120 East Kenwood Boulevard, Milwaukee, Wis. 53211, USA, (US)
2. Myers, Michael J., 2640 Winthrop Way, Lawrenceville, Ga. 30245, USA, (US)

(74) asianettua ombud: Keijo Heinonen oy

(54) Keksin nimi - Uppfinningens benämning
Muovisäiliöiden tutkimusmenetelmä
Förfarande för inspektion av plastbehållare

(56) Viitejulkaisut - Anförda publiktioner

(57) Tiivistelmä - Sammandrag
Keksintö käsitteää säiliöiden tutkimusmenetelmaa ja laitteita kontaminanttien lasinolon havaitsemiseksi. Jotka on muovisäi- liöiden (10) seinämillä tai absorboituneena niihin. Menetel- massa huudellaan kaikki hahtuvat aineet säiliön sisältä injektoimalla inerttikaasua, otetaan sen jälkeen kaasun yhte- säiliön sisältä ja analysoihaan näytteestä juuri muodostunut hahtuvat aineet ionisaatiotekniikalla (19).
Uppfinningen innefattar en granskningsmetod av behållare och en apparat för att upptäcka närvaron av kontaminanter, som är närvarande på eller är absorberade in i väggar av plastbehållare (10). I metoden spolar man alla flyktiga ämnen från behållaren genom att injicera inert gas, tar därefter ett gasprov från behållaren och analyserar provet för de nyss bildade flyktande ämnena med joniseringsteknik (19).
MUOVISÄILIÖIDEN TUTKIMUSMENETELMÄ

KEKSINNÖN TAUSTA

Keksinnön alue

Tämä keksintö koskee säiliöiden tarkastusmenetelmää, jolla on tarkoitus havaita kontaminanttien läsnäolo muovisissa säiliöissä. Tarkemmin tämä keksintö koskee sellaisten muovisäiliöiden tunnistamista, joissa on mukana organisia yhdisteitä tai niitä on absorboitunut säiliön seinämiin, analysoimalla sisällä olevat höyryt.

Tekniikan taso

Muovisia säiliöitä, kuten polyetyleenitereftalaatista (PET) valmistettuja pulloja, on kauan käytetty hiilihapotettujen ja hapottamattomien virvoitusjuomien pakkaamiseen. Tyypillisesti näitä säiliöitä käytetään vain kerran ja havitetään sitten. Tietyillä maantieteellisillä alueilla, kuten Keski-Euroopassa, hallitsevat kuitenkin moneen kertaan käytettävät muovisäiliöt virvoitusjuomasäiliöteollisuutta. Näillä alueilla muovisten säiliöiden käyttömahdollisuus on ensisijaisesti moneen kertaan käytettävien säiliöiden käyttämisessä.

Vaikka muovisäiliöissä onkin lasisäiliöihin verrattuna etuja, kuten paino ja mukavuus, muovisäiliöiden uudelleen käyttämisessä selvästi havaittava haitta on ollut kyky absorboida tietyjä kontaminanteja säiliön seinämiin silloin harvoin, kun kuluttaja on käyttänyt säiliötä väärin. Näillä absorboituneilla kontaminanteilla on kyky desorboitua seinämästä
virvoitusjuomaan, kun säiliö täytetään uudelleen. Hakemuksen mukainen menetelmä tarjoaa keinon tunnistaa tietyt kontaminantit, joita on läsnä säiliön seinämillä tai jotka ovat absorboituneet seinämiin.

Yleensä tavanomaiset säiliöiden tarkastusjärjestelmät on kehitetty lasisäiliöille eivätkä ne ole koskeneet kontaminantien absorboitumista säiliön seinämiin. Näitä tavanomaisia järjestelmiä käytetään tyyppillisesti kiinteiden hiukkasten tai kontaminanttien havaitsemiseen tuotteilla täytetyissä säiliöissä. Katso esimerkiksi US-patentit 4 376 951 (Miyazawa), 4 551 627 (Wriech), 4 221 961 (Peyton), 4 087 184 (Knapp et al.), 4 083 691 (McCormack et al.), 3 966 322 (Knapp et al.) ja 4 459 023 (Wriech et al.).

Tämä keksintö tarjoaa kuitenkin uuden menetelmän kontaminantien havaitsemiseksi, joita on läsnä tai jotka ovat absorboituneet muovisäiliöiden seinämiin. Lisäksi tämä keksintö tarjoaa käyttöön kaupallisesti elinkelpoisen menetelmän tutkia ja käyttää uudelleen säiliöitä virvoitusjuomateollisuudessa.

KEKSINNÖN YHTEENVETO

Tämä keksintö tarjoaa menetelmän havaita orgaanisia kontaminanteja, joita on läsnä muovisäiliöiden seinämillä tai absorboitunut niihin, joka menetelmä käsittää sen, että:

(a) injektoidaan olellisesti inerttiä kaasua säiliön kaasu-jen poistamiseksi sieltä,

(b) otetaan kaasunäyte säiliön sisältä,

(c) analysoidaan näyte ionisaatiotekniikkalla säiliössä olevien orgaanisten kontaminanttien läsnäolon toteamiseksi.

