0 O 0 0O

WO 01/35212 Al

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
17 May 2001 (17.05.2001)

(10) International Publication Number

WO 01/35212 Al

(51) International Patent Classification”: GOG6F 9/38
(21) International Application Number: PCT/US00/10961
(22) International Filing Date: 20 April 2000 (20.04.2000)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:
60/164,526
09/482,399

10 November 1999 (10.11.1999)
12 January 2000 (12.01.2000)

Us
Us

(71) Applicant: ADVANCED MICRO DEVICES, INC.
[US/US]; Mail Stop 68, One AMD Place, Sunnyvale, CA
94088-3453 (US).

(72) Inventor: HUGHES, William, A.; 852 Edgehill Dr,
Burlingame, CA 94010 (US).

(74) Agent: ZAHRT, William, D., II; Advanced Micro De-
vices, Inc., One AMD Place, Mail Stop 68, Sunnyvale, CA
94088-3453 (US).

(81) Designated States (national): JP, KR.

(84) Designated States (regional): European patent (AT, BE,
CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC,
NL, PT, SE).

Published:
— With international search report.

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: STORE BUFFER WHICH FORWARDS DATA BASED ON INDEX AND OPTIONAL WAY MATCH

Store Info

(57) Abstract: An apparatus includes
a buffer configured to store information
corresponding to store memory operations
and circuitry to detect a load which hits

408B —|

Store Queue 400

one of the stores represented in the buffer.
More particularly, the circuitry may compare
the index portion of the load address to the
index portions of the store addresses stored
in the buffer. If the indexes match and both
the load and the store are a hit in the data
cache, then the load and store are accessing
the same cache line. If one or more bytes

<

ADDR - Tag} ADDR - Index |Offset and Size

Way

Data within the cache line are updated by the store

408A -~

ADDR - Tag| ADDR - Index |Offset and Size

Way

Data and read by the load, then the store data is

Load 404

Address

{oad
Way

406}_,

» =

|

A

‘—
Hit Control Circuit

forwarded for the load. In one embodiment,
the circuitry speculatively forwards data if
the load and store indexes match and the
store is a hit in the data cache. Subsequently,
when the load is determined to hit/miss in the
cache, the forwarding is verified using the
load’s hit/miss indication. In set associative
embodiments, the way in which the load hits
is compared to the way in which the store
hits to further verify the correctness of the
forwarding.

Load Hit ————»| 402

Load Size Forward

Cancel
Forward

10

15

20

25

30

35

WO 01/35212 PCT/US00/10961

STORE BUFFER WHICH FORWARDS DATA BASED ON INDEX
AND OPTIONAL WAY MATCH

Field of the Invention

This invention is related to the field of processors and, more particularly, to forwarding

of data from a store buffer for a dependent load.

Description of the Related Art

Processors typically employ a buffer for storing store memory operations which have
been executed (e.g. have generated a store address and may have store data) but which are still
speculative and thus not ready to be committed to memory (or a data cache employed by the
processor). As used herein, the term "memory operation" refers to an operation which specifies
a transfer of data between a processor and memory (although the transfer may be accomplished
in cache). Load memory operations specify a transfer of data from memory to the processor, and
store memory operations specify a transfer of data from the processor to memory. Load memory
operations may be referred to herein more succinctly as "loads", and similarly store memory
operations may be referred to as "stores". Memory operations may be implicit within an
instruction which directly accesses a memory operand to perform its defined function (e.g.
arithmetic, logic, etc.), or may be an explicit instruction which performs the data transfer only,
depending upon the instruction set employed by the processor. Generally, memory operations
specify the affected memory location via an address generated from one or more operands of the
memory operation. This address will be referred to herein in as a "data address" generally, or a
load address (when the corresponding memory operation is a load) or a store address (when the
corresponding memory operation is a store). On the other hand, addresses which locate the
instructions themselves within memory are referred to as "instruction addresses”.

Since stores may be queued in the buffer when subsequent loads are executed, the
processor typically checks the buffer to determine if a store is queued therein which updates one
or more bytes read by the load (i.e. to determine if the load is dependent on the store or "hits" the
store). Generally, the load address is compared to the store address to determine if the load hits
the store. If a hit is detected, the store data may be forwarded in place of cache data for the load.
Thus, it is desirable to detect the hit in the same amount of time, or less, than the time needed to
access data from the cache.

Minimizing the load latency (e.g. the time from executing a load to being able to use the
data read by the load) is key to performance in many processors. Unfortunately, comparing
addresses may be a time-consuming activity since the addresses may include a relatively large

number of bits (e.g. 32 bits, or even greater than 32 bits and up to 64 bits is becoming common).

10

15

20

25

30

WO 01/35212 PCT/US00/10961

2

Thus, reducing the amount of time required to determine if loads hit stores in the buffer may
result in increased performance of the processor, since this reduction may reduce the load
latency. Alternatively, meeting the timing constraints for a given cycle time and given load
latency may be eased if the amount of time used to compare the addresses is reduced.

The use of virtual addressing and address translation may create an additional problem
for reducing the amount of time elapsing during a check of the load address against store
addresses in the buffer. When virtual addressing is used, the data address generated by
executing loads and stores is a virtual address which is translated (e.g. through a paging
translation scheme) to a physical address. Multiple virtual addresses may correspond to a given
physical address (referred to as "aliasing") and thus physical data addresses of loads and stores
are compared to ensure accurate forwarding (or the lack thereof) from the buffer. Unfortunately,
the physical address of the load is typically generated from a translation lookaside buffer (TLB)
and thus is often not available until the cache access is nearly complete, further worsening the

problem of detecting hits on the stores in the buffer in rapid but accurate fashion.

Summary Of The Invention

The problems outlined above are in large part solved by an apparatus for forwarding
store data for loads as described herein. The apparatus includes a buffer configured to store
information corresponding to store memory operations and circuitry to detect a load which hits
one of the stores represented in the buffer. More particularly, the circuitry may compare the
index portion of the load address to the index portions of the store addresses stored in the buffer.
If the indexes match and both the load and the store are a hit in the data cache, then the load and
store are accessing the same cache line. If one or more bytes within the cache line are updated
by the store and read by the load, then the store data is forwarded for the load. Advantageously,
the relatively small compare of the load and store indexes may be completed rapidly.
Additionally, since most (if not all) of the index is typically physical (untranslated) bits, the
comparison may be performed prior to the load address being translated without significantly
impacting the accuracy of the compare.

In one embodiment, the circuitry speculatively forwards data if the load and store
indexes match and the store is a hit in the data cache. Subsequently, when the load is determined
to hit/miss in the cache, the forwarding is verified using the load's hit/miss indication. In set
associative embodiments, the way in which the load hits is compared to the way in which the
store hits to further verify the correctness of the forwarding.

Broadly speaking, an apparatus is contemplated. The apparatus comprises a buffer and

circuitry coupled to the buffer. The buffer includes a plurality of entries, wherein each of the

10

15

20

30

WO 01/35212 PCT/US00/10961

3

plurality of entries is configured to store: (i) at least an index portion of a store address of a store
memory operation, (ii) a hit indication indicative of whether or not the store memory operation
hits in a data cache, and (iii) store data corresponding to the store memory operation. The
circuitry is coupled to receive: (i) the index portion of a load address of a load memory
operation probing the data cache, and (ii) a load hit signal indicative of whether or not the load
memory operation hits in the data cache. The circuitry is configured to cause the store data to be
forwarded from a first entry of the plurality of entries responsive to the index portion stored in
the first entry matching the index portion of the load address and further responsive to the hit
indication in the first entry indicating hit and the load hit signal indicating hit.

Additionally, a processor is contemplated comprising a data cache and a load/store unit
coupled to the data cache. The load/store unit includes a buffer including a plurality of entries,
wherein each of the plurality of entries is configured to store: (i) at least an index portion of a
store address of a store memory operation, (ii) a hit indication indicative of whether or not the
store memory operation hits in the data cache, and (iii) store data corresponding to the store
memory operation. The load/store unit is configured to probe the data cache with a load address
and to receive a hit signal in response thereto from the data cache. Additionally, the load/store
unit is configured to determine that store data is to be forwarded from a first entry of the plurality
of entries responsive to an index portion of the load address matching the index portion stored in
the first entry and further responsive to the hit indication in the first entry indicating hit and the
hit signal indicating hit.

Moreover, a method is contemplated. A data cache is probed with a load address. An
index portion of the load address is compared to an index portion of a store address stored in a
buffer. Store data corresponding to the store address is forwarded for a load memory operation
corresponding to the load address. The forwarding is responsive to the comparing determining
that the index portion of the load address matches the index portion of the store address and

further responsive to both the load address and the store address hitting in a data cache.

Brief Description Of The Drawings

Other objects and advantages of the invention will become apparent upon reading the
following detailed description and upon reference to the accompanying drawings in which:

Fig. 1 is a block diagram of one embodiment of a store queue.

Fig. 2 is a block diagram of one embodiment of a processor.

Fig. 3 is a block diagram illustrating one embodiment of a decode unit, a reservation
station, a functional unit, a reorder buffer, a load/store unit, a data cache, and a bus interface unit

illustrated in Fig. 2, highlighting one embodiment of interconnect therebetween.

10

15

20

25

30

WO 01/35212 PCT/US00/10961

4

Fig. 4 is a block diagram of one embodiment of a load/store unit shown in Figs. 2 and 3.

Fig. 5 is a block diagram of a portion of one embodiment of a load/store unit and a data
cache.

Fig. 6 is a block diagram illustrating a portion of a control circuit shown in Fig. 5.

Fig. 7 is a timing diagram corresponding to memory operations selected from the LS1
buffer shown in Fig. 4, according to one embodiment.

Fig. 8 is a timing diagram corresponding to memory operations selected from the LS2
buffer shown in Fig. 4, according to one embodiment.

Fig. 9 is a flowchart illustrating operation of one embodiment of the control circuit
shown in Fig. 6 during detection of a load address hitting a store address.

Fig. 10 is a flowchart illustrating operation of one embodiment of the control circuit
shown in Fig. 6 during verification that the load address hits the store address.

Fig. 11 is a block diagram of a first embodiment of a computer system.

Fig. 12 is a block diagram of a second embodiment of a computer system.

While the invention is susceptible to various modifications and alternative forms,
specific embodiments thereof are shown by way of example in the drawings and will herein be
described in detail. It should be understood, however, that the drawings and detailed description
thereto are not intended to limit the invention to the particular form disclosed, but on the
contrary, the intention is to cover all modifications, equivalents and alternatives falling within the
spirit and scope of the present invention as defined by the appended claims.

Detailed Description Of The Preferred Embodiments

Turning now to Fig. 1, a block diagram of one embodiment of a store queue 400, a hit
control circuit 402, and comparators 404 and 406 is shown. The apparatus shown in Fig. 1 may
be used in a processor having a data cache to hold information related to stores until they may be
committed to the data cache (and/or memory) and further may be used to detect loads which hit
the stores and to forward store data from store queue 400 for the load. Other embodiments are
possible and contemplated. In the embodiment of Fig. 1, store queue 400 is coupled to receive
store information corresponding to executed stores and is further coupled to hit control circuit
402 and comparators 404 and 406. Comparators 404 and 406 are further coupled to hit control
circuit 402. Hit control circuit 402 is coupled to provide a Forward signal and a Cancel Forward
signal.

Generally speaking, the apparatus shown in Fig. 1 is configured to detect a load which
hits a store represented in store queue 400 and to forward the data corresponding to the store

from store queue 400 for that load (in place of cache data from the data cache). Rather than

10

15

20

25

30

WO 01/35212 PCT/US00/10961

comparing the entire load address to the store addresses stored in store queue 400, the apparatus
compares the index portion of the load address (the "load index") to the index portion of the store
address (the "store index"). Since a portion of the address is compared, the comparison may be
performed more rapidly and thus the amount of time to determine if a load hits a store
represented in store queue 400 may be reduced. If both the load and a store are a hit in the data
cache and the index portions match, then the load and the store may be accessing the same cache
line in the data cache. If the data cache is direct-mapped, the load and the store are accessing the
same cache line. If the data cache is set associative, then a comparison of the way which is hit
by the store and the way which is hit by the load may be used to determine if the load and the
store accessing the same cache line. If the load is a hit and the store is a miss (or vice versa),
then the load and store are not accessing the same cache line (assuming none of the index portion
is virtual) and thus the load does not hit the store and store data need not be forwarded from store
queue 400. If both the load and the store are misses, the load and store may be accessing the
same cache line. However, the data cache is not forwarding data from the cache for the load if
the load is miss, and thus store data from store queue 400 need not be forwarded. The load may
be reattempted after the data cache is filled with the cache line read by the load (or during the
writing of fill data into the cache), and any stores to that cache line may become hits during the
cache fill. Thus, the load hitting the store may be detected during the reattempt of the load.

Virtual to physical address translations are typically performed on a page granularity.
The Jeast significant address bits form an offset with the page, and are not modified by the
translation. The most significant address bits are translated from virtual to physical. For
example, in an embodiment employing 32 bits of virtual address and a 4 kilobyte page size, the
least significant 12 bits are the page offset and the most significant 20 bits are translated. Other
page sizes are contemplated. Typically, most (if not all) of the index portion of the address are
bits within the page offset and thus are not modified during virtual to physical address
translations. Thus, the effects of aliasing on the accuracy of the load hit store detection may be
reduced or eliminated. Furthermore, the virtual load address may be used in the comparison, and
store queue 400 may store the physical store address (which may be used to provide to memory,
etc.). If one or more bits of the index portion are modified by the virtual to physical translation,
the virtual bits may be stored as well. Thus, added storage for storing virtual store addresses for
comparison to the virtual load addresses may be minimal (e.g. those bits which are translated and
which are also part of the index).

