
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2006/0075388 A1

Kelley et al.

US 2006.0075388A1

(43) Pub. Date: Apr. 6, 2006

(54) CROSS-PLATFORM SOFTWARE
DEVELOPMENT WITH AND SOFTWARE
DEVELOPMENT PERPHERAL

(75) Inventors: David Kelley, Woodinville, WA (US);
Larry Morris, Kirkland, WA (US);
Sridhar S. Mandyam, North Bend, WA
(US)

Correspondence Address:
LEE & HAYES PLLC
421 W RIVERSIDEAVENUE SUTE SOO
SPOKANE, WA 992.01

(73) Assignee: Microsoft Corporation, Redmond, WA

(21) Appl. No.:

(22) Filed:

11/283.783

Nov. 21, 2005

Related U.S. Application Data

(60) Continuation of application No. 11/027,453, filed on
Dec. 30, 2004.
Continuation of application No. 11/027,732, filed on
Dec. 30, 2004.

600 Communicatively link a
computing device with a

software development peripheral
via a debug transport

602 Provide configuration
identification of software
development peripheral to

the computing device

604
Recognize the

configuration identification
with the computing device

Generate an image of an
operating system

08
Communicate the

operating system image to the
Software development peripheral

610 Execute the operating
system corresponding to the
image with the software
development peripheral

Said application No. 11/027,453 is a division of
application No. 10/044,505, filed on Jan. 10, 2002,
now Pat. No. 6,978,439.
Said application No. 11/027,732 is a division of
application No. 10/044,505, filed on Jan. 10, 2002,
now Pat. No. 6,978,439.

Publication Classification

(51) Int. Cl.
G06F 9/44 (2006.01)

(52) U.S. Cl. .. 717/124

(57) ABSTRACT

A cross-platform development system includes a computing
device that generates an image of an operating system, and
a software development peripheral connected to the com
puting device that runs the operating system corresponding
to the image. The Software development peripheral commu
nicates information, such as image data, generated by the
operating system back to the computing device where the
information is displayed on a display device connected to
the computing device.

