发明名称
一种盐酸奧西沙星氯化钠注射液的制备工艺

摘要
本发明的目的在于提供一种质量更好、稳定性好、副作用少的奧西沙星氯化钠注射液的制备工艺。本发明所述盐酸奧西沙星注射剂的制备方法，包括以下步骤：步骤一：称量：按处方量分别称取盐酸奧西沙星和氯化钠，配制备用；步骤二：配液（1）：取注射用水，加入盐酸奧西沙星，搅拌使完全溶解，加入药用炭，搅匀，搅拌吸附，滤膜除炭过滤。用适量注射用水冲洗炭层，滤液备用；步骤三：配液（2）：取注射用水，加入处方全量的氯化钠，搅拌使溶解完全，冷却，加入药用炭，搅匀，搅拌吸附，用滤膜除炭过滤，再用注射用水冲洗炭层，合并滤液，加注射用水至全量，调节pH，搅匀，待灌装；步骤四：灌封：药液用的微孔滤膜滤过，滤液灌装于玻璃输液瓶中，充氮，加塞，轧盖，待灭菌。
1. 一种盐酸莫西沙星氯化钠注射液的制备方法，包括以下步骤：

配方组成：

<table>
<thead>
<tr>
<th>成分</th>
<th>用量</th>
</tr>
</thead>
<tbody>
<tr>
<td>盐酸莫西沙星</td>
<td>40g</td>
</tr>
<tr>
<td>氯化钠</td>
<td>200g</td>
</tr>
<tr>
<td>盐酸</td>
<td>适量</td>
</tr>
<tr>
<td>氢氧化钠</td>
<td>适量</td>
</tr>
<tr>
<td>药用炭</td>
<td>适量</td>
</tr>
<tr>
<td>注射用水</td>
<td>定容至25000ml</td>
</tr>
<tr>
<td>共制成</td>
<td>100支</td>
</tr>
</tbody>
</table>

制备方法：

步骤一：称量：按处方量分别称取盐酸莫西沙星和氯化钠，配制1mol/L氢氧化钠溶液和1mol/L盐酸溶液备用。

步骤二：配液（1）：取处方总量10％的注射用水，加入处方量的盐酸莫西沙星，搅拌使完全溶解，加入药用炭，搅匀，搅拌吸附，用0.45μm滤膜除炭过滤，用适量注射用水冲洗炭层，滤液备用。

步骤三：配液（2）：取处方总量5％的注射用水，加入处方总量的氯化钠，搅拌使溶解完全，加热至95～100℃，保温15分钟，冷却，加入药用炭，搅匀，搅拌吸附，用0.45μm滤膜除炭过滤，再用适量40～50℃的注射用水冲洗炭层，合并滤液，加的注射用水至全量，调节pH至4.1～4.6，搅匀，待灌装。

步骤四：灌封：药液依次用0.45μm和0.22μm的微孔滤膜滤过，滤液灌装于250ml玻璃输液瓶中，充氮，加塞，轧盖，待灭菌。

2. 权利要求1所述的制备方法，其特征在于，步骤二，药用炭用量为当前药液量的0.01-0.1％，优选为0.05％（w/v）。

3. 权利要求1所述的制备方法，其特征在于，步骤二，搅拌吸附时间为5-20min，优选为15min。

4. 权利要求1所述的制备方法，其特征在于，步骤三，所述冷却是指用注射用水冷却至30℃-60℃，优选为40℃-50℃。

5. 权利要求1所述的制备方法，其特征在于，步骤三，所述药用炭用量按重量计，为氯化钠用量的1-5％，吸附时间为10-20min，优选的，药用炭用量按重量计，为氯化钠用量的3％，吸附时间为15min。

6. 权利要求1所述的制备方法，其特征在于，该制备方法还包括进一步灭菌的步骤：取已轧盖的样品，置灭菌锅中，121℃热压蒸汽灭菌15分钟，取出放冷，灯检合格，即得。

7. 权利要求1所述的制备方法，其特征在于，包括以下步骤：

步骤一：称量：按处方量分别称取盐酸莫西沙星和氯化钠，配制1mol/L氢氧化钠溶液和1mol/L盐酸溶液备用。

步骤二：配液（1）：取处方总量10％的注射用水，加入处方量的盐酸莫西沙星，搅拌使完全溶解，加入当前药液量0.01-0.1％（w/v）的药用炭，搅匀，搅拌吸附5-20分钟，用0.45μm滤
膜除炭过滤，用适量注射用水冲洗炭层，滤液备用；

步骤三：溶液（2）取处方全量5%的注射用水，加入处方全量的氯化钠，搅拌使溶解完全，加热至95～100℃，保温15分钟，冷却至30～60℃，加入氯化钠用量的1～5%（w/w）的药用炭，搅拌均匀，搅拌吸附10～20分钟，用0.45μm滤膜除炭过滤，再用适量40～50℃的注射用水冲洗炭层，合并滤液，加40～50℃的注射用水至全量，调节pH至4.1～4.6，混匀，待灌装；

步骤四：灌封：药液用0.45μm和0.22μm的微孔滤膜滤过，滤液灌装于250ml玻璃输液瓶中，充氮，加塞，轧盖，待灭菌；

步骤五：灭菌：取已轧盖的样品，置灭菌锅中，121℃热压蒸汽灭菌15分钟，取出放冷，灯检合格，即得。

8. 权利要求1-7所述的制备方法，其特征在于，包括以下步骤：

配方组成：

<table>
<thead>
<tr>
<th>原辅料</th>
<th>含量</th>
</tr>
</thead>
<tbody>
<tr>
<td>莫西沙星</td>
<td>40g</td>
</tr>
<tr>
<td>氯化钠</td>
<td>200g</td>
</tr>
<tr>
<td>盐酸</td>
<td>适量</td>
</tr>
<tr>
<td>氢氧化钠</td>
<td>适量</td>
</tr>
<tr>
<td>药用炭</td>
<td>适量</td>
</tr>
<tr>
<td>注射用水</td>
<td>容至25000ml</td>
</tr>
<tr>
<td>pH值</td>
<td>4.1-4.6</td>
</tr>
<tr>
<td>共制成</td>
<td>100支</td>
</tr>
</tbody>
</table>