Käyttöön tarjotaan myös laitteisto tämän keksinnön mukaisen menetelmän toteuttamiseksi.
LYHYT KUVAUS PIIRROKSISTA

Tämän keksinnön eräs toteutusmuoto tulee paremmin ymmärretyksi viittaamalla seuraaviin piirroksien, joissa:

Kuva 1 on ylhäältä päin oleva kuva, joka esittää edullista toteutusmuotoa tämän keksinnön menetelmästä.

Kuva 2 on sivukuva kuvasta 1.

KEKSINNÖN YKSITYiskohtainen kuvaus

Tämän keksinnön menetelmässä käytetään hyväksi sitä yllättävää havaintoa, että organisten kontaminanttien haihtuvuuden jatkuvuus verrattuna virvoitusjuomajäännöksen haihtuvuuteen tarjotaan menetelmän havaita kontaminanttien läsnäolo uudelleen käytettävissä muovisäiliöissä ja erityisesti muovipulloissa. Toisin sanoen, on havaittu, että virvoitusjuomajäännöksetä peräisin olevat haihtuvat aineet eivät vapaudu samalla nopeudella ja samassa määrin kuin haihtuvat aineet, jotka ovat peräisin organisten kontaminanttien jäännöksistä. Kun kaikki alkuperäiset haihtuvat aineet on poistettu säiliöstä, kontaminantijäämästäperäisin olevat haihtuvat aineet vapautuvat jälleen tai vapautuvat nopeammin ja ovat sen vuoksi havaittavissa ja erotettavissa virvoitusjuomajäännöksestä peräisin olevista haihtuvista aineista. Niinpä tätä havaintoa voidaan käyttää hyväksi erotettaessa organisista kontaminanteista peräisin olevat haihtuvat aineet niistä haihtuvista aineista, jotka ovat peräisin virvoitusjuomajäännöksestä, ja siis myös havaitsemaan organiset kontaminantit, joita on muovisäiliön seinämissä.

Tämän menetelmän mukaan käytön jälkeen palautetut tyhjät muovisäiliöt tutkitaan kontaminointumisen suhteen a) poistamalla kaikki haihtuvat aineet säiliön sisältä injektoimalla oleellisesti inerttiä kaasua säiliöön, b) ottamalla näyte juuri muodostuneista kaasuista säiliön sisältä ja c) analysoimalla näyte ionisaatioilaitteella läsnä olevien ionisoituvien
aineiden kokonaismäärän määrittämiseksi. On edullista, että
tätä menetelmää käytetään ennen säiliöiden pesemistä.

Tässä käytetty muovisäiliöt ovat säiliöitä, jotka on valmis-
tettu mistä hyväänsä sopivasta polymeeristä, kopolymeeristä
tai hartseista, jotka ovat käyttökelpoisia sovellutuksiin,
joissa joudutaan ruohan kanssa kosketuksiin. Esimerkkejä näis-
tä materiaaleista ovat, esimerkiksi näihin rajoittuen, PET,
polyvinylchloridi ja polykarbonaatit.

Tässä käytetty kaasu voidaan injektoida säiliön käyttäen mi-
tä tahansa hyvin tunnettua menetelmää tällaisen tarkoituksen
saavuttamiseksi. Esimerkiksi mikä tahansa sopiva kaasun in-
jektointiputki tai suutin voidaan upotaa säiliön avatusta
jakelupäästä eli kaulasta. Suuttimen tulisi toimia ulostulo-
tienä säiliön sisältä ilmatilaan pyrkiville haittuville aineille.
Tyyppillisesti suutin on lieriömäinen putki, jonka si-
sähalkaisijana on noin 10-80% säiliön suun sähalkaisijasta.
YLEENSÄ SUUTIN UPOTETAAN SÄILIÖN KOHDASTA, JOKA ON NOIN
0,5-7,0 tuumaa (noin 1,25-18,0 cm) säiliön huipulta riippuen
säiliön koosta. Vaikka yksi injektio onkin edullinen, kaasun
moninkertaista injektointiakin voidaan käyttää haittuvien
aineiden poistamiseksi säiliöstä.

Tämän keksinnön mukaisesti käytetty kaasu voi olla mitä ta-
hansa olennaissesti inertiää kaasua, joka ei vaikuta haitalli-
sesti kontaminanttien havaitsemisemenetelmään aiheuttaen väär-
riä lukemia. Sopivia kaasuja ovat typpi, helium, argon, hi-
liidioksiidi, ilma ja vastaavat. Edullisesti voidaan alhaisem-
pien kustannuksien vuoksi käyttää ilmaa, joka on oleellisesti
vapaa kontaminanteista.

