
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2004/0143591 A1

US 2004.0143591A1

Onyeabor (43) Pub. Date: Jul. 22, 2004

(54) METHOD AND SYSTEM FOR (52) U.S. Cl. .. 707/102
DATABASE-DRIVEN, SCALABLE WEB PAGE
DEVELOPMENT, DEPLOYMENT,
DOWNLOAD, AND EXECUTION (57) ABSTRACT

(76)

(21)

(22)

(63)

(51)

Inventor: Gillis E. Onyeabor, Chandler, AZ (US)

Correspondence Address:
Robert A. Parsons
Suite 260
340 East Palm Lane
Phoenix, AZ 85004 (US)

Appl. No.: 10/635,084

Filed: Aug. 5, 2003

Related U.S. Application Data

Continuation of application No. 09/231,123, filed on
Jan. 15, 1999, now Pat. No. 6,631,512.

Publication Classification

Int. Cl. .. G06F 7700

CENT-SOE
COMPUTER

WEB-PAGE
COMPUTER

DEVELOPMENT

AQ

AQ

A System and method for Web page development, deploy
ment, download, and execution include and utilize a Web
page development computer (110), a server computer (140),
and a client computer (170). Development computer initial
izes (301) a page development tool which a developer uses
to create a Web page document by placing components (320)
on a Web page (220), whereupon the tool incorporates (324)
executable code into the Web page document. Server com
puter Stores the Web page document and, upon client com
puter request, retrieves (714) and sends (716) the Web page
document to client computer. Client computer receives the
Web page document and displays the corresponding Web
page. If the Web page includes a database-related compo
nent, client computer requests (1030) data from server
computer. After receiving (1032) the corresponding data, the
data is displayed (1032) within the database-related compo
nent, and state variables are stored (1034) for later use.

SERVER-SIDE
COMPUTER

A)

Patent Application Publication Jul. 22, 2004 Sheet 1 of 13 US 2004/0143591 A1

CLIENT-SIDE
COMPUTER

AQ

SERVER-SIDE
COMPUTER

Ay

WEB-PAGE
DEVELOPMENT
COMPUTER

A A32/

Patent Application Publication Jul. 22, 2004 Sheet 2 of 13

200 N

FILE EOT DATABASE OPTIONS PAGE EST HELP
PACE ST:

22 Dy

220 EMPLOYEE DATA gig D Di - a i?

FIRST NAME LAST NAME
JENNIFER DAVS

STREET
100 CRANBERRY ST.

STATE CITY
WELSEY MA

JOETTLE PROGRAMMER HIRE DATE//93
SSN4050977 BRTH DATE 7/15/70

US 2004/0143591 A1

COMPONENT PROPERTIES O
DBEDT2: CTOBEDT t
CHARCASE ECNORML 2.
COLOR CWINDOW
ENABLED TRUE
HEIGHT
HINT

MAXLENGTH 20
OBEDT

Patent Application Publication Jul. 22, 2004 Sheet 3 of 13 US 2004/0143591 A1

INITIALIZE PAGE DEVELOPMENT TOOL

NEW
OPEN EXISTING APPLICATION START NEW

APPLICATION

YES
APPLICATION?

RS
DISPLAY TOOBAR, COMPONENT
PROPERTIES, AND BLANK PAGE

OEVELOPMENT FELDS

RETRIEVE PAGE
OOCUMENT FOR
SELECTED PAGE

CREATE PAGE DOCUMENT OSPLAY TOOLBAR, COMPONENT
PROPERTIES, AND SELECTED

PAGE FIELDS

BA
WAIT FOR DEVELOPER

PLACE COMPONEN
ON PAGE DETERMNE INPUT TYPE

ADO COMPONEN
LINK COMPONENT
EDT COMPONENT CODE
DELETE COMPONENT
EDIT COMPONENI PROPERTY
SAVE AND OUT
OUT WITHOUT SAVING
OPEN NEW OR EXISTING ARPLICATION

RETRIEVE CODE

NCORPORATE CODE
NO PAGE DOCUMEN

IDENTIFY LINKED
COMPONENS

STORE PAGE
DOCUMENT

62

DEERNINE
DESTINATION
SERVER DISPLAY CODE

EOTOR SCREEN
REMOVE COMPONENT
FROM PAGE DISPLAY

COMPARE
AND ENCRYPT

PAGE IDENTIFY MASTER
AND DEA

EDT SOURCE DELETE COMPONEN
CODE FROM PAGE

DOCUMEN
AA.

REPLACE PREVIOUS
SEND PAGE

CREATE LINKING DOCUMENT
CODE CODE WITH NEW CODE TO SERVER

N PAGE DOCUMENT
SR SO

AOD CODE TO MODIFY COMPONENT YES N
PAGE DOCUMENTS CODE

SA

Az?
CLOSE

APPLICATION

Patent Application Publication Jul. 22, 2004 Sheet 4 of 13 US 2004/0143591 A1

-- AW)

CODE: EOTOR
EILE EDIT SEARCH PACEUST OPTIONS HELP

STO ROUTINES COMPONENTS OP/KEYWORDS DATASET FIELDS METHODS
AQ

Procedure page 1.08edit 6changed (Sender: TObject);
begin CUCKED

Focused DBCLICK
end; DRAGOROPPED
(The editor colors can be customized) ORACGEDOVER

ENDDRAC
ENTERED
EXIT

AAA KEYDOWN
KEYPRESS
KEYUP
MOUSEDOWN
MOUSEMOVE
MOUSEUP
STARTDRAC

Patent Application Publication Jul. 22, 2004 Sheet 5 of 13 US 2004/0143591 A1

52
DATA COMPONENT PUACED ON PAGE

SQA
PROMPT DEVELOPER FOR DATABASE ALAS

SQS
DISPLAY DATABASE TABLES

SQR
WAT FOR DEVELOPER SELECTION

S()
ADD YABLE FELDS TO PACE

32
CREATE CODE FOR EACH FIELD

SA
WAT FOR DEVELOPER INPUT

S
MOVE, RESIZE, OR 56

OTHERWISE DERMNE INPUT TYPE
MODIFY FORMAT 1. MODIFY OISPLAY FORMAT

2. DELETE FIELD
3. SPECIFY FELD CONSTRAINT
4. DONE

52) 52S
OELETE SPECIFIED NCORPORATE

FEig go SEE,SR; CODEN PAGE A CONSTRAINT DOCUMENT
522

DELETE FIELO
CODE

/7.5

Patent Application Publication Jul. 22, 2004 Sheet 6 of 13

ENCRYPTION COMMUNICATION
MEANS HARDWARE

DAA STORAGE PROCESSOR
MEANS

USER NPUT MONOR

RETRIEVE WEB PAGE(S)

STORE WEB PAGE(S)
(2.

A.

RECEIVE CEN REOUES FOR
STORED WEB PAGE OR DATA

QR

<scs
RETREVE REQUESTED

PAGE OR DATA

SEND PAGE OR DATA

SEND ACCESS DENEED
MESSAGE TO CENT

US 2004/0143591 A1

p

Az7

1 Patent Application Publication Jul. 22, 2004 Sheet 7 of 13 US 2004/0143591 A

SECURE
COMPONENT OR

PAGE?

YES

REQUEST ACCESS
INFORMATION

COMPARE TO ACCESS LIST
OR USER PROFILE LIST

NO

NO

8A

RNS

AUTHORIZED?

8) 82 ACCESS APPROVED ACCESS DENIED

A) p
FIRST

ENCRYPTION/DECRYPTION COMMUNICATION
MEANS HARDWARE

8 - an on as - -
- -

DATA STORAGE PROCESSOR SECONO
MEANS MEANS COMMUNICATION

HARDWARE

Patent Application Publication Jul. 22, 2004 Sheet 8 of 13 US 2004/0143591 A1

NITIALZE BROWSER
W

WAT FOR USER INPUT
OR PAGE COMMAND

DETERMINE INPUT TYPE
PAGE REOUEST
DATA REOUEST
NON-PAGE FOR DATA REQUEST
BRIEFCASE REQUEST

1 BREFCASE
DESRED?

DELETE PAGE,
DATA AND

STATE
VARIABLES

SEND ACCESS
DENIED MESSAGE

TO USER
LOCALLY
STOREO

AWS - Locate AND
REOUEST PAGE DISPLAY DATA

FROM APPROPRIATE YES1 STORABLE R
SERVE PAGE AND/OR

DATA RECEIVE AND
DISPLAY

REQUEST DATA
FROM APPROPRIATE

SERVER
STORE PAGE,
DATA AND
SATE

VARIABLES LOCALLY
STOREO? DELETE PAGE,

DATA AND
SATE

WARIABLES

43591 A1 Patent Application Publication Jul. 22, 2004 Sheet 9 of 13 US 2004/01435

NITALIZE BROWSER

OAD LOCALLY
STORED WEB PAGE

WWA

W YES
SEND OLD RECORDS AND

MODIFIED RECORDS TO SERVER

SEND ACCESS OENIED
MESSACE TO USER

SERVER COMPARES OLD
RECORDS WITH EXISTING RECORDS

WA
SEND ACCESS DENIED
MESSAGE TO CLIENT

SEND EXISTING RECORDS TO
CLIENT AND QUERY WHETHER

REPLACEMENT DESIRED

REPLACEMENT
DESIRED?

Az//

Patent Application Publication Jul. 22, 2004 Sheet 10 of 13 US 2004/0143591 A1

AQ p

NENCRYPTION/DECRYPTION COMMUNICATION
MEANS HARDWARE

DATA STORAGE PROCESSOR
MEANS MEANS MONITOR

2

USER INPUT 2A
MEANS

Aiz /?

CREATE DATA REQUEST
USING FIRST PAGE
STATE WARIABLES

DISPLAY LINKED PAGE
AND DATA

Az/f

US 2004/0143591 A1

Patent Application Publication Jul. 22, 2004 Sheet 12 of 13 US 2004/0143591 A1

FLE OPTIONS HELP
AAQ8 - CUSIOR -- ORDERER

- T -

AW

CUSOVER NIKE WINXY Ox
PLACE ORDER SALES

Oslo kg deter

CSTNO is a D D, a r

\A22

Patent Application Publication Jul. 22, 2004 Sheet 13 of 13 US 2004/0143591 A1

EGIN

RECEIVE USER INPUT
REOUESTING DATA

LINKED OCALLY PAGE SCROLL2 STORED?

RETRIEVE AND
DISPLAY DATA

FIRST PAGE SENDS DAA
REOUEST TO LINKED PAGE

CREATE DATA REQUEST
USING STATE WARIABLES

SEND REQUEST
TO SERVER

RECEIVE DATA

DISPLAY DATA

UPDATE
STATE WARIABLES

SA

56

S.

YS2)

Aiz/5

US 2004/O143591 A1

METHOD AND SYSTEM FOR
DATABASE-DRIVEN, SCALABLE WEB PAGE
DEVELOPMENT, DEPLOYMENT, DOWNLOAD,

AND EXECUTION

FIELD OF THE INVENTION

0001. The present invention relates generally to database
access over the Internet and, more particularly, to Web page
development, deployment, and execution conducive to data
base acceSS and manipulation over the Internet.