制备方法：

步骤一：称量：按处方量分别称取盐酸莫西沙星和氯化钠，配制1mol/L氢氧化钠溶液和1mol/L盐酸溶液备用；

步骤二：溶液（1）：取处方全量10%的注射用水，加入处方量的盐酸莫西沙星，搅拌使完全溶解，加入当前药液量0.05%（w/w）的药用炭，搅拌均匀，搅拌吸附15分钟，用0.45μm滤膜除炭过滤，用适量注射用水冲洗炭层，滤液备用；

步骤三：溶液（2）：取处方全量5%的注射用水，加入处方全量的氯化钠，搅拌使溶解完全，加热至95～100℃，保温15分钟，冷却至40～50℃，加入氯化钠用量的1～5%（w/w）的药用炭，搅拌均匀，搅拌吸附15分钟，用0.45μm滤膜除炭过滤，再用适量40～50℃的注射用水冲洗炭层，合并滤液，加40～50℃的注射用水至全量，调节pH至4.1～4.6，混匀，待灌装；

步骤四：灌封：药液用0.45μm和0.22μm的微孔滤膜滤过，滤液灌装于250ml玻璃输液瓶中，充氮，加塞，轧盖，待灭菌；

步骤五：灭菌：取已轧盖的样品，置灭菌锅中，121℃热压蒸汽灭菌15分钟，取出放冷，灯检合格，即得。
一种盐酸莫西沙星氯化钠注射液的制备工艺

技术领域
本发明属于药物制剂领域，具体涉及一种新的盐酸莫西沙星氯化钠注射液及其制备方法。

背景技术
盐酸莫西沙星是新开发高效第四代氟喹诺酮类抗菌药，2005年盐酸莫西沙星氯化钠注射液在中国上市，商品名：拜复乐。从化学结构来看，莫西沙星7位取代基团为二氯杂环，可减少微生物主动外排所致的耐药性（是氟喹诺酮类药物交叉耐药的主要机制），保证了其耐药性低的优势。在8位引入甲氧基团，使本品在保留喹诺酮类药物对革兰氏阳性菌、非典型病原菌和厌氧菌的抗菌作用。莫西沙星对铜绿假单胞菌的抗菌活性弱于左氧氟沙星之外，对非典型病原菌如肺炎链球菌、衣原体、军团菌、有芽孢和无芽孢的厌氧菌等都强于左氧氟沙星，临床上用于治疗成人（≥18岁）上呼吸道和下呼吸道感染，如：急性窦炎、慢性支气管炎急性发作、社区获得性肺炎，以及皮肤和软组织感染。复杂腹腔感染包括混合细菌感染，如脓肿等。本品已逐渐成为治疗呼吸道感染的重要药物。

盐酸莫西沙星注射液1999年9月在美国上市，同年12月在中国上市。在我国拜耳上市的制剂商品名“拜复乐”，规格40mg，批准文号为国药准字J20030001，剂型有口服和注射两种剂型。

德国拜耳公司的中国专利ZL00811427.7记载：在开发盐酸莫西沙星注射液期间发现，通过加入5%糖度葡萄糖或其它糖和糖醇，例如2.5%的甘油进行等渗调节，可以获得莫西沙星的不稳定性液。这种不稳定性液在溶液中呈现亚可视颗粒，原因在于莫西沙星和/或其盐、药物和糖及糖醇的三重作用。元素铁是无所不在的，其特别存在于原料葡萄糖中，其次，生产设备以及活性化合物也是铁的来源。铁含量高于20ppb的溶液在所需要稳定期内不能维持该制剂所要求的药物质量。中国专利ZL00811427.7还记载，用氯化钠等渗调节的莫西沙星盐酸盐注射液制备对铁离子不敏感。尽管在氯化钠存在下盐酸盐形式的活性化合物莫西沙星的溶解性太差，如果应用浓度范围的活性化合物和等渗调节剂，用氯化钠进行等渗调节可以制备得到可接受的莫西沙星盐酸盐制剂。

因此，中国专利ZL00811427.7提供了含有0.04%～0.4%w/v莫西沙星盐酸盐（基于莫西沙星）和0.4%～0.9%w/v氯化钠的水制剂。上述制剂以商品名拜复乐（Avelox）获准并销售使用，规格为250ml；莫西沙星0.4g与氯化钠2.0g。

就莫西沙星而言，尽管已经发现加入常规的渗透压调节剂，例如5%葡萄糖或其他糖或糖醇，通常会得到不稳定的溶液（40℃存放4～8周后常常出现亚可视颗粒），并进而认为将上述常规的渗透压调节剂用于莫西沙星是不可能的。但是，美国专利US6916484提供了适合用作输注溶液剂的含有糖或糖醇的等渗、可接受且同时贮存稳定的药物处方。US6916484中记载，适当的方法为使所述的水溶液制剂所含的铁低于20ppb（可以为20g/1000,000,000ml或20ug/l(w/v)，或2011g/kg(w/w)，或更优选低于10ppb。尽管其中所述的
的水溶液型处方可以包含莫西沙星或其盐，基于莫西沙星的量可以更高，例如最大为2.4%（w/v）。但是，专利申请US6916484对作为渗透压调节剂的糖和/或糖醇的质量要求非常严格，例如需要控制最终产品的铁含量$<6.5 \times 10^{-4}$mol/l；同时，制得的输注液铁含量的数量级低，需要使用原子吸收光谱(AAS)测定铁含量。鉴于像20ppb（或优选10ppb）这样低的含量往往多次测定值可能并不尽相同，因此US6916484谨慎的做出了铁含量至少独立测定6次的算术平均值符合<20ppb，或优选10ppb的限定。这在工业生产中控制的可操作性差，且生产成本高。

