

March 29, 1932.

I. GONYK

1,851,829

SCYTHE, STRAW KNIFE, AND THE LIKE

Filed Dec. 1, 1928

2 Sheets-Sheet 1

Fig. 1

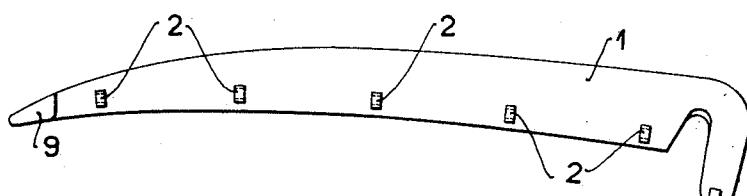


Fig. 2

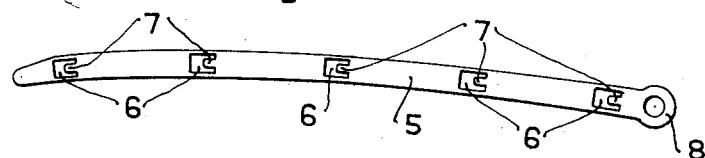


Fig. 3

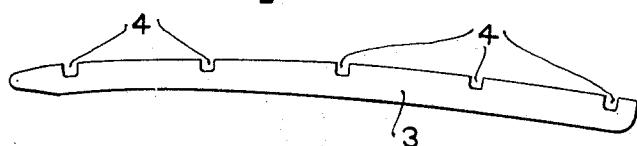


Fig. 4

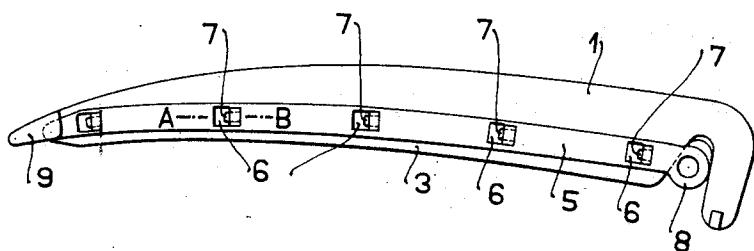
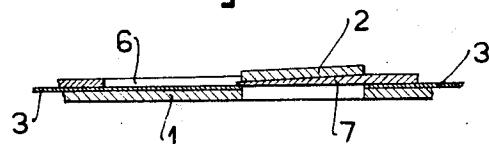



Fig. 5

Inventor,
Ignatz Gonyk,
By Henry Orth Jr. Atty.

March 29, 1932.

I. GONYK

1,851,829

SCYTHE, STRAW KNIFE, AND THE LIKE

Filed Dec. 1, 1928

2 Sheets-Sheet 2

Fig. 6

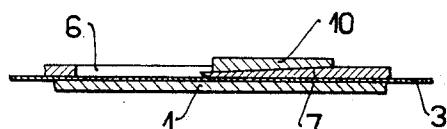


Fig. 7



Fig. 8

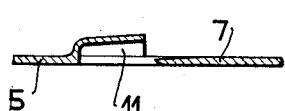


Fig. 9

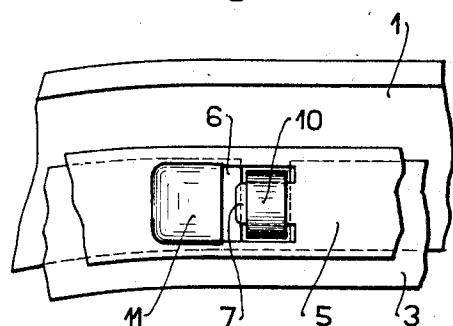
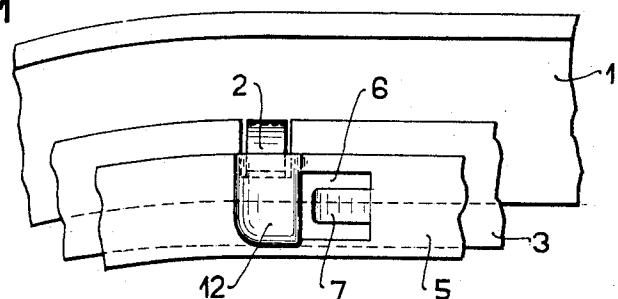



Fig. 10

Fig. 11

Inventor
Ignatz Gonyk,
By Henry Orth Jr. atty

UNITED STATES PATENT OFFICE

IGNATZ GONYK, OF VIENNA, AUSTRIA

SCYTHE, STRAW KNIFE, AND THE LIKE

Application filed December 1, 1928, Serial No. 322,991, and in Germany December 2, 1927.

The invention relates to scythes, straw knives and the like and more specially to scythes of the kind described in Patent No. 1,628,589, in which an interchangeable steel cutting blade or strip is arranged on a blunt main scythe blade by means of a special fastening rail, said rail being rigidly connected with said steel blade, whereby it is possible to utilize relatively thin strips by pressing together the scythe blade with the interchangeable blade and the rail.

To avoid a weight exceeding that of an ordinary scythe without impairing the required rigidity of the strip, the latter has to be very thin and should offer sufficient resistance against bending. The rail also has to be made of thin material in order to avoid excessive weight. These parts should offer a certain degree of stiffness and this is effected by tightly fastening them on the main blade, the increase of weight due to the fastening means thus being only very small.