BACKGROUND OF THE INVENTION

0002 The World WideWeb, commonly referred to as the
“Web,” has become a valuable Internet resource for busi
neSS, Scientific, and personal research and promotion. Indi
viduals and businesses alike create and post Web pages
containing all types of information. The files defining Such
Web pages are typically Stored on a "server” computer
which is accessible to “client” computers via the Internet or
Some other network. Once associated with a server, a Web
page can be accessed and viewed on a client computer using
commercially-available Web browsers, such as Netscape
Navigator and Microsoft Explorer.
0003. As the Web has become more popular, Web pages
have become more complex and businesses have asked Web
page developerS to provide more and more information
display capabilities. One Such capability, which has become
a highly-desirable Web application, is the capability to
remotely access and manipulate data. For example, a com
pany may want its Sales perSonnel to have Internet access to
the company's databases while those Sales perSonnel are in
the field. As is described in detail below, prior art systems
Struggle with Internet database applications, Specifically in
the areas of efficiency, Security, State management, and data
“briefcasing.”

0004. As used herein, a “database' refers to a collection
of information organized in tables and Stored on a Server
computer or accessible to a Server computer via a database
manager. A “table” refers to a collection of data which
organizes Similar things together. For example, in a com
pany database, one table might keep track of employee
information and another table might keep track of Sales
activities. Every table contains columns and rows. For the
purposes of this description, a column defines what type of
information is gathered (e.g., name, hire date, Salary) and a
row Stores that information (e.g., a row exists for each
Salesperson). A row of data is also referred to herein as a
“record,” and a column of data is referred to herein as a
“field.” A “relational database' is a database having multiple
tables whose records are linked together by keys.
0005 Early in the Web’s history, the HyperTextMarkup
Language, commonly referred to as “HTML,” was devel
oped. HTML is a language that describes a Web page, and
it is interpretable by virtually all commercially-available
Web browsers.

0006. One disadvantage to using an HTML document for
database access applications is that HTML document based
access is very inefficient. If an HTML document is being
used to display information from a database lookup, then
each time the user requests a different Set of data, the Server
must invoke a “Common Gateway Interface”. Or “CGI’

Jul. 22, 2004

Script which interacts with the database manager to obtain
the data. Then the server must send all information on the
page to the browser. Even though the information in only a
Single field is different (i.e., the field containing the new set
of data), all static and unmodified page information must
also be downloaded. This HTML limitation leads to slow
and inefficient database access. In addition, the CGI Scripts
add a layer of processing between the Server and the
database, thus adding a level of inefficiency to the System.

0007 Another problem with using pure HTML docu
ments for database applications Springs from the interactive
nature of Such applications. Database acceSS is considered an
interactive Web application because it often requires a client
computer to interchange many messages with a Server. This
is particularly true when a user wants to acceSS, via a Web
page, a large number of records within a database table.
0008 HTML was developed primarily as a language to
enable text displays, and it is not well-Suited to interactive
applications, including database acceSS and manipulation
applications. Therefore, many Web pages, including data
base-oriented Web pages, have added Java, JavaScript, and
ActiveX controls to their HTML documents in order to
provide better interactive capabilities. Unfortunately, how
ever, the use of Java, JavaScript, and Active X controls pose
Serious Security problems to the integrity of computers and
computer networkS.
0009 Java is a programming language which is specially
adapted to Support the development of Internet applications.
Java enables an application designer to transport objects
acroSS the Internet, hence enabling database access. During
an interactive Session with a Web page, Java, JavaScript, and
Active X operate similarly. In the interests of brevity, only
Java is discussed, although the Security problems pertaining
to Java exist also with JavaScript and ActiveX.
0010 A Java “applet” is a Java program specifically
designed for incorporation by an HTML document. Rather
than including the actual applet code within an HTML
document, “canned' applet code is often downloaded from
Somewhere else on the Web and then executed on the client
machine. Such an applet is referred to generically as a
“downloaded executable.” In order to download an applet,
an HTML document would include, among other things, the
Uniform Resource Locator, or “URL.” identifying the loca
tion of the applet on the Web. For example, an HTML
document could invoke an applet called “Clock’ Stored at
http://java. Sun.com/openStudio/index.html. During opera
tion of a Web page which invokes that applet, compiled
“Clock' applet code is dowVnloaded from "java.sun.com” to
the client machine. The client's browser then executes the
applet on the client machine.
0011. One enormous problem which faces Web page
users is the Security riskS created by allowing downloaded
executables to be run on the client machine. The Java applet
is a major culprit, although Similar Security problems exist
with JavaScript and ActiveX. Java applets, which can be
downloaded from anywhere, may include “malicious' code.
Upon execution of the downloaded applet, Such applet
could, for example, perform unauthorized file operations on
the client machine.

0012 Several solutions have been developed to deal with
the threat of the malicious Java applet, but none have yet

US 2004/O143591 A1

proved to be efficient and foolproof. For example, Finjan
Software has developed the “SurfinShield Xtra' tool which,
when a browser attempts to download an applet or control,
Scans the item in a fashion Similar to an antivirus program.
Unfortunately, many Web pages include numerous applets,
and the Scanning operation can Substantially increase the
time necessary to download and display a page. In addition,
any antivirus-type tool is only as good as the level of
ingenuity of the malicious-code creators at the time the
antivirus tool is released. Therefore, it is likely that a user
would need to update its antivirus-type Software on a regular
basis.

0013 Microsoft recently released a similar antivirus-like
solution called “Dynamic HTML,” or “DHTML," which is
intended to replace ActiveX. DHTML is more secure than
ActiveX because it is interpreted by the browser, which can
override the code and prevent System violations. However,
as with HTML, DHTML requires a server to dynamically
create a Web page each time an update to the page is
requested. For example, if a user interacting with a
DHTML-generated page requests a new piece of data in a
Single field within the page, a CGI Script would be invoked
at the Server to regenerate the entire page, even though only
one piece of data changed. Thus, DHTML may reduce some
Security risks, but it requires developerS to create Server-side
CGI scripts, and DHTML also has efficiency problems when
used in database applications.

0.014 Besides the Security risks associated with using
downloaded executables within an HTML document,
another challenge to providing interactive database access is
that the nature of Web communications makes State man
agement difficult. "State management” refers to the main
tenance of information which describes the particular State
that a program is in. In a database application, State man
agement enables a System to keep track of who is accessing
a database, what records that user has accessed, and what
records would be next.

0.015 To illustrate the Internet-related State management
problem, a brief Internet data acceSS Scenario is described.
When a user's client machine requests, via a Web page,
access to an initial Set of data accessible to a remote Server,
the client browser establishes a connection with the remote
Server, sends a request, receives the requested data (if it is
available), and closes the connection. When the client
machine requests the next set of data, the browser must
re-establish the connection with the remote Server and Send
a new request. However, the remote Server views the request
in a vacuum and, thus, has no idea that the client previously
requested records, what records the client previously
requested, or what records would be next for that client. The
browser also does not keep track of State information.
Therefore, prior art Systems did not maintain any State
management information or they performed State manage
ment in an inefficient manner by allocating resources for
each client, hoping the client would come back. The latter
approach consumes great amounts of Server resources and
also limits the number of possible users.

0016. In the Local Area Network (“LAN”) and Wide
Area Network (“WAN”) situations, a persistent connection
to the Server is maintained, thus providing easy acceSS and
State management by the Server. So, there is never any doubt
about which database table a user is connected to, what

Jul. 22, 2004

record of that table the user is currently accessing, what
record the user previously accessed, or what record is the
next record. In the LAN/WAN situation, it is easy to provide
State management for one or more simultaneous users.
However, a persistent connection would be inefficient for
Internet applications because it would consume too much
bandwidth and other System resources.
0017. Because prior-art servers were unable to maintain
State information, Several applications have been created to
provide Some Semblance of State management in the interest
of enabling a user to browse information within a database.
One such tool is “IntraBuilder” from Inprise Corporation
(a.k.a. Borland International). IntraBuilder is a tool which
runs on the Server machine. When a new user requests access
to a database, the IntraBuilder tool creates an "agent' on the
Server for that user. The agent is responsible for knowing
what user it is associated with and for providing State
management for that user. One disadvantage to this agent
concept is that hundreds or even thousands of agents could
Simultaneously exist on a Server which provides access to
one or more particularly-popular databases. The presence of
a Substantial number of agents is a burden on the Server and
limits the Server's ability to provide database access.
0018. Another problem originally encountered with the
IntraBuilder tool was that the browser had difficulty posi
tioning an active page component (i.e., an element of a Web
page which includes data) in the proper place on the page.
The browser would independently calculate the compo
nent's position. More often than not, the browser-calculated
position would be different from the desired position.
0019. In order to alleviate this problem, Netscape appar
ently modified its browser to recognize the messages coming
from the server side when the Web page is posted. That
enhanced the Netscape browser's ability to post the infor
mation in a relatively close position to the desired position.
However, the Netscape modification has not resulted in an
optimum solution because it only works for a Web page with
a relatively Small number of components (e.g., approxi
mately 20). Many Web page designers incorporate numerous
components, Sometimes in the hundreds. For example, a
particular database may have Sixty or more fields that a
designer would like the page to display. Thus, the Web page
would require Sixty or more components. The current
Netscape browser would be ill equipped to handle Such a
page.

0020. Another tool for providing database access is
“Emrys Visions” from Emrys Solutions, Inc. The Emrys
Visions tool is located and runs on the client machine. The
Emrys Visions tool also seeks to solve the problem of state
management inherent in the make-transfer-break data trans
fer protocol by forcing the browser to maintain a persistent
connection with the Server during the entire database brows
ing Session. Although this enables State management to be
maintained, a major disadvantage to the EmryS Visions
Solution is that it forces the client to continuously consume
bandwidth, both on the client and server sides. As stated
previously, Such a persistent connection is undesirable for an
Internet application because it consumes Substantially more
bandwidth than may be necessary.
0021 Another disadvantage to prior-art systems is that
they do not adequately provide the ability to “briefcase”
data. “Briefcasing” refers to a user's ability to download

US 2004/O143591 A1

data from a server to his client machine, manipulate the data
offline, re-connect to the Server at a later time, and post his
changes to the database. The inability to briefcase is related
to the inability to maintain State information adequately. In
prior-art Systems, because of the lack of State management
capabilities, the Server would have no idea how to reconcile
a user's changes with existing records or with changes
posted by other users. Although one Solution might be to
enable a server or database manager to place a lock on the
records to prevent other users from making changes after
one user downloads those records, Such an approach would
be impractical in a situation where many users need to
manipulate the data.
0022. One additional disadvantage to prior-art systems is
that current Web browserS enable a user to jump from page
to page, but a Single instance of a browser will not display
multiple pages simultaneously. Therefore, if a user wants to
View multiple pages simultaneously, the user must launch
another instance of the Web browser. This consumes addi
tional client computer resources and complicates the user's
interaction with the browsers. In addition, no mechanism
exists to link the Simultaneously displayed pages. The user
interacts with each page independently.
0023. What is needed is a way to access data over the
Internet which is efficient and provides State management
without unduly consuming bandwidth or other server
resources. What is further needed is a database access tool
which eliminates Security risks imposed by malicious code
without a reduction in download and display efficiency.
What is further needed is a way to provide an Internet-based
“briefcasing capability for database acceSS and modifica
tion. What is further needed is a way for Web-page users to
View and interact with multiple pages simultaneously, Sur
facing the relationships of database tables without launching
another instance of the Web browser.