一方面，世界专利WO2007037330、中国专利申请2004100533214、中国专利申请200510093595.0、中国专利申请200510092828.5公开了含莫西沙星或喹诺酮类的冻干制剂，但是本领域的人员认为理解，冻干制剂由于医疗热效应，相比表注射液无菌保证水平低，生产成本高，并且冷冻前需加溶剂复溶，使用不方便。

国内目前获准上市的盐酸莫西沙星氯化钠注射液由德国拜耳公司开发，据其公告的产品说明书，其处方成分为：氯化钠、盐酸、氯化钠和注射用水。

盐酸莫西沙星的化学结构如下：

![Chemical Structure](image)

莫西沙星在制备和存储过程中不可避免的会产生一些杂质，如下：

杂质A：1-环丙基-6,8-二氟-7-[[4aS,7aS]-(4aS,7aS)-八氢-6H-吡咯[3,4-b]吡啶-6-基]-4-氧代-1,4-二氢唑啉-3-羧酸；

![Chemical Structure](image)

杂质B：1-环丙基-6,8-二甲氧基-7-[[4aS,7aS]-(4aS,7aS)-八氢-6H-吡咯[3,4-b]吡啶-6-基]-4-氧代-1,4-二氢唑啉-3-羧酸；

![Chemical Structure](image)

杂质C：1-环丙基-8-乙氧基-6-氟-7-[[4aS,7aS]-(4aS,7aS)-八氢-6H-吡咯[3,4-b]吡啶-6-基]-4-氧代-1,4-二氢唑啉-3-羧酸；
[0017] 杂质D: 1-环丙基-8-氟-6-甲氧基-7-[(4aS,7aS)-八氢-6H-吡咯[3,4-b]吡啶-6-基]-4-氧化-1,4-二氢喹啉-3-羧酸；

[0019] 杂质E: 1-环丙基-6-氟-8-羟基-7-[(4aS,7aS)-八氢-6H-吡咯[3,4-b]吡啶-6-基]-4-氧化-1,4-二氢喹啉-3-羧酸；

[0021] 杂质F: 1-环丙基-6-氟-8-甲氧基-7-[(4aS,7aS)-1-甲基-10H-吡咯[3,4-b]吡啶-6-基]-4-氧化-1,4-二氢喹啉-3-羧酸；

[0024] 为此，本发明对现有制备方法进行改进，得到一种纯度更高、产品质量更好的莫西沙星注射剂。

发明内容
[0025] 本发明的目的在于提供一种盐酸莫西沙星注射剂的制备方法，该方法具有工艺简单、对环境污染小、价格低廉等特点，所制备得到的产品质量稳定，纯度高，安全性好。
[0026] 本发明所述的盐酸莫西沙星注射剂，采用氯化钠作为渗透压调节剂。盐酸莫西沙星浓度为1.6mg/ml(m/v)，注射液最终pH值为4.1-4.6。
[0027] 本发明所述盐酸莫西沙星注射剂，由以下成分组成:
<table>
<thead>
<tr>
<th>原辅料</th>
<th>含量</th>
</tr>
</thead>
<tbody>
<tr>
<td>盐酸莫西沙星</td>
<td>40g</td>
</tr>
<tr>
<td>氯化钠</td>
<td>200g</td>
</tr>
<tr>
<td>盐酸</td>
<td>适量</td>
</tr>
<tr>
<td>氢氧化钠</td>
<td>适量</td>
</tr>
<tr>
<td>药用炭</td>
<td>适量</td>
</tr>
<tr>
<td>注射用水</td>
<td>定容至25000ml</td>
</tr>
<tr>
<td>共制成</td>
<td>100支</td>
</tr>
</tbody>
</table>

步骤一：称量：按处方量分别称取盐酸莫西沙星和氯化钠，配制1mol/L氢氧化钠溶液和1mol/L盐酸溶液备用；

步骤二：配液(1)：取处方全量10%的注射用水，加入处方量的盐酸莫西沙星，搅拌使完全溶解，加入药用炭，搅匀，搅拌吸附，用0.45μm滤膜除炭过滤，用适量注射用水冲洗炭层，滤液备用；

步骤三：配液(2)：取处方全量5%的注射用水，加入处方全量的氯化钠，搅拌使溶解完全，加热至95～100℃，保温15分钟，冷却，加入药用炭，搅匀，搅拌吸附，用0.45μm滤膜除炭过滤，再用适量40～50℃的注射用水冲洗炭层，合并滤液，加的注射用水至全量，调节pH至4.1～4.6，搅匀，待灌装；

步骤四：灌封：药液依次用0.45μm和0.22μm的微孔滤膜滤过，滤液灌装于250ml玻璃输液瓶中，充氮，加塞，轧盖，待灭菌。

其中，步骤二，药用炭用量为当前药液量的0.01～0.1%，优选为0.05%(w/v)。

其中，步骤二，搅拌吸附时间为5～20min，优选为15min。

其中，步骤三，所述冷却是指用注射用水冷却至30°C～60°C，优选为40°C～50°C。

其中，步骤三，所述药用炭用量按重量计，为氯化钠用量的1～5%，吸附时间为10～20min。优选的，药用炭用量按重量计，为氯化钠用量的3%，吸附时间为15min。

本发明的制备方法还包括进一步灭菌的步骤：

取已轧盖的样品，置灭菌锅中，121℃热压蒸汽灭菌15分钟，取出放冷，灯检合格，即得。

优选的，本发明的制备方法，具体包括以下步骤：

步骤一：称量：按处方量分别称取盐酸莫西沙星和氯化钠，配制1mol/L氢氧化钠溶液和1mol/L盐酸溶液备用；

步骤二：配液(1)：取处方全量10%的注射用水，加入处方量的盐酸莫西沙星，搅拌使完全溶解，加入当前药液量0.01～0.1%(w/w)的药用炭，搅匀，搅拌吸附5～20分钟，用0.45μm滤膜除炭过滤，用适量注射用水冲洗炭层，滤液备用；