The embodiment illustrated in Fig. 1 may be used in a processor employing a set

associative data cache. Embodiments which employ a direct-mapped data cache may eliminate

10

15

20

25

30

WO 01/35212 PCT/US00/10961

6

the way indications and associated comparators. More particularly, store queue 400 may
comprise multiple entries. For example, entries 408A and 408B are illustrated in Fig. 1, and
store queue 400 may include additional entries (not shown). Each entry 408 is configured to
store information corresponding to a store memory operation. Store queue 400 may receive
information corresponding to a store upon execution of the store, and may retain the information
until after the store is retired and committed to the data cache and/or memory. In the illustrated
embodiment, an entry may include a valid indication (V), a hit indication (H), a retired indication
(R), an address tag portion (ADDR-Tag), an address index portion (ADDR-Index), offset and
size information (Offset and Size), a way indication (Way), and data (Data). The valid indication
indicates whether or not the entry is valid (e.g. whether or not a store is represented by
information in the entry). The hit indication indicates whether or not the store is a hit in the data
cache. The retired indication indicates whether or not the store is retired (and thus eligible to be
committed to the data cache and/or memory). Any suitable indications may be used for the
valid, hit, and retired indications. For example, each indication may comprise a bit indicative,
when set, of one state and indicative when clear, of the other state. The remainder of this
discussion (including the discussion of the embodiment shown below in Figs. 5 and 6) will refer
to the valid, hit, and retired indications as the valid, hit, and retired bits. However, other
embodiments may reverse the encoding or use other encodings. The address tag portion is the
portion of the address which is stored as a tag by the data cache, while the address index portion
is the portion used as an index by the data cache. The offset and size information indicates
which bytes within the cache line which are updated by the store. The way indication indicates
which way in the data cache (for set associative embodiments) the store hits, if the hit bit is set
(indicating the store hits). Finally, the data is the store data to be committed to the data cache
and/or memory.

Comparator 404 is coupled to receive the store index from each entry in store queue 400
and is coupled to receive the load index of a load being executed. Comparator 404 compares the
load and store indexes and, if a match is detected, asserts a signal to hit control circuit 402.
Comparator 404 may thus represent a comparator circuit for each entry in store queue 400, and
each comparator circuit may provide an output signal to hit control circuit 402. Similarly,
comparator 406 is coupled to receive the way indication stored in each entry in store queue 400
and is coupled to receive the load way indication. Comparator 406 compares the load and store
way indications and, if a match is detected, asserts a signal to hit control circuit 402. Comparator
406 may thus represent a comparator circuit for each entry in store queue 400, and each

comparator circuit may provide an output signal to hit control circuit 402. It is noted that

10

15

20

25

30

WO 01/35212 PCT/US00/10961

comparators 404 and 406 may be integrated into store queue 400 as a content-addressable
memory (CAM) structure, if desired.

Hit control circuit 402 is coupled to receive the hit bits from each entry and a hit signal
for the load being executed. If the load index and a store index of a store represented in store
queue 400 match, the load and that store are a hit, and the way indications of the load and that
store match, hit control circuit 402 causes data to be forwarded from store queue 400 for the
load. More particularly, hit control circuit 402 may signal store queue 400 with an indication of
the entry number of the entry being hit, and store queue 400 may provide the data from that entry
for forwarding in place of the cache data from the data cache.

It is noted that the load address may be available for comparison at the beginning of the
load's probe of the data cache, and the load's hit signal may not be determined until near the end
of the probe to the data cache (e.g. after the load address is translated and compared to the cache
tags). Additionally, the way indication for the load may not be determined until the hit signal is
determined as well. Thus, hit control circuit 402 in the present embodiment is configured to
signal the forwarding of data from store queue 400 (and to cause store queue 400 to forward the
data) in response to the matching of the load index and a store index and the hit bit of that store
indicating that the store is a hit. Hit control circuit 402 may assert the Forward signal illustrated
in Fig. 1 to signal the forwarding of data. Subsequently, the hit signal and the way indication
may be determined for the load. Hit control circuit 402 may verify that the load hits the store by
comparing the load way indication to the store way indication and verifying that the hit signal is
asserted to indicate a hit. If the way indications match and the load's hit signal indicates hit, then
hit control circuit 402 determines that the forwarding was correct. On the other hand, if the
forwarding was incorrect, hit control circuit 402 may assert the Cancel Forward signal illustrated
in Fig. 1 to inform portions of the processor which received the forwarded store data of the
incorrect forwarding. In one particular embodiment, the forwarding of data may be performed in
a first clock cycle and the cancelling of the forwarding may be performed in a second clock
cycle subsequent to the first.

The above discussion has described the operation of the apparatus shown in Fig. 1 for a
single load being executed. However, embodiments are contemplated in which multiple loads
are executed concurrently. Each load may be concurrently handled as described above.

Comparing the load and store indexes (and the ways hit by the data addresses) may
determine that the load and store are accessing the same cache line. Additional information may
be used to determine that the store updates at least one byte read by the load. For example, the

offset portion of the address and the size (i.e. number of bytes) affected by the load and store

10

15

20

30

WO 01/35212 PCT/US00/10961

may be used. The offset and size information may be provided and encoded in any suitable
format, according to design choice. For example, the offset and size information may comprise a
byte enable mask with a bit for each byte in the cache line. If the bit is set, the corresponding
byte is accessed. Each bit of the byte enable mask for the load and store may be ANDed
together to determine if that byte is both read by the load and written by the store. The byte
enable mask may be generated for a portion of the cache line (e.g. one bank, if the cache has
multiple banks per cache line) and the portion of the offset used to select the bank may be
compared between the load and store addresses in addition to ANDing the byte enable mask bits.
The portion of the offset of the load and store addresses may be compared using comparator 404
in addition to the index comparison. Hit control circuit 402 may use the offset and size
information to determine whether or not to cause the forwarding of data stored in store queue
400 for the load (in addition to the index comparisons, hit bits, and way indications described
above).

It is noted that more than one entry of store queue 400 may be hit during execution of the
load. Hit control circuit 402 may determine the youngest (most recently executed) store in
program order among the stores corresponding to entries which are hit and may forward the data
from that entry. It is further noted that one or more bytes read by the load may not be updated by
a store hit by the load for one or more other bytes read by the load. In such cases, the data cache
may merge the store data with cache data to provide the bytes read by the load. If multiple stores
provide different bytes of the bytes read by a load, the load may be retried and reattempted. One
or more of the multiple stores may be retired and committed to the data cache and the bytes
updated by those stores and read by the load may be provided from the data cache.

Alternatively, the apparatus of Fig. 1 may merge the bytes from the different stores to provide
the load data. Other embodiments may handle the above scenarios in other fashions, as desired.

It is noted that, while comparator 406 is shown for comparing the way indications stored
in store queue 400 to the load's way indication, an alternative embodiment may read the way
indication from an entry used to forward data for a load (where the forwarding is based on the
index comparison and the store hitting in the data cache), and the way indication that is read may
be compared to the load way indication to verify that the load and the store hit in the same way.

As used herein, the index portion of an address (or simply the "index") is the portion
used to select one or more cache entries which are eligible to store data corresponding to that
address. Additionally, a data address "hits" in a data cache if data identified by the data address
is stored in the data cache. The data address "misses" in a data cache if data identified by the

data address is stored in the data cache. Additionally, a set associative data cache includes

10

15

20

25

30

WO 01/35212 PCT/US00/10961

multiple cache entries which are eligible to store a cache line corresponding to a given index.
Each entry is a different way for that index.

Fig. 2 below illustrates an exemplary embodiment of a processor which may employ
store queue 400 within a load/store unit. Alternatively, the processor and load/store unit may
employ the queueing structure described with respect to Figs. 4-6. Other processor embodiments
are contemplated as well which may use either the apparatus of Fig. 1 or the embodiment of
Figs. 4-6.

Processor Overview

Turning now to Fig. 2, a block diagram of one embodiment of a processor 10 is shown.
Other embodiments are possible and contemplated. As shown in Fig. 2, processor 10 includes a
prefetch/predecode unit 12, a branch prediction unit 14, an instruction cache 16, an instruction
alignment unit 18, a plurality of decode units 20A-20C, a plurality of reservation stations 22A-
22C, a plurality of functional units 24A-24C, a load/store unit 26, a data cache 28, a register file
30, a reorder buffer 32, an MROM unit 34, and a bus interface unit 37. Elements referred to
herein with a particular reference number followed by a letter will be collectively referred to by
the reference number alone. For example, decode units 20A-20C will be collectively referred to
as decode units 20.

Prefetch/predecode unit 12 is coupled to receive instructions from bus interface unit 37,
and is further coupled to instruction cache 16 and branch prediction unit 14. Similarly, branch
prediction unit 14 is coupled to instruction cache 16. Still further, branch prediction unit 14 is
coupled to decode units 20 and functional units 24. Instruction cache 16 is further coupled to
MROM unit 34 and instruction alignment unit 18. Instruction alignment unit 18 is in turn
coupled to decode units 20. Each decode unit 20A-20C is coupled to load/store unit 26 and to
respective reservation stations 22A-22C. Reservation stations 22A-22C are further coupled to
respective functional units 24A-24C. Additionally, decode units 20 and reservation stations 22
are coupled to register file 30 and reorder buffer 32. Functional units 24 are coupled to
load/store unit 26, register file 30, and reorder buffer 32 as well. Data cache 28 is coupled to
load/store unit 26 and to bus interface unit 37. Bus interface unit 37 is further coupled to an L2
interface to an L2 cache and a bus. Finally, MROM unit 34 is coupled to decode units 20.

Instruction cache 16 is a high speed cache memory provided to store instructions.
Instructions are fetched from instruction cache 16 and dispatched to decode units 20. In one
embodiment, instruction cache 16 is configured to store up to 64 kilobytes of instructions in a 2
way set associative structure having 64 byte lines (a byte comprises 8 binary bits). Alternatively,

any other desired configuration and size may be employed. For example, it is noted that

10

15

20

30

WO 01/35212 PCT/US00/10961

10

instruction cache 16 may be implemented as a fully associative, set associative, or direct mapped
configuration.

Instructions are stored into instruction cache 16 by prefetch/predecode unit 12.
Instructions may be prefetched prior to the request thereof from instruction cache 16 in
accordance with a prefetch scheme. A variety of prefetch schemes may be employed by
prefetch/predecode unit 12. As prefetch/predecode unit 12 transfers instructions to instruction
cache 16, prefetch/predecode unit 12 generates three predecode bits for each byte of the
instructions: a start bit, an end bit, and a functional bit. The predecode bits form tags indicative
of the boundaries of each instruction. The predecode tags may also convey additional
information such as whether a given instruction can be decoded directly by decode units 20 or
whether the instruction is executed by invoking a microcode procedure controlled by MROM
unit 34, as will be described in greater detail below. Still further, prefetch/predecode unit 12
may be configured to detect branch instructions and to store branch prediction information
corresponding to the branch instructions into branch prediction unit 14. Other embodiments may
employ any suitable predecode scheme.

One encoding of the predecode tags for an embodiment of processor 10 employing a
variable byte length instruction set will next be described. A variable byte length instruction set
is an instruction set in which different instructions may occupy differing numbers of bytes. An
exemplary variable byte length instruction set employed by one embodiment of processor 10 is
the x86 instruction set.

In the exemplary encoding, if a given byte is the first byte of an instruction, the start bit
for that byte is set. If the byte is the last byte of an instruction, the end bit for that byte is set.
Instructions which may be directly decoded by decode units 20 are referred to as "fast path"
instructions. The remaining x86 instructions are referred to as MROM instructions, according to
one embodiment. For fast path instructions, the functional bit is set for each prefix byte included
in the instruction, and cleared for other bytes. Alternatively, for MROM instructions, the
functional bit is cleared for each prefix byte and set for other bytes. The type of instruction may
be determined by examining the functional bit corresponding to the end byte. If that functional
bit is clear, the instruction is a fast path instruction. Conversely, if that functional bit is set, the
instruction is an MROM instruction. The opcode of an instruction may thereby be located within
an instruction which may be directly decoded by decode units 20 as the byte associated with the
first clear functional bit in the instruction. For example, a fast path instruction including two

prefix bytes, a Mod R/M byte, and an immediate byte would have start, end, and functional bits

as follows:

10

15

20

25

30

35

WO 01/35212 PCT/US00/10961

11

Start bits 10000
End bits 00001
Functional bits 11000

MROM instructions are instructions which are determined to be too complex for decode
by decode units 20. MROM instructions are executed by invoking MROM unit 34. More
specifically, when an MROM instruction is encountered, MROM unit 34 parses and issues the
instruction into a subset of defined fast path instructions to effectuate the desired operation.
MROM unit 34 dispatches the subset of fast path instructions to decode units 20.

Processor 10 employs branch prediction in order to speculatively fetch instructions
subsequent to conditional branch instructions. Branch prediction unit 14 is included to perform
branch prediction operations. In one embodiment, branch prediction unit 14 employs a branch
target buffer which caches up to two branch target addresses and corresponding taken/not taken
predictions per 16 byte portion of a cache line in instruction cache 16. The branch target buffer
may, for example, comprise 2048 entries or any other suitable number of entries.
Prefetch/predecode unit 12 determines initial branch targets when a particular line is predecoded.
Subsequent updates to the branch targets corresponding to a cache line may occur due to the
execution of instructions within the cache line. Instruction cache 16 provides an indication of the
instruction address being fetched, so that branch prediction unit 14 may determine which branch
target addresses to select for forming a branch prediction. Decode units 20 and functional units
24 provide update information to branch prediction unit 14. Decode units 20 detect branch
instructions which were not predicted by branch prediction unit 14. Functional units 24 execute
the branch instructions and determine if the predicted branch direction is incorrect. The branch
direction may be "taken", in which subsequent instructions are fetched from the target address of
the branch instruction. Conversely, the branch direction may be "not taken", in which
subsequent instructions are fetched from memory locations consecutive to the branch instruction.
When a mispredicted branch instruction is detected, instructions subsequent to the mispredicted
branch are discarded from the various units of processor 10. In an alternative configuration,
branch prediction unit 14 may be coupled to reorder buffer 32 instead of decode units 20 and
functional units 24, and may receive branch misprediction information from reorder buffer 32.

A variety of suitable branch prediction algorithms may be employed by branch prediction unit
14.