BRIEF DESCRIPTION OF THE DRAWINGS

0024 FIG. 1 illustrates a simplified hardware diagram of
a System in accordance with a preferred embodiment of the
present invention;
0.025 FIG. 2 illustrates a page editor display in accor
dance with a preferred embodiment of the present invention;
0026 FIG. 3 illustrates a flowchart of a method for
creating and deploying a Web page in accordance with a
preferred embodiment of the present invention;
0.027 FIG. 4 illustrates an exemplary code editor display
in accordance with a preferred embodiment of the present
invention;
0028 FIG. 5 illustrates a flowchart of a method for
adding a database component to a Web page in accordance
with a preferred embodiment of the present invention;
0029 FIG. 6 illustrates a simplified hardware block
diagram of a Web page development computer in accor
dance with a preferred embodiment of the present invention;
0030 FIG. 7 illustrates a flowchart of a method for
receiving, Storing, and delivering Web pages in accordance
with a preferred embodiment of the present invention;
0031 FIG. 8 illustrates a flowchart of a method for
controlling access to a Web page or data in accordance with
a preferred embodiment of the present invention;

Jul. 22, 2004

0032 FIG. 9 illustrates a simplified hardware block
diagram of a Server-side computer in accordance with a
preferred embodiment of the present invention;
0033 FIG. 10 illustrates a flowchart of a method for
requesting, receiving, and displaying a Web page and/or data
in accordance with a preferred embodiment of the present
invention;
0034 FIG. 11 illustrates a flowchart of a method for
posting modified data to a remote database in accordance
with a preferred embodiment of the present invention;
0035 FIG. 12 illustrates a simplified hardware block
diagram of a client-side computer in accordance with a
preferred embodiment of the present invention;
0036 FIG. 13 illustrates a flowchart of a method for
multi-page data linking in accordance with a preferred
embodiment of the present invention;
0037 FIG. 14 illustrates an exemplary linked Web page
display in accordance with a preferred embodiment of the
present invention; and
0038 FIG. 15 illustrates a flowchart of a method for
Scrolling through data in association with linked pages in
accordance with a preferred embodiment of the present
invention.

DESCRIPTION OF THE PREFERRED
EMBODIMENT

0039 The method and apparatus of the present invention
provides a way to access data over the Internet while
providing efficient, accurate State management without
unduly consuming bandwidth or other Server resources. The
method and apparatus of the present invention further pro
vides a way to provide an Internet-based “briefcasing”
capability for database acceSS and modification. The method
and apparatus of the present invention further provides a
database access tool which eliminates Security risks imposed
by malicious code without a reduction in download and
display efficiency.

0040. In a preferred embodiment, the method and appa
ratus of the present invention include a Web page develop
ment tool which enables a developer to create a Web page
document which includes executable code, thus eliminating
the need to download foreign executables during display and
manipulation of a page. This virtually eliminates the risk that
malicious code will be downloaded and allowed to wreak
havoc on the client machine.

0041. The pages developed in accordance with a pre
ferred embodiment are particularly adept at handling data
base acceSS and manipulation, in part because the client
machine performs the State management tasks. This reduces
the load on the Server to maintain numerous "agents' and
also eliminates the need to maintain a persistent connection
during a user's database acceSS Session. Finally, it enables a
user easily to “briefcase' data, edit it offline, and reconcile
the modified data with the database entries at a later date.

0042. In a preferred embodiment, the method and appa
ratus of the present invention utilize a modified version of a
commonly known, object-oriented Software language in
order to provide a very short learning curve and a likelihood
that most platforms will Support the language. In a preferred

US 2004/O143591 A1

embodiment, the language is object oriented Pascal with
Some extensions, although other languages also could be
used Such as, for example, C++.
0.043 Finally, a preferred embodiment of the method and
apparatus of the present invention provides encryption and
decryption to increase the Security of the System. In a
preferred embodiment, Such encryption and decryption is
performed on Web pages, data requests, and data messages.
0044 FIG. 1 illustrates a simplified hardware diagram of
a System in accordance with a preferred embodiment of the
present invention. System 100 includes Web page develop
ment computer 110, server-side computer 140, and client
side computer 170. Web page development computer 110
and client-side computer 170 are shown connected to server
side computer 140 through the Internet 102. In alternate
embodiments, the method and apparatus of the present
invention also could be used in a system where either or both
computers 110, 170 are connected to server-side computer
140 over a LAN, WAN, or other network or link, where Such
link could be electronic, optical, wireless, or Some combi
nation thereof.

0.045 Web page development computer 110 and client
side computer 170 could be the same or different machines.
Because the Web page development and client functions are
different, they are shown as Separate computers for the ease
of illustration. In addition, only one Web page development
computer 110 and one client-side computer 170 are shown
connected to server-side computer 140. In Some cases,
substantially more than one of computers 110 and/or 170
could be connected to server-side computer 140.
0046) A brief explanation of the interaction between
computers 110, 140, and 170 follows. First, Web page
development computer 110 is used by a human developer to
create a Web page in accordance with a preferred embodi
ment. In a preferred embodiment, Web page development
computer 110 then encrypts the page, although the encryp
tion Step is not essential. Web page development computer
110 then sends the Web page to server-side computer 140
over the Internet or some other link. When the Web page is
requested by client-side computer 170, Server-side computer
140 sends the Web page to client-side computer 170 for its
use. The Web page can then request data from Server-side
computer 140. The Web page maintains state information
during the database interaction Session, and possibly
beyond.
0047. In an alternate embodiment, Web pages created by
computer 110 could be sent to the server in some other
fashion besides Sending the information over a physical link
to the Server. For example, one or more Web pages could be
Stored on a disk or other Storage medium, and the pages
Stored on that Storage medium could be loaded onto the
server-side computer 140.
0.048. The functionality, method, and more detailed appa
ratus associated with Web page development computer 110
are described in conjunction with FIGS. 2-6. The function
ality, method, and more detailed apparatus associated with
server-side computer 140 are described in conjunction with
FIGS. 7-9. Finally, the functionality, method, and more
detailed apparatus associated with client-side computer 170
are described in conjunction with FIGS. 10-15.
0049. In order to build a Web page or to edit a previously
created page, the page developer, via Web page development

Jul. 22, 2004

computer 110, invokes a program which provides the func
tions described below. After being invoked, the program
displays a “page editor display' which includes Several
fields which the user manipulates to create a Web page.
0050 FIG. 2 illustrates a page editor display in accor
dance with a preferred embodiment of the present invention.
The page editor display 200 shows three fields 210, 220,
230. Page builder field 220 shows the Web page currently
under design. Upon creation of a new page, page builder
field 220 would show a blank page. The page designer would
then add components to the blank page to create a new page.
In a preferred embodiment, a designer could simultaneously
edit multiple pages using the tool. In a preferred embodi
ment, when multiple pages are being edited, the currently
active page would be shown within page builder field 220,
and the other pages would be hidden. In an alternate
embodiment, Such pages would be shown cascaded within
page builder field 200.
0051 Component properties field 230 includes a list of
properties that a particular component may have. In the
example shown, the developer has Selected an edit box
component 222 within page builder field 220. The selected
component is used to display the “First Name” of an
employee. The particular component properties for Such a
text component are listed in the left column of the compo
nent properties field 230, and the value for each component
property is listed in the right column. Component properties
could include, for example, component position informa
tion, Size information, color, text characteristics, and other
relevant properties. Originally, the component properties
would be default properties for the particular type of com
ponent. If desired, the developer can edit the entries in the
right column of component properties field 230 to Specify
different values of the component properties for the Selected
component.

0.052 Toolbar field 210 includes icons 212 which enable
the developer to perform functions Such as adding a new
component to a page, editing Source code or properties for
a component, linking a component with a component on the
Same page or another page, and aligning components,
among other things.

0053. In a preferred embodiment, in order to add a
component to a page, one Such icon 212 produces a drop
down menu of components which could be added to the page
(e.g., by dragging). These selectable components could
include, for example, a button, an edit box for inputting text,
a label, an image, an audio icon, a data display box, a menu,
a panel, and a hyperlink, although more, fewer, or different
components also could be Selectable. Adding components is
described in detail in conjunction with FIG. 3, steps 320
324.

0054. In a preferred embodiment, the developer could
add both visible and hidden components to a page. A visible
component may be, for example, a button or image that a
user may or may not be able to interact with. A hidden
component may, for example, not be visible to the user, but
may initiate executable code upon Some event occurring.
For example, one hidden component could be a component
which enables a Web page to increase or decrease its display
resolution automatically, depending upon what resolution
Screen the page is asked to be displayed upon. Such code
could be invoked when the Web page document is received

US 2004/O143591 A1

by the client computer. The code would determine the
computer's screen resolution and, if it did not match the Web
page's current resolution, the code would multiply or divide
the number of pixels and resolution necessary to display the
Web page at the proper resolution on the client machine.
0.055 Also in a preferred embodiment, a developer could
include custom-developed components which are not cur
rently available in the prior art. For example, in a preferred
embodiment, one novel component which can be included
on a page is a “report generation' component. A report
generation component could appear in the form of a button,
for example, which a developer adds to a Web page. When
a user clicks the report generation component, the page
could execute code which extracts data and information
from the Web page, formats that data into a report template,
and creates a report document which the user could then
Store, View, and/or print. In a preferred embodiment, the
report template would be defined by the developer when the
Web page was developed. In an alternate embodiment, a
default template could be used. In another alternate embodi
ment, the user could specify the format of the report at the
time that the user requested the report. The “report genera
tion' component provides a distinct advantage over prior-art
methods which can provide a Screen dump of a Web page,
but cannot neatly format information on the page into a
well-formatted report or other document. The method and
apparatus of the present invention enables a user to create
such a well-formatted report or other document from a Web
page.

0056 Referring again to FIG. 2, another icon 212 could
cause the tool to invoke a code editor Screen, which enables
a developer to associate code to a particular component and
to specify which events cause that code to be executed. For
example, when a particular button component is "clicked.”
a developer may want certain code to execute which causes
a next database record to be requested. The page developer
could use the code editor Screen to Specify, for that button
component, that upon the event "clicked,” code would be
executed which causes the next record to be requested. The
code editor Screen is discussed in detail in conjunction with
FIG. 4, and the process of editing code is discussed in detail
in conjunction with FIG. 3, steps 340-344. In a preferred
embodiment, the code editor utilizes an object oriented
language Such as Pascal, preferably with Some extensions. In
alternate embodiments, other languages could be used Such
as, for example, C++.

0057 Another icon 212 could enable components to be
linked within the same page or different pages. When two
components are linked in accordance with a preferred
embodiment, a user could Scroll through data within a first
component, and the Second component would automatically
update to show corresponding information. Component link
ing is described in detail in conjunction with FIG. 3, steps
330-336.

0.058. Once a developer has selected and placed all
desired components on the page, the developer indicates that
he is done, and the Web page development tool links the
components within the page, compiles the page, and Stores
the page in memory. The Web page could then be edited by
re-invoking the page development tool, or the page could be
deployed as is discussed in detail in conjunction with FIG.
7.

Jul. 22, 2004

0059 FIG. 3 illustrates a flowchart of a method for
creating and deploying a Web page in accordance with a
preferred embodiment of the present invention. In a pre
ferred embodiment, the method is performed on a computer
such as Web page development computer 110, FIG. 1.
0060. The method begins by performing the step 301 of
initializing the page development tool. AS described previ
ously, a developer initializes the page development tool
when he wants to create a new page or edit a previously
created page. Upon receipt of the initialization command,
computer 110 retrieves the tool’s executable code from
memory and initiates execution of the code. In a preferred
embodiment, the tool displays a page editor display (e.g.,
display 200, FIG. 2), and gives the developer the option, in
Step 302, of whether to Start a new application or open a
previously-created application. In a preferred embodiment,
this option could be given as a Selectable menu item. In an
alternate embodiment, the option may be given via a prompt
from the tool.

