Office de la Proprieté Canadian

Intellectuelle Intellectual Property
du Canada Office

Un organisme An agency of
d'Industrie Canada Industry Canada

CA 2618859 C 2014/03/25

(11)(21) 2 618 859

(12 BREVET CANADIEN
CANADIAN PATENT
13) C

(86) Date de déepot PCT/PCT Filing Date: 2006/08/29

(87) Date publication PCT/PCT Publication Date: 200//03/22
(45) Date de délivrance/lssue Date: 2014/03/25

(85) Entree phase nationale/National Entry: 2008/02/11

(86) N° demande PCT/PCT Application No.: US 2006/034121
(87) N° publication PCT/PCT Publication No.: 200/7/032925

(30) Priontes/Priorities: 2005/09/12 (US60/716,293);
2005/12/23 (US11/318,3095)

51) Cl.Int./Int.Cl. GO6F 71/7/00(2006.01),
GO6F 17/27(2006.01), GO6F 3/74 (2006.01)

(72) Inventeurs/Inventors:
KOTHARI, NIKHIL, US;
LE ROY, BERTRAND, US

(73) Proprietaire/Owner:
MICROSOFT CORPORATION, US

(74) Agent: SMART & BIGGAR

(54) Titre : BALISAGE DE SCRIPT
54) Title: SCRIPT MARKUP

MARKUP DOCUMENT ™\ _108

GENERAL MARKUP ™ 202
<general markup element A5\ _206
<general markup element B/>—~_208

<general markup element Z/>—_210

SCRIPT MARKUP ~\ 204

<script elementb'_z}o
<reference element/> 212
<components element/>— 214

(57) Abregé/Abstract:

A script markup language provides a declarative mechanism for defining script based interactive behavior and application logic
assoclated with a document. The script markup defining the interactive behavior and application logic Iis presented as an
Independent portion of the markup for the document, separated from any markup concerning the content and presentation of the

document.

» . _
‘ l an a dH http:/opic.ge.ca + Ottawa/Gatineau K1A 0C9 - hmp./cipo.ge.ca o p1C
OPIC - CIPO 191

B

.

'

e
ok [[f
RO . e s
. M "c'-'-.n:‘-:{\: .«me . m s
.
.

A7 /7]
o~

woO 2007/032925 A1 I D00 AR OO 0 0 0

CA 02618859 2008-02-11

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization /2

International Burcau

(43) International Publication Date
22 March 2007 (22.03.2007)

(51) International Patent Classification:
GOG6F 17/00 (2006.01) GOG6F 3/14 (2006.01)
GO6F 17/21 (2006.01)

(21) International Application Number:
PCT/US2006/034121

(22) International Filing Date: 29 August 2006 (29.08.2006)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/716,293
11/318,305

US
US

12 September 2005 (12.09.2005)
23 December 2005 (23.12.2005)

(71) Applicant (for all designated States except US): MI-
CROSOFT CORPORATION [US/US|; One Microsoft
Way, Redmond, Washington 98052-6399 (US).

(72) Inventors: KOTHARI, Nikhil; One Microsoft Way, Red-
mond, Washington 98052-6399 (US). LE ROY, Bertrand;
One Microsoft Way, Redmond, Washington 98052-6399

(US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,

GB, GD, GE, GH, GM, HN, HR, HU, ID, IL, IN, IS, JP,

(54) Title: SCRIPT MARKUP

MARKUP DOCUMENT _108

GENERAL MARKUP ™\ 202

<general markup element A/>—_206
<general markup element B/>—~_208

(10) International Publication Number

WO 2007/032925 Al

KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT,
LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MY, MZ,
NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU,
SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
/W), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, ELE, ES, Il,
FR, GB, GR, HU, ILE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, SI, SK, TR), OAPI (BE, BJ, CF, CG, CI, CM, GA,

GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant’s entitlement to apply for and be granted a
patent (Rule 4.17(ii))

as to the applicant’s entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Published:

with international search report

before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(57) Abstract: A script markup language
provides a declarative mechanism {for
defining script based interactive behavior
and application logic associated with a
document. The script markup defining the
interactive behavior and application logic
is presented as an independent portion of
the markup for the document, separated
from any markup concerning the content
and presentation of the document.