Instructions fetched from instruction cache 16 are conveyed to instruction alignment unit
18. As instructions are fetched from instruction cache 16, the corresponding predecode data is
scanned to provide information to instruction alignment unit 18 (and to MROM unit 34)

regarding the instructions being fetched. Instruction alignment unit 18 utilizes the scanning data

10

15

20

25

30

WO 01/35212 PCT/US00/10961

12

to align an instruction to each of decode units 20. In one embodiment, instruction alignment unit
18 aligns instructions from three sets of eight instruction bytes to decode units 20. Decode unit
20A receives an instruction which is prior to instructions concurrently received by decode units
20B and 20C (in program order). Similarly, decode unit 20B receives an instruction which is
prior to the instruction concurrently received by decode unit 20C in program order.

Decode units 20 are configured to decode instructions received from instruction
alignment unit 18. Register operand information is detected and routed to register file 30 and
reorder buffer 32. Additionally, if the instructions require one or more memory operations to be
performed, decode units 20 dispatch the memory operations to load/store unit 26. Each
instruction is decoded into a set of control values for functional units 24, and these control values
are dispatched to reservation stations 22 along with operand address information and
displacement or immediate data which may be included with the instruction. In one particular
embodiment, each instruction is decoded into up to two operations which may be separately
executed by functional units 24A-24C.

Processor 10 supports out of order execution, and thus employs reorder buffer 32 to keep
track of the original program sequence for register read and write operations, to implement
register renaming, to allow for speculative instruction execution and branch misprediction
recovery, and to facilitate precise exceptions. A temporary storage location within reorder buffer
32 is reserved upon decode of an instruction that involves the update of a register to thereby
store speculative register states. If a branch prediction is incorrect, the results of speculatively-
executed instructions along the mispredicted path can be invalidated in the buffer before they are
written to register file 30. Similarly, if a particular instruction causes an exception, instructions
subsequent to the particular instruction may be discarded. In this manner, exceptions are
"precise” (i.e. instructions subsequent to the particular instruction causing the exception are not
completed prior to the exception). It is noted that a particular instruction is speculatively
executed if it is executed prior to instructions which precede the particular instruction in program
order. Preceding instructions may be a branch instruction or an exception-causing instruction, in
which case the speculative results may be discarded by reorder buffer 32.

The instruction control values and immediate or displacement data provided at the
outputs of decode units 20 are routed directly to respective reservation stations 22. In one
embodiment, each reservation station 22 is capable of holding instruction information (i.e.,
instruction control values as well as operand values, operand tags and/or immediate data) for up
to six pending instructions awaiting issue to the corresponding functional unit. It is noted that for

the embodiment of Fig. 2, each reservation station 22 is associated with a dedicated functional

10

15

20

25

30

WO 01/35212 PCT/US00/10961

13

unit 24. Accordingly, three dedicated "issue positions" are formed by reservation stations 22 and
functional units 24. In other words, issue position 0 is formed by reservation station 22A and
functional unit 24A. Instructions aligned and dispatched to reservation station 22A are executed
by functional unit 24A. Similarly, issue position 1 is formed by reservation station 22B and
functional unit 24B; and issue position 2 is formed by reservation station 22C and functional unit
24C.

Upon decode of a particular instruction, if a required operand is a register location,
register address information is routed to reorder buffer 32 and register file 30 simultaneously.
Those of skill in the art will appreciate that the x86 register file includes eight 32 bit real
registers (i.e., typically referred to as EAX, EBX, ECX, EDX, EBP, ESI, EDI and ESP). In
embodiments of processor 10 which employ the x86 processor architecture, register file 30
comprises storage locations for each of the 32 bit real registers. Additional storage locations
may be included within register file 30 for use by MROM unit 34. Reorder buffer 32 contains
temporary storage locations for results which change the contents of these registers to thereby
allow out of order execution. A temporary storage location of reorder buffer 32 is reserved for
each instruction which, upon decode, is determined to modify the contents of one of the real
registers. Therefore, at various points during execution of a particular program, reorder buffer
32 may have one or more locations which contain the speculatively executed contents of a given
register. If following decode of a given instruction it is determined that reorder buffer 32 has a
previous location or locations assigned to a register used as an operand in the given instruction,
the reorder buffer 32 forwards to the corresponding reservation station either: 1) the value in the
most recently assigned location, or 2) a tag for the most recently assigned location if the value
has not yet been produced by the functional unit that will eventually execute the previous
instruction. If reorder buffer 32 has a location reserved for a given register, the operand value
(or reorder buffer tag) is provided from reorder buffer 32 rather than from register file 30. If
there is no location reserved for a required register in reorder buffer 32, the value is taken
directly from register file 30. If the operand corresponds to a memory location, the operand
value is provided to the reservation station through load/store unit 26.

In one particular embodiment, reorder buffer 32 is configured to store and manipulate
concurrently decoded instructions as a unit. This configuration will be referred to herein as
"line-oriented". By manipulating several instructions together, the hardware employed within
reorder buffer 32-may be simplified. For example, a line-oriented reorder buffer included in the
present embodiment allocates storage sufficient for instruction information pertaining to three

instructions (one from each decode unit 20) whenever one or more instructions are dispatched by

10

15

20

25

30

WO 01/35212 PCT/US00/10961

14

decode units 20. By contrast, a variable amount of storage is allocated in conventional reorder
buffers, dependent upon the number of instructions actually dispatched. A comparatively larger
number of logic gates may be required to allocate the variable amount of storage. When each of
the concurrently decoded instructions has executed, the instruction results are stored into register
file 30 simultaneously. The storage is then free for allocation to another set of concurrently
decoded instructions. Additionally, the amount of control logic circuitry employed per
instruction is reduced because the control logic is amortized over several concurrently decoded
instructions. A reorder buffer tag identifying a particular instruction may be divided into two
fields: a line tag and an offset tag. The line tag identifies the set of concurrently decoded
instructions including the particular instruction, and the offset tag identifies which instruction
within the set corresponds to the particular instruction. It is noted that storing instruction results
into register file 30 and freeing the corresponding storage is referred to as "retiring" the
instructions. It is further noted that any reorder buffer configuration may be employed in various
embodiments of processor 10.

As noted earlier, reservation stations 22 store instructions until the instructions are
executed by the corresponding functional unit 24. An instruction is selected for execution if: @)
the operands of the instruction have been provided; and (i) the operands have not yet been
provided for instructions which are within the same reservation station 22A-22C and which are
prior to the instruction in program order. It is noted that when an instruction is executed by one
of the functional units 24, the result of that instruction is passed directly to any reservation
stations 22 that are waiting for that result at the same time the result is passed to update reorder
buffer 32 (this technique is commonly referred to as "result forwarding"). An instruction may be
selected for execution and passed to a functional unit 24A-24C during the clock cycle that the
associated result is forwarded. Reservation stations 22 route the forwarded result to the
functional unit 24 in this case. In embodiments in which instructions may be decoded into
multiple operations to be executed by functional units 24, the operations may be scheduled
separately from each other

In one embodiment, each of the functional units 24 is configured to perform integer
arithmetic operations of addition and subtraction, as well as shifts, rotates, logical operations,
and branch operations. The operations are performed in response to the control values decoded
for a particular instruction by decode units 20. It is noted that a floating point unit (not shown)
may also be employed to accommodate floating point operations. The floating point unit may be
operated as a coprocessor, receiving instructions from MROM unit 34 or reorder buffer 32 and

subsequently communicating with reorder buffer 32 to complete the instructions. Additionally,

10

15

20

25

30

WO 01/35212 PCT/US00/10961

15

functional units 24 may be configured to perform address generation for load and store memory
operations performed by load/store unit 26. In one particular embodiment, each functional unit
24 may comprise an address generation unit for generating addresses and an execute unit for
performing the remaining functions. The two units may operate independently upon different
instructions or operations during a clock cycle.

Each of the functional units 24 also provides information regarding the execution of
conditional branch instructions to the branch prediction unit 14. If a branch prediction was
incorrect, branch prediction unit 14 flushes instructions subsequent to the mispredicted branch
that have entered the instruction processing pipeline, and causes fetch of the required instructions
from instruction cache 16 or main memory. It is noted that in such situations, results of
instructions in the original program sequence which occur after the mispredicted branch
instruction are discarded, including those which were speculatively executed and temporarily
stored in load/store unit 26 and reorder buffer 32. It is further noted that branch execution results
may be provided by functional units 24 to reorder buffer 32, which may indicate branch
mispredictions to functional units 24.

Results produced by functional units 24 are sent to reorder buffer 32 if a register value is
being updated, and to load/store unit 26 if the contents of a memory location are changed. If the
result is to be stored in a register, reorder buffer 32 stores the result in the location reserved for
the value of the register when the instruction was decoded. A plurality of result buses 38 are
included for forwarding of results from functional units 24 and load/store unit 26. Result buses
38 convey the result generated, as well as the reorder buffer tag identifying the instruction being
executed.

Load/store unit 26 provides an interface between functional units 24 and data cache 28.
In one embodiment, load/store unit 26 is configured with a first load/store buffer having storage
locations for data and address information for pending loads or stores which have not accessed
data cache 28 and a second load/store buffer having storage locations for data and address
information for loads and stores which have access data cache 28. For example, the first buffer
may comprise 12 locations and the second buffer may comprise 32 locations. Decode units 20
arbitrate for access to the load/store unit 26. When the first buffer is full, a decode unit must
wait until load/store unit 26 has room for the pending load or store request information.
Load/store unit 26 also performs dependency checking for load memory operations against
pending store memory operations to ensure that data coherency is maintained. A memory
operation is a transfer of data between processor 10 and the main memory subsystem. Memory

operations may be the result of an instruction which utilizes an operand stored in memory, or

10

15

20

30

WO 01/35212 PCT/US00/10961

16

may be the result of a load/store instruction which causes the data transfer but no other operation.
Additionally, load/store unit 26 may include a special register storage for special registers such
as the segment registers and other registers related to the address translation mechanism defined
by the x86 processor architecture.

Data cache 28 is a high speed cache memory provided to temporarily store data being
transferred between load/store unit 26 and the main memory subsystem. In one embodiment,
data cache 28 has a capacity of storing up to 64 kilobytes of data in an two way set associative
structure. It is understood that data cache 28 may be implemented in a variety of specific
memory configurations, including a set associative configuration, a fully associative
configuration, a direct-mapped configuration, and any suitable size of any other configuration.

In one particular embodiment of processor 10 employing the x86 processor architecture,
instruction cache 16 and data cache 28 are linearly addressed and physically tagged. The linear
address is formed from the offset specified by the instruction and the base address specified by
the segment portion of the x86 address translation mechanism. Linear addresses may optionally
be translated to physical addresses for accessing a main memory. The linear to physical
translation is specified by the paging portion of the x86 address translation mechanism. The
physical address is compared to the physical tags to determine a hit/miss status.

Bus interface unit 37 is configured to communicate between processor 10 and other
components in a computer system via a bus. For example, the bus may be compatible with the
EV-6 bus developed by Digital Equipment Corporation. Alternatively, any suitable interconnect
structure may be used including packet-based, unidirectional or bi-directional links, etc. An
optional L2 cache interface may be employed as well for interfacing to a level two cache.
Load/Store Unit

A more detailed discussion of one embodiment of load/store unit 26 is next provided.
Other embodiments are possible and contemplated. Fig. 3 illustrates load/store unit 26, reorder
buffer 32, data cache 28, bus interface unit (BIU) 37, decode unit 20A, reservation station 22A,
and functional unit 24A to highlight certain interconnection therebetween according to one
embodiment of processor 10. Other embodiments may employ additional, alternative, or
substitute interconnect as desired. Interconnect between decode units 20B-20C, reservation
stations 22B-22C, functional units 24B-24C, and other units shown in Fig. 3 may be similar to
that shown in Fig. 3.

Decode unit 20A receives an instruction from instruction alignment unit 18 and decodes
the instruction. Decode unit 20A provides the decoded instruction to reservation station 22A,

which stores the decoded instruction until the instruction is selected for execution. Additionally,

10

15

20

25

30

WO 01/35212 PCT/US00/10961

17

if the instruction specifies a load or store memory operation, decode unit 20A signals load/store
unit 26 via L/S lines 46A. Similar signals from decode units 20B-20C may be received by
load/store unit 26 as well. L/S lines 46A indicate whether a load memory operation, a store
memory operation, or both are specified by the instruction being decoded. For example, L/S
lines 46A may comprise a load line and a store line. If no memory operation is specified, then
signals on both lines are deasserted. The signal on the load line is asserted if a load memory
operation is specified, and similarly the signal on the store line is asserted if a store memory
operation is specified. Both signals are asserted if both a load memory operation and a store
memory operation are specified. In response to signals on L/S lines 46A, load/store unit 26
allocates an entry in a load/store buffer included therein to store the corresponding memory
operation.

In addition to the above, decode unit 20A provides information to reorder buffer 32
about the instruction being decoded. Reorder buffer 32 receives the information (as well as
similar information from other decode units 20B-20C) and allocates reorder buffer entries in
response thereto. The allocated reorder buffer entries are identified by reorder buffer tags, which
are transmitted to load/store unit 26 upon an instruction tags bus 48. Instruction tags bus 48 may
be configured to transmit a tag for each possible instruction (e.g. three in the present
embodiment, one from each of decode units 20A-20C). Alternatively, in an embodiment
employing the line-oriented structure described above, reorder buffer 32 may be configured to
transmit a line tag for the line, and load/store unit 26 may augment the line tag with the offset tag

of the issue position which is signalling a particular load or store.

Reorder buffer 32 is further configured to perform dependency checking for register
operands of the instruction. The register operands are identified in the instruction information
transmitted by decode units 20. For store memory operations, the store data is a source operand

which load/store unit 26 receives in addition to the store address. Accordingly, reorder buffer 32

- determines the instruction which generates the store data for each store memory operation and

conveys either the store data (if it is available within reorder buffer 32 or register file 30 upon
dispatch of the store memory operation) or a store data tag for the store data on a store data/tags
bus 50. If the instruction corresponding to the store memory operation is an explicit store
instruction which stores the contents of a register to memory, the instruction tag of the
instruction which generates the store data (or the store data, if it is available) is conveyed. On
the other hand, the instruction itself generates the store data if the instruction includes the store

memory operation as an implicit operation. In such cases, reorder buffer 32 provides the

10

15

20

25

30

WO 01/35212 PCT/US00/10961

18

instruction tag of the instruction as the store data tag.

