wO 2019/068031 A1 | NIUH 00V T 00000 00 O 0O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

J

=

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
04 April 2019 (04.04.2019)

‘O 0000 0 0 0
(10) International Publication Number

WO 2019/068031 Al

WIPO I PCT

(51) International Patent Classification:
GO6F 11/36 (2006.01) GO6F 9/455 (2018.01)
GO6F 8/60 (2018.01) GO6F 9/50 (2006.01)
GO6F 8/61 (2018.01)

(21) International Application Number:
PCT/US2018/053620

(22) International Filing Date:
28 September 2018 (28.09.2018)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
62/566,351 30 September 2017 (30.09.2017) US

(71) Applicant: ORACLE INTERNATIONAL CORPO-
RATION [US/US]; 500 Oracle Parkway M/S SOP7, Red-
wood Shores, California 94065 (US).

(72) Inventors: CALDATO, Claudio; 21926 NE 20th Way,
Sammamish, Washington 98074 (US). SCHOLL, Boris;
8530 NE 128th Street, Kirkland, Washington 98034 (US).

(74) Agent: BERGSTROM, James T. et al.; 1100 Peachtree
Street NE, Suite 2800, Mailstop: [P Docketing - 22, Atlanta,
Georgia 30309 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AQ, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ,DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, FL, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP,
KR,KW,KZ,LA,LC,LK,LR,LS, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ,NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

(54) Title: DYNAMIC MIGRATION OF GROUPS OF CONTAINERS

(57) Abstract: A method may include deploying a plurality of container pods to a plurality

3001
Deploy a plurality of pods to a
plurality of nodes in a container
platform
3003
Monitor usage factors associated
with the plurality of pods after
deployment
3005
Y
Identify pods that deviate from an
initial characterization of their usage
factor
3007
Y

Redistribute at least a portion of the
plurality of pods based on their
usage factor deviation

FIG. 30

of container nodes in a container environment. Each of the plurality of container pods may
include one or more services. Each of the plurality of container nodes may include one or
more container pods. The plurality of container pods may be deployed to the plurality of
container nodes based on initial characterizations of usage factors for each of the plurality
of container pods. The method may also include monitoring actual usage factors for each of
the plurality of container pods after deployment to the plurality of container nodes; identi-
fying one or more container pods in the plurality of container pods that deviate from their
initial characterizations of usage factors; and redistributing the one or more container pods
throughout the plurality of container nodes based on the actual usage factors.

[Continued on next page]

WO 2019/06803 1 A1 ||| 00000 0000 O TS0 OO0

Published:

— with international search report (Art. 21(3))

— before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

10

15

20

25

30

WO 2019/068031 PCT/US2018/053620

DYNAMIC MIGRATION OF GROUPS OF CONTAINERS

CROSS-REFERENCES TO RELATED APPLICATIONS

[0001] This application claims the benefit of U.S. Provisional Application No. 62/566,351 filed
on September 30, 2017, which is incorporated herein by reference. This application is also related
to the following commonly assigned applications filed on the same day as this application, each of

which is also incorporated herein by reference:

e U.S. Patent Application No. /

2

L ___ filed on September _, 2018, titled API
REGISTRY IN A CONTAINER PLATFORM PROVIDING PROPERTY-BASED API
FUNCTIONALITY (Attorney Docket No. 088325-1090746);

e U.S. Patent Application No. / , filed on September , 2018, titled DYNAMIC
NODE REBALANCING BETWEEN CONTAINER PLATFORMS (Attorney Docket No.

088325-1090747),

2

e U.S. Patent Application No. /

2

L ___filed on September __, 2018, titled OPTIMIZING
REDEPLOYMENT OF FUNCTIONS AND SERVICES ACROSS MULTIPLE
CONTAINER PLATFORMS AND INSTALLATIONS (Attorney Docket No. 088325-
1090748);,

e U.S. Patent Application No. /

2

L ___filed on September _, 2018, titled REAL-TIME
DEBUGGING INSTANCES IN A DEPLOYED CONTAINER PLATFORM (Attorney
Docket No. 088325-1090753);