<general markup element Z/5_210

SCRIPT MARKUP ™\ 204
<script element/> ™\ _210

<reference elemett > N\ _212

<components element/>—~_214

10

15

20

25

CA 02618859 2008-02-11
WO 2007/0329235 PCT/US2006/034121

SCRIPT MARKUP

BACKGROUND

Historically, markup was used to refer to the process of marking manuscript copy
for typesetting with directions for formatting such as use of type fonts and sizes, spacing,
indentation, etc. In today's digital age, markup refers to electronic markup, i.e., the
internal and sometimes invisible codes in an electronic document that describe the
formatting of the document. Generally, a user can view the markup of an electronic
document by looking at the source code of the document with the browser displaying the
electronic document. The electronic markup of a document generally provides encoding
of text as well as details about the structure, appearance and presentation of the text and
content 1n the document.

The markup of an electronic document usually is programmed using a markup
language. A markup language provides syntax and procedures for embedding in a
document tags that control the formatting of the text when the document is viewed by a
special application such as a Web browser. Commonly used electronic markup languages
include HTML, XML, and ASP.NET. Traditionally, markup languages are used to design
the content and appearance of a static document.

However, for an interactive application such as a Web application, the content
and/or presentation of a document such as a Web page may change, for example, based on
user mput. The markup of the document thus needs to be accompanied by information
governing the behavior of the document. Traditionally, document behavior has been
implemented procedurally in a script. To provide dynamic document behavior, a markup
of the document may call on methods in the script at the appropriate time. The
intermingling of markup and calls to script methods thus makes it difficult to
independently design the markup for a document. Meanwhile, because a script language
traditionally has been procedural and imperative, a user of a document usually cannot use

the script language to design a specific behavior for the document.

_1-

10

15

20

25

CA 02618859 2011-08-29

51007-47

While specific disadvantages of existing systems have been illustrated
and described in this Background Section, those skilled in the art and others will
recognize that the subject matter claimed herein is not limited to any specific

implementation for solving any or all of the described disaavantages.
SUMMARY

This summary is provided to introduce a selection of concepts in a
simplified form that are further described below in the Detailed Description. This

summary is not intended to identify key features of the claimed subject matter, nor is

it intended to be used as an aid in determining the scope of the claimed subject
matter.

According to one aspect of the present invention, there is provided a
markup document stored on a computer readable medium, comprising: a general
markup portion that includes one or more general markup elements; and a script
markup portion that is separated from the general markup portion and content of the
script markup portion includes one or more script markup elements; wherein content
of the script markup portion defines behavior of a document and the general markup

portion defines at least one of content of the document, formatting of the content of

the document and appearance of the document.

According to another aspect of the present invention, there is provided

a computing system including a browser, a computer implemented method for
interpreting a markup document to display a document is provided, the method
comprising: receiving the markup document, wherein the markup document contains
a script element and a general markup portion containing one or more general
markup elements for defining at least one of content of the document, formatting of
the content of the document and appearance of the document; and interpreting the
markup document by: regarding content contained within the script element as script

markup defining behavior of the document to be displayed.

10

15

20

25

30

CA 02618859 2011-08-29

51007-47

According to still another aspect of the present invention, there is
provided a computer program product comprising a computer storage medium
containing computer-executable instructions for implementing a method which
facilitates designing the markup for an electronic document which is stored as a
markup document in a database associated with a server computing system, and
which is later retrieved for viewing and design of the markup document at a browser
of a client computing system, and wherein the method facilitates the design by
separating script markup language that defines interactive behavior and application
logic associated with the electronic document from general markup language of the
electronic document that defines content and presentation of the electronic
document, the method comprising: receiving input at a type manager associated with
a browser for registering a custom script object model, the custom script object model
containing one or more user defined attributes comprising properties, methods, or
event attributes for use by the browser in interpreting script objects that conform to
the custom script object model and that are contained within electronic documents
that are executed by the browser; registering the custom script object model with the
browser to enable the browser to interpret script objects that conform to the custom
script object model; retrieving from a database associated with a server computing
system an electronic document stored in the form of a markup document, for display
at the browser of a client computing system, the retrieved electronic document having
a markup language that defines in a first part of the retrieved electronic document a
general markup portion comprised of one or more general markup elements that
define at least one of formatting of the content and the overall appearance of the
electronic document when displayed on a Web page, the retrieved electronic
document having a markup language that defines in a second part of the same
retrieved electronic document a script markup portion comprised of a reference
element and a components elements, wherein the reference element references
script files external to the retrieved electronic document, and wherein the components
element contains one or more script objects for implementing interactive behavior
and application logic associated with the electronic document when displayed as a