步骤三：配液(2)取处方全量5%的注射用水，加入处方全量的氯化钠，搅拌使溶解完全，加热至95～100℃，保温15分钟，冷却至30～60℃，加入氯化钠量的1～5%(w/w)的药用炭，搅匀，搅拌吸附10～20分钟，用0.45μm滤膜除炭过滤，再用适量40～50℃的注射用水冲洗
说明书

炭层,合并滤液,加40～50℃的注射用水至全量,调节pH至4.1～4.6,搅匀,待灌装;

【0044】步骤四:灌封:药液用0.45μm和0.22μm的微孔滤膜滤过,滤液灌装于250ml玻璃输
液瓶中,充氮,加塞,轧盖,待灭菌;

【0045】步骤五:灭菌:取已轧盖的样品,置灭菌锅中,121℃热压蒸汽灭菌15分钟,取出放
冷,灯检合格,即得。

【0046】通过以下实验内容进一步说明本发明的有益效果：

【0047】实验一:盐酸莫西沙星溶解度

【0048】原料药在水中略溶,在96%乙醇中微溶,在丙酮中几乎不溶;为确保活性成分可以
在相应浓度氯化钠溶液中完全溶解,我们对盐酸莫西沙星在25℃、15℃、5℃下,不同浓度的
氯化钠溶液中盐酸莫西沙星溶液的饱和溶解度分别进行了测定。

【0049】表一:在25℃和氯化钠溶液条件下盐酸莫西沙星的溶解度

<table>
<thead>
<tr>
<th>温度</th>
<th>NaCl%（W/V）</th>
<th>0</th>
<th>0.70</th>
<th>0.75</th>
<th>0.80</th>
<th>0.85</th>
<th>0.90</th>
</tr>
</thead>
<tbody>
<tr>
<td>饱和溶解度（g/100ml）</td>
<td>2.52</td>
<td>0.31</td>
<td>0.29</td>
<td>0.26</td>
<td>0.25</td>
<td>0.23</td>
<td></td>
</tr>
</tbody>
</table>

【0051】表二:在15℃和氯化钠溶液条件下盐酸莫西沙星的溶解度

<table>
<thead>
<tr>
<th>温度</th>
<th>NaCl%（W/V）</th>
<th>0</th>
<th>0.70</th>
<th>0.75</th>
<th>0.80</th>
<th>0.85</th>
<th>0.90</th>
</tr>
</thead>
<tbody>
<tr>
<td>饱和溶解度（g/100ml）</td>
<td>2.26</td>
<td>0.30</td>
<td>0.28</td>
<td>0.24</td>
<td>0.23</td>
<td>0.21</td>
<td></td>
</tr>
</tbody>
</table>

【0052】表三:在5℃和氯化钠溶液条件下盐酸莫西沙星的溶解度

<table>
<thead>
<tr>
<th>温度</th>
<th>NaCl%（W/V）</th>
<th>0</th>
<th>0.70</th>
<th>0.75</th>
<th>0.80</th>
<th>0.85</th>
<th>0.90</th>
</tr>
</thead>
<tbody>
<tr>
<td>饱和溶解度（g/100ml）</td>
<td>1.86</td>
<td>0.23</td>
<td>0.20</td>
<td>0.17</td>
<td>0.17</td>
<td>0.15</td>
<td></td>
</tr>
</tbody>
</table>

【0053】本制剂浓度为0.16g/100ml,莫西沙星在5℃和0.9%氯化钠浓度下的饱和溶解度
不能满足制剂浓度要求。

【0054】实验二:渗透压的考察

【0055】大容量注射液应满足人体血液的渗透压摩尔浓度范围280～320mOsmol/kg,渗透
压的计算公式:血液渗透压摩尔浓度(mOsmol/kg)=（每千克溶剂中溶解溶质的克数/分子量）
× n×1000,n为一个溶质分子溶解或解离形成的粒子数。

【0056】本品中,氯化钠的主要作用为渗透压调节剂,根据冰点下降法测算,采用氯化钠调
节水溶液与血浆等渗时氯化钠的浓度为0.9%,莫西沙星在较高浓度氯化钠溶液中溶解度
较低,因此检测了几种氯化钠用量的处方对渗透压的影响,考察氯化钠用量。

[0060] 处方：

<table>
<thead>
<tr>
<th></th>
<th>处方 1</th>
<th>处方 2</th>
<th>处方 3</th>
<th>处方 4</th>
<th>处方 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>原辅料</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>莫西沙星</td>
<td>400mg</td>
<td>400mg</td>
<td>400mg</td>
<td>400mg</td>
<td>400mg</td>
</tr>
<tr>
<td>氯化钠</td>
<td>2.25g</td>
<td>2.125g</td>
<td>2g</td>
<td>1.875g</td>
<td>1.75g</td>
</tr>
<tr>
<td>氯化钠浓度 (W/V)</td>
<td>0.90%</td>
<td>0.85%</td>
<td>0.80%</td>
<td>0.75%</td>
<td>0.70%</td>
</tr>
<tr>
<td>注射用水加至</td>
<td>250ml</td>
<td>250ml</td>
<td>250ml</td>
<td>250ml</td>
<td>250ml</td>
</tr>
<tr>
<td>渗透压 (mOsmol/kg)</td>
<td>284</td>
<td>269</td>
<td>258</td>
<td>237</td>
<td>226</td>
</tr>
<tr>
<td>渗透压摩尔浓度比</td>
<td>1.03</td>
<td>0.97</td>
<td>0.93</td>
<td>0.86</td>
<td>0.82</td>
</tr>
</tbody>
</table>