Kaasun injektoinnin kesto, käytetty lämpötila ja paine riip-
puvat kulloonkin käytetystä kaasusta. Edullista on esimerkki-
si, että kunkin kaasuinjektion kesto on noin 1-15 sekuntia.
Paine voi vaihdella arvosta noin 138 kPa arvoon noin 690
kPa ja on edullisesti noin 517 kPa, kun käytetään ilmaa.
Kaasun lämpötila voi vaihdella välillä noin 10°C-50°C, mutta on edullisesti ympäristölämpötila (noin 20°C). Lineaarinen nopeus määrätään sillä painon suhteella, jolla saavutetaan kriittinen virtaus. Tyypillisesti lineaarinen nopeus on välillä noin 300 m/s - noin 1500 m/s. Kaasun korvaustilavuus on yleensä noin 100% - noin 1500% säiliön tilavuuskapasiteetti.

Sopivia ionisaatiotekniikoita ovat liekki-ionisaatio (mukaanlueuttuna laserilla lisätty liekki-ionisaatio) ja
fotoionisaatio ultraviolettifotoionisaatin käyttävällä fotoionisaatiolla. On edullista käyttää ultraviolettito (UV) -fotoionisaatiota, jossa höyrynäytteet kuljetetaan ultraviolettilampun ohi. Tälläkin fotoionisaatiotekniikka, mukaan lukien ultraviolettifotoionisaatiotekniikka, on alalla tunnettu. Yksi etu ionisaatiotekniikan käyttämisessä on se, että on havaittu, että höyrynäytteen ionisaatio tuottaa sähkövirtauksen, joka on verrannollinen kontaminointumisen määrään. Nän ionisaatio mahdollistaa kvantitatiivisen TIP-lukeman saami-

Vaikka ionisaatiotekniikat ovat edullinen tapa analysoida kontaminanttien läsnäoloa tässä, harkittuja ekvivalenttisia analyyytisii menetelmiä ovat erilaiset massaspektometrimenetelmät, jotka erotattavat ja identifioivat ionit massan perusteella. Näiden massaspektrometrimenetelmien uskotaan olevan mahdollisia sovelluksia tähän menetelmään ja niiden on tarkoi-
tettu kuuluvan tähän.

Tämä keksintö on suunniteltu käytettäväksi sellaisten kontaminanttien havaitsemiseksi, jotka yleensä jäävät havaitsematta tarkastuksessa. Tyypillisesti näitä kontaminanteja ovat organismiset yhdisteet, joita löytyy kemiallisista seoksista, joita on kuluttajien saatavissa, kuten puhdistusaineissa, bensiinissä, moottoriosyyssä, paloöljyssä, maaliohentimissa tai vastavissa, ja joita kuluttaja on pannut säiliön säilyttääkseen tai muissa tarkoituksissa.

Tällä keksinnöllä havaittavat yhdisteet kattavat suuren joukon organisia yhdisteitä ja niihin kuuluu kemiallisia seoksia, jotka sisältävät yhden tai useamman näistä yhdisteistä. Tyypillisesti näitä organisia yhdisteitä käytetään liuottiminä kaupallisissa kemiallisissa seoksissa, mutta niitä ei ole rajoitettu sellaisiin käyttöihin.

Edullisesti tästä menetelmää voidaan käyttää hiilivetyjen, alkoholien, ketonien tai seoksien havaitsemiseen, jotka sisältävät yhden tai useamman näistä yhdisteistä. Erityisesti
ovat mukana kemialliset seokset, joissa hiilivetyjä, alkoholeja tai ketoneita on mukana hivenainemääristä 100 prosentiin tilavuudesta. Tätä menetelmää käytetään edullisimmin hiilivetyjen toteamiseen.

Esimerkkejä näistä hiilivedyistä ovat alkaanit, alkeenit, alkadieenit, asetyleenit, asykliset terpeenit, sykloparafiiinit, syklo-olefinit, sykloasetyleenit, aromaattiset yhdisteet, sykliset terpeenit ja asiaankuuluvat petrostiaan johdetut hiilivedyt. Edullisia hiilivetyjä ovat alkaanit, alkeenit, aromaattiset yhdisteet ja sykliset terpeenit ja edullisimpia ovat petrostiaan johdetut hiilivedyt.

Esimerkkejä tällä menetelmällä todettavista alkoholeista ovat yksiarvoiset alkoholit; alifaattiset, alisykliset ja aromaattiset; kaksiarvoiset; kolmiarvoiset; ja moniarvoiset alkoholit. Tätä menetelmää käytetään edullisesti osoittamaan alisyklisiä ja aromaattisia alkoholeja.

Tällä menetelmällä todettavia ketoneita ovat kaikki yhdisteet, joissa on ainakin yksi karbonyyliryhmä ja näitä ovat monoketonit, polyketonit ja hydrosykliset ketonit.

