Oversættelse af europæisk patentskrift

Patent- og Varemærkestyrelsen

Int.Cl.: B 65 G 19/02 (2006.01) B 65 G 9/00 (2006.01) B 65 G 47/61 (2006.01)

Oversættelsen bekendtgjort den: 2017-06-26

Dato for Den Europæiske Patentmyndigheds bekendtgørelse om meddelelse af patentet: 2017-03-29

Europæisk ansøgning nr.: 13199375.0

Europæisk indleveringsdag: 2013-12-23

Den europæiske ansøgnings publiceringsdag: 2015-06-24

Designerede stater: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Patentthaver: Dematic Logistics GmbH, Schelpmiler Weg 14B, 33609 Bielefeld, Tyskland

Opfinder: OTTO Thomas, Sennehof 13a, 33659 Bielefeld, Tyskland

Fuldmægtig i Danmark: PATRADE A/S, Fredens Torv 3A, 8000 Århus C, Danmark

Benævnelse: TRANSPORTØRINDRETNING TIL TRANSPORT AF HÆNGENDE EMNER

Fremdragne publikationer:
EP-A1-1 531 133
The present invention relates to a conveyor for conveying hanging objects according to the preamble of claim 1.

Generic conveyors which serve for conveying hanging objects and are also referred to as overhead twin rail chain conveyors or power and free conveyors, essentially are formed by a rail profile, in which a conveyor chain is guided in an upper track, and a second track which is arranged below this upper track and in which holding adapters are guided which are carried along by the conveyor chain in conveying direction.

Such a conveying device with the features of the preamble of claim 1 is known for example from DE 10 2013 100 132 A1.

In order to stop an object to be conveyed in such a conveyor, it is not the conveyor chain that is stopped but rather the holding adapter for example by means of a stopping device, and is thereby decoupled from the conveyor chain, wherein the conveyor chain continues to move.

In order to select (sort out) individual objects hanging on the holding adapters, from such a conveyor, all holding adapters with objects hanging thereon have to be transferred into a sorting conveyor in which the holding adapters, and with this the objects to be conveyed, are coupled at defined distances to each other. In the sorting conveyor the objects to be sorted out are then identified and are conveyed out of the sorting conveyor to a packing site or the like. While hanging on the holding adapters, the remaining objects are subsequently conveyed back again into the overhead twin rail chain conveyor which is used as storage circle, rendering sorting out of desired objects very time consuming. In particular, depending on the circumstance, the objects to be sorted out have to be moved through the overhead twin rail chain conveyor which is used as storage circle, in order to reach the site of the conveyor at which the object can be transferred into a sorting conveyor.

EP 1 531 133 A1 discloses a conveying device in which hangers on a guide rail are conveyed by use of a drag chain. The guide rail includes a switch tounge element for discharging hangers that is slidable in movement direction, which in a first position
closes the gap between a first guide rail section and a second guide rail section and in a second position leaves the gap between the guide rail sections such that a hanger can glide downwardly onto a further guide rail.

EP 1 258 439 A1 discloses a conveying device in which hangers are inserted into transport rollers that are conveyed on a guide rail by means of a comb-shaped drive element that is driven by a link chain.

It would therefore be desirable and advantageous to provide an improved conveyor in which residence time in the conveyor is decreased and with this individual conveyed objects can be sorted significantly faster.

This object is solved by a conveyor for conveying hanging objects with the features according to claim 1.

The conveyor for conveying hanging objects includes a first rail profile having an upper first track, a second track arranged below the first track. In the first track of the first rail profile a conveyor chain for conveying of holding adapters in a conveying direction is moveable continuously. The holding adapters for holding objects to be conveyed, each have a head part rollably supported in the second track of the first rail profile, each holding adapter is constructed for being coupled and decoupled from the conveyor chain during movement of the conveyor chain. The inventive conveying device is characterized by the first track having a sorting section with a separation unit and a switch, wherein the switch follows the separation unit in a conveying direction and wherein the second track in a region of the sorting section is configured as downward slope in the conveying direction, wherein in the downward slope a distance between the first track and the second track increases to a degree at which the holding adapters and the conveyor chain are decoupled from each other, and wherein the separation unit and the switch are arranged in a region of the sorting section at which the holding adapters are decoupled from the conveyor chain.