[0062] 从渗透压的检测结果可知，盐酸莫西沙星的浓度对渗透压影响可以忽略不计，氯化钠浓度为0.9%时，其渗透压测得结果正好与血浆等渗(280～320mOsmol/㎏)，盐酸莫西沙星在5℃和0.9%氯化钠浓度下的饱和溶解度不能满足制剂浓度要求，为确保样品在保存或者运输过程中即使短暂低温保存亦可保证溶液均一稳定，最终选择氯化钠的用量为注射液总体积量的0.8%(w/w)，溶液低渗的弊端可以在临床中采用减慢滴注速度来解决。

[0063] 实验三，过滤对莫西沙星的影响

[0064] 照主药溶解温度筛选实验配制溶液，保持溶液温度在50℃和75℃，采用0.45μm和0.22μm组合滤膜进行过滤，检测过滤前后溶液的主药含量和有关物质的变化情况。

[0065] 表四，溶液过滤前后莫西沙星含量的变化

<table>
<thead>
<tr>
<th>过滤材质</th>
<th>0.45μm 和 0.22μm 组合滤膜</th>
</tr>
</thead>
<tbody>
<tr>
<td>温度</td>
<td>50℃</td>
</tr>
<tr>
<td>过滤前含量 (%)</td>
<td>99.3</td>
</tr>
<tr>
<td>过滤后含量 (%)</td>
<td>99.8</td>
</tr>
<tr>
<td>相对于过滤前百分含量 (%)</td>
<td>100.5</td>
</tr>
</tbody>
</table>

[0066] 实验结果显示，采用0.45μm和0.22μm组合滤膜对两种不同温度的药液进行过滤，过滤前与过滤后主药含量几乎不变，说明过滤对主药含量没有影响。

[0067] 表五，溶液过滤前后莫西沙星有关物质的变化

<table>
<thead>
<tr>
<th>过滤材质</th>
<th>0.45μm 和 0.22μm 组合滤膜</th>
</tr>
</thead>
<tbody>
<tr>
<td>温度</td>
<td>50℃</td>
</tr>
<tr>
<td>过滤</td>
<td>过滤前</td>
</tr>
<tr>
<td>最大单杂</td>
<td>0.01</td>
</tr>
<tr>
<td>总杂质量 (%)</td>
<td>0.02</td>
</tr>
<tr>
<td>杂质个数</td>
<td>2</td>
</tr>
</tbody>
</table>

[0068] 实验结果显示，采用组合滤膜对两种不同温度的药液进行过滤，过滤前后杂质和杂质个数没有发生变化，说明使用0.45μm和0.22μm组合滤膜对溶液无影响。
说明书

[0071] 实验四、药用炭对莫西沙星吸附试验

[0072] 药用炭具有除热源和细菌内毒素的作用、同时对注射液中的微量杂质有吸附作用，可在一定程度上除去杂质，因此在注射剂中被广泛应用。设计不同药用炭用量的处方来着重考察药用炭对主药含量及有关物质的影响。

[0073] 表六、药用炭对主药的吸附试验

<table>
<thead>
<tr>
<th>处方号</th>
<th>处方 1</th>
<th>处方 2</th>
<th>处方 3</th>
<th>处方 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>莫西沙星</td>
<td>8g</td>
<td>8g</td>
<td>8g</td>
<td>8g</td>
</tr>
<tr>
<td>氯化钠</td>
<td>40g</td>
<td>40g</td>
<td>40g</td>
<td>40g</td>
</tr>
<tr>
<td>氢氧化钠</td>
<td>适量</td>
<td>适量</td>
<td>适量</td>
<td>适量</td>
</tr>
<tr>
<td>盐酸</td>
<td>适量</td>
<td>适量</td>
<td>适量</td>
<td>适量</td>
</tr>
<tr>
<td>药用炭用量</td>
<td>/</td>
<td>0.25g</td>
<td>0.5g</td>
<td>1g</td>
</tr>
<tr>
<td>药用炭比例（w/v）</td>
<td>0%</td>
<td>0.05%</td>
<td>0.1%</td>
<td>0.2%</td>
</tr>
<tr>
<td>注射用水加至</td>
<td>5000ml</td>
<td>5000ml</td>
<td>5000ml</td>
<td>5000ml</td>
</tr>
</tbody>
</table>

[0075] 取注射用水约2000ml，水浴加热至约75℃，加入处方量的盐酸莫西沙星，搅拌使溶解完全，搅匀，将药液均分为4份，每份500ml，分别加入药液体积量（w/v）0%、0.05%、0.1%、0.2%的药用炭，对浓配溶液进行吸附，保温吸附15分钟后，分别用0.45μm滤膜除炭过滤，并用适量的注射用水洗涤配液杯和滤器，洗涤液经滤器过滤后再加注射用水至5000ml，搅匀，即得；同法操作不同用量的药用炭吸附试验。考察吸附前后药液含量、有关物质变化情况。

[0076] 表七、药用炭对主药的吸附试验结果

<table>
<thead>
<tr>
<th>药用炭用量（w/v）</th>
<th>0%</th>
<th>0.05%</th>
<th>0.1%</th>
<th>0.2%</th>
</tr>
</thead>
<tbody>
<tr>
<td>含量（%）</td>
<td>99.2</td>
<td>98.9</td>
<td>96.8</td>
<td>93.1</td>
</tr>
<tr>
<td>相对于吸附前百分含量（%）</td>
<td>/</td>
<td>99.7</td>
<td>97.6</td>
<td>93.9</td>
</tr>
</tbody>
</table>