612 Communicate
information generated by
the operating system to
the computing device

614 Display the
information generated by
the operating system

with the computing device

16 Debug the
information generated by
the operating system

with the computing device

618. Connect software
development peripheral

to a network via
the computing device

620 Receive a device
input from a virtual
input/output system

of the computing device

Patent Application Publication Apr. 6, 2006 Sheet 1 of 7 US 2006/0075388A1

-100
Computer System

CrOSS-Platform 108 Central
Development Application Processing Unit

104
Processor Emulator

110
OS image

112 Operating

10

E. 9.

Patent Application Publication Apr. 6, 2006 Sheet 2 of 7 US 2006/007S388A1

Computer System

Central Operating Transport
Processing Unit System

206 208 10

Physical
Connection

212

Keyboard
224

Software Development Board 204

Central
Processing Unit

214
Keyboard I/O

ROM 216 222

Bootloader
234 Mouse I/O

226

Display I/O
230

220

Peripheral I/O
Connections

Fig.2
Prior Art

Patent Application Publication Apr. 6, 2006 Sheet 3 of 7 US 2006/007S388A1

Computing Device 302 300 /
CrOSS-Platform
Development
Component 328

Peripheral I/O
Components

Keyboard I/O
314

Mouse I/O

318

Display I/O
322

31 2

Central
Processing Unit

308

Virtual I/O
System

330

Operating
System

310

Transport
Layer

332

306 Communication
Link

Software Development Peripheral 304

Configuration
Identification

340 Operating
System

Bootloader Drivers

342 348

Fig. 3

Computing Device O2

CrOSS-Platform
Development
Component 328

Central
Processing Unit

Virtual I/O

33O

Operating
System

31 O

Transport
Layer

332

NetWork Comm
Driver

404

Operating
System

346

Peripheral I/O
Components

BuS / NetWork
Interface

Virtual
Drivers

348

Virtual NetWork
Bootloader

342

Communication
Driver 408

Patent Application Publication Apr. 6, 2006 Sheet 4 of 7 US 2006/007S388A1

Communication
Link

F ig. 4

Patent Application Publication Apr. 6, 2006 Sheet 5 of 7 US 2006/007S388A1

Computing Device 302 / 500

Cross-Platform Peripheral I/O
Development Components
Component 328

Central
Processing Unit Keyboard

-ED
Mouse 324

32O

Virtual I/O

33

Operating Transport
System Layer

310 332

3O6 Communication
Link

Software Development Peripheral 304

Configuration
Identification

Operating
System

346

Bootloader Drivers

342 348

Patent Application Publication Apr. 6, 2006 Sheet 6 of 7

600 Communicatively link a
computing device with a

software development peripheral
via a debug transport

602 Provide configuration
identification of Software
development peripheral to

the computing device

60
Recognize the

configuration identification
with the computing device

60

Generate an image of an
operating system

08
Communicate the

operating system image to the
software development peripheral

610 Execute the Operating
system corresponding to the
image with the software
development peripheral

12 Communicate
information generated by
the operating system to
the computing device

61 - Display the
information generated by
the operating system

with the computing device

616 Debug the
information generated by
the operating system

with the computing device

618. Connect software
development peripheral

to a network via
the computing device

620 Receive a device
input from a virtual
input/output system

of the computing device

Fig. 6

US 2006/0075388A1

Patent Application Publication Apr. 6, 2006 Sheet 7 of 7 US 2006/007S388A1

Remote ? Computing
742

Monitor

1.
- Application

Programs

NetWork
Adapter

System Bus

Program
Data

Operating 726

Application 728
Programs it
Program ' T
Modules 730
Program ar
Data 732

738 E f |ffs > N IA A ooooooo oo
Printer Mouse Keyboard Other Device(s) Fi 7

746 736 734 9

US 2006/007S388 A1

CROSS-PLATFORMI SOFTWARE DEVELOPMENT
WITH AND SOFTWARE DEVELOPMENT

PERIPHERAL

RELATED APPLICATIONS

0001. This application is a continuation and claims pri
ority to related co-pending U.S. patent application Ser. Nos.
11/027,453 and 11/027,732 each entitled “Cross-Platform
Software Development with a Software Development
Peripheral filed Dec. 30, 2004 to Kelley et al., the disclo
sures of which are incorporated by reference herein.
0002 U.S. patent application Ser. Nos. 11/027,453 and
11/027,732 are each divisionals of and claim priority to U.S.
patent application Ser. No. 10/044,505 entitled “Cross
Platform Software Development with a Software Develop
ment Peripheral filed Jan. 10, 2002 to Kelley et al., the
disclosure of which is incorporated by reference herein.

TECHNICAL FIELD

0003. This invention relates to software development
and, in particular, to cross-platform development of software
applications and operating systems with a software devel
opment peripheral device.

BACKGROUND

0004 Cross-platform development involves developing
software, such as operating systems or application programs,
Such that the Software operates with computers having
different central processing units (CPUs) from one central
processor unit type to another. Cross-platform development
is typically accomplished by using a computer system to
emulate different processors, or with a software develop
ment board connected to a computer system.
0005 FIG. 1 illustrates a conventional cross-platform
development system 100 that includes a computer system
102 having processor emulation components. Computer
system 102 includes a central processing unit 104, an
operating system 106, and a cross-platform development
application 108 that includes a processor emulator 110.
Processor emulator 110 emulates a virtual processor inside
of central processing unit 104, where the virtual processor is
of a different type than processor 104.
0006 The cross-platform development application 108
includes components or application tools, such as processor
emulator 110, that enable software developers to configure,
build, and debug new software applications and operating
systems. With components of the cross-platform develop
ment application 108, a developer can design a new oper
ating system, Such as for a personal digital assistant or
hand-held computing device, and include various features
and device drivers. An image 112 of the new operating
system can then be downloaded to processor emulator 110
that appears as an independent processor, but is actually a
virtual processor.
0007. A developer can utilize processor emulation for
cross-platform development to view and debug a new soft
ware application or operating system in a window displayed
on a display device 114 connected to, or integrated with,
computer system 102. Additionally, a developer can debug
the new software application or operating system with a
keyboard 116 and mouse 118 connected to computer system