Although not illustrated in Fig. 3 for simplicity in the drawing, reservation station 22A
receives operand tags and/or data for the instruction from reorder buffer 32 as well. Reservation
station 22A captures the operand tags and/or data and awaits delivery of any remaining operand
data (identified by the operand tags) from result buses 38. Once an instruction has received its
operands, it is eligible for execution by functional unit 24A. More particularly, in the
embodiment shown, functional unit 24A includes an execution unit (EXU) 40 and an address
generation unit (AGU) 42. Execution unit 40 performs instruction operations (e.g. arithmetic
and logic operations) to generate results which are forwarded on result bus 38A (one of result
buses 38) to load/store unit 26, reservation stations 22, and reorder buffer 32. AGU 42 generates
data addresses for use by a memory operation or operations specified by the instruction, and
transmits the data addresses to load/store unit 26 via address bus 44A. It is noted that other
embodiments may be employed in which AGU 42 and execution unit 40 share result bus 38A
and in which functional unit 24A includes only an execution unit which performs address
generation and other instruction execution operations. Load/store unit 26 is further coupled to
receive result buses and address buses from the execution units and AGUs within other
functional units 24B-24C as well.

Since the embodiment shown employs AGU 42, reservation station 22A may select the
address generation portion of an instruction for execution by AGU 42 once the operands used to
form the address have been received but prior to receiving any additional operands the
instruction may specify. AGU 42 transmits the generated address to load/store unit 26 on
address bus 44A, along with the instruction tag of the instruction for which the data address is
generated. Accordingly, load/store unit 26 may compare the tag received on address bus 44A to
the instruction tags stored in the load/store buffer to determine which load or store the data
address corresponds to.

Load/store unit 26 monitors the result tags provided on result buses 38 to capture store
data for store memory operations. If the result tags match a store data tag within load/store unit
26, load/store unit 26 captures the corresponding data and associates the data with the
corresponding store instruction.

Load/store unit 26 is coupled to data cache 28 via a data cache interface. Load/store unit
26 selects memory operations to probe data cache 28 via the data cache interface, and receives
probe results from the data cache interface. Generally speaking, a "probe" of the data cache for a
particular memory operation comprises transmitting the data address of the particular memory

operation to data cache 28 for data cache 28 to determine if the data address hits therein. Data

10

15

20

30

WO 01/35212 PCT/US00/10961

19

cache 28 returns a probe result (e.g. a hit/miss indication) to load/store unit 26. In addition, if the
particular memory operation is a load and hits, data cache 28 forwards the corresponding load
data on a result bus 38D to reservation stations 22, reorder buffer 32, and load/store unit 26. In
one embodiment, data cache 28 includes two ports and may thus receive up to 2 probes
concurrently. Data cache 28 may, for example, employ a banked configuration in which cache
lines are stored across at least two banks and two probes may be serviced concurrently as long as
they access different banks. In one particular embodiment, data cache 28 may employ 8 banks.
Various embodiments of the data cache interface are described in further detail below.

Data cache 28 is configured to allocate cache lines in response to probes that miss, and
communicates with bus interface unit 37 to fetch the missing cache lines. Additionally, data
cache 28 transmits evicted cache lines which have been modified to bus interface unit 37 for
updating main memory.

Bus interface unit 37 is coupled to data cache 28 and load/store unit 26 via a snoop
interface 52 as well. Snoop interface 52 may be used by bus interface unit 37 to determine if
coherency activity needs to be performed in response to a snoop operation received from the bus.
Generally, a "snoop operation” is an operation performed upon a bus for the purpose of
maintaining memory coherency with respect to caches connected to the bus (e.g. within
processors). When coherency is properly maintained, a copy of data corresponding to a
particular memory location and stored in one of the caches is consistent with the copies stored in
each other cache. The snoop operation may be an explicit operation, or may be an implicit part
of an operation performed to the address of the particular memory location. Generally, the snoop
operation specifies the address to be snooped (the "snoop address") and the desired state of the
cache line if the address is stored in the cache. Bus interface unit transmits a snoop request via
snoop interface 52 to data cache 28 and load/store unit 26 to perform the snoop operation.

Reorder buffer 32 manages the retirement of instructions. Reorder buffer 32
communicates with load/store unit 26 via retire interface 54 to identify instructions either being
retired or ready for retirement. For example, in one embodiment stores do not update data cache
28 (or main memory) until they are retired. Additionally, certain load instructions may be
restricted to be performed non-speculatively. Reorder buffer 32 may indicate memory
operations which are retired or retireable to load/store unit 26 via retirement interface 54.
Accordingly, the instruction information provided by decode units 20 to reorder buffer 32 for
each instruction may include an indication of whether or not the instruction includes a load or
store operation. Load/store unit 26 may return an acknowledgment to reorder buffer 32 that a

particular memory operation is logged as retired, and reorder buffer 32 may subsequently retire

10

15

20

25

30

WO 01/35212 PCT/US00/10961

20

the corresponding instruction.

Since the load/store buffer may become full at times, load/store unit 26 may employ a
flow control mechanism to stall subsequent memory operations at decode units 20 until sufficient
entries are freed (via completion of earlier memory operations) within the load/store buffer for
the subsequent memory operations. For example, load/store unit 26 may broadcast a count of the
number of free entries to decode units 20, which may stall if the count indicates that insufficient
entries are available for the memory operations of instructions being decoded. According to one
particular embodiment, the instructions being concurrently decoded by decode units 20 move to
reservation stations 22 in lockstep (so that a line may be allocated in reorder buffer 32 for the
instructions, as described above with respect to Fig. 2). In such an embodiment, decode units 20
may stall until sufficient entries are available for all memory operations within the set of
concurrently decoded instructions. Alternatively, load/store unit 26 may employ a stall signal for
stalling subsequent memory operations until buffer entries are available. Any suitable flow
control mechanism may be used.

Turning now to Fig. 4, a block diagram of one embodiment of load/store unit 26 is
shown. Other embodiments are possible and contemplated. In the embodiment of Fig. 4,
load/store unit 26 includes a first load/store buffer (LS1 buffer) 60, a second load/store buffer
(LS2 buffer) 62, an LS1 control circuit 64, an LS2 control circuit 66, a temporary buffer 68,
segment adders 70, a port 0 multiplexor (mux) 72, a port 1 mux 74, and an LS2 reprobe mux 76.
Segment adders 70 are coupled to receive data addresses from AGUs 42 within functional units
24A-24C (e.g. address bus 44AA, part of address bus 44A shown in Fig. 3, conveys the data
address from AGU 42 within functional unit 24A). Muxes 70 and 72 are coupled to receive the
data addresses from AGUs 42 and the outputs of segment adders 70, as well as being coupled to
LS1 buffer 60. Mux 72 also receives an input from LS2 reprobe mux 76. Furthermore, LS1
buffer 60 is coupled to segment adders 70, LS1 control circuit 64, temporary buffer 68,
instruction tags bus 48, store data/tags bus 50, and results buses 38a (the result data portion of
result buses 38). LS1 control circuit 64 is coupled to muxes 72 and 74 and to LS2 control circuit
66. Furthermore, LS1 control circuit 64 is coupled to receive address tags from AGUs 42 (e.g.
address tag bus 44AB, part of address tag bus 44A shown in Fig. 3, conveys the address tag from
AGU 42 within functional unit 24A), result tags via result tags buses 38b (the result tag portion
of result buses 38), and L/S lines 46 (including L/S lines 46A from decode unit 20A).

Temporary buffer 68 and LS2 buffer 62 are coupled to results buses 38a and result tags buses
38b. LS2 buffer 62 is further coupled to receive a miss address buffer (MAB) tag on a MAB tag
bus 78 and a physical address on a physical address bus 80 from data cache 28. LS2 buffer 62 is

10

15

20

25

30

WO 01/35212 PCT/US00/10961

21

still further coupled to mux 76, LS2 control circuit 66, and temporary buffer 68. LS2 control
circuit 66 is further coupled to mux 76, retire interface 54, result tags buses 38b, snoop interface
52, hit/miss signals 82 from data cache 28, and a fill tag bus 84 from bus interface unit 37.

Generally speaking, load/store unit 26 includes a pre-cache buffer (LS1 buffer 60) and a
post-cache buffer (LS2 buffer 62). Memory operations are allocated into LS1 buffer 60 upon
dispatch within processor 10, and remain within LS1 buffer 60 until selected to probe data cache
28. Subsequent to probing data cache 28, the memory operations are moved to LS2 buffer 62
independent of the probe status (e.g. hit/miss, etc.).

Memory operations which miss may subsequently be selected through LS2 reprobe mux
76 and port 0 mux 72 to reprobe data cache 28. The term "reprobe", as used herein, refers to
probing a cache for a second or subsequent attempt after the first probe for a particular memory
operation. Additionally, store memory operations may be held in LS2 buffer 62 until the stores
are in condition for retirement.

In response to signals on L/S lines 46, LS1 control circuit 64 allocates entries within LS1
buffer 60 to the identified load and store memory operations. The respective instruction tags and
store data/tags (if applicable) are received into the allocated entries by LS1 buffer 60 under the
control of LS1 control circuit 64. Subsequently, the corresponding data addresses are received
from the AGUs (identified by the address tags received by LS1 control circuit 64) and are stored
into the allocated entries.

A memory operation which has received its address becomes eligible to probe data cache
28. LS1 control circuit 64 scans the LS1 buffer entries for memory operations to probe data
cache 28, and generates selection controls for port 0 mux 72 and port 1 mux 74. Accordingly, up
to two memory operations may probe data cache 28 per clock cycle in the illustrated
embodiment. According to one particular implementation, LS1 control circuit 64 selects
memory operations for probing data cache 28 in program order. Accordingly, LS1 control
circuit 64 may be configured to limit scanning to the oldest memory operations within LS1
buffer 60. The "program order" of the memory operations is the order the instructions would be
executed in if the instructions were fetched and executed one at a time. Furthermore, the
program order of instructions speculatively fetched (according to branch predictions, for
example) is the order the instructions would be executed in as stated above under the assumption
that the speculation is correct. Instructions which are prior to other instructions in the program
order are said to be older than the other instructions. Conversely, instructions which are
subsequent to other instructions in program order are said to be younger than the other

instructions. It is noted that other implementations may select memory operations to probe data

10

15

20

25

30

WO 01/35212 PCT/US00/10961

22

cache 28 out of order, as desired.

LS1 control circuit 64 is configured to select a memory operation to probe data cache 28
as the data address is received (provided, in the present embodiment, that the memory operation
is within an entry being scanned by LS1 control circuit 64). If the address tags received from the
AGUs 42 match an instruction tag of an otherwise selectable memory operation, LS1 control
circuit 64 selects the corresponding data address received from the AGU 42 via one of muxes 72
and 74.

While the data address may be selected for probing as it is provided to load/store unit 26,
the data address is also provided to one of segment adders 70. Segment adders 70 are included
in the present embodiment to handle the segmentation portion of the x86 addressing scheme.
Embodiments which do not employ the x86 instruction set architecture may eliminate segment
adders 70. Generally, AGUs 42 generate a logical address corresponding to the memory
operation. The logical address is the address generated by adding the address operands of an
instruction. In the x86 architecture, a two-tiered translation scheme is defined from the logical
address to a linear address through a segmentation scheme and then to the physical address
through a paging scheme. Since AGUs 42 add the address operands of the instruction, the data
address provided by the AGUs is a logical address. However, modern instruction code is
generally employing a "flat addressing mode" in which the segment base addresses (which are
added to the logical address to create the linear address) are programmed to zero. Accordingly,
load/store unit 26 presumes that the segment base address is zero (and hence the logical and
linear addresses are equal) and selects the logical address to probe data cache 28. Segment
adders 70 add the segment base address of the selected segment for the memory operation and
provide the linear address to muxes 72 and 74 and to LS1 buffer 60 for storage. If the segment
base address for a particular memory operation is non-zero and the memory operation was
selected to probe data cache 28 upon receiving the logical address, LS1 control circuit 64 may
cancel the previous access (such that load data is not forwarded) and select the corresponding
linear address from the output of the corresponding segment adder 70 for probing data cache 28.
In other alternative embodiments, AGUs 42 may receive the segment base address and generate
linear addresses. Still other embodiments may require flat addressing mode and segment base
addresses may be ignored.

Muxes 72 and 74 are coupled to receive data addresses from entries within LS1 buffer
60 as well. The data address corresponding to a memory operation is stored in the LS1 entry
assigned to the memory operation upon receipt from the AGUs 42. The data address is selected

from the entry upon selecting the memory operation to probe data cache 28. It is noted that, in

10

15

20

25

30

WO 01/35212 PCT/US00/10961

23

addition to the data address, other information may be transmitted to data cache 28 via muxes 70
and 72. For example, an indication of whether the memory operation is a load or store may be
conveyed. The instruction tag of the memory operation may be conveyed for forwarding on
result buses 38D with the load data for load memory operations. The size of the operation (for
muxing out the appropriate data) may be conveyed as well. Any desirable information may be
transmitted according to design choice.

Store data may be provided for a store memory operation while the store memory
operation resides in LS1 buffer 60. Accordingly, LS1 control circuit 64 may monitor result tags
buses 38b. If a tag matching a store data tag within LS1 buffer 64 is received, the corresponding
store data from the corresponding one of result buses 38a is captured into the entry having the
matching store data tag.

LS1 control circuit 64 removes memory operations from LS1 buffer 60 in response to
the memory operations probing data cache 28. In one particular embodiment, memory
operations are removed the cycle after they are selected for probing data cache 28. The cycle
after may be used to allow, in cases in which a memory operation is selected upon generation of
the data address by one of AGUs 42, for the data address to propagate into LS1 buffer 60. Other
embodiments may chose to remove the memory operations during the cycle that the memory
operations are selected. Because the memory operations are removed the cycle after they are
selected, LS1 control circuit 64 is configured to scan the oldest 4 entries in LS1 buffer 60 to
select memory operations for probing data cache 28 (up to two entries selected in the previous
clock cycle and up to two entries being selectable in the present clock cycle).