Web page, wherein at least one of the script objects is a custom script object that
- 2a -

10

15

20

25

30

CA 02618859 2011-08-29

51007-47

conforms to the custom script object model that was registered with the browser;
upon retrieving the electronic document, processing the components element to
Instantiate the one or more script objects, including accessing the custom script
object model to determine how to instantiate the at least one script object that
conforms to the custom script object model registered with the browser; wherein one
or more of the script markup elements of the script markup portion reference at least
one general markup element contained in the general markup portion of the retrieved
electronic document, but script elements of the script markup portion are not
referenced by any of the general markup elements of the general markup portion of
the retrieved electronic document so that the script portion of the retrieved document
Is kept separate from the general markup portion when presented for viewing and
design on a browser of a client computing system; presenting the retrieved document
for display at the browser of the client computing system with the separate general
and script markup portions; receiving user input that interacts with a portion of the
displayed document that is represented by one or more general markup elements,
and In response, accessing the custom script object model to perform functionality
defined by one or more attributes associated with a custom script object that

references the one or more general markup elements; and performing the

functionality to modify the appearance of the portion of the displayed document that is

represented by the one or more general markup elements.

According to yet another aspect of the present invention, there is
provided a method which facilitates designing the markup for an electronic document
which is stored as a markup document in a database associated with a server
computing system, and which is later retrieved for viewing and design of the markup
document at a browser of a client computing system, and wherein the method
facilitates the design by separating script markup language that defines interactive
behavior and application logic associated with the electronic document from general
markup language of the electronic document that defines content and presentation of
the electronic document, the method comprising: receiving input at a type manager

associated with a browser for registering a custom script object model, the custom

- 2b -

10

15

20

25

30

CA 02618859 2011-08-29

51007-47

script object model containing one or more user defined attributes comprising
properties, methods, or event attributes for use by the browser in interpreting script
objects that conform to the custom script object model and that are contained within
electronic documents that are executed by the browser; registering the custom script
object model with the browser to enable the browser to interpret script objects that
conform to the custom script object model; retrieving from a database associated with

a server computing system an electronic document stored in the form of a markup
document, for display at the browser of a client computing system, the retrieved
electronic document having a markup language that defines in a first part of the
retrieved electronic document a general markup portion comprised of one or more
general markup elements that define at least one of formatting of the content and the
overall appearance of the electronic document when displayed on a Web page, the
retrieved electronic document having a markup language that defines in a second
part of the same retrieved electronic document a script markup portion comprised of
a reference element and a components element, wherein the reference element
references script files external to the retrieved electronic document, and wherein the
components element contains one or more script objects for implementing interactive
behavior and application logic associated with the electronic document when
displayed as a Web page, wherein at least one of the script objects is a custom script
object that conforms to the custom script object model that was registered with the
browser; upon retrieving the electronic document, processing the components
element to instantiate the one or more script objects, including accessing the custom
script object model to determine how to instantiate the at least one script object that
conforms to the custom script object model registered with the browser; wherein one
or more of the script markup elements of the script markup portion reference at least
one general markup element contained in the general markup portion of the retrieved
electronic document, but script elements of the script markup portion are not
referenced by any of the general markup elements of the general markup portion of
the retrieved electronic document so that the script portion of the retrieved document
is kept separate from the general markup portion when presented for viewing and

design on a browser of a client computing system, presenting the retrieved document
-2C -

10

15

20

25

CA 02618859 2011-08-29

51007-47

for display at the browser of the client computing system with the separate general
and script markup portions; receiving user input that interacts with a portion of the
displayed document that is represented by one or more general markup elements,
and in response, accessing the custom script object model to perform functionality
defined by one or more attributes associated with a custom script object that

references the one or more general markup elements; and performing the

functionality to modify the appearance of the portion of the displayed document that is

represented by the one or more general markup elements.

Aspects of the invention make available a script markup language that
provides a declarative mechanism for defining script-based interactive behavior and
application logic associated with a document. Aspects of the invention also enable
the interactive behavior and application logic associated with a document to be
defined as an independent layer of the document (“script markup”), separated from

markup concerning the content and presentation of the document (“general markup”).

One aspect of the invention employs a script markup language to
program script markup for a document to define the behavior of the document. The
script markup may be included or referenced in a markup document containing
markup information for displaying a document. The markup document may further
include a general markup portion including one or more general markup elements
defining the content and/or the appearance of the document to be displayed. The
general markup portion and the script markup portion are separated from each other
in the markup document, though the script markup portion may define behaviors of

the general markup elements in the general markup portion.