With such a conveyor, a sorting section can be integrated into a conveyor which is configured as overhead twin rail chain conveyor, which is made possible by the fact that the holding adapters pass through the sorting section in a state of
being decoupled from the conveying chain, without impeding, in particular without slowing down, the circulation of the remaining holding adapters which are guided in the conveying device, and with this the objects conveyed on the holding adapters.

The sorting out of individual objects hanging on the holding adapters is thus possible in a significantly shorter time than in conventional conveyors in which the objects to be sorted out first have to be transferred out of an overhead twin rail chain conveyor, which serves as buffer storage, into a sorting circuit in which the objects or respectively the holding adapters are engaged in the conveyor chain at defined distances to each other, in order to read out the information which is for example arranged on a holding adapter at relates to the object conveyed on the holding adapter, to switch the subsequent switch correspondingly and in this way be able to sort out the desired objects or return the desired objects back into the buffer circuit.

According to an advantageous embodiment of the invention, the first rail profile can be configured as closed circuit profile, wherein a second rail profile and a third rail profile follow in conveying direction behind the switch, wherein the second rail profile with a track for receiving and conveying the holding adapters follows the second track of the first rail profile and leads into a reintegartion section of the first rail profile, and wherein the third rail profile follows the second track of the first rail profile for conveying the holding adapters to a further conveyor.

Providing such a second track for returning the holding adapters into the first rail profile, enables a reliable and backlog-avoiding return of the holding adapters into the first rail profile which preferably extends in a plane.

According to a further preferred embodiment of the invention, the second track can be configured in the region of the reintegartion section as incline in conveying direction, wherein in the reintegartion section the distance between the first track and the second track of the first rail profile decreases from a degree where the holding adapters and the conveying chain are not coupled with each other to a degree where the holding adapters and the conveying chain can be coupled with each other.
For conveying the holding adapters in the second rail profile, a further conveyor is provided parallel to the second rail profile in a further embodiment of the invention, which further conveyor is in particular provided as chain drive with fingers which engage in the head part of the holding adapters for conveying the holding adapters in the further conveyor.

These fingers of the further conveyor are preferably configured elastic. This makes it possible that even when a finger accidentally impacts a side region of the holding adapter, the finger is deflected elastically to the left or right hand side in order to thereby, depending on the direction of deflection, either engages behind the respective holding adapter and further conveys this holding adapter or is deflected in conveying direction before the holding adapter so that the holding adapter is carried along by the next finger of the conveyor.

According to a further advantageous embodiment of the invention, a speed control section adjoins in conveying direction before the stopping device, with an detection device for detecting a number of adapters present in the speed control-section, wherein when the number of adapters falls below a predetermined number the detection device outputs a control signal to a drive unit of the conveying chain for increasing the conveying speed of the conveyor chain. This enables a capacity controlled speed control of the conveyor.

BRIEF DESCRIPTION OF THE DRAWING

Other features and advantages of the present invention will be more readily apparent upon reading the following description of currently preferred exemplified embodiments of the invention with reference to the accompanying drawing, in which:

FIG. 1 is a perspective view onto an embodiment of a conveyor according to the invention,

FIG. 2 is a top view onto the conveyor device as FIG. 1,

FIG. 3 is a view from below onto the conveyor as FIG. 1,
FIG. 4 is a side view onto the conveyor of FIG. 1 showing the sorting section,

FIG. 5 is a side view onto the conveyor of FIG. 1 with view onto the reintegration section,

FIG. 6 is a perspective view of the rail profile in the region of the separation unit and

FIG. 7 is a side view of the section shown in Figure 6 of the rail profile showing the downward slope.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

Throughout all the Figures, same or corresponding elements are generally indicated by same reference numerals. These depicted embodiments are to be understood as illustrative of the invention and not as limiting in any way. It should also be understood that the drawings are not necessarily to scale and that the embodiments are sometimes illustrated by graphic symbols, phantom lines, diagrammatic representations and fragmentary views. In certain instances, details which are not necessary for an understanding of the present invention or which render other details difficult to perceive may have been omitted.

In the following description of the Figures the terms up, down, left, right, front, rear etc, exclusively refer to the exemplary representation and position of the conveyor, rail profile, track, conveyor chain, holding adapter and the like chosen in the Figures. These terms are not to be understood as limiting, i.e., the relationships may change as a result of different operating positions or the mirror symmetrical layout or the like.