0061 All Web pages are created as part of an application
concept, where each application concept is represented by an
application file which can group information about one or
more Web page files within it. Therefore, information about
a previously-created page file would exist within a previ
ously-created application file. If a developer wants to create
a new page, the developer must associate the new page file
with a previously-created application file, or the developer
must start a new application file.
0062) If, in step 302, the developer indicates that he
wants to open an existing application, then the existing
application file is opened, in Step 303, and the main page file
of that application is automatically retrieved, instep 310.
Steps 310-312 are described in more detail, below.
0063) If, in step 302, the developer indicates that he
wants to Start a new application, then a new application file
is started in step 304. The new application file can then be
used as a vehicle to Store information about Web pages.
After step 304, the tool gives the developer an option of
creating a new page or editing a previously edited page in
step 305. In a preferred embodiment, this option could be
given as a Selectable menu item. In an alternate embodiment,
the option may be given via a prompt from the tool. In Some
cases, it may be possible for a developer to open a Web page
file directly, without first opening its associated application
file.

0064.) If, in step 305, a determination is made that the
developer wants to create a new page, the tool displays a
blank page, toolbar field, and component properties field on
the developer's monitor in step 306. In step 308, the tool also
creates a "page document,” Similar to an HTML document,
which the tool will edit as the developer edits the page.
Initially, the page document will be structured as if it
describes a blank Web page.
0065) If, in step 305, a determination is made that the
developer wants to edit a previously-created page, the tool
retrieves a copy of the associated page document from
memory in Step 310, and displays the page, along with the
toolbar field and component properties field in step 312.
0066. The tool then waits for additional developer input
in Step 314. Once developer input is received, a determina
tion is made, in Step 316, what type of developer input has

US 2004/O143591 A1

been received. In a preferred embodiment, the following
types of developer inputs are possible: 1) a new component
has been added to the page; or 2) the developer wishes to
link components, or 3) the developer wishes to edit the
component code; or 4) the developer wishes to delete a
component; or 5) the developer wishes to edit a component
property; or 6) the developer wishes to save the page and
quit; or 7) the developer wishes to quit without Saving the
page; or 8) the developer wants to enter a new or existing
application. Each of the developer inputS is described below.
For ease of illustration, the flowchart includes StepS and
decisions only relevant to creating, compiling, and Storing a
Web page. It does not contemplate all possible developer
inputs. In alternate embodiments, additional or different
developer inputs are possible.
0067. 1. Add New Component
0068. When the developer input indicates, in step 316,
that the developer has placed a new component on the page
(e.g., using a drop down menu from icons 212, FIG. 2), the
tool places the Selected component on the page in Step 320
and retrieves the associated default code for that component
in Step 322. The component code is similar in function to a
downloaded executable (e.g., a Java Applet), except that the
component code will eventually be compiled as part of the
Web page in accordance with the present invention, rather
than being accessed over the Internet during runtime as a
downloaded executable would be. Incorporation of the com
ponent code into the Web page eliminates the risk that
malicious code will be downloaded and executed for that
component.

0069. The default code is incorporated into the page
document in Step 324, including all information relevant to
the type, position, and other properties of the component. In
a preferred embodiment, the position of the component is
determined by the location where the developer dragged and
dropped the component or a position specified by the
developer in the component properties field (FIG. 2, field
230). In an alternate embodiment, the component position
could be a default position which the developer could later
modify via the component properties field or using the
OUSC.

0070 AS discussed previously, a number of different
types of components could be added to a Web page. Because
the addition of a data component includes Several important
details, addition of a data component is discussed in detail
in conjunction with FIG. 5. After step 324, the method then
returns to step 314 to wait for additional developer input.
0.071) 2. Link Components
0072. When two components are linked in accordance
with a preferred embodiment, a developer could Scroll
through data within a first page, and data displayed on a
Second page would automatically update to show corre
sponding information. For the purposes of this description,
components are linked between pages, although components
could be linked within the same page as well.
0073. The linking capability of the Web development tool

is well Suited to link data components. In alternate embodi
ments, the linking capability could be used to link other
types of components. In the area of data, the linking capa
bility could be used, for example, to link one or more fields
within one table to a different, but corresponding set of fields

Jul. 22, 2004

within another table in a relational database. Alternatively,
the linking capability could be used to link fields within the
Same table.

0074 For example, a developer may wish that a first page
include data components which specify a customer ID
number, address, and phone number from a “customer
information” table of a relational database. The developer
may also wish to design a Second page that includes a data
component which lists a customer's ordering history, where
Such information, is stored in an “order information” table of
the same or a different relational database. Using the method
and apparatus of the present invention, the developer could
link the customer ID number component on the first page
with the ordering history component on the Second page.
Then, when a user of the first and Second pages Scrolls
through customer ID numbers on the first page, the ordering
information for each associated customer would automati
cally appear on the Second page. A similar linking example
is described in more detail in conjunction with FIGS. 13-15.
0075) When the developer input indicates, in step 316,
that the developer wishes to link two components, then the
developer identifies, in step 330, which components are to
be linked. Identification of the linked components could be
made through one or more prompts from the Web develop
ment tool, or could be performed by the developer Selecting
the components which he would like to link, then clicking a
“link components” icon (e.g., icon 212, FIG. 2).
0076. In a preferred embodiment, the developer is asked
to Specify a "Master' page and a "Detail” page. In an
alternate embodiment, the identity of the Master or Detail
pages could be Some default (e.g., the first component
Selected could define the Master page). A Master page is the
page which displays the “master' information to which the
“detail” information on a Detail page is linked. Either or
both the Master page and the Detail page include code which
will formulate and send a data request to the server for both
the data associated with the Master page and the data
asSociated with the Detail page. Using the above example, if
the Master page were the page having the customer ID
number component (i.e., the “master information) and the
customer ID number were linked to a Detail page's ordering
history data field (i.e., the “detail” information), then the
code associated with either the Master page or the Detail
page would, during operation, request the next customer ID
number and the ordering history data when both the Master
and Detail pages are open. If the Master page requested the
data, then after receiving the next customer ID number and
that customer's ordering history, the Master page code
would “send” the ordering history data to the Detail page. If
the Detail page requested the data, then after receiving the
next customer ID number and that customer's ordering
history, the Detail page code would “send” the next cus
tomer ID number to the Master page. In an alternate embodi
ment, both pages could include code which would separately
request the data associated with each linked component.

0077. After the Master and Detail pages are identified,
linking code is created in Step 334. During operation, linking
code enables a page to formulate a request for data which
identifies the fields which are displayed on the page, and
which identifies the fields which are displayed on other
linked pages. In addition, the linking code causes received
data to be parsed, and the linked-page data to be sent to the

US 2004/O143591 A1

0.095 7. Quit Without Saving.
0096. When the developer input indicates, in step 316,
that the developer wishes to quit without Saving, the tool
closes itself, in Step 370 (unless other pages are being
edited), without Saving the page file to memory, and the
method ends.

0097 8. Open a New or Existing Application.
0098. When the developer input indicates, in step 316,
that the developer wants to open a new or existing applica
tion, then the process branches back to step 302, where the
tool determines whether the desired application is new or
existing. The procedure then continues as shown in FIG. 3.
0099 FIG. 5 illustrates a flowchart of a method for
adding a database component to a Web page in accordance
with a preferred embodiment of the present invention. Such
a component would be added to a page, for example, in
accordance with step 320 of FIG. 3.
0100. The method begins, in step 502, when a developer
indicates that he would like to place a data component on a
page. In step 504, the Web page development tool prompts
the developer for the database alias. For example, the
database alias could be a name which the tool uses to
identify the path of the database.
0101. Once the tool knows the database alias, the tool
displays the names of the tables associated with that data
base in Step 506. The developer is prompted to select one or
more tables from the database, and the tool waits for the
developer selection in step 508. Once the developer has
selected a table (or tables), the tool adds each table field as
a separate component to the page in Step 510. In an alternate
embodiment, the tool could display all fields and allow the
developer to select which field (or fields) the developer
would like to have added to the page.
0102) When the data components are added to the page,
the tool creates the component code for each component in
Step 512. In a preferred embodiment, the component code
would include information necessary to request, receive, and
display the data. Typically, if Several components include
data from the same table, only one of the components needs
to perform the actual data request. Such request would
request data for each of the related field components. Cre
ation of component code is analogous to accessing code in
step 322, FIG. 3.
0103) The method then waits for additional developer
input in Step 514. Once developer input is received, a
determination is made, in Step 516, what type of developer
input has been received. In a preferred embodiment, the
following types of developer inputs are possible: 1) the
developer wishes to modify the display format; or 2) the
developer wishes to delete a field; or 3) the developer wishes
to specify a field constraint; or 4) the developer indicates that
he is done. Each of the developer inputs is described below.
For ease of illustration, the flowchart does not contemplate
all possible developer inputs. In alternate embodiments,
additional or different developer inputs are possible.
0104) 1. Modify the Display Format
0105. When the developer input indicates, in step 516,
that the developer wishes to modify the display format of a
particular data component (or components), then, in Step

Jul. 22, 2004

518, the display format is moved, resized, or otherwise
modified in accordance with the developer's instructions.
For example, a developer may want to align all data com
ponents differently from the current alignment. The devel
oper could specify this change in display format, in a
preferred embodiment, by Selecting an alignment icon (e.g.,
icon 212, FIG. 2), and specifying the desired alignment.
Alternatively, the developer could change a display format
by manipulating the component properties field 230 (FIG.
2). The method then returns to step 514 to wait for additional
developer input.

01.06 2. Delete a Field
0107 When the developer input indicates, in step 516,
that the developer wishes to delete a particular field of a
table from the Web page, then the tool removes the com
ponent from the display page, in Step 520, and the compo
nent's associated Source code is deleted from the page
document in Step 522. These Steps are analogous to Steps
350,352 of FIG. 3. The method then returns to step 514 to
wait for additional developer input.

0108) 3. Specify a Field Constraint

0109 When the developer input indicates, in step 516,
that the developer wishes to specify a particular field con
Straint, the tool modifies the component code for the par
ticular field to reflect the corresponding constraint in Step
524. For example, in a data field that receives text data, the
developer could specify that the component should only
display data items having a first letter of “A”. This constraint
would be added to the component code and, upon execution,
the component would only display table entries having the
first letter of “A”. The method then returns to step 514 to
wait for additional developer input.

0110 4. Done
0111 When the developer input indicates, in step 516,
that the developer is done editing the component code for the
field (or fields) is incorporated into the page document in
Step 526, and the proceSS ends.

0112 FIG. 6 illustrates a simplified hardware block
diagram of a Web page development computer 110 in
accordance with a preferred embodiment of the present
invention. Web page development computer 110 could be,
for example, a SUN workstation or another desktop or
laptop personal computer. In a preferred embodiment, com
puter 110 includes processor means 612, user input means
614, data storage means 616, and monitor 618. In addition,
computer 110 includes encryption means 620 and/or com
munication hardware 622, although these two elements are
not essential to achieve many of the advantages of the
present invention.

