Patented Jan. 25, 1927.

1,615,445

UNITED STATES PATENT OFFICE.

CHARLES H. DESAUTELS, OF SPRINGFIELD, MASSACHUSETTS, ASSIGNOR TO THE FISK RUBBER COMPANY, OF CHICOPEE FALLS, MASSACHUSETTS, A CORPORATION OF MASSACHUSETTS.

POCKET-BUILDING TABLE.

Application filed April 24, 1923. Serial No. 634,361.

The present invention relates to a table adapted for the building of the so-called “pockets” or endless band of cord fabric used in the manufacture of cord tires. These endless bands as generally constructed are of two or more plies in thickness, and need to be made accurately to the desired circumference. Prior to this invention it has been proposed to build these pockets on pivotally mounted flat boards (called “flapper boards”) so dimensioned as to give a band of the desired size. In the starting of the building of the first ply the leading end of the fabric has been held to the table by smoking an awl through it into the board. This awl was removed before the first ply was completed, leaving the partially formed band unattached to the board with an occasion thereby arising for errors in workmanship. A further disadvantage was the wearing away of the board due to repeated punchings with the awl. Prior flapper boards have also been difficult to work on when the superposed plies of the band were being rolled together owing to the turning of the board under the influence of the rolling force.

It is the object of the present invention to remove the above-mentioned difficulties and to provide a device for this purpose which will be economical in construction and rapid and easy in operation. The preferred form of the invention will now be described with particular reference to the accompanying drawings, in which—

Fig. 1 is a perspective illustrating the use of the invention;
Fig. 2 is a detail side elevation;
Fig. 3 is a section on line 3—3 of Fig. 2;
Fig. 4 is a section on line 4—4 of Fig. 2;
Fig. 5 is a detail plan;
Fig. 6 is a side elevation of the parts in Fig. 5; and
Fig. 7 is a view similar to Fig. 6 showing the parts in a different position.

The flapper board itself comprises a rectangular member 1, supported from a table 2 by a shaft 3 passing through bearings 4, 4′, fastened to the lower side of the table top as by screws 5, 5′. The board is fixed on the shaft as by a pin 6, while the shaft is free to turn in the bearings except as restrained by a clamp or brake 7. This is in the present case constructed as a block of wood having a V-shaped notch adapted to embrace the shaft. By means of thumbscrews 9, 9′, on bolts 10, 10′, the clamp can be drawn adjustably towards the table top to exert friction on the shaft and hold it in whatever position it may be in. Enough resistance is furnished by this clamp to allow the operator to run a rolling tube over the flat sides of the board without causing it to rotate objectionably.

Mounted in a recess in one side of the board is a clip 11 held to a support 13 by a pivot 14 passing through lugs 15 on the clip and lugs 16 on the support. The support is suitably fixed in a recess in the board so that the surface of the clip when in the normal position of Fig. 6 will lie flush with the surface of the board. A spring 17 is coiled around the pivot 14 and has its ends 18 and 18′ pressing respectively against the clip and the support to keep the clip in this position. A side extension or thumb piece 19 on the clip may be depressed by the operator to elevate the gripping end of the clip as shown in Fig. 7.

In operation one corner of the usual bias-cut fabric 20 is held under the clip as shown in Fig. 1 until the operator has completely formed the band. By reason of the flush construction of the clip the band may have its ends entirely joined with the exception of a section separated by the clip, the last-applied end of the band lying smoothly over the clip. The clip is now released by pressing the thumb piece, and the splicing of the band completed. During the forming of subsequent plies of the band the clip is not used, and lies smoothly out of the way.

Having thus described my invention, I claim:

1. In a device of the class described comprising a flat board pivoted at its center upon which a multi-ply band may be laminated; a clip fitting within a recess near one edge of the board so as to be flush with the surface thereof, the clip being supported intermediate its ends, and a spring normally holding the clip in its flush position, whereby one end of the clip may normally function to grip a corner of a bias-cut piece of fabric to hold it in place, and may be caused to release the fabric by pressure on the other end, whereby the clip forms in its normal position a continuation of the surface of the
board so that the multi-ply band can be laid flat upon the board and its several layers pressed into adherence without interference by the clip.

2. In a device of the class described having a rotatable support upon which a flat band may be formed; a shaft carrying the support, an adjustable brake acting upon the shaft to hold the support frictionally in any desired position, a clip fitting within a recess near one edge of the board so as to be flush with the surface thereof, the clip being supported intermediate its ends, and a spring normally holding the clip in its flush position, whereby one end of the clip may normally function to grip a corner of a bias-cut piece of fabric to hold it in place, and may be caused to release the fabric by pressure on the other end.

CHARLES H. DESAUTELS.