The object of the invention is a further development of a scythe of the kind described and an improved connection of its parts, fulfilling the aforesaid requirement, and in which the fastening of the three parts of the scythe, i. e. the main blade, the cutting strip and the fastening rail, is effected by wedging them together without any remarkable increase of weight.

Several modifications of the scythe forming the object of the present invention are illustrated in the accompanying drawings wherein,

Figure 1 is the main blade of the scythe;
Fig. 2 the fastening rail;
Fig. 3 the steel cutting blade;
Fig. 4 the assembled scythe;
Fig. 5 is a section along line A—B of Fig. 4 on an enlarged scale;

Fig. 6 is the same section of a modification;
Fig. 7 is a view of a further modification of the fastening rail;

Fig. 8 is a section on line C—D of Fig. 7;
Fig. 9 is an assembled view of the structures shown in Figs. 6 and 7;
Fig. 10 is a modification of the fastening rail seen from above in the position shown in Fig. 11; and

Fig. 11 shows this fastening rail assembled with the other parts of the scythe.

In the construction shown by Figs. 1 to 5 U-shaped bridges 2 are stamped or pressed out from the plain main blade 1 so that a hollow space remains between the under side of each bridge and the top of the blade. In the steel cutting-strip 3 (Fig. 3) holes of corresponding form or transverse slots 4 are provided in which bridges 2 enter, so that the steel cutting strip lies flat on the surface of the main blade. The fastening rail 5 is provided with apertures 6 of larger size in the longitudinal direction than the U-shaped bridges 2 projecting from the plain blade. The fastening rail 5 is laid flat upon the blade 3. In order to fasten the blades 1 and 3 together the apertures 6 of the rail 5 are provided with tongues 7 which, by shifting the rail 5 towards the end of the blade 1, enter below the U-shaped bridges. These tongues 7 are tapered, whereby the blade 3 may be pressed against the main blade 1, the assembled parts (fastening rail, main blade and cutting blade) then forming a unit.

In order to obtain a tight connection of these parts the longitudinal tongues 7 are tapered towards the outer end of the scythe and the bridges 2 are correspondingly tapered in the same direction. By shifting the rail towards the outer end of the scythe the three parts of the scythe 1, 3, 5 are pressed tightly together. In order to facilitate shifting by hand and to prevent parts of vegetable matter or the like being caught, the fastening rail is provided at the larger scythe end with an annular projection 8.

The edge of the scythe blade 1 is provided with an overlap 9 under which the front end of the cutting blade 3 and the fastening rail 5 project, in order to be held down and secured against shifting and at the same time preventing straws or other parts of vegetable matter from being caught between the cutting blade and the main blade.

Instead of U-shaped bridges the main blade 1 may be provided with U-shaped guides 10 riveted to or otherwise connected with the main blade 1 (Fig. 6), the other features of

the three parts of the scythe being the same as in the modification shown in Figs. 1 to 5.

In the modification according to Figs. 7 to 9 the fastening rail 5 is provided, above the 5 apertures 6 and corresponding longitudinal tongues 7, with a pocket 11 open only at one side opposite to the tongues and serving as a guide along the bridges 2 or along the guides 10 respectively, in inserting the rail 5 and at 10 the same time preventing vegetable matter from intruding into the apertures.

As in certain scythes when interchanging the blades it is inconvenient to put the fastening rail on in its correct position so that 15 the pockets will overlap the U-shaped bridges. In the modification according to Figs. 10 and 11 a pocket 12 open at the top is provided which permits insertion of rail 5 from below by a transverse and a subsequent longitudinal shifting movement. The upper opening of 20 this pocket passes over the U-shaped bridges 2 or the guides 10 (Fig. 6) respectively until correct position for engagement of the parts is obtained by longitudinal shifting 25 of the rail.

I claim—

1. A device of the character described including a main blade, a series of U-shaped bridges carried thereby, a cutting blade engageable with the bridges, a fastening strip having apertures to receive the bridges, and a lateral tongue in each aperture adapted to enter between the bridges and surface of the cutting blade to lock the parts together.
2. A device of the character described, including a main blade, a series of U-shaped bridges carried thereby having beveled bearing surfaces, a cutting blade engageable with the bridges, a fastening strip having apertures to receive the bridges and a tapered tongue in each aperture adapted to engage the beveled surfaces of the bridge and thereby exert a wedging action on the cutting blade.
3. A device of the character described including a main blade, a series of U-shaped bridges carried thereby, a cutting blade engageable with the bridges, a fastening strip having apertures to receive the bridges, and a lateral tongue in each aperture adapted to enter between the bridges and surface of the cutting blade to lock the parts together, and pockets on the fastening strip to partly cover said apertures and forming guides for said bridges.
4. A device of the character described including a main blade, a series of U-shaped bridges carried thereby, a cutting blade engageable with the bridges, a fastening strip having apertures to receive the bridges, and a lateral tongue in each aperture adapted to enter between the bridges and surface of the cutting blade to lock the parts together, and pockets on the fastening strips adapted to 65 partly cover the apertures and open on one

side to allow the fastening strip to be moved transversely over said bridges.

In testimony that I claim the foregoing as my invention, I have signed my name.

IGNATZ GONYK. 70

75

80

85

90

95

100

105

110

115

120

125

130