Vaikka edellä olevat luettelot on annettu esimerkkeinä, usko- taan, että tällä keksinnöllä todetaan kaikki orgaaniset yhdisteet tai seokset, jotka sisältävät näitä yhdisteitä, joita voi olla läsnä säiliön seinämillä tai absorboituunut niihin. Niinpä annettuja yhdistelueteloota ei tulisi käyttää rajoittamaan tämän keksinnön piiriä, jonka tulee käsitellä kaikki orgaaniset yhdisteet, jotka ovat toteamislaitteilla analyyttisesti todettavissa.

Kontaminantit, jotka voidaan havaita käytäällä edullista foto-ionisaatioanalyysiä, ovat orgaanisia yhdisteitä, joiden ionsaatiopotentiaali on alle noin 11,2 eV tai alle noin 10,6 eV riippuen yksinomaan fotoionisaatioolaitteessa käytetystä va- lonlähteenä. Näitä ovat monikomponenttiset yhdisteet, joissa ainakin yhdellä hiilivedyistä tai muista läsnäolevista
yhdisteistä ionisaatiopotentiaali on alle noin 11,2 eV tai
noin 10,6 eV. Vaikka valonlähteitä, jotka pystyvät ioniso-
maan yhdisteitä, joiden ionisaatiopotentiaali on 11,2 eV,
voidaankin käyttää, taloudellisesti edullisia käytöä ovat
ne, joiden ionisaatiopotentiaali on 10,6 eV, koska ne ovat
kestävää ja laskevat ylläpitokustannuksia. Luonnollisesti
koska uusia valonlähteitä kehitetään, suurempi joukko yhdis-
teitä tulee taloudellisesti havaittavaksi, ilman että poike-
taan tämän keksinnön piiristä.

Tämän keksinnön edullisessa toteutusmuodossa, joka on esitet-
ty kuvassa 1, esitetään linjassa oleva testausjärjestelmä,
joka voi todeta orgaaniset kontaminantit, joita on muovisäi-
liöissä. Viitaten kuviiin 1 ja 2, käytetyn muovisäiliöt 10
sijoitetaan käytössä olevan pullotuslinjan kuljettimelle 12.
Säiliöt 10 poistetaan kuljettimelta 12 ensimmäisellä siirtolai-
titteella 14, joka vastaanottaa säiliöt 10 kuljettimelta 12
ja siirtää ne ensimmäiseen pyörivään kiekkoon 15. Pyörivässä
kiekossa 15 on monta suurinta 17 oleellisesti inerin kaasun
injektoimiseksi säiliöihin 10. Ensimmäisessä pyörivässä kie-
kossa 15 on kolot 21, joihin säiliöt 10 sopivat, sekä pihdit
23 säilöiden 10 pitämiseksi paikallaan kaasun injektoinnin
aikana. Suuttimet 17 on liitetyä painekausäiliöön ja ne on
sijoitettu jokaisen kolon 21 yläpuolelle ja upotetaan säili-
üihin 10. Säiliöt 10 pyörivät kiekon 15 ympäri samalla kun
niihin injektoidaan käytettyä kaasua kerran tai useammin
suuttimilla 17.

Kaasun injektoinnin jälkeen säiliöt 10 siirretään toiseen
pyörivään kiekkoon 18 toisella siirtolaitteella 16. Toisessa
pyörivässä kiekossa 18 on kolot 25 ja pihdit 27 kussakin ase-
massa. Jokainen asema on liitetyä vakuumikerääjään 28, joka
toimii venturilaitteella 26. Kaasunäyte otetaan jokaisesta
säiliöstä 10 säiliöiden 10 pyöriessä ympäri toista pyörivää
kiekkoa 18. Kaasunäyte viedään UV-fotoionisaatiolaitteeseen
19, joka on sijoitettu jokaisen kolon 25 yläpuolelle. UV-
fotoionisaatiolaitteet 19 analyssoivat kaasunäytteistä niiden
sisältämien ionisoituvien aineiden kokonaismäärän tavanoma-
sella tavalla.
Edullisesti on UV-fotoionisaatiolaitteet 19 liitetty mikro-
prosessoriin 29, joka vastaanottaa sähkösignaalin laitteista
19 ja lähettää sähkösignaalin hylkääslaitteeseen 30. Mikro-
prosessori 29 vastaanottaa sähkösignaalin, joka edustaa foto-
ionisaatiolaitteesta 19 tietylle säiliölle 10 saatua numee-
rista arvoa ja vertaa sitä ennalta määättyyn arvoon. Jos
lukema on ennaltamääätyn arvon ylä- tai alapuolella, mikro-
prosessori 29 lähettää signaalin hylkääslaitteeseen 30 säi-
liön 10 hylkäämiseksi.