In accordance with another aspect of the invention, the script markup

portion includes one or more script markup elements. For example, the script
markup elements may include a script element that contains a reference element ana
a components element. The reference element may inciude one or more references

to script files used by the script markup portion. The components element may

-2 -

CA 02618859 2011-08-29

51007-47

define one or more script objects for controlling the behavior of the document to be

displayed.

In accordance with yet another aspect of the invention, a script object
may contain one or more attributes such as a property attribute, a method attribute,

an event attribute, or a reference to another element in the markup document. For

example, a script object

- e -

CA 02618859 2011-08-29

51007-47

may reference a general markup element in the-general markup portion so the script object

can control the behavior of the general mafkup clement. A script object may also

reference another scnopt object defined or referenced by the scnipt markup portion. A

script object may also contain one or more sub-script objects such as an event object, a

5 binding object, and an action object. An event handler may be provided for an event
object. The event handler may connect the script markup with developer-defined code.

In accordance with a further aspect of the inventi’oﬁ, a script object may

communicate with another script object. For example, a binding object associated with a

script object may bind a property of the script object with the property of another script

10 object. In addition, an action object associated with a script object may perform a specific
action upon the occurrence of a specific event. The specific action may be to-execute a
method associated with another script object or to configure a property associated with
another script object.

Other embodunents of the imvention provide computer readable media having computer

15

exccutable instructions stored thereon for execution by one or more computers, that when executed

implement a method as suminarized above or as detailed below.

DESCRIPTION OF THE DRAWINGS

The foregoing aspects and many of the attendant advantages of this invention will

become more readily appreciated as the same become better understood by reference to

20 the following detailed description, when taken in conjunction with the accompanying
drawings, wherein:
FIGURE 1 1s a block diagram illustrating an exemplary computing system for
implementing aspects of the invention;
FIGURE 2 is a block diagram illustrating an exemplary partition of a markup
25 document according to one aspect of the invention; and
FIGURE 3 1s a text diagram illustrating an exemplary markup document
implementing aspects of the invention.
DETAILED DESCRIPTION
30

The following text illustrates and desctibes exemplary embodiments of the
invention. However, those of ordinary skill 1n the art will appreciate that various changes

can be made therein without departing from the scope of the invention.

FIGURE 1 illustrates an exemplary computing s&stem 100 for implementing
aspects of the invention. The computing system 100 includes a server component 102 and
-a client component 104, Generally, a browser 100 1s associated with the client 104 for

displaying a document such as a Web page. In a typical scenano, when the browser 106

3-

10

15

20)

25

30

CA 02618859 2008-02-11
WO 2007/0329235 PCT/US2006/034121

requests to display a document, e.g., a Web page, the client 104 sends a document request
to the server 102. 'The server 102 then sends the client 104 the markup document 108
containing markup mformation for displaying the requested document. The markup
document 108 may exist in a database 110 associated with the server 102. Often, the
server 102 and the’client 104 exist on the same computer system. Alternatively, they may
exist on different computer systems and communicate through a network (not shown).

In embodiments of the invention, uﬁon receiving the markup document 108, the
browser 106 parses and interprets the markup document 108 to display the requested
document according to the definitions provided in the markup document 108.

In exemplary embodiments of the invention, the markup document 108 for a
document such as a Web page provides general markup that defines the content and/or
presentation of the document. The markup document 108 further includes or references
script markup that defines the behavior of the document. FIGURE 2 illustrates exemplary
blocks of information presented in the markup document 108. As shown in FIGURE 2,
the markup document 108 includes a general markup portion 202 and a script markup
portion 204. o

The general markup portion 202 defines the formatting of the content and/or the
overall appearance of the document to be displayed. The general markup portion 202 may
define one or more general markup elements. For example, FIGURE 2 illustrates that the
general markup portion 202 includes multiple general markup elements such as a general
markup element A (206), a general markup element B (208), and a general markup
element Z (210).