Memory operations removed from LS1 buffer 60 are moved to temporary buffer 68.
Temporary buffer 68 may be provided to ease timing constraints in reading entries from LS1
buffer 60 and writing them to LS2 buffer 62. Accordingly, temporary buffer 68 is merely a
design convenience and is entirely optional. The clock cycle after a memory operation is moved
into temporary buffer 68, it is moved to LS2 buffer 62. Since store data may be received upon
results buses 38 during the clock cycle a store memory operation is held in temporary buffer 68,
temporary buffer 68 monitors result tags on result tags buses 38b and captures data from result
buses 38a in a manner similar to LS1 buffer 60 capturing the data.

Accordingly, memory operations which have probed data cache 28 are placed into LS2
buffer 62. In the present embodiment, all memory operations are placed into LS2 buffer 62 after
an initial probe of data cache 28. Stores are held in LS2 buffer 62 until they can be committed to
data cache 28 (i.e. until they are allowed to update data cache 28). In general, stores may be

committed when they become non-speculative. In one embodiment, stores may be committed in

10

15

20

30

WO 01/35212 PCT/US00/10961

24

response to their retirement (as indicated via retirement interface 54) or at any time thereafter.
Loads are held in LS2 buffer 62 until they retire as well in the present embodiment. Load hits
remain in LS2 buffer 62 for snooping purposes. Load misses are held in LS2 at least until the
cache line accessed by the load is being transferred into data cache 28. In response to the cache
line (or portion thereof including the load data) being scheduled for updating the cache, the load
miss is scheduled for reprobing data cache 28. Upon reprobing, the load miss becomes a load hit
(and the load data is forwarded by data cache 28) and is retained as such until retiring.

LS2 control circuit 66 allocates entries within LS2 buffer 62 for memory operations
which have probed data cache 28. Additionally, LS2 control circuit 66 receives probe status
information from data cache 28 for each of the probes on hit/miss signals 82. The hit/miss
information is stored in the LS2 buffer entry corresponding to the memory operation for which
the probe status is provided. In one embodiment, data cache 28 includes address translation
circuitry which, in parallel with access to the data cache, attempts to translate the virtual address
to the physical address. If a translation is not available within the address translation circuitry,
the probe may be identified as a miss until a translation is established (by searching software
managed translation tables in main memory, for example). In one specific implementation, the
address translation circuitry within data cache 28 comprises a two level translation lookaside
buffer (TLB) structure including a 32 entry level-one TLB and a 4 way set associative, 256 entry
level-two TLB.

If the data address of the memory operation is successfully translated by data cache 28,
the corresponding physical address is provided on physical address bus 80. LS2 control circuit
causes the corresponding entry to overwrite the virtual address with the physical address.
However, certain virtual address bits may be separately maintained for indexing purposes on
reprobes and store data commits for embodiments in which data cache 28 is virtually indexed
and physically tagged.

For memory operations which miss data cache 28, data cache 28 allocates an entry in a
miss address buffer included therein. The miss address buffer queues miss addresses for
transmission to bus interface unit 37, which fetches the addresses from the L2 cache or from
main memory. A tag identifying the entry within the miss address buffer (the MAB tag) is
provided on MAB tag bus 78 for each memory operation which misses. It is noted that data
cache 28 allocates miss address buffer entries on a cache line basis. Accordingly, subsequent
misses to the same cache line receive the same MAB tag and do not cause an additional miss

address buffer entry to be allocated.

Bus interface unit 37 subsequently fetches the missing cache line and returns the cache

10

15

20

25

30

WO 01/35212 PCT/US00/10961

25

line as fill data to data cache 28. Bus interface unit 37 also provides the MAB tag corresponding
to the cache line as a fill tag on fill tag bus 84. LS2 control circuit 66 compares the fill tag to the
MARB tags within LS2 buffer 62. If a match on the MAB tag occurs for a load memory
operation, then that load may be selected for reprobing data cache 28. If more than one match is
detected, the oldest matching load may be selected with other memory operations selected during
subsequent clock cycles. Stores which match the MAB tag are marked as hits, but wait to
become non-speculative before attempting to commit data.

In one embodiment, the cache line of data is returned using multiple packets. Each load
memory operation may record which packet it accesses (or the packet may be discerned from the
appropriate address bits of the load address), and bus interface unit 37 may identify the packet
being returned along with the fill tag. Accordingly, only those loads which access the packet
being returned may be selected for reprobing.

Bus interface unit 37 provides the fill tag in advance of the fill data to allow a load to be
selected for reprobing and to be transmitted to data cache 28 via port O to arrive at the data
forwarding stage concurrent with the packet of data reaching data cache 28. The accessed data
may then be forwarded.

Since stores are moved to LS2 buffer 62 after probing data cache 28 and subsequent
loads are allowed to probe data cache 28 from LS1 buffer 60 and forward data therefrom, it is
possible that a younger load accessing the same memory location as an older store will probe
data cache 28 prior to the older store committing its data to data cache 28. The correct result of
the load is to receive the store data corresponding to the older store. Accordingly, 1.S2 control
circuit 66 monitors the probe addresses and determines if older stores to those addresses are
within LS2 buffer 62. If a match is detected and the store data is available within LS2 buffer 62,
LS2 control circuit 66 signals data cache 28 to select data provided from LS2 buffer 62 for
forwarding and provides the selected data. On the other hand, if a match is detected and the
store data is not available within LS2 buffer 62, forwarding of data from data cache 28 is
cancelled. The load is moved into LS2 buffer 62, and is selected for reprobing until the store
data becomes available. Additional details regarding store to load forwarding are provided
further below.

Generally, LS2 control circuit 66 is configured to scan the entries within LS2 buffer 62
and select memory operations to reprobe data cache 28. Load misses are selected to reprobe in
response to the data being returned to data cache 28. Loads which hit older stores are selected to
reprobe if they are not currently reprobing. Stores are selected to reprobe in response to being

retired. If multiple memory operations are selectable, LS2 control circuit 66 may select the

10

15

20

25

30

WO 01/35212 PCT/US00/10961

26

oldest one of the multiple memory operations. If LS2 control circuit 66 is using port 0 (via port
0 mux 72), LS2 control circuit 66 signals LS1 control circuit 64, which selects the LS2 input
through port 0 mux 72 and disables selecting a memory operation from LS1 buffer 60 on port 0
for that clock cycle.

LS2 control circuit 66 is further coupled to receive snoop requests from bus interface
unit 37 via snoop interface 52. Generally, memory operations in LS2 buffer 62 are snooped
since they have probed data cache 28 and hence may need corrective action in response to the
snoop operation. For example, load hits (which have forwarded data to dependent instructions)
may need to be discarded and reexecuted. Stores may be storing a cache state from their probe,
which may need to be changed. By contrast, memory operations within LS1 buffer 60 have not
probed data cache 28 and thus may not need to be snooped.

LS2 control circuit 66 receives the snoop request, examines the LS2 buffer entries
against the snoop request, and responds to bus interface unit 37 via snoop interface 52.
Additionally, LS2 control circuit 66 may perform updates within LS2 buffer entries in response
to the snoop.

Generally speaking, a buffer is a storage element used to store two or more items of
information for later retrieval. The buffer may comprise a plurality of registers, latches, flip-
flops, or other clocked storage devices. Alternatively, the buffer may comprise a suitably
arranged set of random access memory (RAM) cells. The buffer is divided into a number of
entries, where each entry is designed to store one item of information for which the buffer is
designed. Entries may be allocated and deallocated in any suitable fashion. For example, the
buffers may be operated as shifting first-in, first-out (FIFO) buffers in which entries are shifted
down as older entries are deleted. Alternatively, head and tail pointers may be used to indicate
the oldest and youngest entries in the buffer, and entries may remain in a particular storage
location of the buffer until deleted therefrom. Store queue 400, illustrated in Fig. 1, may be one
type of buffer. The term "control circuit" as used herein, refers to any combination of
combinatorial logic circuits, clock storage circuits, and/or state machines which performs
operations on inputs and generates outputs in response thereto in order to effectuate the
operations described.

It is noted that, in one embodiment, load/store unit 26 attempts to overlap store probes
from LS1 with the data commit of an older store on the same port. This may be performed
because the store probe is only checking the data cache tags for a hit/miss, and is not attempting
to retrieve or update data within the data storage. It is further noted that, while the above

description refers to an embodiment in which all memory operations are placed in LS2 buffer 62,

10

15

20

25

30

WO 01/35212 PCT/US00/10961

27

other embodiments may not operate in this fashion. For example, load hits may not be stored in
LS2 buffer 62 in some embodiments. Such embodiments may be employed, for example, if
maintaining strong memory ordering is not desired.

Store to Load Forwarding

Fig. 5 illustrates one embodiment of a portion of load/store unit 26 and data cache 28.
Other embodiments are possible and contemplated. In the embodiment of Fig. 5, load/store unit
26 includes LS2 buffer 62, LS2 control circuit 66, a data forward mux 100, and address and way
comparators 102A-102B. Additionally, in the embodiment of Fig. 5, data cache 28 includes a
port 1 data mux 110 and a port 0 data mux 112. LS2 buffer 62 is coupled to data forward mux
100, comparators 102A-102B, and LS2 control circuit 66. LS2 control circuit 66 is further
coupled to muxes 100, 110, and 112. LS2 control circuit 66 is further coupled to comparators
102A-102B. Comparators 102A-102B are coupled to receive data addresses and ways presented
on ports 0 and 1 of data cache 28. Mux 112 is coupled to provide results on result bus 38DA,
and similarly mux 110 is coupled to provide results on result bus 38DB. Result buses 38DA-
38DB may form one embodiment of result buses 38D as shown in Fig. 3.

Generally speaking, load/store unit 26 is configured to handle the cases in which a
probing load memory operation hits an older store memory operation stored in LS2 buffer 62.
Load/store unit 26 compares index portions of data addresses of memory operations probing data
cache 28 from LS1 buffer 60 to index portions of data addresses of memory operations within
LS2 buffer 62. If the indexes match and the memory operations are hits in data cache 28 to the
same way of data cache 28, then the probing memory operation hits a store in LS2 buffer 62. If
a probing load hits a store in LS2 buffer 62 and the store data is available with LS2 buffer 62, the
store data is transmitted to data cache 28 for forwarding in place of any load data which may be
in cache. On the other hand, a probing load may hit a store in LS2 buffer 62 for which store data
is not available. For this case, forwarding of data from data cache 28 is cancelled and the load
memory operation is selected for reprobing from LS2 buffer 62 until the store data becomes
available. Eventually, the store data may become available within LS2 buffer 62 and forwarded
therefrom during a reprobing by the load, or the store may update data cache 28 and the data
may be forwarded from data cache 28 during a reprobing by the load.

Generally speaking, store data is "available" from a storage location if the store data is
actually stored in that storage location. If the data may at some later point be stored in the
storage location but is not yet stored there, the data is "not available", "not yet available", or
"unavailable". For example, store data may be not available in a LS2 buffer entry if the store

data has not been transmitted from the source of the store data to the LS2 buffer entry. The

10

15

20

25

30

WO 01/35212 PCT/US00/10961

28

source of the store data is the instruction which executes to produce the store data, and may be
the same instruction to which the store corresponds (an instruction specifying a memory operand
as the destination) or may be an older instruction. The store data tag identifies the source of the
store data and hence is compared to result tags from the execution units 40 to capture the store
data.

As described above, load addresses and way indications are compared to store addresses
and way indications within LS2 buffer 62 to detect loads which hit older stores. Accordingly,
comparators such as comparators 102 are provided. Comparators 102 are provided to compare
addresses and way indications on each port of data cache 28 to the data addresses and way
indications stored within LS2 buffer 62. It is further noted that comparators 102 may be
integrated into LS2 buffer 62 as a CAM structure, if desired.

If a load hit on a store entry is detected and the corresponding store data is available,
LS2 control circuit 66 selects the store data using data forward mux 100, and provides the data to
either port 0 mux 112 or to port 1 mux 110, based upon the port for which the hit is detected.
Accordingly, data forward mux 100 may comprise a set of independent muxes, one for each port.
Additionally, LS2 control circuit 66 asserts a corresponding signal to data cache 28 for data
cache 28 to select the forwarded data in place of cache data read from data cache 28 for the
hitting load.

It is further noted that, while the present embodiment is shown for use with LS2 buffer
62, other embodiments are contemplated in which the above store forwarding mechanism is
performed with a conventional store queue storing only store memory operations which have
probed data cache 28 (e.g. store queue 400 may be used in one particular embodiment). It is still
further noted that, while muxes 110 and 112 are shown within data cache 28, this circuitry may
be employed within load/store unit 26, as desired. Additionally, it is noted that, while mux 100
is shown for selecting data from LS2 buffer 62 for forwarding, mux 100 may be eliminated in
favor of providing a read entry number to LS2 buffer 62 from which data is read, if LS2 buffer
62 is a RAM structure rather than discrete clocked storage devices (e.g. registers).

It is still further noted that, in one particular implementation, load/store unit 26 may
employ a dependency link file to accelerate the forwarding of data when a load which hits a store
for which the corresponding store data is not available is detected. In response to detecting such
a load, load/store unit 26 may allocate an entry in the dependency link file for the load. The
dependency link file entry stores a load identifier (e.g. the instruction tag assigned by reorder
buffer 32 to the instruction corresponding to the load) identifying the load which hits the store

and a store data identifier (e.g. the store data tag) identifying the source of the store data

10

15

20

25

30

WO 01/35212 PCT/US00/10961

29

corresponding to the store hit by the load. Load/store unit 26 may then monitor results buses 38
for the store data tags stored within the dependency link file. Upon detecting that store data is
being provided on one of result buses 38, load/store unit 26 may direct data cache 28 to forward
the data from the corresponding result bus onto a result bus from data cache 28. Additionally,
the load identifier from the corresponding entry may be forwarded as the result tag. It is noted
that the dependency link file is an entirely optional performance enhancement. Embodiments
which do not employ the dependency link file are contemplated.