Säiliöt 10 siirretään kolmannelta siirtolaitteella 20 kuljet-
timelle 12 tutkimuksen jälkeen. Kontaminoituneet säiliöt hyl-
ätään sitten hylkääslaitteella 30, joka on tyyppisesti ilm-
mavirta tai ilmapainin, joka fyysisesti poistaa säiliön 10
kuljettimelta 12, kunten alalla on tunnettua.

Siirtolaitteet 14, 16 ja 20 ovat tyyppisesti tähtipyöriä,
jotka on ajoitettu jaksottain toimimaan systemaattisesti pyö-
rivien kiekkojen 15 ja 18 ja kuljettimen 12 kanssa sekä toi-
mimaan jatkuvasti. Tällaiset tähtipyörät toimivat tunnetuilla
periaatteilla ja niitä käytetään nykyään virvoitusjuomateol-
lisuudessa.

SPESIFISET TOTEUTUSMUODOT

Koejärjestely #1

Tarkoituksena tutkia kontaminantteja tämän keksinnön avulla
käsiteltiin useita 1,5 litran PET-pulloja seuraavan tavan mu-
kaisesti. Kukin pullo täytettiin appelsiinijuomalla, jota
myydään tavaramerkillä "Minute Maid" (Coca-Cola Companyn
tuote), korkitettiin ja säilytettiin 24 tuntia. Tätä virvoi-
tusjuomaa käytettiin, koska edeltävät kokeet osoittivat, että
siinä oli suurin kokonaismäärä ionisoituvia aineita koko suu-
resta tutkittujen hapotettujen virvoitusjuomien joukosta,
jolloin se oli vaikein tapaus. Pullot avattiin sitten ja vir-
voitusjuoma poistettiin. Tyhjät pullot korkitettiin jälleen
ja säilytettiin yhden tunnin, seitsemän päivän ja
neljäntoista päivän ajan, tässä järjestyksessä. Säilytyksen jälkeen kukin pullo avattiin ja tutkittiin ennen ilman injektoimista ottamalla kaasunäyte ja analysoimalla näyte UV-fotoionisaatiolaitteella. Pullot käsiteltiin sitten injektoimalla viisi eri injektiota kukin kestoltaan yhden sekunnin ympäröivää ilmaa kuhunkin pulloon paineessa n. 275 kPa (40 psig), ottamalla kaasunäyte ja analysoimalla näytteet UV-fotoionisaatiolaitteilla. Fotoionisaatiolaitteet oli ostettu Photovac, Inc.:ltä. UV-fotoionisaatiolaitteessa oli jatkuva ulostulojännitteeltään 12,0 ± 0,2 V:n tasavirtalähde ja se kalibroittiin usein standardikasasuna käytetystä 100 ppm isobutyleenilää (ilmassa). UV-lampun lasi UV-fotoionisaatiolaitteessa puhdistettiin usein ja sisäänmenosuodattimet vaihdettiin päivittäin. Laitteen lukema indikoi läsnäolevien ionisoituvien aineiden kokonaismäärää (TIP) isobutyleenin suhteen. Vastaavat tulokset on esitetty taulukossa I.

Koejärjestely #2

Toinen koejärjestely oli samanlainen koejärjestelyyn #1 verrattuna paitsi että virvoitusjuoman 24 h:n säilytyksen jälkeen tyhjiin säiliöhin pantiin erilaisia kontaminantteja. Kontaminanttien annettiin olla säiliöissä 14 päivää ja säiliöt säilytettiin suljettuina. Ionisaatiolukemat otettiin erilaisin aikavälein. Vastaavat tulokset on esitetty taulukossa II (katso "suljettuna").

Koejärjestely 3

Kolmas koejärjestely oli identtinen koejärjestelmän #2 kanssa paitsi että virvoitusjuomaa ei pantu säiliöihin ja että säiliöt pidettiin avoimina ennen tutkimista. Tulokset on esitetty taulukossa III (katso "avoimena").

Tulokset

Taulukossa I, II ja III esitettyt tulokset osoittavat, että kontaminantit, joiden ionisaatiopotentiaali on alle noin

Haluamatta sitoutua teoriaan uskotaan, että tässä keksinnössä kuvattu esikäsittely poistaa virvoitusjuomajäännöksen kuuluvat haihtuvat aineet johtuen kaasuinjektiolla suoritetusta esikäsittelyystä syntyvästä ilman turbulenssista tai kaasunpuhdistustapahtumasta. Jäljellä olevan virvoitusjuomajäännöksen haihtuvuuden eliminoitumisen tai vähentymisen kaasuinjektiolla tapahtuvan esikäsittelyn jälkeen suuresti vähentää tai eliminoi sellaisen TIP-lukeman rekisteröinnin, joka johtaisi säiliön hylkäämiseen kontaminanttia sisältävänä. Orgaanisten kontaminanttien haihtuvuus on jäljellä kaasuinjektointien jälkeen ja ne kontaminantit, joita on läsnä muovisäiliön seinämillä tai on absorboitunut niihin, todetaan ja voidaan osoittaa TIP-lukemalla verrattuna standardi-TIP-lukemaan puhtaille säiliöille.