0113 Processor means 612 could be, for example, an
Intel Pentium processor or other processor Suitable for
performing the processing functions of Web page develop
ment computer 110. These processing functions are
described in detail in conjunction with FIGS. 3 and 5, but
include, for example, initializing the page development tool
(step 301, FIG. 3), creating or accessing a page document
(steps 306,310, FIG. 3), placing a selected component on or
removing a selected component from a page (steps 320, 350,
FIG. 3), editing component properties (step 358, FIG. 3),

US 2004/O143591 A1

editing component code (step 342, FIG. 3), and storing/
deploying pages (steps 360-368, FIG. 3).
0114. User input means 614 is coupled to processor
means 612, either directly or through various hardware and
interfaces. User input means 614 could be, for example, a
keyboard, mouse, microphone, Speaker, digital Video device,
or any combination thereof. User input means 614 is the way
in which a developer gives commands and/or information to
the page development tool. Such commands could include,
for example, a command to initialize the tool (step 301, FIG.
3), drag and drop a new component, edit a component
property, edit component Source code, delete a component,
Save a page document, quit the page development tool, or
deploy a page.
0115 Data storage means 616 is coupled to processor
means 612, either directly or through various hardware and
interfaces. Data storage means 616 is used to store the Web
page development tool code, page documents, Source and
executable code for components, and other data items. Data
Storage means 616 could include any type of read only
memory (ROM) and/or random access memory (RAM), and
could be in the form of magnetic or optical Storage medium,
Such as, for example, hard drives, compact disks, magnetic
disks, or any combination thereof. For ease of illustration,
only one data Storage means 616 is shown. It would be
obvious to one of skill in the art, however, that Several types
of Storage would be desirable in order to carry out the
method of the present invention.
0116 Monitor 618 is coupled to processor means 612,
either directly or through various hardware and interfaces.
Monitor 618 is used to display screens associated with the
Web page development tool, including, for example, page
editor displays (e.g., display 200, FIG. 2) and code editor
screens (e.g., screen 400, FIG. 4). Monitor 618 is the
primary mechanism for providing visual feedback to the
developer during a page-development Session, although
other means of feedback (e.g., a speaker) also could be used.
0117. In a preferred embodiment, encryption means 620
is coupled to processor means 612, either directly or through
various hardware and interfaces. In an alternate embodi
ment, encryption means 620 is coupled to communication
hardware 622. Encryption means 620 is used in a preferred
embodiment to encrypt messages, page documents, and/or
other information prior to transmission via communication
hardware 622. Encryption means 620 also is used in a
preferred embodiment to decrypt messages and/or other
information received via communication hardware 622.
Encryption means 620 could use, for example, nearly any
approved encryption algorithm, including public key/private
key algorithms, Scrambling, or another proprietary algo
rithm. Encryption means 620 is not essential to the method
and apparatus of the present invention, but it provides an
enhanced measure of information Security.
0118. In a preferred embodiment, communication hard
ware 622 is coupled to processor means 612 and/or encryp
tion means 620, either directly or through various hardware
and interfaces. Communication hardware 622 can be, for
example, a modem used to modulate or demodulate infor
mation transmitted or received, respectively, over an exter
nal link. Such information could be in encrypted or unen
crypted form. Alternatively, communication hardware 622
could be a network card, USB, or other communication
device.

Jul. 22, 2004

0119) Although only one processor means 612, user input
means 614, and data Storage means 616 are shown, any
number of processors, user input means, and data Storage
devices could be used in conjunction with Web page devel
opment computer 110.
0120 AS described previously in conjunction with FIG.
3, steps 362-368, after creation of a Web page by Web page
development computer 110, a developer may then request
that computer 110"deploy” the new Web page. “Deploy
ment' of a Web page refers to the act of Sending the page to
a Server which will then provide access to the page to client
computers via the Internet. Web page development computer
may send the Web page to the server via the Internet, a LAN,
a WAN, any other type of optical, wireless, or wired link (or
links), or via a tangible data storage medium.
0121 FIG. 7 illustrates a flowchart of a method for
receiving, Storing, and delivering Web pages in accordance
with a preferred embodiment of the present invention. In a
preferred embodiment, the method is performed on a com
puter such as server-side computer 140 (FIG. 1).
0.122 The method begins, in step 702, when the server
Side computer receives one or more Web pages. In a pre
ferred embodiment, these Web pages are received from a
computer, Such as Web page development computer 110
(FIG. 1), over the Internet or some other link. The received
Web pages could be in an encrypted or unencrypted form.
0123. In step 704, the server-side computer stores the
received Web pages for later access. In a preferred embodi
ment, if a Web page is received in encrypted form, Server
Side computer Stores the page in the encrypted form. In an
alternate embodiment, Server-side computer could decrypt
the Web page before storing it.
0.124. A particular Web page could be stored for any
length of time before a client requests that the page be sent
to the client computer. In addition, Servers often Store
databases which can be accessed by a Web page application.
Requests for Web pages or data come in the form of client
messages that may or may not be encrypted.
0.125. In step 706, when server-side computer receives a
client request for data or a request for a Web page, Server
Side computer decrypts the request, if necessary. A determi
nation is made, in Step 708, whether the page and/or data
requires access authorization. Authorization may be neces
sary for either or both the user and the server. In a preferred
embodiment, user authorization is performed on the client
computer by the Web page which invokes the request for
data or another Web page. Such an approach is desirable
because it eliminates the need to Send authorization mes
Sages back and forth between the client and the Server. In an
alternate embodiment, Such authorization could be per
formed at the server. The authorization step 708 refers to
Server authorization in accordance with the preferred
embodiment. If necessary, Such authorization could be per
formed for the user as well.

0126 FIG. 8 illustrates a flowchart of a method for
controlling access to a Web page or data in accordance with
a preferred embodiment of the present invention. The
method begins, in step 802, by determining whether the
requested page or data is “secure,” or requires access autho
rization. If not, then it is determined that acceSS is approved
in step 810 and the procedure ends.

US 2004/O143591 A1

0127. If it is determined, in step 802, that the requested
page or data does require access authorization, then in Step
804, access information is requested. If the server must
provide acceSS information, the Server could Send its autho
rization information (e.g., a password) to the database man
ager who controls access to the data or page. The database
manager would then compare, in Step 806, the access
information with an access list or, in the case of user
authorization, a user profile list.
0128. A determination is then made, in step 808, whether
or not the server (or user) is authorized to access the data
based on the comparison made in step 806. If so, then it is
determined that access is approved in step 810 and the
procedure ends. If not, then it is determined that access is
denied in Step 812 and the procedure ends.
0129 Referring back to FIG. 7, if, in step 708, it is
determined that access is denied (either to the user or to the
Server), then server-side computer sends an access denied
message to the client computer in Step 710 and the program
iterates as shown in FIG. 7.

0.130) If, in step 708, server-side computer determines
that access authorization is not necessary or that access is
allowed, then Server-side computer retrieves the requested
page and/or data in step 714. In step 716, once the Web page
and/or data is retrieved, Server-side computer Sends the page
and/or data (either in encrypted or unencrypted form) to the
client-side computer. The program then iterates as shown in
FIG, 7.

0131 FIG. 9 illustrates a simplified hardware block
diagram of a Server-Side computer 140 in accordance with a
preferred embodiment of the present invention. Server-side
computer 140 computer could be, for example, a SUN
WorkStation or another desktop or laptop personal computer.
In a preferred embodiment, server-side computer 140
includes first communication hardware 910, processor
means 912, and data Storage means 914. In addition, com
puter 140 includes encryption/decryption means 920 and
second communication hardware 930, although these two
elements are not essential to achieve many of the advantages
of the present invention.
0132) Processor means 912 could be, for example, an
Intel Pentium processor or other processor Suitable for
performing the processing functions of Server-side computer
140. These processing functions are described in detail in
conjunction with FIG. 7, but include, for example, receiving
and storing Web pages (steps 702, 704), processing client
requests (step 706), determining access rights (step 708),
and retrieving and sending pages and data (step 716).
0133) Data storage means 914 is coupled to processor
means 912, either directly or through various hardware and
interfaces. Data storage means 914 is used to store Web
pages, either encrypted or unencrypted, messages, and data
bases. Often, however, databases are Stored remotely and are
accessible to a Server via a database manager. Data Storage
means 914 could include any type of read only memory
(ROM) and/or random access memory (RAM), and could be
in the form of magnetic or optical Storage medium, Such as,
for example, hard drives, compact disks, or magnetic diskS.
For ease of illustration, only one data Storage means 914 is
shown. It would be obvious to one of skill in the art,
however, that Several types of Storage may be desirable in
order to carry out the method of the present invention.

Jul. 22, 2004

0.134. In a preferred embodiment, encryption/decryption
means 920 is coupled to processor means 912, either directly
or through various hardware and interfaces. In an alternate
embodiment, encryption/decryption means 920 is coupled to
first communication hardware 910 and/or second commu
nication hardware 930. Encryption/decryption means 920 is
used in a preferred embodiment to encrypt messages, data,
Web pages, and/or other information prior to transmission
via first or second communication hardware 910, 930.
Encryption/decryption means 920 also is used in a preferred
embodiment to decrypt messages and/or other information
received via first or second communication hardware 922,
924. Encryption/decryption means 920 could use, for
example, nearly any approved encryption algorithm, includ
ing public key/private key algorithms, Scrambling, or
another proprietary algorithm. Encryption/decryption means
920 is not essential to the method and apparatus of the
present invention, but it provides an enhanced measure of
information Security.
0135) In a preferred embodiment, first communication
hardware 910 and second communication hardware 930 are
coupled to processor means 912 and/or encryption/decryp
tion means 920, either directly or through various hardware
and interfaces. First communication hardware 910 could be,
for example, a modern used to modulate or demodulate
information transmitted or received, respectively, over an
external link with a computer Such as Web page develop
ment computer 110 (FIG. 1). Second communication hard
ware 930 also could be, for example, a modem used to
modulate or demodulate information transmitted or
received, respectively, over an external link with a computer
such as client-side computer 170 (FIG. 1). Such information
could be transmitted or received in encrypted or unencrypted
form. Communication hardware 910, 930 alternatively
could be network cards, USBs, or other communication
devices. In an alternate embodiment, computer 140 could
include only a single communication hardware device which
communicates with both Web page development computers
and client-side computers. In Still another alternate embodi
ment, computer 140 could include a bank of communication
hardware and/or modems for communicating with multiple
other computers.
0.136 Although only one processor means 912, data
Storage means 914, and first and Second communication
hardware 910, 930 are shown, any number of processors,
data Storage devices, and communication hardware could be
used in conjunction with server-side computer 140.
0137 FIG. 10 illustrates a flowchart of a method for
requesting, receiving, and displaying a Web page in accor
dance with a preferred embodiment of the present invention.
In a preferred embodiment, the method is performed on a
computer such as client-side computer 170 (FIG. 1).
0.138. The method begins, in step 1002, when an initialize
browser command is received from a user of client-side
computer 170. The initialize browser command indicates
that the user wants to open the browser associated with the
method and apparatus of the present invention.
0139. In step 1004, the browser is initialized and it
creates and sends a request for the main Web page associated
with the browser. In a preferred embodiment, the request is
encrypted, although this is not essential for the method and
apparatus of the present invention. The browser then waits

US 2004/O143591 A1

to receive the main page from the Server. If it is not received
within a certain timeout period, the browser can display a
timeout message to the user and can terminate.
0140. When the main page is received, in step 1006, the
page is decrypted, if necessary, and displayed on the user
monitor. After the Web page is displayed, the client-side
computer maintains the display until user input or a page
command is received, in step 1008. User input could take the
form of input from a keyboard, a mouse click, or an audio
command, for example. A page command would be a
command from an active Web page to perform Some func
tion.

0.141. Once user input or a page command is received, a
determination is made, in step 1010, what type of input has
been received. In a preferred embodiment, the following
types of user inputs and page commands are possible: 1) a
page has been requested; or 2) data has been requested; or
3) Some non-page/non-data request has been made; or 4) the
user has requested that a page/data be briefcased; or 5) the
user wishes to quit. Each of the user inputs and page
commands is described below. For ease of illustration, the
flowchart includes StepS and decisions only relevant to
receiving, displaying, and Storing a Web page and/or data. It
does not contemplate all possible user inputs and page
commands. In alternate embodiments, additional or different
user inputs and page commands are possible.
0142 1. Page Request

0143) If, in step 1010, it is determined that the user has
requested a Web page, then a determination is made, in Step
1012, whether the user has access rights. The access rights
determination is made, in a preferred embodiment, by the
Web page from which the user requested access to a new
page. In other words, the Web page includes code that
enables it to determine whether or not the user is authorized
to access the requested Web page. Checking user acceSS
privileges could, for example, require the user to input a
password or Some other information, and the password
could be checked with information Stored within the page
document. Such an access determination could be made by
an algorithm similar to that described in detail in conjunc
tion with FIG. 8, for example, except that all steps would be
performed on the client-side computer. In alternate embodi
ments, access rights could be determined through Some
other method.

