A. K. ANDREWS.
MEANS FOR ROLLING WHEELS.
APPLICATION FILED APR. 26, 1909.

954,245. Patented Apr. 5, 1910. A

Wills A. Burrowes Wallow F. Vullinger Inventor-Haron K. Hnutrewsby his Attorneys-Howm Towsm

UNITED STATES PATENT OFFICE.

AARON K. ANDREWS, OF BURNHAM, PENNSYLVANIA, ASSIGNOR TO THE STANDARD STEEL WORKS COMPANY, OF BURNHAM, PENNSYLVANIA, A CORPORATION OF PENNSYLVANIA.

MEANS FOR ROLLING WHEELS.

954,245.

Specification of Letters Patent.

Patented Apr. 5, 1910.

Application filed April 26, 1909. Serial No. 492,098.

To all whom it may concern:

Be it known that I, AARON K. ANDREWS, a citizen of the United States, residing in Burnham, Pennsylvania, have invented certain Improvements in Means for Rolling Wheels, of which the following is a specification.

This invention relates to certain improvements in machines for rolling wheels and particularly flanged car wheels. Heretofore in this type of rolls the upper roll was of the same width as the face of the wheel and consequently the parting was at each edge of the periphery of the wheel forming a fin

15 at these points.

The object of this invention is to dispense with the fin at the periphery of the wheel and to increase the width of the peripheral roll making the parting between the rolls some distance away from the periphery of the wheel blank. This places the fin at an unobjectionable point and gives clearance between the wheels and each roll is materially strengthened.

The figure in the accompanying drawing is a diagrammatic sectional view through the peripheral roll and the wheel blank, as

shown by dotted lines.

A is the peripheral roll having a face a recessed at a' to form the flange of the wheel blank and a flange a at each side; the recesses between the flanges being of sufficient depth to locate the parting some distance back of the periphery of the wheel.

B and C are the two side rolls having faces b, b', and c, c' respectively which bear against the wheel and with the peripheral

roll A properly shape the rim d of the wheel D. The rolls B and C also have bearing faces b^2 and c^2 respectively, which bear against the peripheral roll A and each roll B and C has an annular recess b^3 , c^3 , respectively, which allows clearance between the flanges a^2 of the roll A and the rolls B and C, and also allows for the free flow of any 45 metal displaced by the rolling operation and also for the free escape of scale.

In the present instance the wheel blank is properly formed between dies in another machine and then introduced in the machine 50 having the rolls, as set forth above; the rolls reducing the rim and flange to the proper form and giving to the wheel its proper

diameter.

I claim:—
The combination in a machine for rolling wheels, of a grooved roll for rolling the periphery of a wheel, two inclined side bearing rolls for rolling the inner surface of the rim of the wheel, each of said inclined rolls having two rolling surfaces, one at an angle to the other, a bearing face resting against the side of the peripheral roll, and a groove between the bearing face and the rolling surface so as to provide a clear space between the edges of the peripheral roll and the inclined rolls.

In testimony whereof, I have signed my name to this specification, in the presence of two subscribing witnesses

of two subscribing witnesses.

AARON K. ANDREWS.

Witnesses:

F. K. DENNING,

O. R. Lewis.