On ymmärrettävä, että piirrokset tai tässä esitetyn toteutusmuodot eivät rajoita tästä keksintöä niihin, vaan ne on esitetty pelkästään toimivuuden osoittamiseksi. Muunnoksia, variaatioita ja ekvivalenttisia toteutusmuotoja voidaan käyttää poikkeamatta tämän keksinnön hengestä ja piiristä.
TAULUKKO I

LÄSNÄ OLEVIA IONISOITUVIEN AINEIDEN KOKONAIMÄÄRÄN (TIP) TOTEAMINEN VIRVOITUSJUOMAJÄÄNNÖKSESTÄ*

<table>
<thead>
<tr>
<th>SÄILYTYS-AIKA</th>
<th>NÄYTTEEN NRO</th>
<th>TIP-LUKEMA-ALUE</th>
<th>ENNEN</th>
<th>JÄLKEEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 tunti</td>
<td>21</td>
<td>98-141</td>
<td>-3</td>
<td>-8</td>
</tr>
<tr>
<td>7 päivää</td>
<td>21</td>
<td>5-15</td>
<td>-1</td>
<td>-3</td>
</tr>
<tr>
<td>14 päivää</td>
<td>20</td>
<td>2-19</td>
<td>-4</td>
<td>-5</td>
</tr>
</tbody>
</table>

* Kaikissa kokeissa käytettiin appelsiinijuomaa, jota myydään tavaramerkillä "MINUTE MAID" (Coca-Cola Company:n rekisteröity tavaramerkki) käytäen 5 ilma-injektiota, joista kukin kesti 1 sekunnin paineessa n. 275 kpa (40 psig).
<table>
<thead>
<tr>
<th>KONTAMINANTTI</th>
<th>KONSENTRAATIO</th>
<th>SÄILYTETTY</th>
<th>TIP-LUKEMAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asetoni</td>
<td>100%</td>
<td>1</td>
<td>2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>2000</td>
</tr>
<tr>
<td>Bensiini</td>
<td>100%</td>
<td>1</td>
<td>2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>1600</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>1000</td>
</tr>
<tr>
<td>Dieselöljy</td>
<td>100%</td>
<td>1</td>
<td>2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>1030</td>
</tr>
<tr>
<td>Paloöljy</td>
<td>100%</td>
<td>1</td>
<td>2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>1390</td>
</tr>
<tr>
<td>Isopropanoli</td>
<td>100%</td>
<td>1</td>
<td>420</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>600</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>270</td>
</tr>
<tr>
<td>Moottoriöljy (puhdas)</td>
<td>100%</td>
<td>1</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>20</td>
</tr>
</tbody>
</table>
TAULUKKO III

LÄSNÄ OLEVIA IONISOITUVIA AINEIDEN KOKONAISSÄÄRÄN (TIP)
TOTEAMINEN KONTAMINANTTIJÄÄNNÖKSESTÄ

<table>
<thead>
<tr>
<th>KONTAMINANTTI</th>
<th>KONSENTRAATIO</th>
<th>SÄILYTETY PÄIVÄÄ</th>
<th>TIP-LUKEMAT AVOIMENA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asetoni</td>
<td>100%</td>
<td>1</td>
<td>767</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>Dieselöljy</td>
<td>100%</td>
<td>1</td>
<td>144</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>86</td>
</tr>
<tr>
<td>Bensiini</td>
<td>100%</td>
<td>1</td>
<td>532</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>269</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>94</td>
</tr>
<tr>
<td>Isopropanoli</td>
<td>100%</td>
<td>1</td>
<td>201</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>192</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>182</td>
</tr>
<tr>
<td>Paloöljy</td>
<td>100%</td>
<td>1</td>
<td>836</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>274</td>
</tr>
<tr>
<td>Moottoriöljy (käytetty) 100%</td>
<td>1</td>
<td></td>
<td>341</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>129</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>86</td>
</tr>
</tbody>
</table>
PATENTTIVAATIMUKSET

1. Menetelmä organisten kontaminanttien toteamiseksi, joita on läsnä muovisäiliöiden seinämillä tai absorboituneena niisin, tuonne tu siitä, että

(a) injekteoidaan oleellisesti inerttiä kaasua säiliöihin kaasujen poistamiseksi sieltä,
(b) otetaan kaasunäyte säiliön sisältä, ja
(c) analysoidaan näyte ionisaatiolaitteella säiliössä olevien organisten kontaminanttien läsnäolon toteamiseksi.

2. Patenttivaatimuksen 1 mukainen menetelmä, tuonne tu siitä, että kaasu injekteoidaan paineessa n. 138 kPa - n. 690 kPa, lämpötilassa 10°C-50°C ja 1-15 sekunnin ajan.