Turning now to Fig. 6, a block diagram of a portion of one embodiment of LS2 control
circuit 66 and an LS2 entry 94 is shown. Other embodiments and specific implementations are
contemplated. The embodiment of Fig. 6 includes: a comparator 102AA; a comparator 102AB,
AND gate 120; hit control circuit 132; and data forward mux 100. Hit control circuit 132
includes a hit entry register 134. Comparator 102AA is coupled to receive at least the index
portion of the data address from port O (reference numeral 136) and to receive the index portion
of the data address stored in address - index field 96A of entry 94. Comparator 102AA provides
an output to AND gate 120, which is further coupled to receive a store valid bit (ST V field 96B)
and a hit bit (H field 96C) from entry 94. The output of AND gate 120 is coupled as a hit store
signal to hit control circuit 132, which further receives a port 0 load signal (reference numeral
140), a port 0 Hit signal (reference numeral 122), and port O offset and size information
(reference numeral 124). Comparator 102AB is coupled to receive the contents of way field 96E
and is coupled to receive a Port 0 way indication (reference numeral 142). Comparator 102AB is
coupled to provide an output as a hit way signal to hit control circuit 132. Hit control circuit 132
is further coupled to receive a data valid bit from data valid field 96G and offset and size
information from offset and size field 96F. Similar hit store, hit way, data valid, and offset and
size signals corresponding to other entries may be received by hit control circuit 132 as well. Hit
control circuit 132 is coupled to provide cancel data FWD signals to reservation stations 22 and
reorder buffer 32 (reference numeral 146) and select LS2 signals to data cache 28 (reference
numeral 148). Additionally, hit control circuit 132 is coupled to provide selection controls to
mux 100. Mux 100 is coupled to receive the store data from store data field 96H (and store data
from other LS2 buffer entries).

Generally, the logic illustrated in Fig. 6 may detect a hit on a store in entry 94 by a load
on port 0. Similar logic may be employed with respect to port 1 and entry 94, and with respect to
both ports for other entries. More particularly, comparator 102AA compares the index portion of
the data address on port 0 to the index in address - index field 96C. If the indexes match,

comparator 102AA asserts its output signal. AND gate 120 receives the output signal of

10

15

20

25

30

WO 01/35212 PCT/US00/10961

30

comparator 102AA and combines the output signal with the store valid bit and hit bit. The store
valid bit indicates whether or not entry 94 is storing information corresponding to a store
memory operation (since entry 94 and other LS2 buffer entries may store information
corresponding to either loads or stores), and the hit bit indicates whether or not the store hit in
data cache 28 when the store probed data cache 28. Thus, the hit store signal provided by AND
gate 120 is indicative, when asserted, that the load index hits a store index which is a hit in data
cache 28.

Hit control circuit 132 combines the hit store signal corresponding to entry 94 and other
hit store signals corresponding to port 0 and the Port 0 load signal 140 to generate data
forwarding signals for the memory operation on port 0. In the present embodiment, hit control
circuit 132 may detect two cases for loads: (i) hit store signal asserted and the corresponding
data valid bit 96G is set; and (ii) hit store signal asserted and the corresponding data valid bit
96G is clear. If no hit store signal is asserted or the memory operation on port 0 is not a load,
then hit control circuit 132 is idle for that memory operation. Similar hit control circuitry may be
employed for the memory operation on port 1, in the present embodiment.

For case (i), hit control circuit 132 generates mux select signals for data forward mux
100, causing data forward mux 100 to select the store data from store data field 96H of the LS2
buffer entry corresponding to the asserted hit store signal. For example, if the hit store signal
generated by AND gate 120 is asserted, hit control circuit 132 causes mux 100 to select store
data from store data field 96H from entry 94 and asserts the select LS2 signal 148 corresponding
to port 0 mux 112. The selected data is forwarded by data cache 28 as described above for Fig,
5. For case (ii), hit control circuit 132 may assert a cancel FWD signal 146 to reservation
stations 22 and reorder buffer 32, informing these units to ignore data forwarded for the load on
port 0 during that clock cycle.

Accordingly, hit control circuit 132 forwards data from entry 94 based on the match of
the store index in entry 94 with the load index and the store having been a hit in data cache 28.
Particularly, it may not yet be determined if the load hits in data cache 28 or if the load and the
store hit in the same way. This information may not be available until the end of the load's
probe, which occurs in a subsequent clock cycle in the present embodiment. Thus, hit control
circuit 132 may capture the entry number of LS2 buffer 62 from which data is forwarded in hit
entry register 134. During the subsequent clock cycle, hit control circuit 132 may determine if
the data forwarding from LS2 buffer 62 is correct. The data forwarding is correct if the load is a
hit in data cache 28 (signalled on port O hit signal 122) and the way indications for the load and

store in the entry identified by hit entry register 134 match (e.g. if comparator 102AB detects a

10

15

20

25

30

WO 01/35212 PCT/US00/10961

31

match between the way indication for port 0 and the way indication from way field 96E, if entry
94 1s indicated by hit entry register 134). If the forwarding is incorrect, hit control circuit 132
may assert a cancel FWD signal 146 to inform reservation stations 22 and/or reorder buffer 32 to
ignore data previously forwarded on port 0. Hit control circuit 132 may provide separate cancel
data FWD signals 146 for cancelling forwarding due to data not being available (as described
above) and due to incorrect forwarding for a load which is a miss or hits in a different way than
the store from which the data is forwarded, since these signals may be asserted at different times
for the same load.

As noted above with respect to Fig. 1, hit control circuit 132 may further determine
whether or not store data from LS2 buffer 62 is to be forwarded for a load by using the offset
(within the cache line) and size information for the load and store to determine if at least one
byte read by the load is updated by the store. The offset and size information may be provided in
any convenient format, as described above (e.g. some combination of address bits and byte
enable masks). It is noted that, if hit control circuit 132 compares a portion of the offset of the
load and store addresses, then that portion may be compared in comparator 102AA in addition to
the index portion, if desired.

It is still further noted that hit control circuit 132 may detect a hit on more than one store
for a given load. Hit control circuit 132 may determine the youngest store which is older than
the load for forwarding of data. Alternatively, each LS2 buffer entry may include a last in buffer
indication which identifies the last store in LS2 buffer 62 which updates a given address. The
LIB indication may be used in AND gate 120 to prevent the assertion of the hit store signal
except for the youngest store in LS2 buffer 62. Thus, prioritization of multiple hits may be
avoided. As stores are placed into LS2 buffer 62, their LIB bits may be set and the LIB bits of
any older stores to the same address may be cleared.

It is noted that, while comparator 102AB is shown for comparing the way indications
stored in LS2 buffer entry 94 to the load's way indication, an alternative embodiment may read
the way indication from an entry used to forward data for a load (where the forwarding is based
on the index comparison and the store hitting in the data cache), and the way indication that is
read may be compared to the load way indication to verify that the load and the store hit in the
same way. The way indication may be stored in a register similar to hit entry register 134 for the
subsequent comparison.

It is further noted that one or more bytes read by the load may not be updated by a store
hit by the load for one or more other bytes read by the load. In such cases, the data cache may

merge the store data with cache data to provide the bytes read by the load. If multiple stores

10

15

20

25

30

WO 01/35212 PCT/US00/10961

32

provide different bytes of the bytes read by a load, the load may be retried and reprobed. One or
more of the multiple stores may be retired and committed to the data cache and the bytes updated
by those stores and read by the load may be provided from the data cache. Alternatively, the
apparatus of Fig. 6 may merge the bytes from the different stores to provide the load data. Other
embodiments may handle the above scenarios in other fashions, as desired.

It is noted that the logic illustrated in Fig. 6 is exemplary only. Any suitable
combinatorial logic (including any Boolean equivalents of the logic shown) may be employed. It
is further noted that entry 94 is an exemplary LS2 buffer entry. Entry 94 may store additional
information above what is shown in Fig. 6, according to design choice.

Turning next to Fig. 7, a timing diagram is shown illustrating an exemplary pipeline for a
memory operation probing data cache 28 from LS1 buffer 60. Other embodiments employing
different pipelines are possible and contemplated. In Fig. 7, clock cycles are delimited by
vertical solid lines. A horizontal dashed line is shown as well. Pipeline stages related to other
portions of processor 10 are shown to illustrate the interface of other elements to load/store unit
26.

Clock cycle CLKO is the decode/dispatch cycle for an instruction specifying the memory
operation. During clock cycle CLKO, the decode unit 20 decoding the instruction signals
load/store unit 26 regarding the memory operation. LS1 control circuit 64 allocates an LS1
buffer entry for the memory operation during the decode/dispatch stage for the corresponding
instruction. Additionally, the decode unit 20 transmits the decoded instruction to the
corresponding reservation station 22.

During clock cycle CLK1, the address generation unit generates the data address for the
memory operation and transmits the data address to load/store unit 26. During this clock cycle,
the memory operation participates in the scan performed by LS1 control circuit 64 (by virtue of
the data address being provided) and is selected to probe data cache 28. | Accordingly, the
memory operation is in the scan pipeline stage of the LS1 pipeline.

During clock cycle CLK?2, the data address is transmitted to data cache 28. As illustrated
by the arrow within clock cycle CLK2, the memory operation is moved from LS1 buffer 60 to
temporary buffer 68 at the end of clock cycle CLK2. The memory operation is in the address to
data cache stage of the LS1 pipeline during clock cycle CLK2.

During clock cycle CLK3, the data address accesses data cache 28. Data corresponding
to the memory operation (if the memory operation is a load) is forwarded at the end of clock
cycle CLK3. More particularly, if the index portion of the load address matches the index

portion of a store address in LS2 buffer 62 and the store is a hit in data cache 28, data from LS2

10

15

20

25

30

WO 01/35212 PCT/US00/10961

33

buffer 62 may be forwarded in place of cache data in clock cycle CLK3. Additionally, the
memory operation is moved from temporary buffer 68 to LS2 buffer 62. The memory operation
is in the cache access stage during clock cycle CLK3.

During clock cycle CLK4, an instruction dependent upon the memory operation (if the
memory operation is a load) may be executed. Accordingly, the pipeline illustrated in Fig. 7
provides for a three clock cycle address generation to dependent operation execution load
latency. Additionally, the memory operation is in the response pipeline stage during clock cycle
CLK4. Data cache 28 provides hit/miss information (including a way indication for a hit) and
the physical address during the response stage. Accordingly, LS2 control circuit 66 associates
hit/miss information and the physical address with a memory operation in the response stage.
Still further, the hit/miss indication and way indication for a load is used to confirm data
forwarded from LS2 buffer 62 during clock cycle CLK3 (if applicable). If the data forwarded is
incorrectly forwarded due to the load being a miss or hitting in a different way, the cancel FWD
signal is asserted.

During clock cycle CLKS, the memory operation is in a response2 pipeline stage.
During this stage, the miss address buffer tag identifying the miss address buffer entry assigned
to the cache line accessed by the memory operation (if the memory operation is a miss) is
provided by data cache 28. Accordingly, LS2 control circuit 66 associates a MAB tag received
from data cache 28 with a memory operation in the response2 stage.

Turning next to Fig. 8, a timing diagram illustrating an exemplary pipeline for a memory
operation reprobing data cache 28 from LS2 buffer 62 is shown. Other embodiments employing
different pipelines are possible and contemplated. In Fig. 8, clock cycles are delimited by
vertical solid lines. A horizontal dashed line is shown as well. Pipeline stages related to other
portions of processor 10 are shown to illustrate the interface of other elements to load/store unit
26.

During clock cycle CLKO, the memory operation participates in a scan of LS2 buffer
entries and is selected to reprobe data cache 28. As illustrated by the arrow beneath clock cycle
CLKO, the memory operation may be selected if a fill tag matching the MAB tag for the memory
operation is received, if the memory operation is a load which hits an older store within LS2
buffer 62 (for which the data was not available on the previous probe), or if the memory
operation is a store which has been retired by reorder buffer 32.

During clock cycle CLK1, the memory operation selected during the Scan1 stage enters
the Scan2 stage. During the Scan2 stage, the memory operation is selected through muxes 76

and 72 for transmission to data cache 28. Accordingly, LS2 control circuit 66 selects the

10

15

20

25

30

WO 01/35212 PCT/US00/10961

34

memory operation in the Scan2 stage through multiplexor 76. Clock cycles CLK2, CLK3,
CLK4, and CLKS are the address to data cache, cache access, response, and response?2 stages of
the LS2 buffer reprobe pipeline and are similar to the corresponding stages described above.
Accordingly, for the present embodiment, bus interface unit 37 may provide the MAB tag 4
clocks prior to providing the corresponding data, to allow selection of a load which accesses that
corresponding fill data to be in the cache access stage during the clock cycle in which the fill
data arrives at data cache 28 (and hence the fill data may be forwarded).

It is noted that the timing between the instruction pipeline stages above the dotted lines
in Figs. 7 and 8 and the memory operation pipeline stages below the dotted lines may be
extended from those shown in Figs. 7 and 8. For example, in Fig. 7, the address may not be
generated exactly in the clock cycle immediately following the decode/dispatch cycle. Operands
may not be available, or older instructions may be selected for address generation instead.
Furthermore, a memory operation may not be scanned for access during the clock cycle the
address is provided, as other older memory operations may be scanned instead.

Turning next to Fig. 9, a flowchart is shown illustrating operation of one embodiment of
hit control circuit 132 during the probing of a load to select data for forwarding from LS2 buffer
62 (e.g. during the cache access pipeline stage of a load's probe). Other embodiments are
possible and contemplated. While the steps shown in Fig. 9 are illustrated in a particular order
for ease of understanding, any suitable order may be used. Additionally, steps may be performed
in parallel by combinatorial logic within hit control circuit 132.

Hit control circuit 132 determines whether or not the load hits a store and the store is a
cache hit (decision block 150). More particularly, hit control circuit 132 may determine that a
load hits a store if the load index matches the store index (and offset and size information
matches). The determination is verified as correct or incorrect when load hit information and
way indication is available in the subsequent clock cycle (as illustrated below in Fig. 10). If
decision block 150 results in a "yes", hit control circuit 132 signal data cache 28 to select data
provided from LS2 buffer 62 instead of cache data and muxes the data out of the entry which is
hit (step 152) and records the LS2 buffer entry which is hit in hit entry register 134 (step 154). If
decision block 150 results in a "no", then hit control circuit 132 takes no additional action with
respect to the load.

Fig. 10 is a flowchart illustrating operation of one embodiment of hit control circuit 132
during the probing of a load to verify forwarding from LS2 buffer 62 (e.g. during the response
pipeline stage of a load's probe). Other embodiments are possible and contemplated. While the

steps shown in Fig. 10 are illustrated in a particular order for ease of understanding, any suitable

10

15

20

25

30

WO 01/35212 PCT/US00/10961

35

order may be used. Additionally, steps may be performed in parallel by combinatorial logic
within hit control circuit 132.

