Title: AUTOMOBILE HEADLIGHT ASSEMBLY

Abstract: A headlight assembly for an automobile comprising a left region and a right region, the headlight assembly being configured to reduce an intensity of a light beam when an oncoming automobile is detected, is described. The headlight assembly includes, at least one light source, at least one light detector configured to detect the oncoming automobile and generate a signal, and a control module configured to receive the signal from the light detector, and reduce the intensity of the light beam. A method for reducing the intensity of a light beam of a headlight assembly for an automobile when an oncoming automobile is detected, is also described.
Declarations under Rule 4.17:
— as to the identity of the inventor (Rule 4.17(i))

Published:
— with international search report (Art. 21(3))
— in black and white; the international application as filed contained color or greyscale and is available for download from PATENTSCOPE
Automobile headlight Assembly

Cross-Reference to Related Applications:
This application claims priority to provisional application IN201821004044 dated 2nd February 2018, which is hereby incorporated by reference in its entirety.

Background of the Invention:

0001 The present invention relates to headlights for automobiles. More specifically, the invention relates to headlights for automobiles that reduce the intensity of the light beam when an oncoming automobile is detected.

0002 Headlight assemblies for automobiles are generally designed to operate in two modes: a “low-beam” mode, wherein the intensity of the light from the headlight is low, and thus provides lesser illumination, as well as lights up a smaller area in front of the automobile; and a “high beam” mode, wherein the intensity of light from the headlight is high, and thus provides more illumination and lights up a larger area in front of the automobile. The “high-beam” mode may be generated by either increasing the intensity of the headlight, or by switching on an additional light source in the headlight to generate a higher light intensity. One of the issues with the use of the “high-beam” mode is that the rider of an oncoming automobile is often blinded by the high intensity light of the headlight in “high-beam” mode, thus increasing the risk of an accident.

0003 Prior art description US20150028741 describes a driver assistance system which automatically controls the high and low beam of the headlamp of an automobile. The system includes a camera, and an image evaluation unit to detect the presence of an oncoming vehicle, and switch the headlight from high-beam to low beam. CN102009614A describes a system for switching between high and low beam modes of a headlight, specifically for a car. This system includes an infrared transmitter, and infrared detectors positioned near the headlight assembly. The detectors detect infrared rays emitted by an oncoming vehicle, and switch from high beam to low beam mode. DE102005017933 describes a unit for automatically switching on and off high beams. The system includes a
photo-voltaic cell to detect light from an oncoming vehicle, and a control unit to automatically switch the beam from high beam to low beam when the headlight from an oncoming vehicle is detected by the photo-voltaic cell.

0004 Therefore, there is a need in the art for a robust and inexpensive system, to switch automatically the headlight beam from high beam to low beam when an oncoming vehicle is detected. There also exists a need to have the size of these systems to enable them to be incorporated into a headlight assembly of automobiles such as of a two-wheeled automobile without compromising on the efficiency of the system.

Summary:

0005 One embodiment of the present invention describes a headlight assembly for an automobile including a left region and a right region, the headlight assembly being configured to reduce an intensity of a light beam when an oncoming automobile is detected. The headlight assembly further includes at least one light source; at least one light detector configured to detect the oncoming automobile and generate a signal; a control module configured to receive the signal from the at least one light detector, and reduce the intensity of the light beam.

0006 Another embodiment of the present invention is a method for reducing an intensity of a light beam of a headlight assembly for an automobile comprising a left region and a right region, the headlight assembly being configured to reduce the intensity of the light beam when an oncoming automobile is detected. The headlight assembly includes at least one light source; at least one light detector configured to detect the oncoming automobile and generate a signal; a control module configured to receive the signal from the at least one light detector and reduce the intensity of the light beam. The method includes the steps of, detecting the oncoming automobile; generating a signal by the at least one light detector; receiving at the control module, the signal generated by the at least one light detector; conditioning the signal to produce a conditioned signal; and, transmitting the conditioned signal to the at least one light source to reduce the intensity of light beam.
Description of drawings

0007 Fig 1 is a schematic representation of a headlight assembly for an automobile according to an embodiment of the invention.

0008 Figure 2 is a representation of the beam spread of a prior art headlight assembly for an automobile.

0009 Figure 3 is a representation of the beam spread of a headlight assembly for an automobile according to an embodiment of the invention.

Detailed description

0010 While various embodiments of the invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions may occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed.