In FIG. 1 reference numeral 1 designates a first rail profile of a conveyor for conveying hanging objects. In this first rail profile 1 a conveyor chain 7 is guided in a first upper track 11. The conveyor chain 7 is configured as so called Power and Free chain, with a thrust body 63 which is vertically elastically arranged below a base body 62 of a respective chain link, which thrust body has at least one recess for form fittingly receiving a coupling member of a head part 61 of a
holding adapter 6. The base body is provided with lateral friction roller abutment surfaces, onto which the (not shown) friction rollers can be pushed for driving the conveyer chain 7, in order to move the conveyer chain 7 in a conveying direction \(x_1 \) in the rail profile 1. The construction of such a conveyer chain 7 is described in the German patent application DE 10 2013 100 132, to which reference is made here.

The hanging objects to be conveyed are for example conveyed by means of a bracket which is engaged in a holding adapter 6. The holding adapters 6 have in a second track 12 of the first rail profile 1 a head part 61 which is supported for rolling movement, wherein the head part 61 is shaped so that it can be coupled and decoupled from the conveyer chain 7 while the conveyer chain is moving.

In order to sort out individual objects which hang on a particular holding adapter 6 out of the first rail profile 1, the first rail profile 1 has a sorting section 13 with a separation unit 4 and a switch 8 which follows in conveying direction \(x_1 \), as shown in the view from the bottom onto the first rail profile 1, shown in FIG. 3. Preferably, a stopping device 5 is provided on the first rail profile 1 before the sorting section 13 of the first rail profile 1, in order to only allow a predetermined number of holding adapters 6 to enter immediately downstream of the sorting section 13.

"Behind" the sorting section 13 means a section through which an adapter 6 passes in conveying direction \(x_1 \), before it reaches the sorting section 13. Correspondingly "before" the sorting section 13 means a section through which an adapter 6 passes in conveying direction \(x_1 \), after the adapter 6 has passed the sorting section 13.

The stopping device 5 has essentially an electrically controllable blocking bar 51, which is controlled by a detection device 52, for example a light barrier, wherein the detection device 52 determines whether a holding adapter 6 is present at a predetermined position after the detection device 52 or not. When a holding adapter is recognized, the detection device outputs a signal to the stopping device 5, by which the blocking bar 51 of the stopping device 5 is moved into the path of movement of the holding adapter 6 and thus blocks further movement.
of the holding adapters 6 which approach in conveying direction \(x \), before the stopping device 5.

The second track 12 is configured in the region of the sorting section 13 as downward slope 121 in conveying direction, shown in FIG. 7, in which the distance \(D \) between the first track 11 and the second track 12 increases to a degree at which the holding adapters 6 and the conveyor chain 7 are decoupled from each other.

Due to the downward slope 121 the holding adapters 6 thus move further in conveying direction \(x \), while being decoupled from the conveyor chain 7. Subsequently the holding adapters 6 move through a reading device, which reads data out of a data storage provided on the holding adapter 6, for example an RFID chip or the like. This enables recognizing whether the switch provided before the reading unit guides the holding adapter 6 out of the rail profile 1 into a rail profile 3 via which the holding adapter 6 and the object hanging on the holding adapter is further guided into a further conveyor. This third rail profile 3 is preferably configured as downward slope so that the adapter with the objects hanging thereon is further conveyed along the third rail profile 3 due to gravity.

When the holding adapter 6 is not to be sorted out of the first rail profile 1, the switch 8 switches and transfers the holding adapter 6 into a second rail profile 2 which adjoins the second 12 of the first rail profile 1 with a track 21 for receiving and further conveying the holding adapter 6, and leads into a reintegration section 14 of the first rail profile 1.

Immediately after the switch 8, a further detection device 10 is provided on both rail profiles 2, 3, for example a light barrier, which controls the separation unit 4 so that when an adapter is recognized to pass the detection device 10 the next adapter which is stopped by the separation unit 4 is released and moves toward the switch 8 in the downward slope 121.

The second track 12 of the first rail profile 1 is configured in the region of the reintegration section 14 preferably as incline 122 in conveying direction \(x \), as shown in FIG. 5.
In the reintegration section 14 the distance D between the first track 11 and the second track 12 of the first rail profile 1 decreases from a degree at which the holding adapters 6 and the conveyor chain 7 cannot be coupled with each other to a degree at which the holding adapters and the conveyor chain can be coupled with each other, so that the holding adapters 6 after passing through the incline 122 are received again by or coupled again to conveyor chain 7 and thus are further conveyed in the first rail profile 1.