[0079] 表八、药用炭对有关物质的影响试验结果

<table>
<thead>
<tr>
<th>药用炭用量（w/v）</th>
<th>0%</th>
<th>0.05%</th>
<th>0.1%</th>
<th>0.2%</th>
</tr>
</thead>
<tbody>
<tr>
<td>最大单杂质（%）</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>总杂质质量（%）</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>杂质个数</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

[0081] 通过对含量的考察结果显示，主药用10%注射用水量的浓配工艺，药用炭用量为浓配体积量的0.1%以上时，主药含量下降明显，采用药用炭用量为浓配体积量的0.05%时主药含量在可接受范围内，可知药用炭对主药具有一定的吸附作用。通过有关物质的考察结果表明，未使用药用炭处理的样品，总杂质质量为0.02%，杂质个数为2个，而使用药用炭处理的样品，总杂质质量0.01%，杂质个数为1个，说明使用药用炭对原料药溶液进行吸附，可以减少原料药中的杂质；因此我们采用常用量0.05%（w/v）的药用炭对主药进行吸附。
5.氯化钠配制工艺优化

在处方设计的过程中发现，盐酸莫西沙星氯化钠注射液按稀配方式进行配液、过滤、灌封、灭菌后，药液的澄清度较差，主要表现为较多的白点和可见不溶性异物。综合认定主要是氯化钠中的无机杂质引起。通过调整氯化钠配制工艺，可有效提高注射液的澄清度，改进后的注射液制备工艺和对比工艺详述如下。

配制工艺(1)：取处方总量10%的注射用水，加入处方量的盐酸莫西沙星，搅拌使完全溶解，加入当前药物理体积0.05%(w/v)的药用炭，搅拌，搅拌15分钟，用0.45μm滤膜除炭过滤，滤液备用；再取处方总体积量5%的注射用水，加入处方总量的氯化钠，搅拌使溶解完全，加热至95～100℃，保温15分钟，冷却至40～50℃，加入氯化钠量的3%(w/v)的药用炭，搅拌，搅拌15分钟，用0.45μm滤膜除炭过滤，再用适量40～50℃的注射用水冲洗炭层，合并滤液，补加40～50℃的注射用水至全量，调节pH至4.1～4.6，搅拌，用0.45μm和0.22μm微孔膜滤过，灌封，灭菌(121℃/15分钟)。

配制工艺(2)：取处方总量10%的注射用水，加入处方量的盐酸莫西沙星，搅拌使完全溶解，加入当前药物理体积0.05%(w/v)的药用炭，搅拌，搅拌15分钟，用0.45μm滤膜除炭过滤，滤液备用；再取处方总量70%的注射用水(温度70℃)，加入处方总量的氯化钠，搅拌使溶解完全后加入氯化钠量3%(w/v)的药用炭，吸附15分钟，用0.45μm滤膜除炭过滤，再用适量注射用水冲洗炭层，合并滤液，补加注射用水至全量，调节pH至4.1～4.6，搅拌，同法过滤灭菌。

按上述工艺分别进行了两种配制工艺的研究，并将两种工艺制备的样品进行性状、可见异物合格率、不溶性微粒等质量方面的比较，结果如下表所示。

表九、不同配制工艺的样品的质量对比结果

<table>
<thead>
<tr>
<th>性状</th>
<th>配制工艺(1)</th>
<th>配制工艺(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>可见异物合格率(n=40)</td>
<td>80%</td>
<td>20%</td>
</tr>
<tr>
<td>不溶性微粒</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥10μm(≤25粒/ml)</td>
<td>1.1</td>
<td>3.0</td>
</tr>
<tr>
<td>≥25μm(≤3粒/ml)</td>
<td>0.2</td>
<td>0.7</td>
</tr>
</tbody>
</table>

工艺(1)在可见异物合格率和不溶性微粒检查方面均优于工艺(2)，这主要是因为氯化钠采用浓配工艺并经煮沸，降温后药用炭吸附，其溶解性较差的杂质被吸附或过滤去除，提高了药液的澄清度，显著提高了产品质量，使本品的合格率基本满足要求。配制工艺(2)具有操作步骤少，耗时短的优势，但其药液澄清度明显低于工艺(1)，且合格产品收率极低，因此选择配制工艺(1)。

实验六、药用炭对氯化钠的吸附时间优化

为了进一步优化药用炭使用的相关参数，根据氯化钠配制工艺优化项下药用炭的用量，设计如下试验对药用炭吸附时间进行优选。

制备方法：量取250ml注射用水，共4份，分别加入氯化钠40g使溶解，加热至95～100℃并保温15分钟，放冷至40～50℃，取一份不加药用炭，另3份分别加入1.2g的药用炭，分别吸附15分钟、30分钟和60分钟，用0.45μm滤膜滤过除去药用炭，滤液备用；另取盐酸莫西沙
星（按莫西沙星计）15g，用2000ml注射用水溶解，加入药用炭1g，搅匀，搅拌吸附15分钟，用0.45μm滤膜除炭过滤，将滤液均分为4份，分别加入到备用的氯化钠溶液中，再分别加注射用水定容至500ml，搅匀，用1mol/L氢氧化钠溶液（1mol/L盐酸溶液）调节pH至4.1-4.6，用0.45μm和0.22μm的组合滤膜分别过滤灌封，121℃灭菌15分钟。考察各样品的可见异物合格率和不溶性微粒。

表十、药用炭吸附时间的优化结果

<table>
<thead>
<tr>
<th>聚合物</th>
<th>吸附时间</th>
<th>未吸附</th>
<th>15分钟</th>
<th>30分钟</th>
<th>60分钟</th>
</tr>
</thead>
<tbody>
<tr>
<td>可见异物合格率（n=20）</td>
<td>65%</td>
<td>85%</td>
<td>75%</td>
<td>70%</td>
<td></td>
</tr>
<tr>
<td>不溶性微粒</td>
<td>≥10μm（≤25粒/ml）</td>
<td>3.2</td>
<td>1.3</td>
<td>2.1</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td>≥25μm（≤3粒/ml）</td>
<td>0.3</td>
<td>0</td>
<td>0.1</td>
<td>0.1</td>
</tr>
</tbody>
</table>