0144. If a determination is made, in step 1012, that access
is denied, then an acceSS denied message is Sent to the user
in Step 1014 (e.g., by displaying the message on the moni
tor). If access is approved, then the Web page formulates the
page request and Sends it to the appropriate Server in Step
1016. The appropriate server could be a remote server or, in
Some cases, could be a local Server.

0145 Once the page is received, the client computer
decrypts the page, if necessary, and displays the Web page
on the monitor in step 1018. The Web page then becomes
“active,” and certain portions of component code could
execute. If the Web page includes data components, then the
page could request the first Set of data to be displayed within
those data components. If, as indicated in step 1020, the Web
page does not include data components, then the method
returns to step 1008 to wait for additional user input. If the
Web page does include data components, then the method

Jul. 22, 2004

determines, in step 1021, whether that data is locally stored.
If not, then the method executes steps 1026-1034 which are
necessary for the Web page to request the appropriate data.
If, in step 1021, the method determines that the data is
locally stored, then the method executes steps 1028-1034. In
such a case, the appropriate server in step 1030 would be the
local server, rather than a remote server. Steps 1026-1034
are discussed in detail below.

0146 In certain instances, a page could be requested
without performing steps 1002-1010. For example, a user
could invoke a Web page created in accordance with a
preferred embodiment by typing the page's URL into a
browser. Such browser could be the browser in accordance
with the present invention, or could be a prior art browser.
If a page is accessed directly, it may be necessary for the
Server to perform access authorization, Since the page was
not invoked by another page having knowledge of user
access rights. Alternatively, the page could perform access
authorization upon being downloaded to the client computer.
0147 2. Data Request
0.148 If, in step 1010, it is determined that the user has
requested data, then a determination is made, in Step 1022,
whether the data is stored locally. The data may be stored
locally, for example, if the data had been previously obtained
from the server and stored on the client machine. For
example, the user may have downloaded Several Sets of data
during an interaction with a particular page. The user may
then want to Scroll backwards into data that the user previ
ously downloaded. Alternatively, the user may have brief
cased a page and a set of data and may want to view the
briefcased data. In any event, if the data is locally Stored,
then the data is located and displayed, in step 1024, by the
client computer.
0149 If the data is not locally stored, then a determina
tion is made, in Step 1026, whether the user has access rights.
This determination could be made in a manner Similar to
Step 1012, except that the access rights would pertain to
access to data, rather than access to a page. If the user does
not have access rights, then an acceSS denied message is sent
to the user in step 1014 and the procedure iterates as shown.
0150. If the user does have access rights, then the criteria
necessary to describe the data are determined in step 1028.
Step 1028 could also be invoked, as previously described,
when a Web page automatically determines that it needs to
request a set of data (step 1020). The data criteria identify
the database, table, and record (or records) which the user or
Web page would like to view. In a preferred embodiment,
the particular record to be viewed is identified by evaluating
state variables stored by the Web page. These state variables
indicate which records the page has already accessed, and
which records would be next.

0151 Storage of state variables by the Web page repre
Sents a significant advantage to the method of the present
invention. Such Storage eliminates the need to have intelli
gence at the server to maintain State information (e.g.,
"agents'), and also eliminates the need to maintain a per
Sistent connection with the Server during the entire database
acceSS Session. Thus, maintenance of State variables at the
Web page results in reduced Server complication and also in
lower bandwidth demands, among other advantages.
0152. After the data criteria are determined, in step 1028,
then a data request is formulated and the request is sent to

US 2004/O143591 A1

the appropriate server in step 1030. The appropriate server
could be a remote Server or, in Some cases, could be a local
Server. In a preferred embodiment, the request is encrypted
before it is sent, although this is not essential. The requested
data is received, in step 1032, and displayed within the
appropriate data component (or components). In Step 1034,
the State variables associated with the data are updated to
reflect the fact that the user has advanced further within the
database (or to different records within the database). The
method then returns to step 1008 to wait for additional user
input.
0153. 3. Non-Page/Non-Data Request

0154) If, in step 1010, it is determined that the user (or a
Web page) has made a request that is not a page or data
request, then the client computer performs the function
associated with the request, in step 1036, and the method
returns to step 1008 to wait for additional user input.
Non-page and non-data requests could include, for example,
a request to use a hyperlink to another Web Site, a request to
run an audio or Video file, a request to Send an e-mail, or
many other types of requests.
0155 4. Briefcase Request
0156. If, in step 1010, it is determined that the user has
requested that a page and/or data be briefcased, then a
determination is made, in step 1038, whether the page and/or
data is Storable. In a preferred embodiment, this determina
tion is made by the Web page through execution of code that
a developer included within the Web page (as discussed in
conjunction with FIG. 3, step 342). The determination of
whether a page and/or data is Storable also could include an
access rights determination.

O157) If it is determined that the page and/or data is
Storable, then the page document, data which has been
downloaded in conjunction with the page, and the current
state variables are stored on the client computer in step 1040.
Storage of the State variables is desired So that, when a user
decides to re-invoke the page, the user can begin accessing
data where the user previously left off. If step 1041 indicates
that the developer wanted to quit, then the method branches
to step 1050. If, in step 1050, a determination is made that
the developer wants to close the browser, then the browser
is closed and the method ends. Otherwise, the method
branches to step 1002. If step 1041 indicates that the
developer did not want to quit, the method then returns to
step 1008 to wait for additional user input.
0158 If, in step 1038, it is determined that the page
and/or data is not storable, then the user is So notified, in Step
1042. If step 1043 indicates that the developer wanted to
quit, then the page document, data, and State variables are
deleted in step 1044. The method then returns to step 1008
to wait for additional user input. If step 1043 indicates that
the developer did not want to quit, then the method returns
to step 1008 to wait for additional user input.

0159) 5. Quit
0160) If, in step 1010, it is determined that the user would
like to quit, then, in a preferred embodiment, the user is
asked whether he would like to briefcase the page and/or
data. If the user indicates that he would like to briefcase the
page and/or data, then steps 1038-1044 are performed. If the
user indicates that he would not like to briefcase the page

Jul. 22, 2004

and/or data, then the page document, data, and State vari
ables are deleted, in step 1048, and a determination is made,
in step 1050, whether the developer wants to close the
browser. If so, the browser is closed and the method then
ends. If not, then the method branches to step 1002 and
continues.

0.161. One advantage to the present invention is that the
browser associated with the Web pages of the preferred
embodiment can be much Smaller than prior-art Web pages.
One reason for this is that each Web page developed in
accordance with the present invention is capable of com
municating directly with remote servers. Prior art Web pages
rely on prior art browsers to relay messages back and forth
from the server. The Web pages of the present invention do
not. Therefore, it is possible to close the browser of the
present invention during an interactive Session between a
Web page and a Server. In fact, a Web page created in
accordance with the present invention could request that the
browser be closed upon invocation of the page.
0162) If a Web page and/or data has been briefcased and
edited by a user offline, the user may later want to post his
data changes to the database. FIG. 11 illustrates a flowchart
of a method for posting modified data to a remote database
in accordance with a preferred embodiment of the present
invention.

0163 The method begins, in step 1102, when the user
initializes the browser. Browser initialization was discussed
in more detail in conjunction with FIG. 10, step 1002. Once
the browser is initialized, then the user can cause the
locally-Stored Web page and data to be loaded and displayed
in step 1104. At this stage, the user could perform additional
edits, if desired.

0164. Once the user has made his changes to the data,
then he informs the page to connect to the Server and post the
changes. In a preferred embodiment, the page determines
whether the user has access rights to make Such changes to
the database in Step 1106. Access rights determination could
be made, for example, in a manner similar to FIG. 10, step
1026. During development of the page, the developer could
incorporate code into the Web page which indicates who has
data modification privileges, as discussed previously in
conjunction with FIG. 3, step 342. If the user does not have
access rights, then an access denied message is Sent to the
user in step 1108 and the procedure ends.

0.165 If the user does have access rights, then the page,
in step 1110, formulates a message which identifies the
database and table, and which also includes the old data
records (i.e., the data which was originally downloaded from
the server) and the modified data records. The server then
determines, in Step 1112, whether the Server has access
rights to modify the data within the database. If not, then the
Server Sends an access denied message to the client com
puter, in Step 1114, and the procedure ends.

0166 If the server does have access rights, then, in step
1116, the server compares the old records received from the
client computer with the records currently existing in the
database. A determination is made, in step 1118, whether the
old records and existing records match. If they do not match,
it indicates that the database has been modified by another
user Since the current user downloaded the data. In Such a
case, the Server Sends the existing records back to the client

US 2004/O143591 A1

computer, in Step 1120, So that the client computer can query
the user as to whether he actually wants to modify the
database. If the user indicates, in Step 1122, that the replace
ment is not desired, then the procedure ends.
0167 If the user indicates that replacement is desired, or
if the old and existing records match, then the existing
records are replaced with the modified records in step 1124,
and the procedure ends. Some of StepS 112-124 may require
the Server to interact with a database manager associated
with the database.

0168 FIG. 12 illustrates a simplified hardware block
diagram of a client-side computer 170 in accordance with a
preferred embodiment of the present invention. Client-side
computer 170 could be, for example, a SUN workstation or
another desktop or laptop personal computer. In a preferred
embodiment, client-side computer 170 includes processor
means 1212, user input means 1214, data Storage means
1216, communication hardware 1222, and monitor 1218. In
addition, computer 170 includes encryption/decryption
means 1220, although this element is not essential to achieve
many of the advantages of the present invention.
0169 Processor means 1212 could be, for example, an
Intel Pentium processor or other processor Suitable for
performing the processing functions of client-side computer
170. These processing functions are described in detail in
conjunction with FIG. 10, but include, for example, initial
izing the browser (step 1002, FIG. 10), requesting the main
page (step 1004, FIG. 10), requesting additional pages
(steps 1012-1020, FIG. 10), requesting data (steps 1022
1034, FIG. 10), and briefcasing pages and data (steps
1038-1044, FIG. 10).
0170 User input means 1214 is coupled to processor
means 1212, either directly or through various hardware and
interfaces. User input means 1214 could be, for example, a
keyboard, mouse, microphone, digital Video device, or any
combination thereof. User input means 1214 is the way in
which a user gives commands to the browser.
0171 Data storage means 1216 is coupled to processor
means 1212, either directly or through various hardware and
interfaces. Data Storage means 1216 is used to Store the
browser, page documents, data from remote databases, and
other data items. Data Storage means 1216 could include any
type of read only memory (ROM) and/or random access
memory (RAM), and could be in the form of magnetic or
optical Storage medium, Such as, for example, hard drives,
compact disks, and magnetic disks. For ease of illustration,
only one data Storage means 1216 is shown. It would be
obvious to one of skill in the art, however, that Several types
of Storage would be desirable in order to carry out the
method of the present invention.
0172 Monitor 1218 is coupled to processor means 1212,
either directly or through various hardware and interfaces.
Monitor 1218 is used to display Web pages to the user.
0173. In a preferred embodiment, encryption/decryption
means 1220 is coupled to processor means 1212, either
directly or through various hardware and interfaces. In an
alternate embodiment, encryption/decryption means 1220 is
coupled to communication hardware 1222. Encryption/de
cryption means 1220 is used in a preferred embodiment to
encrypt messages, requests, and/or other information prior to
transmission via communication hardware 1222. Encryp