Apr. 6, 2006

102. Cross-platform development with processor emulation
is simplified because external hardware to run and test a new
Software application or operating system does not need to be
connected to computer system 102. Additionally, existing
peripheral input/output devices, such as display 114, key
board 116, and mouse 118, connected to computer system
102, can be utilized to interact with the software application
or operating system being developed.
0008 Although cross-platform development with proces
Sor emulation is simplified for a developer, a virtual pro
cessor only emulates one type of processor and runs up to
ten-times slower than an actual central processing unit.
Processor emulation does not provide a realistic represen
tation of how a new software application or operating
system will perform when executed with the actual central
processing unit that the virtual processor is emulating.
Consequently, processor emulation is not reliable as a soft
ware debug tool for a final version of a product.
0009 Cross-platform development of a new software
application or operating system with a software develop
ment board is an alternative to processor emulation. A
software development board can be configured with differ
ent processors from different manufacturers, and can be
configured with many different hardware options and con
figurations. When a developer is first creating a new soft
ware application or operating system, hardware and proces
Sor components are unknown design variables because
features of the new software application or operating system
can influence which hardware and processor components are
ultimately selected by the developer.
0010 FIG. 2 illustrates a conventional cross-platform
development system 200 that includes a computer system
202 connected to a software development board 204. Com
puter system 202 includes a central processing unit 206, an
operating system 208, and a debug transport layer 210. The
debug transport layer 210 is a connection interface for a
physical connection 212 to software development board
204. Typically, transport layer 210 is implemented as an
Ethernet debug transport, and physical connection 212 is an
Ethernet connection.

0011 Software development board 204 includes a central
processing unit 214, a read only memory (ROM) 216, and a
random access memory (RAM) 218. Conventional software
development board 204 also includes a system of connec
tions 220 for peripheral input/output devices, such as a
keyboard input/output 222 for an external keyboard 224, a
mouse input/output 226 for an external mouse 228, and a
display input/output 230 for an external display device 232.
Software development boards also typically include addi
tional debug connectors, debug indicators such as LEDs, and
expansion slots for variable hardware configurations. These
additional components also add to the expense a software
development board.
0012 Software development board 204 maintains a boot
loader application 234 in ROM 216. Abootloader 234 is the
only software code that is maintained on Software develop
ment board 204 when the board is first set up for testing. The
bootloader 234 communicates with computer system 202 via
physical connection 212, or simply waits to receive an
operating system image from computer system 202.
0013 When a developer configures and builds a new
operating system, an image 236 of the new operating system

US 2006/007S388 A1

is downloaded to RAM 218 on software development board
204 via the debug transport layer 210 and physical connec
tion 212. When the operating system image 236 is down
loaded and stored in RAM 218, bootloader 234 transfers
execution of the software development board 204 to the new
operating system which executes on central processing unit
214. The developer can debug with the new operating
system with the keyboard 224, mouse 228, and display
device 232 connected to the software development board
204.

0014 Software development boards that are configurable
for different processors and the many different possible
hardware components and configurations are expensive and
require considerable user setup before any new software
application or operating system can be tested. Initial setup
can be tedious because software development boards are
designed to be configurable. For example, Some boards are
sold new without a ROM component, and some boards
require setup and configuration of a data input/output
EPROM program, binary files, dip switch settings, and other
similar configuration requirements.

0.015 Additionally, software development boards are
designed to use peripheral input/output devices, such as a
keyboard, a mouse, and/or a display, that are connected
directly to the boards for user interaction. The additional
requirement of direct-connect peripheral input/output
devices adds to the already expensive initial cost of a
software development board.

SUMMARY

0016 A cross-platform software development system
includes a computing device that generates an image of an
operating system, and a software development peripheral
connected to the computing device that executes the oper
ating system corresponding to the image. The software
development peripheral communicates information, such as
image data, generated by the operating system back to the
computing device where the information is displayed on a
display device connected to the computing device.
0017. The computing device includes a cross-platform
development component that recognizes a configuration
identification of the software development peripheral when
the Software development peripheral is communicatively
linked with the computing device via a debug transport. The
cross-platform development component generates the image
of the operating system corresponding to the configuration
identification of the software development peripheral. The
computing device also includes a virtual input/output system
to communicate the information generated by the operating
system between the computing device and virtual device
drivers of the software development peripheral.

BRIEF DESCRIPTION OF THE DRAWINGS

0018. The same numbers are used throughout the draw
ings to reference like features and components.
0.019 FIG. 1 illustrates a conventional cross-platform
development system that includes a processor emulator.

0020 FIG. 2 illustrates a conventional cross-platform
development system that includes a Software development
board.

Apr. 6, 2006

0021 FIG. 3 illustrates an exemplary cross-platform
development system with a software development periph
eral.

0022 FIG. 4 illustrates the cross-platform development
system shown in FIG. 3 with network communication
components.

0023 FIG. 5 illustrates the cross-platform development
system shown in FIG. 3 with an expansion component to
connect peripheral input/output components.
0024 FIG. 6 is a flow diagram of a method for cross
platform development with a software development periph
eral.