Likewise, other configurations of the reintegration section 14 are conceivable, for example in the form of a horizontally oriented second track 12 of the first rail profile 1, wherein the first track 11, which receives the conveyor chain 7, is configured as downward slope or also in the form of a lateral feed ramp.

The first rail profile 1 is preferably configured as circumferential rail profile 1, so that the holding adapters 6, which are reintegrated into the second track 12 in the reintegration section 14, eventually arrive again before the sorting section 13 of the first rail profile.

In order to further convey the holding adapters 6 between the sorting section 13 and the reintegration section 14, a conveyor 9 for further conveying the holding adapters 6 in conveying direction x₁ is provided parallel to the second rail profile 2. This conveyor 9, for example shown in the FIGS. 1 to 3, is preferably configured as chain drive with fingers 93 interacting with the head parts 61 of the holding adapter 6 for further conveyance of the holding adapters 6 in conveying direction x₂. These fingers 93 are fastened to holding parts 92 which are fixed underneath the chain 95 of the conveyor 9.

The fingers 93, as can be seen in FIGS. 1 to 3, protrude perpendicularly relative to the conveying direction x₂ in the direction of the second rail profile 2 and engage for the purpose of conveyance behind the holding adapters 6 and push the holding adapters in conveying direction x₁ in the direction toward the reintegration section 14 of the first rail profile 1.

Particularly preferably the fingers 93 are configured elastic. This ensures that even when a finger 93 accidentally collides with a holding adapter 6, whereby
surfaces of the holding adapter 6 and the finger 93 contact each other, which surfaces are oriented parallel relative to the conveying direction, the finger 93 can be elastically bent and thus can be deflected before or behind the holding adapter 6 and thereby when being deflected in conveying direction behind the holding adapter 6 further convey the holding adapter 6, or when being deflected before the holding adapter the next finger 93 further conveys the holding adapter 6 to the reintegration section 14.

As also shown in FIG. 1, according to a further preferred embodiment, a speed control section 15 is provided in conveying direction X₁ before the stopping device 5, which speed control section 15 is equipped with a further (here not shown) detection device for identifying a number of adapters 6 present in the speed control section 15. With this, a capacity-controlled speed control of the conveyor is possible.

Thus when less than a predetermined number of adapters 6 are detected in the speed control section 15, a control signal is outputted by the detection device to the drive unit of the conveyor chain 7 for increasing the conveying speed of the conveyor chain 7. With this, regions of the conveyor in which only few adapters 6 are present, can be passed through in a shorter time and with the adapters conducted by the sorting section 13 faster and with this the sorting out of desired objects from the conveyor further be shortened.

Correspondingly, according to an embodiment it is provided that when exceeding a predetermined number of adapters 6 a control signal is outputted to the drive unit of the conveyor chain 7 for lowering the conveying speed of the conveyor chain 7. Such an exceeding of the predetermined number can for example occur when in another region of the conveyor a large number of adapters and objects hanging thereon are introduced and/or back up and are then further transported in a tightly packed state.

By lowering or increasing the conveying speed a more uniform distribution of the objects to be conveyed on the conveyor is achieved. This also has the result that the jam pressure of the adapters 6 behind the sorting section 13 due to the almost constant number of adapters 6 remains approximately the same.
The lowering or increasing of the conveying speed also ensures that due to the constant conveying speed of the second conveyor 9 the average distance of the adapters 6 to each other is correspondingly smaller or greater and with this an optimal utilization of the conveyor can be achieved. Thus when the speed of the conveyor chain 7 is reduced, the adapters 6 are urged tighter together in the reintegration section 14 and correspondingly when the speed of the conveyor chain is increased in the reintegration section 14 the adapters 6 are integrated into the second track 12 further spaced apart from each other.
Reference numerals

1 first rail profile
11 first (upper) track
5 12 second track
 121 downward slope
 122 incline
13 14 sorting section
 14 reintegration section
10 15 speed control section

2 second rail profile
21 track

15 3 third rail profile

4 separation unit

5 5 stopping device
 blocking bar
52 detection device

6 holding adapter
61 head part

25 62 base body
 63 thrust body

7 conveyer chain

30 8 switch

9 conveyor
track
holding parts
fingers
drive
chain
detection device
distance
conveying direction
conveying direction
PATENTKRAV