3. Kumman tahansa edellisen vaatimuksen mukainen menetelmä, tuonne tu siitä, että kaasu on valittu ryhmästä, johon kuuluvat typpi, helium, argon, hiilidioksidi ja ilma, joka on oleellisesti vapaa kontaminanteista.

4. Minkä tahansa edellisen vaatimuksen mukainen menetelmä, tuonne tu siitä, että kaasu on oleellisesti kontaminanteista vapaa ilma.

5. Minkä tahansa edellisen vaatimuksen mukainen menetelmä, tuonne tu siitä, että injektioiden lineaarinen nopeus on välillä 300-1500 m/s.

6. Minkä tahansa edellisen patenttivaatimuksen mukainen menetelmä, tuonne tu siitä, että säiliöt ovat PET-pulloja.

7. Minkä tahansa edellisen vaatimuksen mukainen menetelmä, tuonne tu siitä, että organisten yhdisteiden ionisaatiopotentiaali on alle 10,6 eV.
8. Minkä tahansa edellisen vaatimuksen mukainen menetelmä, tunteet siitä, että ionisaatiolaitte on ultraviolett-tifotoionisaattori.

9. Minkä tahansa edellisen vaatimuksen mukainen menetelmä, tunteet siitä, että kontaminantit on valittu hiilivedystä, alkoholeista, ketoneista tai niiden seoksista.

10. Minkä tahansa edellisen vaatimuksen mukainen menetelmä, tunteet siitä, että kontaminantit ovat hiilivetyjä.

11. Jatkuva menetelmä muovisäiliöiden seinämillä läsnäolevien tai niihin absorboituneiden orgaanisten kontaminanttien toteamiseksi, tunteet siitä, että:

sijoitetaan säiliöt ensimmäiselle pyörivälle kiekolle (15), jossa on useita injektiolaitteita (17) oleellisesti inertin kaasun injektoimiseksi säiliöihin säiliöiden pyöriessä ympäri ensimmäistä pyörivää kiekkoa,

siirretään säiliöt (10) ensimmäiseltä pyörivältä kiekolta (15) toiselle pyörivälle kiekolle (18), jossa on (a) useita vakuumilaitteita (28), joilla on tarkoitus vetää kaasunäytteet säiliöiden sisältä, (b) useita ionisaatiolaitteita (19) näytteiden analysoimiseksi,

otetaan näytteet säiliöistä (10), analysoidaan näytteistä läsnä olevien ionisoituvien aineiden kokonaismäärä säiliöiden pyöriessä ympäri toista pyörivää kiekkoa (18),

poistetaan säiliöt (10) toiselta pyörivältä kiekolta (18), ja

hylätään säiliöt (10), joissa läsnä olevien ionisoituvien aineiden kokonaismäärä on ennalta määrätyn arvon ylä- tai alapuolella.

12. Patenttivaatimuksen 11 mukainen menetelmä, tunteet siitä, että ionisaatiolaitte on sähköisesti
yhteydessä mikroprosessorin, joka pystyy vastaanottamaan ensimmäisen sähkösignaalin ionisaatiolaitteesta, vertaamaan ensimmäistä sähkösignaalia ennaltamäärättyyn arvoon, ja lähettämään toisen sähkösignaalin hylkäyslaitteeseen, kun ensimmäinen sähkösignaali on suurempi kuin ennaltamäärätty arvo.

13. Laite, jonka avulla jatkuvasti havaitaan organiset kontaminantit, joita on läsnä virvoitusjuoman täyttö-kuljetus-järjestelmässä liikkuvien muovisäiliöiden seinämillä tai absorboitunut niihin, t u n n e t t u s iitä, että siinä on:

ensimmäinen laite (14) säiliöiden (10) poistamiseksi kuljettimelta (12) ja säiliöiden syöttämiseksi ensimmäiselle pyörivälle kiekolle (15), ensimmäisen pyörivän kiekon sisältäessä useita injektiolaitteita (17) oleellisesti inertin kaasun injektoimiseksi säiliöihin säiliöiden pyöriessä ympäri ensimmäistä pyörivää kiekkoa,

toinen laite (16) säiliöiden (10) poistamiseksi ensimmäiseltä pyörivälta kiekolta (15) ja säiliöiden syöttämiseksi toiselle pyörivälle kiekolle (18), toisen pyörivän kiekon sisältäessä (a) useita vakuumilaitteita (28) kaasunyhteiden ottamiseksi säiliöiden sisältä ja (b) useita ionisaatiolaitteita (19) näytteiden analysoimiseksi,

kolmas laite (20) säiliöiden (10) poistamiseksi toiselta pyörivälta kiekolta (18) ja säiliöiden syöttämiseksi kuljetusjärjestelmään (12), ja

hylkäyslaitte (30) niiden säiliöiden (10) hylkäämiseksi, joissä läsnä olevien ionisoituvien aineiden kokonaismäärä mitattuna ionisaatiolaitteella (19) on ennalta määrityn arvon ylä- tai alapuolella.
PATENTKRAV

1. Förfarande för detektering av organiska kontaminenter, som är närvarande på plastbehållares väggar eller absorberade i dem, kännetecknat av, att

(a) man injicerar en huvudsakligen inert gas i behållarna för avlägsning av gaser därav,
(b) man tar ett gasprov från behållaren, och
(c) analyserar provet med en joniseringsanordning för detektion av organiska kontaminenter i behållaren.