Hit control circuit 132 determines if an entry is recorded in hit entry register 134
(decision block 160). For example, hit entry register 134 may include a valid bit which may be
set when data is forwarded based on the index comparisons and the store being a hit and may be
reset after verification of the load hitting and the way indications matching. If an entry is not
recorded in hit entry register 134, hit control circuit 132 may take no additional action with
respect to the load. If an entry is recorded in hit entry register 134, hit control circuit 134
determines if the load way indication matches the store way indication of the entry recorded in
hit entry register 134 (decision block 162) and the load is a hit. If the load is a miss or the load
way indication does not match the store way indication, hit control circuit 132 asserts the cancel
FWD signal (step 164). If the load is a hit and the load way indication matches the store way
indication of the entry recorded in hit entry register 134, hit control circuit 132 may take no
additional action with respect to the load.

It is still further noted that the present discussion may refer to the assertion of various
signals. As used herein, a signal is "asserted" if it conveys a value indicative of a particular
condition. Conversely, a signal is "deasserted" if it conveys a value indicative of a lack of a
particular condition. A signal may be defined to be asserted when it conveys a logical zero value
or, conversely, when it conveys a logical one value.

Computer Systems

Turning now to Fig. 11, a block diagram of one embodiment of a computer system 200
including processor 10 coupled to a variety of system components through a bus bridge 202 is
shown. Other embodiments are possible and contemplated. In the depicted system, a main
memory 204 is coupled to bus bridge 202 through a memory bus 206, and a graphics controller
208 is coupled to bus bridge 202 through an AGP bus 210. Finally, a plurality of PCI devices
212A-212B are coupled to bus bridge 202 through a PCI bus 214. A secondary bus bridge 216
may further be provided to accommodate an electrical interface to one or more EISA or ISA
devices 218 through an EISA/ISA bus 220. Processor 10 is coupled to bus bridge 202 through a
CPU bus 224 and to an optional L2 cache 228. CPU bus 224 and the interface to L2 cache 228
may comprise interfaces to which bus interface unit 37 is coupled.

Bus bridge 202 provides an interface between processor 10, main memory 204, graphics
controller 208, and devices attached to PCI bus 214. When an operation is received from one of
the devices connected to bus bridge 202, bus bridge 202 identifies the target of the operation
(e.g. a particular device or, in the case of PCI bus 214, that the target is on PCI bus 214). Bus

10

15

20

25

30

WO 01/35212 PCT/US00/10961

36

bridge 202 routes the operation to the targeted device. Bus bridge 202 generally translates an
operation from the protocol used by the source device or bus to the protocol used by the target
device or bus.

In addition to providing an interface to an ISA/EISA bus for PCI bus 214, secondary bus
bridge 216 may further incorporate additional functionality, as desired. An input/output
controller (not shown), either external from or integrated with secondary bus bridge 216, may
also be included within computer system 200 to provide operational support for a keyboard and
mouse 222 and for various serial and parallel ports, as desired. An external cache unit (not
shown) may further be coupled to CPU bus 224 between processor 10 and bus bridge 202 in
other embodiments. Alternatively, the external cache may be coupled to bus bridge 202 and
cache control circuit for the external cache may be integrated into bus bridge 202. L2 cache 228
is further shown in a backside configuration to processor 10. It is noted that L2 cache 228 may
be separate from processor 10, integrated into a cartridge (e.g. slot 1 or slot A) with processor
10, or even integrated onto a semiconductor substrate with processor 10.

Main memory 204 is a memory in which application programs are stored and from
which processor 10 primarily executes. A suitable main memory 204 comprises DRAM
(Dynamic Random Access Memory). For example, a plurality of banks of SDRAM
(Synchronous DRAM) or Rambus DRAM (RDRAM) may be suitable.

PCI devices 212A-212B are illustrative of a variety of peripheral devices such as, for
example, network interface cards, video accelerators, audio cards, hard or floppy disk drives or
drive controllers, SCSI (Small Computer Systems Interface) adapters and telephony cards.
Similarly, ISA device 218 is illustrative of various types of peripheral devices, such as a modem,
a sound card, and a variety of data acquisition cards such as GPIB or field bus interface cards.

Graphics controller 208 is provided to control the rendering of text and images on a
display 226. Graphics controller 208 may embody a typical graphics accelerator generally
known in the art to render three-dimensional data structures which can be effectively shifted into
and from main memory 204. Graphics controller 208 may therefore be a master of AGP bus 210
in that it can request and receive access to a target interface within bus bridge 202 to thereby
obtain access to main memory 204. A dedicated graphics bus accommodates rapid retrieval of
data from main memory 204. For certain operations, graphics controller 208 may further be
configured to generate PCI protocol transactions on AGP bus 210. The AGP interface of bus
bridge 202 may thus include functionality to support both AGP protocol transactions as well as
PCI protocol target and initiator transactions. Display 226 is any electronic display upon which

an image or text can be presented. A suitable display 226 includes a cathode ray tube ("CRT"), a

10

15

20

25

30

WO 01/35212 PCT/US00/10961

37

liquid crystal display ("LCD"), etc.

It is noted that, while the AGP, PCI, and ISA or EISA buses have been used as examples
in the above description, any bus architectures may be substituted as desired. It is further noted
that computer system 200 may be a multiprocessing computer system including additional
processors (e.g. processor 10a shown as an optional component of computer system 200).
Processor 10a may be similar to processor 10. More particularly, processor 10a may be an
identical copy of processor 10. Processor 10a may be connected to bus bridge 202 via an
independent bus (as shown in Fig. 11) or may share CPU bus 224 with processor 10.
Furthermore, processor 10a may be coupled to an optional L2 cache 228a similar to L2 cache
228.

Turning now to Fig. 12, another embodiment of a computer system 300 is show‘n. Other
embodiments are possible and contemplated. In the embodiment of Fig. 12, computer system
300 includes several processing nodes 312A, 312B, 312C, and 312D. Each processing node is
coupled to a respective memory 314A-314D via a memory controller 316A-316D included
within each respective processing node 312A-312D. Additionally, processing nodes 312A-312D
include interface logic used to communicate between the processing nodes 312A-312D. For
example, processing node 312A includes interface logic 318A for communicating with
processing node 312B, interface logic 318B for communicating with processing node 312C, and
a third interface logic 318C for communicating with yet another processing node (not shown).
Similarly, processing node 312B includes interface logic 318D, 318E, and 318F; processing
node 312C includes interface logic 318G, 318H, and 318I; and processing node 312D includes
interface logic 318J, 318K, and 318L. Processing node 312D is coupled to communicate with a
plurality of input/output devices (e.g. devices 320A-320B in a daisy chain configuration) via
interface logic 318L. Other processing nodes may communicate with other I/O devices in a
similar fashion.

Processing nodes 312A-312D implement a packet-based link for inter-processing node
communication. In the present embodiment, the link is implemented as sets of unidirectional
lines (e.g. lines 324A are used to transmit packets from processing node 312A to processing
node 312B and lines 324B are used to transmit packets from processing node 312B to processing
node 312A). Other sets of lines 324C-324H are used to transmit packets between other
processing nodes as illustrated in Fig. 12. Generally, each set of lines 324 may include one or
more data lines, one or more clock lines corresponding to the data lines, and one or more control
lines indicating the type of packet being conveyed. The link may be operated in a cache

coherent fashion for communication between processing nodes or in a noncoherent fashion for

10

15

20

25

30

WO 01/35212 PCT/US00/10961

38

communication between a processing node and an I/0 device (or a bus bridge to an I/O bus of
conventional construction such as the PCI bus or ISA bus). Furthermore, the link may be
operated in a non-coherent fashion using a daisy-chain structure between 1/0 devices as shown.
It is noted that a packet to be transmitted from one processing node to another may pass through
one or more intermediate nodes. For example, a packet transmitted by processing node 312A to
processing node 312D may pass through either processing node 312B or processing node 312C
as shown in Fig. 12. Any suitable routing algorithm may be used. Other embodiments of
computer system 300 may include more or fewer processing nodes then the embodiment shown
in Fig. 12.

Generally, the packets may be transmitted as one or more bit times on the lines 324
between nodes. A bit time may be the rising or falling edge of the clock signal on the
corresponding clock lines. The packets may include command packets for initiating transactions,
probe packets for maintaining cache coherency, and response packets from responding to probes
and commands.

Processing nodes 312A-312D, in addition to a memory controller and interface logic,
may include one or more processors. Broadly speaking, a processing node comprises at least
one processor and may optionally include a memory controller for communicating with a
memory and other logic as desired. More particularly, a processing node 312A-312D may
comprise processor 10. External interface unit 46 may includes the interface logic 318 within the
node, as well as the memory controller 316.

Memories 314A-314D may comprise any suitable memory devices. For example, a
memory 314A-314D may comprise one or more RAMBUS DRAMs (RDRAMs), synchronous
DRAMs (SDRAMs), static RAM, etc. The address space of computer system 300 is divided
among memories 314A-314D. Each processing node 312A-312D may include a memory map
used to determine which addresses are mapped to which memories 314A-314D, and hence to
which processing node 312A-312D a memory request for a particular address should be routed.
In one embodiment, the coherency point for an address within computer system 300 is the
memory controller 316A-316D coupled to the memory storing bytes corresponding to the
address. In other words, the memory controller 316A-316D is responsible for ensuring that each
memory access to the corresponding memory 314A-314D occurs in a cache coherent fashion.
Memory controllers 316A-316D may comprise control circuitry for interfacing to memories
314A-314D. Additionally, memory controllers 316A-316D may include request queues for

queuing memory requests.

Generally, interface logic 318A-318L may comprise a variety of buffers for receiving

10

15

WO 01/35212 PCT/US00/10961

39

packets from the link and for buffering packets to be transmitted upon the link. Computer
system 300 may employ any suitable flow control mechanism for transmitting packets. For
example, in one embodiment, each interface logic 318 stores a count of the number of each type
of buffer within the receiver at the other end of the link to which that interface logic is
connected. The interface logic does not transmit a packet unless the receiving interface logic has
a free buffer to store the packet. As a receiving buffer is freed by routing a packet onward, the
receiving interface logic transmits a message to the sending interface logic to indicate that the
buffer has been freed. Such a mechanism may be referred to as a "coupon-based" system.

1/0 devices 320A-320B may be any suitable I/O devices. For example, 1/O devices
320A-320B may include network interface cards, video accelerators, audio cards, hard or floppy
disk drives or drive controllers, SCSI (Small Computer Systems Interface) adapters and
telephony cards, modems, sound cards, and a variety of data acquisition cards such as GPIB or
field bus interface cards.

Numerous variations and modifications will become apparent to those skilled in the art
once the above disclosure is fully appreciated. It is intended that the following claims be

interpreted to embrace all such variations and modifications.

10

15

20

25

30

WO 01/35212 PCT/US00/10961

40

‘What Is Claimed Is:

1. An apparatus comprising:

a buffer including a plurality of entries, wherein each of said plurality of entries is
configured to store: (i) at least an index portion of a store address of a store
memory operation, (ii) a hit indication indicative of whether or not said store
memory operation hits in a data cache, and (iii) store data corresponding to said
store memory operation; and

circuitry coupled to said buffer and coupled to receive: (i) said index portion of a load
address of a load memory operation probing said data cache, and (ii) a load hit
signal indicative of whether or not said load memory operation hits in said data
cache, wherein said circuitry is configured to cause said store data to be
forwarded from a first entry of said plurality of entries responsive to said index
portion stored in said first entry matching said index portion of said load address
and further responsive to said hit indication in said first entry indicating hit and
said load hit signal indicating hit.

2. The apparatus as recited in claim 1 wherein said circuitry is configured to assert a forward
signal responsive to a match between said index portion of said load address and said index
portion of said store address.

3. The apparatus as recited in claim 2 wherein said circuitry is configured to assert said forward
signal further responsive to said hit indication indicating hit.

4. The apparatus as recited in claim 3 wherein said circuitry is configured to subsequently
receive said load hit signal and to assert a cancel forward signal responsive to said load hit signal
indicating that said load misses in said data cache.

5. The apparatus as recited in claim 4 wherein said each of said plurality of entries is configured
to store a store way indication indicating a way of said data cache in which said store memory
operation hits.

6. The apparatus as recited in claim 5 wherein said circuitry is further coupled to receive a load
way indication indicating said way of said data cache in which said load memory operation hits,
and wherein said circuitry is configured to assert said cancel forward signal responsive to said
store way indication stored in said first entry mismatching with said load way indication.

7. The apparatus as recited in claim 4 wherein said each of said plurality of entries is configured
to store a store way indication indicating a way of said data cache in which said store memory

operation hits.

8. The apparatus as recited in claim 7 wherein said circuitry is further coupled to receive a load

5

10

15

20

25

30

WO 01/35212 PCT/US00/10961

41

way indication indicating said way of said data cache in which said load memory operation hits,
and wherein said circuitry is configured to cause said store data to be forwarded further

responsive to a match between said load way indication and said store way indication stored in

said first entry.
9. A processor comprising:
a data cache; and
a load/store unit coupled to said data cache, wherein said load/store unit includes a

buffer including a plurality of entries, wherein each of said plurality of entries is
configured to store: (i) at least an index portion of a store address of a store
memory operation, (ii) a hit indication indicative of whether or not said store
memory operation hits in said data cache, and (iii) store data corresponding to
said store memory operation, wherein said load/store unit is configured to probe
said data cache with a load address and to receive a hit signal in response thereto
from said data cache, and wherein said load/store unit is configured to determine
that store data is to be forwarded from a first entry of said plurality of entries
responsive to an index portion of said load address matching said index portion
stored in said first entry and further responsive to said hit indication in said first
entry indicating hit and said hit signal indicating hit.

10. The processor as recited in claim 9 wherein said load/store unit is configured to assert a

forward data signal to said data cache, and wherein said data cache is configured to forward said

store data in place of cache data read from said data cache.

11. The processor as recited in claim 10 wherein said load/store unit is configured to assert said

forward data signal responsive to said index portion of said load address matching said index

portion stored in said first entry.