0011 In the specification and the claims which follow, reference will be made to a number of terms which shall be defined to have the following meanings:

0012 The singular forms “a”, “an” and “the” include plural referents unless the context clearly dictates otherwise. “Optional” or “optionally” means that the subsequently described event or circumstance may or may not occur, and that the description includes instances where the event occurs and instances where it does not. “Substantially” means a range of values that is known in the art to refer to a range of values that are close to, but not necessarily equal to a certain value.

0013 As used herein the term “automobile” is defined as a system for transporting people, animals or cargo by road. The term is intended to include, but not be limited to, motorized and non-motorized transportation systems, and is also intended to include automobiles with two, three, or more wheels. Non-limiting examples of such automobiles may include bicycles, motor-cycles, scooters, and the like.
One embodiment of the present invention describes a headlight assembly for an automobile comprising a left region and a right region, the headlight assembly being configured to reduce an intensity of a light beam when an oncoming automobile is detected. The headlight assembly includes at least one light source; at least one light detector configured to detect the oncoming automobile and generate a signal; a control module configured to receive the signal from the at least one light detector; and reduce the intensity of the light beam.

Referring now to Fig 1, a headlight assembly according to an embodiment of the present invention is shown. Headlight assembly 100 includes a high beam light source 102, a low beam light source 104, light detector 106 and control unit 108. When the headlight is in low beam mode, only the low beam light source 104 is actuated, and when the headlight is in a high-beam mode, both the low beam light source 104 and the high-beam light source 102 are actuated. The light detector is configured to detect light of an oncoming automobile and produce a signal. This signal is received by the control unit 108, which in turn conditions the signal to produce a conditioned signal. This conditioned signal is transmitted to the light source (102) to switch off the high-beam mode, thus reducing the intensity of the light from the headlight assembly 100.

Non-limiting examples of the high-beam light sources 102 and low-beam light sources 104 may be incandescent bulbs, fluorescent bulbs, light emitting diodes, and the like. In an embodiment of the present invention, the headlight assembly includes at least two high beam light sources 102. In another embodiment of the present invention, the headlight assembly includes at least two low beam light sources 104. In yet another embodiment of the present invention, the headlight assembly includes at least two high beam light sources 102 and at least two low beam light sources 104. In an embodiment of the present invention, the high-beam light source 102 can be a light emitting diode. In another embodiment of the present invention, the low-beam light source 104 can be a light emitting diode. In yet another embodiment of the present invention, the high-beam light source 102 and the low-beam light source 104 can be a light emitting diode.
0017 In an embodiment of the invention, the headlight assembly includes at least two light
detectors 106. In one embodiment of the present invention, the light detectors 106 may be
placed at the proximity of the light source. In another embodiment of the present
invention, the light detectors 106 may be placed at the outer side of the high-beam light
source 102. In another embodiment of the present invention, the light detectors 106 may be
placed at the outer side of the low-beam light source 104. In yet another embodiment of
the present invention, the headlight assembly includes at least two light detectors placed at
the left region and the right region of the headlight assembly. In an embodiment of the
present invention, the headlight assembly includes two light detectors, placed at the left
region and the right region of the headlight assembly, to detect whether the oncoming
automobile is approaching from the left side or the right side of the automobile.

0018 In an embodiment of the invention, the control unit 108 is a microcontroller. In an
embodiment of the invention, the control unit 108 is a light emitting diode driver module
(LDM).

0019 Another embodiment of the present invention is a method for reducing an intensity of a
light beam of a headlight assembly for an automobile comprising a left region and a right
region the headlight assembly being configured to reduce the intensity of a light beam
when an oncoming automobile is detected. The headlight assembly includes at least one
light source; at least one light detector configured to detect the oncoming automobile and
generate a signal; a control module configured to receive the signal from the light detector,
and reduce the intensity of the light beam. The method includes the steps of, detecting the
oncoming automobile; generating a signal by the at least one light detector; receiving, at
the control module, the signal generated by the at least one light detector; conditioning the
signal to produce a conditioned signal; and transmitting the conditioned signal to the at
least one light source to reduce the intensity of the light beam.

0020 In an embodiment of the present invention, the step of reducing the intensity of the light
beam is carried out by switching off the high-beam light source. In an embodiment of the
present invention, the step of reducing the intensity of the light beam is carried out by
switching off the high-beam light source on the side from which the oncoming vehicle is
detected.
0021 Referring now to Fig. 2, the beam spread (200) of a prior art headlight assembly 202 is shown. It can be seen that the headlight beam (204) falls directly on to an oncoming automobile (206). There is a possibility that the light beam will blind the driver of the oncoming vehicle, thus increasing the probability of an accident.