0025 FIG. 7 is a diagram of computing systems, devices,
and components in an environment that can be used to
implement the invention described herein.

DETAILED DESCRIPTION

0026. The following describes systems and methods for a
cross-platform development system that can be utilized to
configure, build, and debug new software applications and
operating systems. The cross-platform development system
includes a software development peripheral that can also be
utilized to test different central processing units from dif
ferent manufacturers along with the with many different
hardware options and configurations. For an operating sys
tem developer, the cross-platform development system pro
vides an easy to use development resource, and also pro
vides accurate and real-time operating system analysis.
0027 FIG. 3 illustrates a cross-platform development
system 300 having components that can be implemented
within a computing device, or the components can be
distributed within a computing system having more than one
computing device. The cross-platform development system
300 includes a computing device 302 coupled with a soft
ware development peripheral 304 via a communication link
306. See the description of “Exemplary Computing System
and Environment' below for specific examples and imple
mentations of networks, computing systems, computing
devices, and components that can be used to implement the
invention described herein.

0028 Computing device 302 includes a central process
ing unit 308, an operating system 310, and a system of
peripheral input/output components 312. Such as device
drivers and connectors, to couple and Support external
input/output devices for computing device 302. The periph
eral input/output components 312 include a keyboard input/
output 314 for an external keyboard 316, a mouse input/
output 318 for an external mouse 320, and a display input/
output 322 for an external display device 324 and/or external
touch screen device 326.

0029 Computing device 302 also includes a cross-plat
form development component 328, a virtual input/output
system 330, and a debug transport layer 332. The debug
transport layer 332 is a connection interface for the com
munication link 306 between computing device 302 and the
software development peripheral 304. Communication link
306 can be implemented as a USB (universal serial bus), or
Ethernet connection, for example.
0030 Software development peripheral 304 includes a
central processing unit 334, a read only memory (ROM)

US 2006/007S388 A1

336, a random access memory (RAM) 338, and a configu
ration identification component 340. The configuration iden
tification component 340 can be an independent component
of software development peripheral 304, or component 340
can be a software component and/or a unique identifier
component stored in bootloader application 342 in ROM
336. The bootloader application 342 is the only software
code that is maintained on the Software development periph
eral 304 when the peripheral device is first initialized. The
bootloader application 342 communicates with computing
device 302, or simply waits to receive an operating system
image from computing device 302.

0031 When a developer configures and builds a new
operating system, an image 344 of the new operating system
is downloaded to RAM 338 on software development
peripheral 304 via the debug transport layer 332 and com
munication link 306. The operating system image 344 is a
self contained binary file that contains embedded operating
system 346 and associated components, such as virtual
device drivers 348. When the operating system image 344 is
downloaded and stored in RAM 338, bootloader 342 trans
fers execution of the software development peripheral 304 to
the new operating system 346 which executes on central
processing unit 334.

0032. The software development peripheral 304 commu
nicates information, such as debug information and image
data, generated by operating system 346 to the virtual
input/output system 330 at computing device 302 via com
munication link 306 and debug transport layer 332. Key
board, mouse, and display information is remoted to com
puting device 302 with virtual device drivers 348 that are
included as part of the operating system image 344 when the
image is downloaded from computing device 302 to the
software development peripheral 304. The virtual drivers
348 communicate input/output information and data to the
computing device 302. For example, operating system 346
generates image data that is communicated to the virtual
input/output system 330 at computing device 302 via a
virtual display device driver 348, communication link 306,
and debug transport layer 332 to display device 324.

0033. The software development peripheral 304 is a
resource that can be used as a development tool to develop
Software applications and operating systems for a particular
platform that is different from the computing device 302
platform. From a developer's perspective, the software
development peripheral 304 appears as a processor emulator
in that it is easy to implement and interface with. A devel
oper can debug and execute the new operating system 346
that is executing software development peripheral 304 with
the keyboard 316, mouse 320, display device 324, and/or
touchscreen device 326 connected to computing device 302.
0034. The virtual input/output system 330 is an applica
tion that runs on computing device 302 and is the interface
component between computing device 302 and the virtual
drivers 348 on the software development peripheral 304.
The virtual input/output system 330 receives the information
generated by operating system 346 from the virtual drivers
348. Additionally, the virtual input/output system 330 gen
erates an associated virtual input/output display, Such as a
debugging window, on display device 324, or touch screen
device 326. When a developer is interfacing with the soft
ware development peripheral system from the virtual input/

Apr. 6, 2006

output display window, all of the keyboard, mouse, display,
and touch screen input/outputs are routed to and from the
software development peripheral 304.