On the other hand, content of the script markup portion 204 defines interactive
behavior and application logic associated with the document to be displayed. In
embodiments of the invention, the content of the script markup portion 204 defines or
reterences one or more script objects, and instantiates the script objects along with
attributes defining the states, property values of the script objects. As shown in
FIGURE 2, in embodiments of the invention, the script markup portion 204 is separated
from the general markup portion 202 and is an independent portion of the markup
document 108. Alternatively, in some embodiments of the invention, the script markup
portion 204 can be included in a separate file, which is then referenced by the markup

document 108. As shown in FIGURE 2, the content of the script markup portion 204

includes multiple script markup elements such as a script element 210, a reference

10

15

20

25

30

CA 02618859 2008-02-11
WO 2007/0329235 PCT/US2006/034121

element 212, and a components element 214. Both the general markup elements and the
script markup elements are called markup elements.

In an exemplary embodiment of the invention, the script element 210 defines the
overall scope of the script markup portion 204. All other elements in the script markup
portion 204, such as the reference element 212 and the components element 214, are
contained within the script element 210. Referring back to FIGURE 1, while interpreting
the script markup portion 204, the browser 106 navigates through the script element 210 to
interpret the included definitions, so to decide the behavior of the document to be
displayed.

In embodiments of the invention, the reference element 212 references script files
external to the markup documents 108 that are used by markup elements in the markup
documents 108. The external script files may detail dependency information that the
markup elements may use. Preferably, the external script files may also provide
implementation details of script markup elements defined or referenced in the script
markup portion 204.

The components element 214 contains one or more script object definitions that
actually define the behavior of the document to be displayed. In exemplary embodiments
of the invention, one or more of the script objects defined in the components element 214
may reference and hence define behaviors of one or more of the general markup elements
included 1n the general markup portion 202.

FIGURE 3 1illustrates an exemplary markup document 108 implementing the
exemplary markup elements illustrated in FIGURE 2. As shown in FIGURE 3, the
exemplary markup document 108 contains a hierarchical structure, in which one markup
element may be contained by another markup element. Each markup element includes
tags, as denoted by, for example, <> symbols, with the actual element being detailed
between the tags. Each markup element includes a start tag and an end tag, wherein a start
tag begins a markup element and an end tag ends the corresponding markup element. For
example, as shown 1in FIGURE 3, the script element 210 begins with the start tag <> on
line 3 and ends with the end tag </> on line 34. As will be described in detail below, the
markup elements in the markup document 108 further contain one or more attributes with
assigned values.

The exemplary markup document 108 shown 1n FIGURE 3 illustrates
script-defined behavior of two counters. As shown in FIGURE 3, lines 1-2 illustrate an

CA 02618859 2011-08-29

51007-47

10

15

20

23

30

exemplary general markup portion 202. Here, two general markup elements—Counter#1

and Counter#2—are defined, wherein Counte;'#l has an "id" attribute with the value
"counterLabell" and Counter#2 has an "id" attribute with the value "counterlLabel2."

Lines 3-34 illustrate an exemplary script markup portion 204 that specifies the
behavior of the two counters defined in lines 1-2. Specifically, line 3 signals the

beginning of a definition for an exemplary script element 210 and line 34 signals the end

of the definition. The exemplary script element 210 includes an exemplary reference
element 212 (lines 5-8) that links in two J avaScrip?‘ﬁles———Atlas[H.js and AtlasControls.js.
Lines 9-32 illustrate an exemplary. components element 214 that defines a plurality of
script objects. For example, line 10 defines a script object Counter 302 that is identified as
"counterl," while line 11 defines a script object Counter 304 that is 1dentified as
"counter2" and has a value of "10000." The code between lines 12-16 and lines 17-21
each defines a script object Timer (306, 316) that periodically, e.g., every 500 seconds,
enables an event object Tick (308, 318). In embodiments of the invention, a script object
may include one or more sub-script objects. For example, the script object Timer 306
includes 'an event object Tick 308, which further includes an action object
invokeMethod 310. For another example, the script object Label 312 defined 1n
lines 22-26 includes a binding object 314.

In exemplary embodiment of the invention, a script object may be associated with
one or more attributes whose values are used to define the behavior of the script object.
An attribute can be, for example, a property, a method, or an event associated with the
script object. An attribute may also be a reference to another markup element. For
example, the script object Counter 304 defined in line 11 has a property attribute "id" and
a property attribute "value”. The action object invokeMethod 310 defined in line 14 has
an method attribute "Method" that is set to an exemplary "increment" method. For
example, instead of using an event object Tick 308, the script object Timer 306 may have
an event attribute "Tick". The scriptobject Label 312 defined in line 22 has an attribute
"targetElement" that references the general markup element Counter#1 identified as
"counterLabel1" in line 1.