Jul. 22, 2004

tion/decryption means 1220 also is used in a preferred
embodiment to decrypt messages, Web pages, and/or other
information received via communication hardware 1222.
Encryption/decryption means 1220 could use, for example,
nearly any approved encryption algorithm, including public
key/private key algorithms, Scrambling, or another propri
etary algorithm. Encryption means 1220 is not essential to
the method and apparatus of the present invention, but it
provides an enhanced measure of information Security.
0.174. In a preferred embodiment, communication hard
ware 1222 is coupled to processor means 1212 and/or
encryption/decryption means 1220, either directly or
through various hardware and interfaces. Communication
hardware 1222 could be, for example, a modem used to
modulate or demodulate information transmitted or
received, respectively, over an external link. Such informa
tion could be in encrypted or unencrypted form. Alterna
tively, communication hardware 1222 could be a network
card, USB, or other communication device.
0.175 Although only one processor means 1212, user
input means 1214, and data Storage means 1216 are shown,
any number of processors, user input devices, and data
Storage devices could be used in conjunction with client-side
computer 170.
0176 AS previously described, the method and apparatus
of the present invention provide the advantage of enabling a
user to browse data on a first open page while the data on a
Second open page is automatically updated. Creation of
pages having linked components from the developer per
spective was described in detail in conjunction with FIG. 3,
steps 330-336. Data linking is now described from the
client-side computer perspective.
0177 As described previously, multi-page data linking
refers to the linking of various data sets across multiple Web
pages. For example, in a preferred embodiment, a first Web
page may include a component containing data through
which the user can Scroll. The user may then open a Second
Web page which contains a component containing data
which is related to, but different from, the data displayed by
the first page. In a preferred embodiment, these two pages
are linked in Such a way that, when the user opens the Second
page, the data displayed therein will correspond to the data
displayed in the first page. In addition, when the user Scrolls
through the data on either page, the other page will auto
matically update itself to display the corresponding data.
0.178 An example will better illustrate the preferred
embodiment. ASSume that a first Web page permits access to
certain employee information which is Stored in an
employee information database accessible to a Server. In the
present example, the database could be a relational database,
where unique employee numbers are the keys used to link
records of the various tables together. The database could
include the employee number and multiple types of infor
mation Such as:

0179 a) job-related information, including supervisor
name, Secretary name, office location, work phone and
fax numbers, and job title;

0180 b) personnel-related information, including sal
ary, job grade level, performance data, and hire date,

0181 c) personal information, including name, Social
Security number, home address and telephone number,
marital Status, gender, and age.

US 2004/O143591 A1

0182 Assume that a first Web page includes a component
for displaying the employee name, along with the first type
of employee information, namely job-related information.
After the Web page user Selects a particular employee name,
the user's client-side computer would Send a request to the
appropriate Server for the job-related information for that
employee. The Server-Side computer would retrieve that
information from the employee information database and
Send the information back to the client-side computer. In a
preferred embodiment, the client-Side computer would then
display the information in the first Web page's data com
ponent or components corresponding to the information, and
would update the state variables which identify what record
of the database the user has accessed.

0183 Assume further that the user has an option (and
access privileges) to open a second, related Web page which
includes a component for displaying the employee's per
Sonnel-related information. In a preferred embodiment of
the present invention, the client-side computer would Send a
request to the Server for the same employee's perSonnel
related information without requiring the user to input the
employee name again. The Server would access and Send the
appropriate perSonnel-related information, which would be
displayed on the Second page.

0184. If the user kept both pages open and, on the first
page, entered another employee's name, then the method of
the present invention would cause the data on both the first
and Second Web pages to be updated automatically to reflect
the job-related and perSonnel-related information for the
Second employee. In this manner, the data between the two
Web pages is linked. When the data is updated on the first
page, the related data is also updated on the Second page.

0185 FIG. 13 illustrates a flowchart of a method for
multi-page data linking in accordance with a preferred
embodiment of the present invention. In a preferred embodi
ment, the method is performed on a computer Such as
client-side computer 170, FIG. 1. The method begins, in
Step 1302, by displaying a first page and an associated first
data Set. For ease of illustration, the first page will be
considered the Master page, as that term has been previously
defined.

0186 Step 1302 presumes that no access restrictions exist
or the user has access approval to display the first page
and/or first data set. In step 1304, state variables identifying
the first data Set are Stored. In the example described above,
the first data Set could include an employee's job-related
information.

0187. In step 1306, a user request is received to display
a Second page having a Second Set of related data. For ease
of illustration, the Second page will be considered the Detail
page, as that term has been previously defined. In the
example described above, the Second data Set could include
an employee's perSonnel-related or personal information.
The Second page is received, in Step 1310, and after it
becomes active, the State variables associated with the first
page are used to formulate a request for the Second-page data
in step 1312.
0188 The second-page data request is sent to the server,
in Step 1314, and the Second-page data is received, in Step
1316. If the Second page includes data components which
are unrelated to the first-page data, then State variables for

Jul. 22, 2004

those new data components may also need to be initialized.
In Step 1318, the Second page and Second-page data is
displayed by the client-side computer. In an alternate
embodiment, the Second page could be displayed prior to
step 1318.
0189 If the user requests another page with related data
(e.g., a page which displays the employee's personal infor
mation), steps 1306-1318 are repeated. If the user requests
additional data on any one of the pages (e.g., data for another
employee), then the related State variables are used to
formulate the data request for each page having related data
and, once the data is received from the Server, the corre
sponding data components for each page are updated.
0190. In some cases, a particular Web page in accordance
with the present invention may have requested and Stored
multiple data records (e.g., information for multiple employ
ees), even though the page displays information contained in
only one or a few Such records. Upon opening a Second
page, the related data for the multiple data records could be
requested from the Server and Stored, and the Second page
also could display information contained in only one or a
few Such records.

0191) If the user wants to scroll through the locally-stored
data, it would not be necessary to request the data from the
server (steps 1312-1316). Instead, the client-side computer
would acceSS and display the previously-Stored data for each
of the pages. Server requests for data are necessary only
when a Web page (or pages) want access to data which they
have not downloaded and maintained. In addition, State
variables need to be updated only when new sets of data are
received from the server.

0.192 FIG. 14 illustrates an exemplary linked Web page
display in accordance with a preferred embodiment of the
present invention. Abrowser display 1405 is associated with
a browser which is initially used to gain access to a server
Side computer and to display an initial Web page. In accor
dance with the present invention, the browser may thereafter
be closed, at the user's option, as the browser is not essential
for a user to interact with Web pages which were designed
in accordance with the present invention. A first page 1410
and a Second page 1420 each display particular items of
related data. In the example shown, first page 1410 displayS
data for customer number 1412, company 1414, and other
information for that particular customer number. Second
page 1420 also displayS customer number 1422 and com
pany 1424, but also displays different, but related informa
tion, Specifically the history of customer Sales 1426.
0193 In a preferred embodiment, at the time that the user
opened Second page 1420, the method of the present inven
tion used the State variables identifying the first page data to
formulate a request for the customer Sales data 1426. Also in
a preferred embodiment, if the user changed the customer
number 1412 or 1422 in either first page 1410 or second
page 1420, the method of the present invention would
update the company data 1414, 1424, customer sales 1426,
and other related data displayed by both pages 1410 and
1420.

0194 FIG. 15 illustrates a flowchart of a method for
Scrolling through data in association with linked pages in
accordance with a preferred embodiment of the present
invention. In a preferred embodiment, the method is per
formed on a computer Such as client-side computer 170,
FIG. 1.

US 2004/O143591 A1

0.195. When the method begins, it is assumed that mul
tiple linked data pages have already been downloaded in
accordance with the method described in FIG. 13. There
fore, upon initiation of the method of FIG. 15, it is further
assumed that multiple linked pages, which include linked
data components, are currently being displayed, and the State
variables for those pages have been Stored by the Web pages.

0196. In step 1502, one of the linked pages receives user
input indicating that the user would like to display a different
Set of data within one or more components on that page.
Upon receiving this request, a determination is made, in Step
1504, whether the requested data is currently stored on the
client machine. For example, a client machine may have
received and stored only the first twenty records of
employee personal data in response to one or more previous
requests to the Server. In a preferred embodiment, those
twenty records would be Stored on the client machine and
the user would be able to scroll through them without
initiating another request to the Server. Following the same
example, if the user attempts to Scroll to the twenty-first
record, the Web document would need to formulate another
request for data and Send that request to the Server in a
preferred embodiment. While scrolling through the first
twenty records, step 1504 would determine that the data is
stored locally. If a request for data other than that which is
contained within the first twenty records is received, Step
1504 would determine that the data is not stored locally. If
step 1504 determines that the data is stored locally, then the
data is retrieved and displayed in step 1506.

0197) If step 1504 determines that the data is not stored
locally, then a determination is made, in step 1508, whether
the data is being Scrolled in a linked page component. If the
data is being Scrolled in a linked page component, then, in
Step 1510, the first page Sends a request to the linked page
which obtains data from the Server for the first page, where
the request indicates which data the first page would like to
VeW.

0198 If the first page is capable of creating and sending
its own data requests to the Server, or after the request is
received by the linked page from the first page, then, in Step
1512, the client machine creates a request for the data
displayed by both the first and linked pages using the State
variables. The client machine then Sends the request to the
server in step 1514. Upon receipt of the data from the server
in step 1516, the page which requested the data from the
Server Sends the data to the page which displays that data,
and that page displays the data in step 1518. The state
variables affected by the new data are then updated in Step
1520, and the procedure iterates as shown.
0199 Thus, a method and apparatus for developing,
deploying, downloading, and executing Web pages has been
described which overcomes Specific problems, and accom
plishes certain advantages relative to prior art methods and
mechanisms. One advantage to the method and apparatus of
the present invention is that, during database applications,
they do not require an entire page to be dynamically gen
erated at the Server each time a user requests a new set of
data. Instead, in accordance with the present invention, the
Server only Sends the new piece of data and the Web page
updates the appropriate field An additional advantage is that
the method and apparatus of the present invention enable
State management to be performed by the client-Side com

Jul. 22, 2004

puter by utilizing code embedded within a Web page. This
State management capability also enables the method and
apparatus of the present invention to provide Web page
briefcasing, an additional advantage of the present inven
tion. In addition, the embedded Web page code of the
method and apparatus of the present invention greatly
reduce Security risks associated with prior-art downloaded
executables which could contain malicious code. Another
advantage of the present invention is that it enables a
Web-page users to view and interact with multiple linked
pages simultaneously, without launching another instance of
the Web browser.

0200. The foregoing descriptions of the specific embodi
ments will So fully reveal the general nature of the invention
that others can, by applying current knowledge, readily
modify and/or adapt the embodiments for various applica
tions without departing from the generic concept. Therefore,
Such adaptations and modifications should, and are intended
to be comprehended within the meaning and range of
equivalents of the disclosed embodiments. In particular,
while a preferred embodiment has been described in terms
of a System in which the client-side computer and the page
development computer communicate with a Server-side
computer over the Internet, those of skill in the art will
understand, based on the description herein, that the method
and apparatus of the present invention also could be used in
a system in which either or both the client-side and devel
opment computers communicate with the Server-Side com
puter over a LAN, WAN, or other network or link. More
over, those skilled in the art will appreciate that the
flowcharts presented herein are intended to teach the present
invention and that different techniques for implementing
program flow that do not necessarily lend themselves to
flowcharting may be devised. For example, each task dis
cussed herein may be interrupted to permit program flow to
perform background or other tasks. In addition, the Specific
order of tasks may be changed, and the Specific techniques
used to implement the tasks may differ from System to
System.