0035) When a different window is selected on the com
puting device display 324, the focus of the input/outputs
from the keyboard, mouse, display, and touch screen periph
eral devices switches back to computing device 302. It is to
be appreciated that a virtual input/output display can still be
displayed in the background to display changes and updates
generated by operating system 346 on Software development
peripheral 304.

0036) The software development peripheral 304 facili
tates operating system kernel level debugging and testing.
That is, a kernel level debugging program stops the execu
tion of an entire system running on Software development
board 304 and no threads are scheduled. Debugging at the
kernel level requires the low level support features such as
the bootloader 342, and a kernel-independent transport layer
332.

0037. The software development peripheral 304 can be
implemented as a recognizable plug-and-play device. The
cross-platform development component 328 of computing
device 302 recognizes the configuration identification 340 of
the software development peripheral 304 when the software
development peripheral is communicatively linked with
computing device. The cross-platform development compo
nent 328 recognizes central processing unit 334 on the
software development peripheral 304 as a pre-defined pro
cessor type, such as an Intel, Hitachi, Motorola, SHX, or
other type of processor. When a developer configures and
builds a new operating system, for example, the cross
platform development component 328 generates the oper
ating system image 344 to include processor specific com
ponents, such as the virtual drivers 348. In a build
environment, decisions about which drivers and other com
ponents to include with a new operating system 346 are
automated by the cross-platform development component
328.

0038 FIG. 4 illustrates a cross-platform development
system 400 having network communication components to
remote network connectivity, such as to the Internet 402.
Computing device 302 includes a network communication
driver 404 that communicates information with virtual input/
output system 330 and communicates with a bus and/or
network interface 408. The bus and/or network interface 408
communicates with the network 402.

0.039 The software development peripheral 304 includes
a virtual network communication driver 408 that commu
nicates information from Software development peripheral
304 to the virtual input/output system 330 of computing
device 302. Network connectivity information generated by
operating system 346 on Software development peripheral
304 is communicated from the virtual network communica
tion driver 408 via communication link 306 and via the
network communication components of computing device
302 to network 402.

0040 FIG. 5 illustrates a cross-platform development
system 500 having an expansion component 502 to connect
input/output devices to software development peripheral
304. External input/output devices and components are
connected to the software development peripheral 304 via

US 2006/007S388 A1

expansion cards 504. The expansion cards 504 connect
components to test with new operating system 346 and/or
with variations of central processing unit 334. Such as a
video or display device 506, a keypad input 508 such as for
a cellular phone, a wireless input/output Such as a Bluetooth
component 510, and other input/output devices.
0041 FIG. 6 illustrates a method for cross-platform
development with a software development peripheral. The
order in which the method is described is not intended to be
construed as a limitation. Furthermore, the method can be
implemented in any Suitable hardware, Software, firmware,
or combination thereof.

0.042 At block 600, a computing device is communica
tively linked with a software development peripheral via
debug transport. At block 602, the software development
peripheral provides a configuration identification to a cross
platform development component of the computing device.
At block 604, the cross-platform development component of
the computing device recognizes the configuration identifi
cation.

0043. At block 606, an image of an operating system is
generated. The image of the operating system can be gen
erated with the cross-platform development component of
the computing device, and the image can be generated to
correspond to the configuration identification of the Software
development peripheral. At block 608, the image of the
operating system is communicated to the Software develop
ment peripheral.
0044) At block 610, the operating system corresponding
to the image is executed with the software development
peripheral. At block 612, information generated by the
operating system is communicated to the computing device.
The information is communicated from the software devel
opment peripheral with a virtual device driver to a virtual
input/output system of the computing device via the debug
transport.

0045. At block 614, the information generated by the
operating system at the Software development peripheral is
displayed with the computing device. The information can
include image data, for example, that is displayed with a
display device connected to the computing device. At block
616, the information generated by the operating system is
debugged with the cross-platform development component
of the computing device.
0046. At block 618, the software development peripheral

is connected to a network via a network communication
driver of the computing device. The network communica
tion driver is communicatively linked with the network and
with a virtual network communication driver of the software
development peripheral.