结果显示：未采用药用炭吸附的样品在可见异物的合格率上略低于吸附样品。不溶性微粒中，吸附样品较未吸附的样品的微粒少，吸附时间的增加对可见异物合格率和不溶性微粒没有明显改善作用，因此当采用药用炭对氯化钠进行吸附处理时，吸附时间15分钟即可。

7、氯化钠过滤温度的优选

鉴于药液滤过时温度可能对产品质量带来影响，我们分别考察药液在不同温度下过滤制备的样品可见异物和不溶性微粒情况。

8、灭菌工艺优选

针对盐酸莫西沙星氯化钠注射液采用的终端灭菌工艺，我们对灭菌工艺的条件进行了筛选，根据《化学药品注射剂基本技术要求》建议首选过度灭菌法（F0≥12），且考虑灭菌恒热点温度对样品的影响，因此采用116°C/40min,121°C/15min,121°C/30min和124°C/15min等湿热灭菌条件进行试验，以保证产品灭菌后的SAL≤10^{-6};考察灭菌前后样品的性状，pH，不溶性微粒，有关物质，含量。

表十二、灭菌前后检测结果

<table>
<thead>
<tr>
<th>聚合物</th>
<th>温度（℃）</th>
<th>40</th>
<th>50</th>
<th>65%</th>
</tr>
</thead>
<tbody>
<tr>
<td>可见异物合格率（n=20）</td>
<td>85%</td>
<td>80%</td>
<td>65%</td>
<td></td>
</tr>
<tr>
<td>不溶性微粒</td>
<td>≥10μm（≤25粒/ml）</td>
<td>2.2</td>
<td>2.3</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>≥25μm（≤3粒/ml）</td>
<td>0.1</td>
<td>0.4</td>
<td>0.6</td>
</tr>
</tbody>
</table>

试验结果显示，过滤温度越高，样品可见异物合格率越低，且不溶性微粒较多，实际生产过程中尽管冷却药液需要额外增加生产成本，但实际生产中，氯化钠经溶解、高温煮沸和降温、吸附、除炭后其药液温度不会高于50℃，而且在药品的质量控制方面更有保证，因此药液优选在40～50℃过滤。
<table>
<thead>
<tr>
<th>条件</th>
<th>灭菌前</th>
<th>116℃/40m</th>
<th>121℃/15m</th>
<th>121℃/30m</th>
<th>124℃/15m</th>
</tr>
</thead>
<tbody>
<tr>
<td>理论 F_0</td>
<td>/</td>
<td>12.33</td>
<td>14.62</td>
<td>29.24</td>
<td>26.00</td>
</tr>
<tr>
<td>性状</td>
<td>黄色澄</td>
<td>黄色澄</td>
<td>黄色澄</td>
<td>黄色澄</td>
<td>黄色澄</td>
</tr>
<tr>
<td>明液体</td>
<td>明液体</td>
<td>明液体</td>
<td>明液体</td>
<td>明液体</td>
<td>明液体</td>
</tr>
<tr>
<td>pH</td>
<td>4.3</td>
<td>4.3</td>
<td>4.3</td>
<td>4.3</td>
<td>4.3</td>
</tr>
<tr>
<td>不溶性微粒</td>
<td>≥10μm</td>
<td>1.4</td>
<td>1.7</td>
<td>1.5</td>
<td>1.9</td>
</tr>
<tr>
<td>≥25μm</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.5</td>
</tr>
<tr>
<td>杂质个数</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>最大单杂质 (%)</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>总杂质含量 (%)</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>含量 (%)</td>
<td>99.3</td>
<td>99.9</td>
<td>99.3</td>
<td>99.9</td>
<td>99.1</td>
</tr>
</tbody>
</table>

结果显示，盐酸莫西沙星氯化钠注射液在四种灭菌条件下的性状、pH、含量和有关物质与灭菌前比较，均无显著变化，显示出盐酸莫西沙星对高温具有很高的耐受性。根据欧洲药典中产品灭菌工艺的决策树，当产品能承受121℃/15min的湿热灭菌工艺时，当选用121℃/15min湿热灭菌工艺，而且样品能够耐受热点温度(124℃/15min)，该工艺和116℃/40min比较，具有更长的目标F_0值和工艺时间较短，相对于121℃/30min的灭菌工艺，样品中不溶性微粒更低，且在保证目标F_0值的情况下能明显缩短灭菌所需时间，因此我们选择121℃/15min作为最终灭菌的条件。

实验九、样品6个月加速稳定性数据

批号：1502041，批量：10000瓶，规格：莫西沙星0.4g与氯化钠2.0g，包装：模拟市售包装，考察条件：40±2℃/75%±5%RH
[0109] 说明书

<table>
<thead>
<tr>
<th>考察项目</th>
<th>限度要求</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>性状</td>
<td>应为黄色的澄明液体。</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH 值</td>
<td>应为 4.1～4.6。</td>
<td>4.36</td>
<td>4.36</td>
<td>4.35</td>
<td>4.36</td>
<td>4.34</td>
</tr>
<tr>
<td>可见异物</td>
<td>应符合规定。</td>
<td>符合</td>
<td>符合</td>
<td>符合</td>
<td>符合</td>
<td>符合</td>
</tr>
</tbody>
</table>