12. The processor as recited in claim 11 wherein said load/store unit is configured to assert said

forward data signal further responsive to said hit indication in said first entry indicating hit.

13. The processor as recited in claim 12 wherein said load/store unit is configured to assert a

cancel forward signal responsive to said hit signal indicating miss.

14. The processor as recited in claim 13 further comprising one or more reservation stations

coupled to receive said cancel forward signal, wherein said one or more reservation stations are

configured to invalidate said store data forwarded for said load responsive to said cancel forward

signal.

15. The processor as recited in claim 13 wherein said each of said plurality of entries is

configured to store a store way indication indicating a way of said data cache in which said store

10

15

20

25

30

WO 01/35212 PCT/US00/10961

42

memory operation hits.

16. The processor as recited in claim 15 wherein said data cache is configured to provide a load
way indication to said load/store unit indicating a way of said data cache in which said load
memory operation hits, and wherein said load/store unit is configured to assert said cancel
forward signal responsive to said store way indication in said first entry mismatching said load
way indication.
17. The processor as recited in claim 9 wherein said each of said plurality of entries is
configured to store a store way indication indicating a way of said data cache in which said store
memory operation hits.
18. The processor as recited in claim 17 wherein said data cache is configured to provide a load
way indication to said load/store unit indicating a way of said data cache in which said load
memory operation hits, and wherein said load/store unit is configured to determine that store data
is to be forwarded from said first entry further responsive to said store way indication stored in
said first entry matching said load way indication.
19. A method comprising:
probing a data cache with a load address;
comparing an index portion of said load address to an index portion of a store address
stored in a buffer; and
forwarding store data corresponding to said store address for a load memory operation
corresponding to said load address, said forwarding responsive to said
comparing determining that said index portion of said load address matches said
index portion of said store address and further responsive to both said load
address and said store address hitting in a data cache.
20. The method as recited in claim 19 wherein said forwarding comprises asserting a forward
data signal responsive to said comparing determining that said index portion of said load address

matches said index portion of said store address.

21. The method as recited in claim 20 wherein said asserting is further responsive to said store
address hitting in said data cache.
22. The method as recited in claim 21 wherein said forwarding further comprises asserting a
cancel forward signal responsive to said load address missing in said data cache.
23. The method as recited in claim 22 further comprising:
comparing a store way indication stored in said buffer to a load way indication
corresponding to said load address, said store way indication indicative of a way

of said data cache in which said store address hits and said load way indication

WO 01/35212 PCT/US00/10961

43

indicative of a way of said data cache in which said load address hits; and
asserting said cancel signal responsive to said comparing a store way indication
determining a mismatch.
24. The method as recited in claim 19 further comprising:

5 comparing a store way indication stored in said buffer to a load way indication
corresponding to said load address, said store way indication indicative of a way
of said data cache in which said store address hits and said load way indication
indicative of a way of said data cache in which said load address hits; and

said forwarding store data further responsive to said comparing a store way indication

10 determining a mismatch.

WO 01/35212 PCT/US00/10961

110

Store Info

Store Queue 400

408B —|

V|H|R|ADDR - Tag| ADDR - Index |Offset and Size| Way | Data

408A
"N V|H[R|ADDR - Tag| ADDR - Index |Offset and Size| Way | Data
Load 404
Address
406 —_,
Load T
“Way -
A
g "
_| Hit Control Circuit
Load Hit ——» 402
Load Size Cancel
Forward
Forward

-

Fig. 1 !

PCT/US00/10961

WO 01/35212

2/10

sng <«—»
g1 >

I3
Hun aoepsy| sng

A

A

\!ov

8¢
A A 4
f S 8¢C ove Wun | 8vz nun vbZ nun
v ayoe) ejeq jeuoloun4 "I Jeuonouny | reuonouny
A A A A
9z wun Oc¢e uonels gcc uonels Vcz uonels
alojg/peo] uoljeAIasay uoneAlasay uoljeAIasay
Aﬁ A 4 ' 4 4
A F § A
~_~ 502 || ®@e [vz |,
3¢ Joyng jun epodaQ jlun 8pooeQg jlun 8pode(
lapioay y y
A —
v . 8t ve
= nun Juswubljy uononisuj N WOdnW
A
aji4 19)s168
it4 19]SID3Y A ﬁ _ —
L vl aun
L D "| uonoipaid youeig
. 9l y
m_ | ayoeH uonoNIsu| __v

cl wun

|

apooapaid/yoiejald

w

WO 01/35212 PCT/US00/10961
3/10
from Instruction Alignment
Unit 18
llnstruction
Instruction Info -
Decode Unit from Decode —» Reorder Buffer
20A LS Units 20B-20C] 2
A
Store
Decoded Instruction Data/ | Retire
Instruction N— 46A Tags Tags |Interface
Il 48 —] ‘¥ 50\ 54
R .
egf;;g:"" | Load/Store Unit |«
99A from Decode | 26 <
== Units 20B-20C —»
trm
from | from
“““““““““““““““ 1 AGUs | EXUs
Y Y :
|
Execution Unit Addr_ess , : Address
Generation Unit
40 ' 44A —
2 |
|
: Result
Functional Unit 24A : 36A —"
—————————————————————— ! Data Cache
Interface
Y
_ Result Data Cache |
38D — 28 b
A
Snoop
Interface
52 —/]
\ 4 A
Fig. 3 o

37

WO 01/35212

from
Reorder
Buffer
32

from
EXUs

from
EXUs

from
Decode
Units 20

from Data
Cache 28

from Data
Cache 28

to/ from
Reorder
Buffer 32

from Data
Cache 28

Instruction Tags

PCT/US00/10961
4/10
from AGUs 42
44AA
Addresses
___________ o A T
XX X I
70 T DI\ :
+ +

48

ad

+ b 4 > . o o Data8
" Cache 2
!":‘ l N— 74

hit/miss

|
|
|
i .
|
: Store Data/Tags L6801 > L
! 50 — — | Pot0 | {oData
| Results [I~ Cache 28
I 38— SN2
| : T '
| A |
| 3 , :
! Result Tags LS1CTL Address Tags :
i g 64 < T from
= +— AGUs
! L/s N , 47
| 46— o | 4AB—" |
: v !
| | Temp :
: Buf 68 |
| |
| \ 4 |
| > |
|
| »> |
| MAB tag 1s2 LN :
| 78— 62 > !
| > 1.
| Physical Address > }
| 80— <k |
!] :
: Retire interface . |
| 54 . |
| LS2CTL Filtag | from
| 66 | 84 —~ I BIU37
| |
] [
| |

Snoop Interface

52

L/S Unit 26

Result Tags
38b

toffrom from
BIU 37 EXUs

WO 01/35212 PCT/US00/10961

5/10
:165&56@%352‘_6"""""""""“““""""""":
|
| |

|
| LS2 I
! . LGSZZ —) Forward :
: 102A ’ = > Data |
| Ports 0 & 1 NP N :
: Addresses and Ways 100 |
» = le . |
I
| 1028 s |
| |
! | Ls2 |
Select LS2 |
| " ooTL —= |
: 66 }
| {
! |
' |
! S, L _ L
Cancel FWD
to Reservation Stations
22, Reorder Buffer 32
e
| LS2
: Cache Forward
: Data Data
|
: ¢ ¢ Select LS2
|
I
|
|

Fig. 5

WO 01/35212

6/10

96A 968 96C
o4 A\ _\ /

96E
/_

PCT/US00/10961

96F 96G — 96H
[/_ /

Fig. 6

Offset and Store
\> Address - Index V H Way Size V Data
136 A 142 \
Address, \ : Port 0 =
Port 0 Way
1020A — 102AB —
wy
120 —J(
Hit Way
Hit Store
124 Y
Port 0 Offset and SizA» Hit Control
. 4— QOther
Port 0 Load Circuit 132 .
140 le— Entries
Port 0 Hit p_Hit Ent
122 p 134 ¢ l y
Cancel Select
FWD LS2 Forward
s —y 148 Data
to to to Data
Reservation Data Cache 28
Stations 22 Cache
and Reorder 28
Buffer 32

PCT/US00/10961

WO 01/35212

7/10

(am4 Q ‘b1

|[aouen)

NH Aepp

‘ssalppy

[edisAyd

‘SSIN p1emio
AH 3YydeH ejeq
Zasuodsay asuodsay $S300Y ayoe) 0 0} ssalppy
wgnosxa | |
juspuada(
SH10 PX10 10 A0
(am4 .
[aoue)) L m_n_
WH Aepy
bej 'ssaIppy 2S10
Jyng [eoisAyd jng dws |
sSalppy ‘SSIN ‘plemio Jjng dwaj
SSIN AH 8Yded ejeq 0} 1S
Zosuodsay asuodsay $S800Y ayoen 1Q O} ssalppy

:o::omxm_ |||||||||||||||
yuapuadaq

GM10 X0 eEX10 oAT0

painey
210}
10 'ZST
ul 91013
IH peo’
‘pansloay
bey (14

2ueosg jueog
IXTO oM10
ueog
uoneIauss)
$S91pPY yojedsiq/epooag
IATO oA10

WO 01/35212

=)

Hit
Store and Store is
a Cache Hit?
150

Yes
\ 4

Signal Data Cache
to Select LS2 Data
152

A

Record Hit
LS2 Entry
154

PCT/US00/10961

8/10

=

Hit LS2
Entry Previously
Recorded?
160

Yes

Load
ay Indication Match
Store Way Indication
and Load Hit?
162

No
v

Signal Cancel
FWD
164

PCT/US00/10961

9/10

WO 01/35212

‘Bl
L} ol 52
Aeidsig
r
— = | ®ggc |
sng 0ce 812 | ayoen z1 |
VSI3nvSI adlAeQ VS plllHll.L
80¢ FTT T T T B
19jj01U0D | L _
sojydels o e0J _
| 10ss920.d "
S L ! !
mmwmm azie vZie i o _
sng A1epuooss ea1AeQ 10d e1Aeq 10d sngdov _ .
A
202 v or
—pLZ sng |10d abpug sng sng Ndo 10sS3201d
A A
t444 sng v
N —
osnoW \\ Kowspy 90¢ 8ce
/preoghey| 002 ‘ ayoe) z1
¥0C
Aoway urepy

WO 01/35212 PCT/US00/10961
10/10
Memory Memory
314A 3148
A A
y /- 316A ’ /— 3168
MC MC
318C —~C ——318A 318D —~K —— 318F
Processing ANETY Processing
IF Node IF IF Node IF
312A 3128
o \— 324B T
IF \ IF \
+ 3188 \— 318E
324E ~ Y 324F 324C —~ L~ 324D
Y ya 318H v o 318K
IF 318l IF 318L
318G —~C 3184 —~
Processing 3G Processing >
IF Node IF IF Node IF D;/v(i)ce
312C < 3120 <
\— 324H 320A
MC | MC | *
AN 4 316D
Y \ 4 A
Memory Memory
314C 314D o
Device
3208

300 /

Fig. 12

INTERNATIONAL SEARCH REPORT

Intes snal Application No

PCT/US 00/10961

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 GO6F9

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate. of the relevant passages Relevant to claim No.
A EP 0 871 109 A (IBM) 1,9,19
14 October 1998 (1998-10-14)
page 3, line 1 - line 14
page 7, line 47 -page 8, line 26
E US 6 065 103 A (MAHALINGAIAH RUPAKA ET 1,9,19
AL) 16 May 2000 (2000-05-16)
the whole document
A EP 0 952 517 A (ADVANCED MICRO DEVICES
INC) 27 October 1999 (1999-10-27)
-f—
m Further documents are listed in the continuation of box C. E Patent family members are listed in annex.

° Special categories of cited documents :

O document referring to an oral disclosure, use, exhibition or

'T* later document published after the international filing date

ns - L or priority date and not in conflict with the application but
A* document defining the general state of the art which is not ; g :
considered to be of particular relevance :;:l‘;e‘gl :ﬁ) :ndersland the principle or theory underlying the
‘e e'a"rilri‘erg;)lzumenl but published on or after the international *X* document of particular relevance; the claimed invention
g) . . cannot be considered novel or cannot be considered to
L docr:qn;‘em Villhlgftl masyt/ tg‘l_'g;‘utgoublg lpn 'pnor:jty‘ clatlm(s)' :r involve an inventive step when the document is taken alone
which is cited to estabii e publication date of another we " K . : .
citation or other special reason (as specified) Y* document of panticular relevance; the ciaimed invention

cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-

other means ments, such combination being obvious to a person skilled
P document published prior to the international filing date but in the an.
later than the priority date claimed *&" document member of the same patent family

Date of the actual compietion of the international search

Date of mailfing of the international search report

21 December 2000 02/01/2001

European Patent Office, P.B. 5818 Palentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,

Name and mailing address of the ISA Authorized officer

Fax: (+31-70) 340-3016 Moraiti, M

Form PCT/ISA/210 {second sheet) (July 1892)

page 1 of 2

INTERNATIONAL SEARCH REPORT

Inter. ,nal Application No

PCT/US 00/10961

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication.where appropriate, of the relevant passages Relevant to claim No.
A FRANKLIN M ET AL: "ARB: A HARDWARE

MECHANISM FOR DYNAMIC REORDERING OF MEMORY

REFERENCES"

IEEE TRANSACTIONS ON COMPUTERS,US,IEEE
INC. NEW YORK,

vol. 45, no. 5, 1 May 1996 (1996-05-01),
pages 552-571, XP000593240

ISSN: 0018-9340

Form PCT/ISA/210 {continuation of second sheet) (July 1992)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

Intel onal Application No

PCT/US 00/10961

Patent document Publication Patent family Publication

cited in search report date member(s) date

EP 0871109 A 14-10-1998 us 6021485 A 01-02-2000
BR 9801230 A 27-04-1999
CN 1195809 A 14-10-1998
JP 3096451 B 10-10-2000
JP 10320198 A 04-12-1998

US 6065103 A 16-05-2000 NONE

EP 0952517 A 27-10-1999 us 5878245 A 02-03-1999
EP 0651323 A 03-05-1995
JP 7182167 A 21-07-1995

Form PCT/ISA/210 (patent family annex) (July 1892)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