0047. At block 620, the software development peripheral
receives a device input from a virtual input/output system of
the computing device. The software development peripheral
can receive a keyboard or pointing device input, for
example, from the virtual input/output System of the com
puting device, where the keyboard or pointing device is
connected to the computing device.
0.048 FIG. 7 illustrates an example of a computing
environment 700 within which the computer, network, and
system architectures described herein can be either fully or

Apr. 6, 2006

partially implemented. Exemplary computing environment
700 is only one example of a computing system and is not
intended to Suggest any limitation as to the scope of use or
functionality of the network architectures. Neither should
the computing environment 700 be interpreted as having any
dependency or requirement relating to any one or combina
tion of components illustrated in the exemplary computing
environment 700.

0049. The computer and network architectures can be
implemented with numerous other general purpose or spe
cial purpose computing system environments or configura
tions. Examples of well known computing systems, envi
ronments, and/or configurations that may be suitable for use
include, but are not limited to, personal computers, server
computers, thin clients, thick clients, hand-held or laptop
devices, multiprocessor systems, microprocessor-based sys
tems, set top boxes, programmable consumer electronics,
network PCs, minicomputers, mainframe computers, gam
ing consoles, distributed computing environments that
include any of the above systems or devices, and the like.
0050 Methods for cross-platform development with a
software development peripheral may be described in the
general context of computer-executable instructions, such as
program modules, being executed by a computer. Generally,
program modules include routines, programs, objects, com
ponents, data structures, etc. that perform particular tasks or
implement particular abstract data types. The systems and
methods for cross-platform development with a software
development peripheral may also be practiced in distributed
computing environments where tasks are performed by
remote processing devices that are linked through a com
munications network. In a distributed computing environ
ment, program modules may be located in both local and
remote computer storage media including memory storage
devices.

0051. The computing environment 700 includes a gen
eral-purpose computing system in the form of a computer
702. The components of computer 702 can include, by are
not limited to, one or more processors or processing units
704, a system memory 706, and a system bus 708 that
couples various system components including the processor
704 to the system memory 706.
0052 The system bus 708 represents one or more of any
of several types of bus structures, including a memory bus
or memory controller, a peripheral bus, an accelerated
graphics port, and a processor or local bus using any of a
variety of bus architectures. By way of example, such
architectures can include an Industry Standard Architecture
(ISA) bus, a Micro Channel Architecture (MCA) bus, an
Enhanced ISA (EISA) bus, a Video Electronics Standards
Association (VESA) local bus, and a Peripheral Component
Interconnects (PCI) bus also known as a Mezzanine bus.
0053 Computer system 702 typically includes a variety
of computer readable media. Such media can be any avail
able media that is accessible by computer 702 and includes
both volatile and non-volatile media, removable and non
removable media. The system memory 706 includes com
puter readable media in the form of volatile memory, such
as random access memory (RAM) 710, and/or non-volatile
memory, such as read only memory (ROM) 712. A basic
input/output system (BIOS) 714, containing the basic rou
tines that help to transfer information between elements

US 2006/007S388 A1

within computer 702. Such as during start-up, is stored in
ROM 712. RAM 710 typically contains data and/or program
modules that are immediately accessible to and/or presently
operated on by the processing unit 704.
0054 Computer 702 can also include other removable/
non-removable, volatile/non-volatile computer storage
media. By way of example, FIG. 7 illustrates a hard disk
drive 716 for reading from and writing to a non-removable,
non-volatile magnetic media (not shown), a magnetic disk
drive 718 for reading from and writing to a removable,
non-volatile magnetic disk 720 (e.g., a “floppy disk’), and
an optical disk drive 722 for reading from and/or writing to
a removable, non-volatile optical disk 724 such as a CD
ROM, DVD-ROM, or other optical media. The hard disk
drive 716, magnetic disk drive 718, and optical disk drive
722 are each connected to the system bus 708 by one or more
data media interfaces 726. Alternatively, the hard disk drive
716, magnetic disk drive 718, and optical disk drive 722 can
be connected to the system bus 708 by a SCSI interface (not
shown).
0.055 The disk drives and their associated computer
readable media provide non-volatile storage of computer
readable instructions, data structures, program modules, and
other data for computer 702. Although the example illus
trates a hard disk 716, a removable magnetic disk 720, and
a removable optical disk 724, it is to be appreciated that
other types of computer readable media which can store data
that is accessible by a computer, such as magnetic cassettes
or other magnetic storage devices, flash memory cards,
CD-ROM, digital versatile disks (DVD) or other optical
storage, random access memories (RAM), read only memo
ries (ROM), electrically erasable programmable read-only
memory (EEPROM), and the like, can also be utilized to
implement the exemplary computing system and environ
ment.