BACKGROUND

[0002] In the abstract, containers in any form represent a standardized method of packaging and
interacting with information. Containers can be isolated from each other and used in parallel
without any risk of cross-contamination. In the modern software world, the term “container” has
gained a specific meaning. A software container, such as a Docker® container, is a software
construct the logically encapsulates and defines a piece of software. The most common type of
software to be encapsulated in the container is an application, service, or microservice. Modern
containers also include all of the software support required for the application/service to operate,
such as an operating system, libraries, storage volumes, configuration files, application binaries,
and other parts of a technology stack that would be found in a typical computing environment.
This container environment can then be used to create multiple containers that each run their own

services in any environment. Containers can be deployed in a production data center, an on-

1

10

15

20

25

30

WO 2019/068031 PCT/US2018/053620

premises data center, a cloud computing platform, and so forth without any changes. Spinning up

a container on the cloud is the same as spinning up a container on a local workstation.

[0003] Modern service-oriented architectures and cloud computing platforms break up large
tasks into many small, specific tasks. Containers can be instantiated to focus on individual specific
tasks, and multiple containers can then work in concert to implement sophisticated applications.
This may be referred to as a microservice architecture, and each container can use different
versions of programming languages and libraries that can be upgraded independently. The
isolated nature of the processing within containers allows them to be upgraded and replaced with
little effort or risk compared to changes that will be made to a larger, more monolithic
architectures. Container platforms are much more efficient than traditional virtual machines in
running this microservice architecture, although virtual machines can be used to run a container

platform.

BRIEF SUMMARY

[0004] In some embodiments, a method of rebalancing container pod usage in a containter
environment may include deploying a plurality of container pods to a plurality of container nodes
in a container environment. Each of the plurality of container pods may include one or more
services. Each of the plurality of container nodes may include one or more container pods. The
plurality of container pods may be deployed to the plurality of container nodes based on initial
characterizations of usage factors for each of the plurality of container pods. The method may also
include monitoring actual usage factors for each of the plurality of container pods after deployment
to the plurality of container nodes; identifying one or more container pods in the plurality of
container pods that deviate from their initial characterizations of usage factors; and redistributing
the one or more container pods throughout the plurality of container nodes based on the actual

usage factors.

[0005] In some embodiments, a non-transitory, computer-readable medium may include
instructions that, when executed by one or more processors, causes the one or more processors to
perform operations including deploying a plurality of container pods to a plurality of container
nodes in a container environment. Each of the plurality of container pods may include one or
more services. Each of the plurality of container nodes may include one or more container pods.
The plurality of container pods may be deployed to the plurality of container nodes based on initial
characterizations of usage factors for each of the plurality of container pods. The operations may
also include monitoring actual usage factors for each of the plurality of container pods after

deployment to the plurality of container nodes; identifying one or more container pods in the

2

10

15

20

25

30

WO 2019/068031 PCT/US2018/053620

plurality of container pods that deviate from their initial characterizations of usage factors; and
redistributing the one or more container pods throughout the plurality of container nodes based on

the actual usage factors.

[0006] In some embodiments, a system may include one or more processors and one or more
memory devices comprising instructions that, when executed by the one or more processors, cause
the one or more processors to perform operations including deploying a plurality of container pods
to a plurality of container nodes in a container environment. Each of the plurality of container
pods may include one or more services. Each of the plurality of container nodes may include one
or more container pods. The plurality of container pods may be deployed to the plurality of
container nodes based on initial characterizations of usage factors for each of the plurality of
container pods. The operations may also include monitoring actual usage factors for each of the
plurality of container pods after deployment to the plurality of container nodes; identifying one or
more container pods in the plurality of container pods that deviate from their initial
characterizations of usage factors; and redistributing the one or more container pods throughout

the plurality of container nodes based on the actual usage factors.