2. Förfarande enligt patentkravet 1, kännetecknat av, att man injicerar gasen vid ett tryck på ca 138 kPa - ca 690 kPa, vid en temperatur av 10°C - 50°C och under 1 - 15 sekunder.

3. Förfarande enligt någontingen av ovannämnda patentkrav, kännetecknat av, att gasen väljs från gruppen kväve, helium, argon, koldioxid och luft, som är huvudsakligen fri från kontaminenter.

4. Förfarande enligt vilken som helst av de ovannämnda patentkraven, kännetecknat av, att gasen är luft som är huvudsakligen fri från kontaminenter.

5. Förfarande enligt vilken som helst av de ovannämnda patentkraven, kännetecknat av, att injektionernas lineära hastighet är mellan 300 - 1500 m/s.

6. Förfarande enligt vilken som helst av de ovannämnda patentkraven, kännetecknat av, att behållarna är PET-flaskor.

7. Förfarande enligt vilken som helst av de ovannämnda patentkraven, kännetecknat av, att de organiska föreningarna har en joniseringspotential som är under 10,6 eV.

8. Förfarande enligt vilken som helst av de ovannämnda
patentkraven, kännetecknat av, att joniseringsanordningen är en ultraviolettfotojonisator.

9. Förfarande enligt vilken som helst av de ovannämnda patentkraven, kännetecknat av, att kontaminenterna väljes från gruppen kolhydrater, alkoholer, ketoner eller en blandning av dessa.

10. Förfarande enligt vilken som helst av de ovannämnda patentkraven, kännetecknat av, att kontaminenterna är kolhydrater.

11. Ett kontinuerligt förfarande för detektering av organiska kontaminenter, som är närvarande på plastbehållares väggar eller absorberade i dem, kännetecknat av, att:

man placerar behållarna på en första roterande skiva (15), vari befinner sig ett flertal injektionssanordningar (17) för injicering av en huvudsakligen inert gas i behållarna medan behållarna roterar runtom den första roterande skivan,

man förflyttar behållarna (10) från den första roterande skivan (15) till en andra roterande skiva (18), vari befinner sig (a) ett flertal vakuumanordningar (28), med hjälp av vilka gasproven utsuges ur behållarna,
(b) ett flertal joniseringsanordningar (19) för analysering av proven,

man tar prov från behållarna (10), analyserar de i proven närvarande joniserbara ämnenas totala mängd medan behållarna roterar runtom den andra skivan (18),

man avlägsnar behållarna (10) från den roterande skivan (18), och

man avslopar behållarna (10), i vilka de joniserbara ämnenas totala mängd är över eller under ett i förhand betämt värde.
12. Förfarande enligt patentkravet 11, kan man tekniskt av, att joniseringsanordningen är i elektrisk kontakt med en mikroprocessor, som kan mottaga en första elektrisk signal från joniseringsanordningen, och jämföra den första elektriska signalen med ett i förhand bestämt värde, och skicka en andra elektriska signal till avslopningsanordningen, då den första elektriska signalen är större än det på förhand bestämda värden.

13. En apparat, med hjälp av vilken man kontinuerligt detekterar organiska kontaminenter, som är närvarande på eller absorberade i plastbehållares väggar, vilka behållare transporterar i ett påfyllnings-transportsystem av läskedrycker, kan tekniskt av:

en första anordning (14) för avlägsning av behållarna (10) från transportören (12) och för matning av behållarna till en första roterande skiva (15), vari den första roterande skivan innefattar ett flertal injektionsanordningar (17) för injiceringsanordningar av en huvudsakligen inert gas till behållarna medan behållarna roterar runtom den första roterande skivan,

en andra anordning (16) för avlägsning av behållarna (10) från den första roterande skivan (15) och för matning av behållarna till en andra roterande skiva (18), vari den andra roterande skivan innefattar (a) ett flertal vakuumanordningar (28) för gasprovtagning innifrån behållarna och (b) ett flertal joniseringsanordningar (19) för analysering av proven,

en tredje anordning (20) för avlägsning av behållarna från den andra roterande skivan (18) och för matning av behållarna till en transportör (12), och

en avslopningsanordning (30) för avslopning av de behållarna (10), vari den totala mängden joniserbara ämnen mätt med joniseringsanordningen (19) är större eller mindre än ett på förhand bestämt värde.