0056. Any number of program modules can be stored on
the hard disk 716, magnetic disk 720, optical disk 724, ROM
712, and/or RAM 710, including by way of example, an
operating system 726, one or more application programs
728, other program modules 730, and program data 732.
Each of Such operating system 726, one or more application
programs 728, other program modules 730, and program
data 732 (or some combination thereof) may include an
embodiment of the systems and methods for cross-platform
development with a software development peripheral.
0057 Computer system 702 can include a variety of
computer readable media identified as communication
media. Communication media typically embodies computer
readable instructions, data structures, program modules, or
other data in a modulated data signal Such as a carrier wave
or other transport mechanism and includes any information
delivery media. The term “modulated data signal” means a
signal that has one or more of its characteristics set or
changed in Such a manner as to encode information in the
signal. By way of example, and not limitation, communi
cation media includes wired media Such as a wired network
or direct-wired connection, and wireless media Such as
acoustic, RF, infrared, and other wireless media. Combina
tions of any of the above are also included within the scope
of computer readable media.
0.058 A user can enter commands and information into
computer system 702 via input devices such as a keyboard

Apr. 6, 2006

734 and a pointing device 736 (e.g., a “mouse'). Other input
devices 738 (not shown specifically) may include a micro
phone, joystick, game pad, satellite dish, serial port, Scanner,
and/or the like. These and other input devices are connected
to the processing unit 704 via input/output interfaces 740
that are coupled to the system bus 708, but may be connected
by other interface and bus structures, such as a parallel port,
game port, or a universal serial bus (USB).
0059 A monitor 742 or other type of display device can
also be connected to the system bus 708 via an interface,
such as a video adapter 744. In addition to the monitor 742,
other output peripheral devices can include components
such as speakers (not shown) and a printer 746 which can be
connected to computer 702 via the input/output interfaces
740.

0060 Computer 702 can operate in a networked envi
ronment using logical connections to one or more remote
computers, such as a remote computing device 748. By way
of example, the remote computing device 748 can be a
personal computer, portable computer, a server, a router, a
network computer, a peer device or other common network
node, and the like. The remote computing device 748 is
illustrated as a portable computer that can include many or
all of the elements and features described herein relative to
computer system 702.
0061 Logical connections between computer 702 and the
remote computer 748 are depicted as a local area network
(LAN) 750 and a general wide area network (WAN) 752.
Such networking environments are commonplace in offices,
enterprise-wide computer networks, intranets, and the Inter
net. When implemented in a LAN networking environment,
the computer 702 is connected to a local network 750 via a
network interface or adapter 754. When implemented in a
WAN networking environment, the computer 702 typically
includes a modem 756 or other means for establishing
communications over the wide network 752. The modem
756, which can be internal or external to computer 702, can
be connected to the system bus 708 via the input/output
interfaces 740 or other appropriate mechanisms. It is to be
appreciated that the illustrated network connections are
exemplary and that other means of establishing communi
cation link(s) between the computers 702 and 748 can be
employed.

0062. In a networked environment, such as that illus
trated with computing environment 700, program modules
depicted relative to the computer 702, or portions thereof,
may be stored in a remote memory storage device. By way
of example, remote application programs 758 reside on a
memory device of remote computer 748. For purposes of
illustration, application programs and other executable pro
gram components, such as the operating system, are illus
trated herein as discrete blocks, although it is recognized that
Such programs and components reside at various times in
different storage components of the computer system 702,
and are executed by the data processor(s) of the computer.
0063. The illustrated and described systems and methods
for cross-platform development with a software develop
ment peripheral is a resource that provides seamless oper
ating system development from a desktop computing device
while utilizing already available peripheral input/output
devices Such as a display device, touch screen, keyboard,
mouse, and similar input/output devices connected to the

US 2006/007S388 A1

desktop computing device. Development results for an oper
ating system running on a software development peripheral
can be remotely displayed onto a display device connected
to the desktop computing device for easier development
interface.