In exemplary embodiments of the invention, a script object may reference a
general markup element defined in the general markup portion202 of the markup

document 108 and define document behavior associated with the referenced general

markup element. For example, the code between lines 22-26 defines a script object

-6-

10

15

20

25

30

CA 02618859 2008-02-11
WO 2007/0329235 PCT/US2006/034121

Label 312 that references the general markup element Counter#1 defined in line 1. The

code between lines 27-31 defines a script object Label 320 that references the general

]

markup element Counter#2 defined in line 2. Consequently, the script objects Label 312

and Label 320 may specify the behaviors of the general markup elements Counter#1 and

Counter#2 in the general markup portion 202.

In embodiments of the invention, a script object may communicate with another
script object by performing a specific action upon occurrence of a specific event. For
examplé, in embodiments of the invention, a script object may be associated with an event,
the occurrence of which initiates a corresponding event handler, which may link to
developer-defined code for markup elements in the markup document 108. In an
exemplary embodiment of the imvention, the event handler includes one or more specific
actions to be performed on one of the script objects in the components element 214. An
exemplary action can be to invoke a method associated with another script object.
Another exemplary action can be to configure a property associated with another script
object. In a typical embodiment of the invention, both the event and the action are also
script objects including one or more attributes. For example, the script object Timer 306
contains an event obj ect Tick 308, the enablement of which initiates an action object
invokeMethod 310. The action object imvokeMethod 310 has an attribute "target"
specifying a target script object—"counterl", for example—and an attribute "method"
specifying the function to be performed on the target script object.

Another exemplary mechanism for one script object to communicate with another
script object 1s a binding mechanism that connects a property of one script object with a
property of another script object; the change of one property thus 1s reflected on the other
property. For example, as shown in FIGURE 3, the script object Label 312 includes a
binding object 314. The binding object 314 has an attribute "dataContext" that specifies
the script object and an attribute "dataPath" that specifies one of the script object's
properties with which the script object Label 312 will bind its property "text". As a result
of the binding, the value of the script object Counter 302 defined 1n line 10 1s reflected n
the "text" property associated with the script object Label 312 and hence is displayed in
the general markup element Counter#1 defined in line 1. In an exemplary embodiment of
the invention, a binding object provides a transform functionality that transforms the type

of the property that provides the data into the type of the property that receives the data.

10

15

20

25

CA 02618859 2008-02-11
WO 2007/0329235 PCT/US2006/034121

For example, the transform functionality for the binding object 314 may convert the type
of the property specified by "dataPath" into the type of the property specified by "text".

. It is to be understood that FIGURE 3 illustrates only exemplary formats of a script
markup language for implementing aspects of the invention. These exemplary formats
should be used for illustration purposes only. These exemplary formats do not limit the
script markup language offered by embodiments of the invention to the Speciﬁc formats,
syntax, and functionalities illustrated. For example, the exemplary markup document 108
has been 1llustrated using XML syntax and formats. However, those of ordinary skill in
the art will appreciate that aspects of the invention may be implemented in different
markup languages such as HTML, ASP.NET, JavaScript Object Notation, etc.

In embodiments of the invention, a developer may custom define a script object
model. The script object model, for example, specifies attributes, such as property,
method, and/or event attributes, and any sub-script object models that may be associated
with the script object model. The script object model then is registered with the
browser 106, for example, through a type manager associated with the browser 106. The
browser 106 thus kﬁows how to interpret and process a script object instantiated based on
the script object model. As a result, the script markup language provided by aspects of the
invention is extensible in that new script object models can be defined and registered with
a browser for interpreting script markups containing script objects instantiated based on
the script object models.

Although aspects of the invention have been described in language specific to
structural features and/or methodological acts, it is to be understood that the subject matter
defined in the appended claims is not necessarily limited to the specific features or acts
described above. Rathef, the specific features and acts described above are disclosed as

example forms of implementing the claims.