[0007] In any embodiments, any or all of the following features may be included in any
combination and without limitation. The usage factors may include a CPU usage factor. The
usage factors may include a bandwidth usage factor. The usage factors may include a memory
usage factor. The usage factors may include a maximum value for at least one of the usage factors.
The usage factors may include an average value for at least one of the usage factors. The usage
factors may include a rate for at least one of the usage factors. Redistributing the one or more
container pods throughout the plurality of container nodes based on the actual usage factors may
include distributing the one or more container pods using a weighted combination of a plurality of
the usage factors. The method/operations may also include determining that at least one of the
actual usage factors for a first container pod exceeds a first threshold; and in response to
determining that the at least one of the actual usage factors for the first container pod exceeds the
first threshold, instantiating a clone of the first container pod in a different container node. The
clone of the first container pod may be warmed up, but request traffic need not be routed to the
clone of the first container pod. The method/operations may also include determining that the at
least one of the actual usage factors for the first container pod exceeds a second threshold; and in
response to determining that the at least one of the actual usage factors for the first container pod
exceeds the second threshold, routing request traffic from the first container pod to the clone of the
first container pod in the different container node. Exceeding the first threshold may indicate that

the actual usage factor for the first container pod has a trajectory that will exceed the initial

3

10

15

20

25

30

WO 2019/068031 PCT/US2018/053620

characterization of the usage factor for the first container pod. Exceeding the second threshold
may indicate that the actual usage factor for the first container pod has a trajectory that may cause
an actual usage factor for a container node that includes the first container pod to exceed a usage
factor limit for the first container node. The one or more container pods may be redistributed
throughout the plurality of container nodes by a container platform scheduler. The one or more
container pods may be redistributed throughout the plurality of container nodes by an API registry.
The API registry may be deployed as a service encapsulated in a container in the container
environment. The API registry may be available to services in development in an Integrated
Development Environment (IDE) and services already deployed in the container environment.

The API registry may map service endpoints for the plurality of container pods to one or more API

functions.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] A further understanding of the nature and advantages of the present invention may be
realized by reference to the remaining portions of the specification and the drawings, wherein like
reference numerals are used throughout the several drawings to refer to similar components. In
some instances, a sub-label is associated with a reference numeral to denote one of multiple
similar components. When reference is made to a reference numeral without specification to an

existing sub-label, it is intended to refer to all such multiple similar components.

[0009] FIG. 1 illustrates a software structure and logical arrangement of development and

runtime environments for services in a container platform, according to some embodiments.

[0010] FIG. 2 illustrates a specialized computer hardware system that is specifically designed to

run the embodiments described herein.

[0011] FIG. 3 illustrates a data organization that may be specific to the container platform used

by some of the embodiments described herein.

[0012] FIG. 4 illustrates an API registry that can be deployed to the IDE and the

production/runtime environment, according to some embodiments.

[0013] FIG. S illustrates the deployment of the API registry for use with the container platform

at runtime, according to some embodiments.

[0014] FIG. 6A illustrates a flowchart of a method for deploying the API registry, according to

some embodiments.

10

15

20

25

WO 2019/068031 PCT/US2018/053620

[0015] FIG. 6B illustrates a software structure of a container platform when the API registry is

deployed using the flowchart in FIG. 6A, according to some embodiments.

[0016] FIG. 7A illustrates a flowchart of a method for registering a service with the API

registry, according to some embodiments.

[0017] FIG. 7B illustrates a hardware/software diagram of the steps for registering an API with

the API registry, according to some embodiments.

[0018] FIG. 8 illustrates examples of a graphical interface and a command line interface for
browsing and selecting APIs that are registered with the API registry, according to some

embodiments.

[0019] FIG. 9 illustrates a flowchart of a method for using a service and its corresponding

function registered with the API registry, according to some embodiments.

[0020] FIG. 10 illustrates how a selection may be received by the API registry through the

graphical interface of the CreateUser() function.

[0021] FIG. 11 illustrates an example of a client library generated automatically for a service by

the API registry, according to some embodiments.

[0022] FIG. 12 illustrates an embodiment of a client library that accommodates dynamic

binding between service endpoints and API functions, according to some embodiments.

[0023] FIG. 13 illustrates an embodiment of a client library that can marshal additional data to

complete an input data set for a service call, according to some embodiments.

[0024] FIG. 14 illustrates a client library that can handle retries when calling a service,

according to some embodiments.

[0025] FIG. 15A illustrates a method of providing API properties to the API registry, according

to some embodiments.

[0026] FIG. 15B illustrates a hardware/software diagram of how a service can provide API

properties to the API registry, according to some embodiments.