0064. Although the systems and methods have been
described in language specific to structural features and/or
methodological steps, it is to be understood that the inven
tion defined in the appended claims is not necessarily limited
to the specific features or steps described. Rather, the
specific features and steps are disclosed as preferred forms
of implementing the claimed invention.

1. One or more computer readable media comprising
computer executable instructions that, when executed, direct
a software development system to:

generate an image of an operating system with a host
computing device;

communicate the image of the operating system from the
host computing device to a software development
peripheral;

execute the operating system corresponding to the image
with the software development peripheral;

communicate test information generated by the operating
system corresponding to the image from the Software
development peripheral to the host computing device;
and

display the test information generated by the operating
system at the host computing device.

2. One or more computer readable media as recited in
claim 1, further comprising computer executable instruc
tions that, when executed, direct the software development
system to recognize a configuration identification of the
software development peripheral with a cross-platform
development component of the host computing device when
the Software development peripheral is communicatively
linked with the host computing device.

3. One or more computer readable media as recited in
claim 1, further comprising computer executable instruc
tions that, when executed, direct the software development
system to generate the image of the operating system with a
cross-platform development component of the host comput
ing device.

4. One or more computer readable media as recited in
claim 1, further comprising computer executable instruc
tions that, when executed, direct the software development
system to recognize a configuration identification of the
software development peripheral with a cross-platform
development component of the host computing device, and
generate the image of the operating system with the cross
platform development component, the image of the operat
ing system corresponding to the configuration identification
of the software development peripheral.

5. One or more computer readable media as recited in
claim 1, further comprising computer executable instruc
tions that, when executed, direct the software development
system to debug the test information generated by the
operating system with a cross-platform development com
ponent of the host computing device.

6. One or more computer readable media as recited in
claim 1, further comprising computer executable instruc
tions that, when executed, direct the software development

Apr. 6, 2006

system to communicate the test information generated by the
operating system to the host computing device via a debug
transport.

7. One or more computer readable media as recited in
claim 1, further comprising computer executable instruc
tions that, when executed, direct the software development
system to communicate the test information generated by the
operating system to the host computing device with a virtual
device driver of the software development peripheral.

8. One or more computer readable media as recited in
claim 1, further comprising computer executable instruc
tions that, when executed, direct the software development
system to communicate image data generated by the oper
ating system to a virtual input/output system of the host
computing device with a virtual device driver of the soft
ware development peripheral.

9. One or more computer readable media as recited in
claim 1, further comprising computer executable instruc
tions that, when executed, direct the software development
system to receive a keyboard input with the software devel
opment peripheral from a virtual input/output System of the
host computing device, the keyboard input generated with a
keyboard connected to the host computing device.

10. One or more computer readable media as recited in
claim 1, further comprising computer executable instruc
tions that, when executed, direct the software development
system to receive a pointing device input with the software
development peripheral from a virtual input/output system
of the host computing device, the pointing device input
generated with a pointing device connected to the host
computing device.

11. A Software development peripheral, comprising:
means for receiving an image of an operating system

generated with a host computing device;
means for executing the operating system corresponding

to the image at the Software development peripheral;
means for communicating test information generated by

the operating system corresponding to the image from
the software development peripheral to the host com
puting device where the test information displayed.

12. A software development peripheral as recited in claim
11, further comprising means for recognizing a configura
tion identification of the software development peripheral
with a cross-platform development component of the host
computing device when the Software development periph
eral is communicatively linked with the host computing
device.

13. A software development peripheral as recited in claim
11, further comprising means for recognizing a configura
tion identification of the software development peripheral
with a cross-platform development component of the host
computing device, the image of the operating system cor
responding to the configuration identification of the software
development peripheral.

14. A software development peripheral as recited in claim
11, further comprising means for debugging the test infor
mation generated by the operating system with a cross
platform development component of the host computing
device.

15. A software development peripheral as recited in claim
11, further comprising means for receiving a keyboard input
with the software development peripheral from a virtual

US 2006/007S388 A1

input/output system of the host computing device, the key
board input generated with a keyboard connected to the host
computing device.

16. A software development peripheral as recited in claim
11, further comprising receiving a pointing device input with
the software development peripheral from a virtual input/

Apr. 6, 2006

output system of the host computing device, the pointing
device input generated with a pointing device connected to
the host computing device.