10

15

20

25

CA 02618859 2013-10-28

- 51007-47

CLAIMS:

1. A computer program product comprising a computer storage medium
containing computer-executable instructions for implementing a method which
facilitates designing the markup for an electronic document which iIs stored as a
markup document in a database associated with a server computing system, and
which is later retrieved for viewing and design of the markup document at a browser
of a client computing system, and wherein the method facilitates the design by
separating script markup language that defines interactive behavior and application
logic associated with the electronic document from general markup language of the
electronic document that defines content and presentation of the electronic

document, the method comprising:

receiving input at a type manager associated with a browser for
registering a custom script object model, the custom script object model containing
one or more user defined attributes comprising properties, methods, or event
attributes for use by the browser in interpreting script objects that conform to the
custom script object model and that are contained within electronic documents that

are executed by the browser;

registering the custom script object model with the browser to enable

the browser to interpret script objects that conform to the custom script object model;

retrieving from a database associated with a server computing system
an electronic document stored in the form of a markup document, for display at the
browser of a client computing system, the retrieved electronic document having a
markup language that defines in a first part of the retrieved electronic document a
general markup portion comprised of one or more general markup elements that
define at least one of formatting of the content and the overall appearance of the
electronic document when displayed on a Web page, the retrieved electronic
document having a markup language that defines in a second part of the same
retrieved electronic document a script markup portion comprised of a reference

element and a components elements, wherein the reference element references
-0 -

10

15

20

25

CA 02618859 2013-10-28

- 51007-47

script files external to the retrieved electronic document, and wherein the components
element contains one or more script objects for implementing interactive behavior
and application logic associated with the electronic document when displayed as a
Web page, wherein at least one of the script objects is a custom script object that

conforms to the custom script object model that was registered with the browser;

upon retrieving the electronic document, processing the components

element to Instantiate the one or more script objects, including accessing the custom

- script object model to determine how to instantiate the at least one script object that

conforms to the custom script object model registered with the browser;

wherein one or more of the script markup elements of the script markup
portion reference at least one general markup element contained in the general
markup portion of the retrieved electronic document, but script elements of the script
markup portion are not referenced by any of the general markup elements of the
general markup portion of the retrieved electronic document so that the script portion
of the retrieved document is kept separate from the general markup portion when

presented for viewing and design on a browser of a client computing system;

presenting the retrieved document for display at the browser of the

client computing system with the separate general and script markup portions;

receiving user input that interacts with a portion of the displayed
document that is represented by one or more general markup elements, and in
response, accessing the custom script object model to perform functionality defined
by one or more attributes associated with a custom script object that references the

one or more general markup elements; and

performing the functionality to modify the appearance of the portion of
the displayed document that is represented by the one or more general markup

elements.

- 10 -

10

15

20

25

CA 02618859 2013-10-28

- 51007-47

2. The computer program product of Claim 1, wherein one of the one or
more script objects references one of the one or more general markup elements in

the general markup portion.

3. The computer program product of Claim 2, wherein one of the one or
more script objects includes one or more sub-script objects.
4. The computer program product of Claim 3, wherein one of the sub-

script objects is a binding object for connecting an attribute of the script object with an

attribute of another script object, wherein both attributes are property attributes.

5. The computer program product of Claim 4, wherein the binding object
includes a function for converting type of the attribute of the script object into type of

the attribute of the another script object.

6. The computer program product of Claim 3, wherein one of the sub-

script objects is an event object.

7. The computer program product of Claim 6, wherein the event object

further includes an event handler detailing what to do when the event occurs.

8. The computer program product of Claim 7, wherein the event handler

includes an action object that initiates a specific action when the event occurs.

9. The computer program product of Claim 8, wherein the action involves
executing an attribute of another script object, wherein the attribute is a methoad

attribute.

10. The computer program product of Claim 9, wherein the action involves

configuring an attribute of another script object, wherein the attribute is a property

attribute.

11. The computer program product of Claim 1 wherein the custom script

object model further specifies a sub-script object model that is associated with the

custom script object model.
- 11 -

10

15

20

25

CA 02618859 2013-10-28

- 51007-47

12. A method which facilitates designing the markup for an electronic

document which is stored as a markup document in a database associated with a
server computing system, and which is later retrieved for viewing and design of the
markup document at a browser of a client computing system, and wherein the
method facilitates the design by separating script markup language that defines
interactive behavior and application logic associated with the electronic document

from general markup language of the electronic document that defines content and

presentation of the electronic document, the method comprising:

receiving input at a type manager associated with a browser for
registering a custom script object model, the custom script object model containing
one or more user defined attributes comprising properties, methods, or event
attributes for use by the browser in interpreting script objects that conform to the
custom script object model and that are contained within electronic documents that

are executed by the browser;

registering the custom script object model with the browser to enable

the browser to interpret script objects that conform to the custom script object model,

retrieving from a database associated with a server computing system
an electronic document stored in the form of a markup document, for display at the
browser of a client computing system, the retrieved electronic document having a

markup language that defines in a first part of the retrieved electronic document a

general markup portion comprised of one or more general markup elements that
define at least one of formatting of the content and the overall appearance of the
electronic document when displayed on a Web page, the retrieved electronic
document having a markup language that defines in a second part of the same
retrieved electronic document a script markup portion comprised of a reference
element and a components element, wherein the reference element references script
files external to the retrieved electronic document, and wherein the components

element contains one or more script objects for implementing interactive behavior

and application logic associated with the electronic document when displayed as a