0201 It is to be understood that the phraseology or
terminology employed herein is for the purpose of descrip
tion, and not of limitation. Accordingly, the invention is
intended to embrace all Such alternatives, modifications,
equivalents, and variations as fall within the Spirit and broad
Scope of the appended claims.
What is claimed is:

1. A Web page document which results in a client-side
computer displaying a Web page corresponding to the Web
page document, the Web page document comprising:

information describing components included on the Web
page, and

event-driven code associated with at least Some of the
components, the event-driven code being executed by
the client-side computer which displays the Web page.

2. The Web page document as claimed in claim 1, wherein
the components include database-related components
designed to display data from a database accessible to a
Server-Side computer, and the event-driven code causing
creation of information requests which are Sent to the
Server-Side computer, resulting in the client-Side computer
receiving information corresponding to the information
requests and displaying the information in conjunction with
the database-related components.

US 2004/O143591 A1

3. The Web page document as claimed in claim 1, wherein
a component of the components is associated with report
generation code which, when executed by the client-side
computer, creates a report document which includes infor
mation associated with the Web page.

4. A Web page development apparatus comprising:

a monitor for displaying a Web page for viewing by a
developer, wherein the Web page is defined by a Web
page document;

a user input means for enabling the developer to input
information relating to the development of the Web
page, and

a processor means, coupled to the monitor and the user
input means, the processor means for initializing and
executing a Web page development tool, causing the
Web page to be displayed on the monitor, receiving the
information from the user input means, and causing
modifications to the Web page document based on the
information, wherein the modifications include incor
porating, into the Web page document, event-driven
code associated with one or more Web page compo
nentS.

5. The Web page development apparatus as claimed in
claim 4, further comprising a communication means,
coupled to the processor means, wherein the communication
means is used to Send the Web page document to a Server
Side computer.

6. The Web page development apparatus as claimed in
claim 4, further comprising a data Storage means, coupled to
the processor means, wherein the data Storage means is used
to Store the Web page document.

7. The Web page development apparatus as claimed in
claim 4, further comprising a means for encrypting, coupled
to the processor means, wherein the means for encrypting is
used to encrypt the Web page document.

8. A Server apparatus comprising:
at least one communication means which receives a first

message from, and sends a Second message to, a
client-side computer, wherein the first message
includes an information request generated by event
driven code included in a Web page document executed
by the client-Side computer, and the Second message
includes Stored information accessible to the Server
apparatus, and

at least one processor means, coupled to the at least one
communication means, for processing the information
request to identify the Stored information, for creating
the Second message which includes the Stored infor
mation, and for causing the Second message to be sent
to the client-side computer So that the client-side com
puter can display the Stored information in response to
execution of the event-driven code.

9. A Server apparatus as claimed in claim 8, further
comprising a data Storage means, coupled to the processor
means, wherein the data Storage means is used to Store the
Stored information.

10. A client apparatus comprising:

a monitor which displays a Web page defined by a Web
page document executed by the client apparatus,

Jul. 22, 2004

a communication means which Sends first messages to,
and receives Second messages from, a Server-side com
puter; and

a processor means, coupled to the monitor and the
modem, which executes the Web page document;
including execution of event-driven code included
within the Web page document.

11. The client apparatus as claimed in claim 10, further
comprising an encryption means, coupled to the processor
means, for encrypting the first messages.

12. The client apparatus as claimed in claim 10, further
comprising a decryption means, coupled to the processor
means, for decrypting the Second messages.

13. The client apparatus as claimed in claim 10, further
comprising a data Storage means, coupled to the processor
means, for storing information associated with the Web
page.

14. A method for developing Web pages comprising the
Steps of

creating a page document which defines a Web page;

receiving inputs from a developer, wherein at least Some
of the inputs indicate that a component should be added
to the Web page; and

editing the page document, in response to the inputs,
wherein editing the page document includes adding
event-driven code to the page document, the event
driven code being code being associated with the
component and including code which is executed by a
client-side computer.

15. The method as claimed in claim 14, wherein at least
Some of the inputs indicate that previously-created event
driven code should be edited, the method further comprising
the Step of editing the previously-created event-driven code
to create new code which is added to the page document.

16. The method as claimed in claim 14, wherein at least
Some of the inputs indicate that a property of the component
should have a particular value, the method further compris
ing the Step of modifying the event-driven code to Specify
the particular value.

17. The method as claimed in claim 14, further compris
ing the Step of Sending the page document to a Server-side
computer.

18. The method as claimed in claim 17, further compris
ing the Step of encrypting the page document prior to
performing the Step of Sending the page document to the
Server-Side computer.

19. The method as claimed in claim 14, wherein at least
Some of the inputs indicate that the component should be
linked with a Second component of a Second page document,
the method further comprising the Step of adding linking
code to the page document which, when executed, will cause
a Second Web page associated with the Second page docu
ment to update automatically when the Second Web page is
displayed along with the first Web page.

20. A method for providing access to Stored information
comprising the Steps of:

receiving a request from a client-Side computer, wherein
the information request was generated in response to
execution, by the client-side computer, of event-driven
code included within a Web page document;

US 2004/O143591 A1

processing the request to identify Stored information
corresponding to the request;

creating a message which includes the Stored information;
and

Sending the message to the client-side computer So that
the client-Side computer can display the Stored infor
mation in response to execution of the event-driven
code.

21. The method as claimed in claim 20, wherein the
request is a request for a Second Web page document, the
Step of processing includes the Step of identifying the Stored
information as the Second Web page document, and the Step
of creating the message includes the Step of including the
Second Web page document within the message.

22. The method as claimed in claim 21, further compris
ing the Steps of

determining whether a user of the client-side computer
has rights to access the Second Web page document;
and,

if the user does not have the rights, the method bypassing
the Steps of creating the message and Sending the
meSSage.

23. The method as claimed in claim 20, wherein the
request is a request for data associated with a database, the
Step of processing includes the Steps of identifying the
database and obtaining the data from the database, and the
Step of creating the message includes the Step of including
the data within the message.

24. The method as claimed in claim 23, further compris
ing the Steps of

determining whether a user of the client-side computer
has rights to access the data; and,

if the user does not have the rights, the method bypassing
the Steps of creating the message and Sending the
meSSage.

25. A method for interacting with a Web page displayed
on a client-side computer, the method comprising the Steps
of:

displaying a Web page associated with a Web page
document, wherein the Web page document includes
event-driven code; and

executing the event-driven code included within the Web
page document.

26. The method as claimed in claim 25, wherein the step
of executing the event-driven code is performed in response
to receiving input.

27. The method as claimed in claim 26, wherein the input
indicates that a Second Web page has been requested, the
method further comprising the Step of requesting the Second
Web page from a Server-Side computer.

28. The method as claimed in claim 27, further compris
ing the Steps of receiving and displaying the Second Web
page from the Server-Side computer.

29. The method as claimed in claim 28, wherein the first
Web page and the Second Web page have a first-page linked
component and a Second-page linked component which are
linked between the first Web page and the second Web page.

Jul. 22, 2004

30. The method as claimed in claim 29, further compris
ing the Steps of:

receiving additional input which indicates that the user
wishes the first Web page to display additional data
asSociated with the first-page linked component;

creating an information request which requests the addi
tional data and which requests linked data associated
with the Second-page linked component;

Sending the information request to the Server-Side com
puter,

receiving the additional data and the linked data;
displaying the additional data in conjunction with the

first-page linked component; and
displaying the linked data in conjunction with the Second

page linked component.
31. The method as claimed in claim 26, wherein the input

indicates that data has been requested, the method further
comprising the Steps of requesting the data from a Server
Side computer.

32. The method as claimed in claim 31, further compris
ing the Steps of receiving and displaying the data from the
Server-Side computer, wherein the data is displayed in con
junction with a database-related component on the Web
page.

33. The method as claimed in claim 32, further compris
ing the Step of updating State variables Stored on the client
Side computer, wherein the State variables indicate which
records, in a database associated with the data, include data
which should be accessed next in the event that the client
Side computer receives an additional request for data from
the user.

34. The method as claimed in claim 26, wherein the input
indicates that the user wishes to Store the Web page and
asSociated data on the client-side computer, the method
further comprising the Step of Storing the Web page and the
asSociated data on the client-side computer.

35. The method as claimed in claim 34, further compris
ing the Steps of:

determining whether the Web page and the associated data
are allowed to be Stored on the client-side computer;
and,

if the Web page and the associated data are not allowed to
be stored on the client-Side computer, bypassing the
Step of Storing the Web page and the associated data.

36. The method as claimed in claim 25, further compris
ing the Steps of:

creating, based on the event-driven code, an information
request,

Sending the information request to a server-Side computer;
receiving, from the Server-Side computer, a message

which includes Stored information corresponding to the
information request; and

displaying the Stored information in response to execution
of the event-driven code.

37. A system for Web page development, deployment,
download, and execution comprising:

a Web page development computer having a first proces
Sor means, a first monitor, a first data Storage means, a
first user input means, and a first communication
means, wherein the first processor means initializes a

US 2004/O143591 A1

page development tool with which a human developer,
using the first user input means, creates a Web page
document by placing a component on a Web page
displayed on the first monitor, upon which the page
development tool retrieves code corresponding to the
component from the first data Storage means, gathers
database information if the component is a database
related component, creates linking code if the human
developer indicates that the database-related compo
nent should be linked to a Second database-related
component on a Second Web page, and places the code,
database information, and linking code in the Web page
document, and when the human developer indicates
that the Web page defined by the Web page document
should be deployed, the Web page development com
puter, via the first communication means, Sends the
Web page document to a Server-side computer over a
first network;

the Server-side computer having at least one communica
tion means, a Second processor means, and a Second
data Storage means, wherein the Web page document is
received off the first network via the at least one
communication means and is Stored in the Second data
Storage means, and, when a client-side computer
requests the Web page document, the Server-side com
puter retrieves the Web page document from the Second
data Storage means and Sends, via the at least one
communication means, the Web page document to the
client-side computer over a second network which
could be the first network, and, when the Web page on
the client-side computer requests data from a database,
the Server-side computer retrieves and sends the data,
via the at least one communication means, to the
client-side computer; and

18
Jul. 22, 2004

the client-side computer having a third processor means,
a Second monitor, a third data Storage means, a Second
user input means, and a Second communication means,
wherein the third processor means initializes a browser
which requests, via the Second communication means,
the Web page document from the Server-side computer,
and, after the Second communication means receives
the Web page document, the third processor means
enables the Web page corresponding to the Web page
document to be displayed via the Second monitor, and,
if the Web page includes the database-related compo
nent, the processor executes the code corresponding to
the database-related component, causing the client-Side
computer to Send a data request, via the third commu
nication means, to the Server-Side computer over the
Second network, and, after receiving data correspond
ing to the request, the processor causes the data to be
displayed within the database-related component on the
Web page and Stores State variables, for use if addi
tional data is requested, which indicate which data has
been displayed, and, if the database-related component
is linked to the Second database-related component, the
third processor executes the linking code, and, if the
human user requests that the Web page document be
Stored locally on the client-side computer, the third
processor causes the Web page document, the data and
the additional data, and the State variables to be Stored
in the third data Storage means So that the human user
can modify the data and the additional data offline,
reconnect to the Server-side computer at a later time,
and download modified data to the Server-Side com
puter which would then modify the database using the
modified data.