[0027] FIG. 16 illustrates a hardware/software diagram where a property is used by the API

registry to deploy a service with high availability, according to some embodiments.

[0028] FIG. 17 illustrates a hardware/software diagram of a property that enforces end-to-end

encryption through the API registry, according to some embodiments.

10

15

20

25

WO 2019/068031 PCT/US2018/053620

[0029] FIG. 18 illustrates a property for an API registry to implement usage logging for a

service 1808, according to some embodiments.

[0030] FIG. 19 illustrates a hardware/software diagram of a property that can enforce an

authentication protocol for a service, according to some embodiments.

[0031] FIG. 20 illustrates a hardware/software diagram for a property that enables runtime

instantiation of a service, according to some embodiments.

[0032] FIG. 21 illustrates a hardware/software diagram of a property that implements a rate

limiting function for a service, according to some embodiments.

[0033] FIG. 22 illustrates a functional diagram of an initial deployment of a plurality of pods to

a plurality of container nodes, according to some embodiments.
[0034] FIG. 23 illustrates a graph of CPU usage over time.
[0035] FIG. 24 illustrates a diagram depicting the redeployment of pods based on actual usage.

[0036] FIG. 25 illustrates how multiple usage characteristics can be simultaneously balanced

within a container node.

[0037] FIG. 26 illustrates a deployment of pods after an initial deployment, according to some

embodiments.
[0038] FIG. 27 illustrates a CPU usage graph over time, according to some embodiments.

[0039] FIG. 28 illustrates a diagram of the pod instantiation process described in FIG. 27,

according to some embodiments.

[0040] FIG. 29 illustrates a diagram of pod instantiation and usage, according to some

embodiments.

[0041] FIG. 30 illustrates a flowchart of a method for dynamically rebalancing services in a

container platform, according to some embodiments.

[0042] FIG. 31 illustrates a simplified block diagram of a distributed system for implementing

some of the embodiments.

[0043] FIG. 32 illustrates a simplified block diagram of components of a system environment
by which services provided by the components of an embodiment system may be offered as cloud

services.

10

15

20

25

30

WO 2019/068031 PCT/US2018/053620

[0044] FIG. 33 illustrates an exemplary computer system, in which various embodiments may

be implemented.

DETAILED DESCRIPTION

[0045] Described herein, are embodiments for an Application Programming Interface (API)
registry that is part of an Integrated Development Environment (IDE) that allows developers to
register services during development and make those services available to other services both
during and after deployment. The API registry can be deployed as part of an orchestrated
container platform, operating as a containerized application on the container platform. As services
or microservices are developed and deployed into containers on the container platform, the API
registry can execute a discovery process to locate available endpoints (e.g., IP addresses and port
numbers) within the container platform that correspond to available services. The API registry can
also accept an upload of an API definition file that can be used to turn the raw service endpoint
into an API function made available through the API registry. The API registry can dynamically
bind the discovered endpoint to an API function that be kept up-to-date and made available to
other services in the container platform. This provides a stable endpoint that other services can
statically call while the API registry manages any changes to the binding between the API function
in the service endpoint. This also simplifies the process for using services in the container
platform. Instead of writing code for an HTTP call, new services can simply use the API interface

to access registered services.

[0046] In some embodiments, the IDE can provide a navigation/browse interface for developers
to locate services that are available in the container platform and registered with the API registry.
When calls to existing services are created by the API registry for new services under
development, the API registry can automatically generate a set of client libraries that include all
the necessary functionality to interact with the registered service. For example, some
embodiments may generate an object class that includes member functions corresponding to API
calls. During development, new services can simply instantiate these objects and/or use their
member functions to make a call to the corresponding API. The code in the client libraries
governs a direct connection between the calling service and the endpoint of the registered service
and may include code that handles all the functionality necessary for this interaction. For example,
the automatically generated client libraries may include: code for packaging and formatting
parameters from the API call into an HTTP call to the service endpoint, code for marshaling data
to complete parameter sets for the call, code for packaging information into a compatible packet
(JSON, XML, etc.), code for receiving and parsing result packets, code for handling retries and

error conditions, and so forth. From the calling service’s perspective, the code to handle all of this
7

10

15

20

25

30

WO 2019/068031 PCT/US2018/053620

functionality is automatically generated by the API registry and therefore abstracts and
encapsulates the details of the service call into the client library object. All that is required of the

calling service is to execute a member function of the client library object created by the API
registry.