_12 -

10

15

20

CA 02618859 2013-10-28

- 51007-47

Web page, wherein at least one of the script objects is a custom script object that

conforms to the custom script object model that was registered with the browser;

upon retrieving the electronic document, processing the components
element to instantiate the one or more script objects, including accessing the custom
script object model to determine how to instantiate the at least one script object that

conforms to the custom script object model registered with the browser;

wherein one or more of the script markup elements of the script markup
portion reference at least one general markup element contained in the general
markup portion of the retrieved electronic document, but script elements of the script
markup portion are not referenced by any of the general markup elements of the
general markup portion of the retrieved electronic document so that the script portion
of the retrieved document is kept separate from the general markup portion when

presented for viewing and design on a browser of a client computing system;

presenting the retrieved document for display at the browser\of the

client computing system with the separate general and script markup portions;

receiving user input that interacts with a portion of the displayea
document that is represented by one or more general markup elements, and In
response, accessing the custom script object model to perform functionality defined
by one or more attributes associated with a custom script object that references the

one or more general markup elements; and

performing the functionality to modify the appearance of the portion of
the displayed document that is represented by the one or more general markup

elements.

_13 -

CA 02618859 2008-02-11
WO 2007/0329235 PCT/US2006/034121

1/3 .

100

102

104

106

BROWSER

MARKUP '
DOCUMENT

Fig. 1.

SUBSTITUTE SHEET (RULE 26)

CA 02618859 2008-02-11
WO 2007/0329235 PCT/US2006/034121

2/3

MARKUP DOCUMENT ™_108

GENERAL MARKUP™_202
<general markup element A/>™_206
<general markup element B/>—_208

<generai markup element Z/5—~_210

SCRIPT MARKUP ”\304

<script element/> "\ _210
<reference element/> _212
<components element/>— 214

Fig.2.

SUBSTITUTE SHEET (RULE 26)

CA 02618859 2008-02-11
WO 2007/0329235 PCT/US2006/034121

3/3

Counter #1: <Span1 ="counterLabell ">0

Counter #2: 0

1
2
.3 <script type="text/xml-script"> ~ 210

4 <page xmlns:script="http://schemas.microsoft.com/xml-script/2005">

.

6

7

<references>—~ 212
<add src="../ScriptLibrary/AtlasULjs" />
<add src="../ScriptLibrary/AtlasControls.js" />

8 </references>
9 <components™>" 214
10 302 ~<Scounter id="counterl" />
1 3p4~Zgounter id="counter2" value="10000" />
. ~-306
12 - <timer mnterval="500" enabled="true">
13 <tick>™_ 308
14 <invokeMethod target="counterl" method="increment" />
15 <ftick>
16 </timer> 310
/\JSIG
17 <timer interval="500" enabled="true">
18 <tick>"~318
19 <invokeMethod target="counter2" method="decrement" />
20 </tick>
21 </timer>
~ 312 .
22 <label targetElement="counterLabel1">
%i <bindingsg>~—__-314
- <binding dataContext="counter1" dataPath="value" ="text"
gg <bindings> property="text" />
39 O\Ij_/l\abeb
27 <label targetElement="counterLabel2">
28 <bindings>
29 <binding dataContext="counter2" dataPath="value" property="text" />
30 </bindings>
31 </label>
32 </components>
33 </page>
34 </script>

Fig.3.

SUBSTITUTE SHEET (RULE 26)

MARKUP DOCUMENT ™\ 108

GENERAL MARKUP ™ 202
<general markup element A/>™_206
<general markup element B/>—~_208

<general markup element Z/5~_210
|

SCRIPT MARKUP "_2104

<script element/> "\ _210
<reference element/> _212
<components element/>~ 214

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - claims
	Page 17 - claims
	Page 18 - claims
	Page 19 - claims
	Page 20 - claims
	Page 21 - drawings
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - abstract drawing