0022 Referring now to Fig. 3, the beam spread (300) of a headlight assembly 302 according to an embodiment of the invention is shown. Here, when the oncoming automobile (306) is detected, the headlight is switched to low-beam mode, and the light from the headlight or the headlight beam (304) does not fall directly on the driver of the oncoming automobile, thus reducing the chances of blinding the driver, and causing an accident. The oncoming automobile (304) approaches from the right of the automobile, hence is detected by the detector on the right region of the headlight assembly, and the light source corresponding to the right side of the automobile is switched from high beam to low beam.
Claims:
We claim:

1. A headlight assembly for an automobile comprising a left region and a right region, the headlight assembly being configured to reduce an intensity of a light beam when an oncoming automobile is detected, comprising:
 - at least one light source;
 - at least one light detector configured to detect the oncoming automobile and generate a signal;
 - a control module configured to receive the signal from the at least one light detector, and reduce the intensity of the light beam.

2. The headlight assembly of claim 1, comprising at least two light detectors configured to detect the oncoming automobile and generate a signal.

3. The headlight assembly of claim 1, comprising at least two light sources positioned at the left region and right region of the headlight assembly.

4. The headlight assembly of claim 1, comprising at least two light detectors positioned at the left and right regions of the headlight assembly; configured to detect the oncoming automobile.

5. A method for reducing an intensity of a light beam of a headlight assembly for an automobile comprising a left region and a right region, the headlight assembly being configured to reduce the intensity of the light beam when an oncoming automobile is detected, the headlight assembly comprising: at least one light source; at least one light detector configured to detect the oncoming automobile and generate a signal; a control module configured to receive the signal from the at least one light detector, and reduce the intensity of the light beam; the method comprising the steps of:
 - detecting the oncoming automobile;
 - generating a signal by the at least one light detector;
 - receiving, at the control module, the signal generated by the at least one light detector;
 - conditioning the signal to produce a conditioned signal; and
 - transmitting the conditioned signal to the at least one light source to reduce the intensity of light beam.

6. The method of claim 5, further comprising switching the headlight assembly from a high beam to a low beam.
7. The method of claim 5, wherein detecting the oncoming automobile is carried out by means of at least two light detectors.

8. The method of claim 5, detecting the oncoming automobile is carried out by means of at least two light detectors positioned at the left and right regions of the headlight assembly.

9. The method of claim 5, further comprising switching off the at least one light source corresponding to the direction of the oncoming automobile.

10. A headlight assembly for an automobile comprising a left region and a right region, the headlight assembly being configured to reduce an intensity of a light beam when an oncoming automobile is detected, comprising:
 at least two light sources;
 at least two light detectors configured to detect the oncoming automobile and generate a signal;
 a control module configured to receive the signal from the at least two light detector, and reduce the intensity of the light beam.
FIG. 1
FIG. 2 (Prior Art)
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
B60Q1/04 Version=2019.01

According to International Patent Classification (IPC) or to both national classification and (PC)

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

B60Q

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of database and, where practicable, search terms used)

Total Patent One, IPO Internal Database

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US6861809B2 (GENTEX CORP) 01 March 2005 (01-03-2005) Abstract; column 6, lines 58-61; column 7, lines 8 to 29; column 14, lines 13-17; claim 15-16 & 48-49;</td>
<td>1-10</td>
</tr>
</tbody>
</table>

☐ Further documents are listed in the continuation of Box C. ☒ See patent family annex.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means of publication published prior to the international filing date but later than the priority date claimed
 "P" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 "&" document member of the same patent family

Date of the actual completion of the international search: 15-04-2019
Date of mailing of the international search report: 15-04-2019

Name and mailing address of the ISA/Authorized officer
Indian Patent Office Dhmendra Pal
Plot No.32, Sector 14, Dwarka, New Delhi-110075 Telephone No. +91-1125300200
Facsimile No.
<table>
<thead>
<tr>
<th>Citation</th>
<th>Pub. Date</th>
<th>Family</th>
<th>Pub. Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 686180 B2</td>
<td>01-03-2005</td>
<td>CA 24657782 A1</td>
<td>03-07-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2465782 C</td>
<td>20-09-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2002351338 A1</td>
<td>09-07-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1451038 A1</td>
<td>01-09-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1451038 A4</td>
<td>25-11-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MX PA04005569 A</td>
<td>06-12-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2005512875 A</td>
<td>12-05-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2463149 B1</td>
<td>01-04-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20040073458 A</td>
<td>19-08-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 100796698 B1</td>
<td>21-01-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2009007001 A</td>
<td>15-01-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 5023296 B2</td>
<td>12-09-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 20050073853 A1</td>
<td>07-04-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2003053737 A1</td>
<td>03-07-2003</td>
</tr>
</tbody>
</table>