有关物质 (HPLC)	杂质 A≤0.1%	N.D	N.D	N.D	N.D	N.D
	杂质 B≤0.1%	N.D	N.D	N.D	N.D	N.D
	杂质 C≤0.1%	N.D	N.D	N.D	N.D	N.D
	杂质 D≤0.1%	N.D	N.D	N.D	N.D	N.D
	杂质 E≤0.1%	N.D	N.D	N.D	N.D	N.D
	杂质 F≤0.1%	N.D	N.D	N.D	N.D	N.D
	其他≤0.1%	0.02%	0.02%	0.02%	0.02%	0.02%
	总杂质≤0.2%	0.02%	0.02%	0.02%	0.03%	0.03%

异常色（HPLC）	≤0.1%	0.03%	0.03%	0.03%	0.03%	0.02%
滋透压摩尔浓度	应为 0.85～1.00。	符合标准	符合标准	符合标准	符合标准	符合标准
不溶性颗粒	应符合规定。	符合标准	符合标准	符合标准	符合标准	符合标准
无菌	应符合规定。	符合标准	符合标准	符合标准	符合标准	符合标准

细菌内毒素	每 1mg 莫西沙星干品中含内毒素的量应小于 0.8EU。	符合标准	\	\	\	符合标准
含量（HPLC）	含莫西沙星应为标示量的 95.0%～105.0%。	100.3%	100.3%	99.5%	99.3%	100.5%
氯化钠	含氯化钠应为标示量的 95.0%～105.0%。	101.8%	101.5%	101.4%	102.2%	101.0%

[0110] 批号: 1502071 批量: 10000 瓶 规格: 莫西沙星 0.4g 与氯化钠 2.0g 包装: 模拟市售包装 考察条件: 40±2℃/75±5%RH

[0111]
### 考察项目	限度要求	本品为黄色的澄清液体。
性状 | 为黄色的澄清液体。 | 本品为黄色的澄清液体。
pH值 | 应为4.1～4.6。 | 4.35 | 4.35 | 4.35 | 4.36 | 4.32

### 考察时间（月）	0	1	2	3	6
性状 | 符合规定 | 符合规定 | 符合规定 | 符合规定 | 符合规定

相关物质

(HPLC)

杂质 B≤0.1%	N.D	N.D	N.D	N.D	N.D
杂质 C≤0.1%	N.D	N.D	N.D	N.D	N.D
杂质 D≤0.1%	N.D	N.D	N.D	N.D	N.D
杂质 E≤0.1%	N.D	N.D	N.D	N.D	N.D
杂质 F≤0.1%	N.D	N.D	N.D	N.D	N.D
其他≤0.1%	0.0%	0.0%	0.0%	0.0%	0.0%
总杂质≤0.2%	0.0%	0.0%	0.0%	0.0%	0.0%

异构体 (HPLC)

| ≤0.1% | 0.03% | 0.03% | 0.03% | 0.03% | 0.02% |

氯化钠

含氯化钠（NaCl）应为标示量的95.0%～105.0%。

| 含量 (HPLC) | 含氯化钠（NaCl）应为标示量的95.0%～105.0%。 | 99.5% | 100.6% | 100.3% | 100.6% | 101.6% |

口服

1. **考察条件**
 - 40±2℃/75±5%RH
 - 1502101 批号
 - 10000瓶 规格
 - 莫西沙星0.4g与氯化钠2.0g
 - 包装：模拟市售包装

考察条件

1. **考察条件**
 - 40±2℃/75±5%RH

考察条件

1. **考察条件**
 - 40±2℃/75±5%RH

考察条件

1. **考察条件**
 - 40±2℃/75±5%RH

考察条件

1. **考察条件**
 - 40±2℃/75±5%RH
具体实施方式

通过以下具体实施例对本发明进行进一步的说明，但不作为本发明的限制，本领域技术人员所作出一些非本质的改进和调整，均在本专利的保护的保护范围之内。

实施例1：

处方：

<table>
<thead>
<tr>
<th>原辅料</th>
<th>含量</th>
</tr>
</thead>
<tbody>
<tr>
<td>莫西沙星</td>
<td>40g</td>
</tr>
<tr>
<td>氯化钠</td>
<td>200g</td>
</tr>
<tr>
<td>盐酸</td>
<td>适量</td>
</tr>
<tr>
<td>氢氧化钠</td>
<td>适量</td>
</tr>
<tr>
<td>药用炭</td>
<td>适量</td>
</tr>
<tr>
<td>注射用水</td>
<td>定容至25000ml</td>
</tr>
<tr>
<td>pH值</td>
<td>4.1~4.6</td>
</tr>
<tr>
<td>共制成</td>
<td>100支</td>
</tr>
</tbody>
</table>

制备工艺：

1. 称量：按处方量分别称取盐酸莫西沙星和氯化钠，配制1mol/L氢氧化钠溶液和1mol/L盐酸溶液备用；

2. 配液(1)：取处方总量10%的注射用水，加入处方量的盐酸莫西沙星，搅拌使完全溶解，加入当前药液量0.05%(w/w)的药用炭，搅拌，搅拌吸附15分钟，用0.45μm滤膜除炭过滤，用适量注射用水冲洗炭层，滤液备用；

3. 配液(2)：取处方总量5%的注射用水，加入处方量的氯化钠，搅拌使溶解完全，加热至95~100℃，保温15分钟，冷却至40~50℃，加入氯化钠量的3%(w/w)的药用炭，搅拌，搅拌吸附15分钟，用0.45μm滤膜除炭过滤，再用40~50℃的注射用水冲洗炭层，合并滤液，加40~50℃的注射用水至全量，调节pH至4.1~4.6，搅拌，待灌装；

4. 灌封：药液用0.45μm和0.22μm的微孔滤膜滤过，滤液灌装于250ml玻璃输液瓶中，充氮，加塞，轧盖，待灭菌；

5. 灭菌：取已轧盖的样品，置灭菌锅中，121℃热压蒸汽灭菌15分钟，取出放冷，灯检合格，即得。