1. Transportørrindretning til transport af hængende emner, omfattende
- en første skinneprofil (1) med et første øvre spor (11) og et andet spor (12) arrange-
ret under det første spor (11),
- en transportørkæde (7), som kan bevæges kontinuerligt i første spor (11) af skinne-
profilen (1) i transportretningen (x1),
- holtheadaptorer (6) til at holde emner, der skal transporteres, hvilke holtheadaptorer
(6) hver har en hoveddel, som er rullende understøttet i det andet spor (12) af skinne-
profilen (1), hvorhos holtheadaptorerne (6) kan være tilkoblet og frakoblet fra transpor-
tørkæden (7) medens transportørkæden bevæges,

kendetegnet ved, at
- nævnte første skinneprofil (1) har en sorteringssektion (13) med en separationsenhed
(4) og et skiftespor (8), der følger i transportretningen (x),
- hvorhos det andet spor (12) i området ved sorteringssektionen (13) er konfigureret
med nedadgående hældning (121) i transportretningen (x1), hvor afstanden (d) mellem
det første spor (11) og det andet spor (12) forøges til en dimension hvor, hvor hol-	headaptorerne (6) og transportørkæden (7) er frakoblet hinanden,
- hvorhos separationsenheden (4) og skiftesporet (8) er arrangeret i området ved sorte-
ringsektionen (13) hvor holtheadaptorerne (6) er frakoblet fra transportørkæden (7).

2. Transportørrindretning ifølge krav 1, **kendetegnet ved,** at første skinneprofil (1) er
konfigureret som lukket profil, som i transportretningen (x1) før skiftesporet (8) sam-
les med et andet skinneprofil (2) og et tredje skinneprofil (3), idet det andet skinnepro-
fil (2) samles med det andet spor (12) af den første skinneprofil (1) med et spor (21) til
modtagelse og videre交通运输holtheadaptorerne (6) og som fører ind i en reintegra-
tionssektor (14) af den første skinneprofil (1), og hvor det tredje skinneprofil (3) sam-
les med det det andet spor (12) af den første skinneprofil (1) for yderligere transport af
holtheadaptorerne (6) til en yderligere transportør (9).

3. Transportørrindretning ifølge krav 2, **kendetegnet ved,** at der foran skiftesporet (8)
på det andet skinneprofil (2) og på det tredje skinneprofil (3) findes en detektorindret-
ning (10), hvormed separationsenheden (4) er styreforbundet.
4. Transportørrindretning ifølge ethvert af de foregående krav, **kendetegnet ved**, at der foran sorteringssektionen (13) af det første skinneprofil (1) på dette findes en stopindretning (5).

5. Transportørrindretning ifølge ethvert af de foregående krav, **kendetegnet ved**, at det andet spor (12) i området ved reintegrationssektoren (14) er konfigureret hældende i transportretningen (x), hvor afstanden (d) mellem det første spor (11) og det andet spor (12) i reintegrationssektoren (14) formindskes fra en grad hvor holdeadapterne (6) og transportørkæden (7) ikke kan være sammenkoblet, til en grad hvor holdeadap-
torerne (6) og transportørkæden (7) kan være sammenkoblet.

6. Transportørrindretning ifølge krav 5, **kendetegnet ved**, at der parallelt med det andet skinneprofil (2) findes en transportørrindretning (x₂) til yderligere transport af holdeadaptererne (6).

7. Transportørrindretning ifølge krav 6, **kendetegnet ved**, at transportøren (9) er konfigureret som kædedrev med fingre (93), der samvirker med hoveddelen (61) af holdeadapterne (6) for yderligere transport af holdeadapterne (6) i transportretningen (x₂).

8. Transportindretning ifølge krav 8, **kendetegnet ved**, at fingrene (93) er konfigureret elastiske.

9. Transportørrindretning ifølge ethvert af de foregående krav, **kendetegnet ved**, at der i transportretningen (x₁) foran stopindretningen (5) findes en hastighedskontrolsektion (15) med en detektionsindretning for identificering af antallet af adaptorer (6), som er til stede i hastighedskontrolsektionen (15), idet der i tilfælde af mindre antal end et forudbestemt antal adaptorer (6) af detektionsindretningen genereres et kontrolsignal til en drivenhed af transportørenkæden (7) for at forøge transporthastigheden af trans-
portørkæden (7).

10. Transportørrindretning ifølge krav 9, **kendetegnet ved**, at der ved overstigning af forudbestemt antal holdeadapterer (6) genereres et kontrolsignal til drivenheden for at reducere transporthastigheden af transportørkæden (7).