[0047] In some embodiments, the API registry can also accept an upload of a set of properties
that may define the runtime execution of the registered service. This set of properties can be
uploaded during development along with the API definition file. These properties can define
runtime characteristics, such as end-to-end encryption, usage/logging requirements, user
authentication, on-demand service instantiation, multiple service deployment instances for high
availability, rate/usage limiting, and other runtime characteristics. The API registry can ensure
that these properties are met by interacting with the container environment during development,
during deployment, and during runtime. During development, the automatically generated client
libraries for calling services can include code that may be required to execute these properties,
such as encryption code, usage logging code, and/or interaction with a user authentication service.
When a registered service is being deployed, the API registry can instruct the container platform to
instantiate multiple instances of the service and/or additional load-balancing modules to ensure
high reliability of the service during runtime. During runtime when a service is called, the API
registry can cause the service to be instantiated for on-demand instantiation, limit the number of

API calls that can be made to throttle usage, and perform other runtime functions.

[0048] FIG. 1 illustrates a software structure and logical arrangement of development and
runtime environments for services in a container platform, according to some embodiments. The
environments may include an IDE 102 that may be used to develop services and microservices to
be deployed on a container platform. An IDE is a software suite that consolidates and provides all
of the basic tools that service developers can use to write and test new services. The IDE 102 may
include a source code editor 106 with a graphical user interface (GUI), code completion functions,
and navigate/browse interfaces that allow a developer to write, navigate, integrate, and visualize
the source-code-writing process. The IDE 102 may also include a debugger 110 that includes
variable interfaces, immediate variable interfaces, expression evaluation interfaces, memory
content interfaces, breakpoint visualization and functionality, and other debugging functions. The
IDE 102 may also include a compiler and/or interpreter 108 for compiling and running compiled
machine code or interpreted byte code. The compiler/interpreter 108 can include build tools that
allow developers to use/generate makefiles another build automation constructs. Some

embodiments of the IDE 102 may include code libraries 112 that include common code functions,

10

15

20

25

30

WO 2019/068031 PCT/US2018/053620

objects, interfaces, and/or other structures that can be linked into a service under development and

reused across multiple developments.

[0049] Services can be developed and thoroughly tested within the IDE 102 until they are ready
for deployment. The services can then be deployed to a production/deployment environment 104.
The production/development environment 104 may include many different hardware and/or
software structures, including dedicated hardware, virtual machines, and containerized platforms.
Prior to this disclosure, when a service 114 was deployed into the production/deployment
environment 104, the service 114 would no longer have runtime access to many of the tools used
in the IDE 102. Any functionality needed by the service 114 to run in the production/development
environment 104 needed to be packaged from the code libraries 112 and deployed with the service
114 into the production/deployment environment 104. Additionally, the service 114 would
typically be deployed without any of the functionality for the debugger 110 or a copy of the source
code from the source code editor 106. Essentially, the service 114 would be deployed to the
production/deployment environment 104 with all of the functionality required for runtime

operation, but would be stripped of the information that was only used during development.

[0050] FIG. 2 illustrates a specialized computer hardware system that is specifically designed to
run the embodiments described herein. By way of example, the service 114 can be deployed into
an Infrastructure as a Service (IaaS) cloud computing environment 202. This is a form of cloud
computing that provides virtualized or shared computing resources over a network. The IaaS
cloud computing environment 202 may also include or be coupled with other cloud computing
environments arranged as Software as a Service (SaaS) and/or Platform as a Service (PaaS)
architetures. In this environment, the cloud provider can host an infrastructure of hardware and/or
software components that were traditionally present in an on-premises data center. This hardware
may include servers, storage, networking hardware, disk arrays, software libraries, and
virtualization utilities such as a hypervisor layer. The laaS environment 202 can be provided by a
commercial source, such as Oracle® or other publicly available cloud platforms. The IaaS
environment 202 may also be deployed as a private cloud using a private infrastructure of

hardware and software.

[0051] Regardless of the type of cloud environment, the service 114 can be deployed onto a
number of different types of hardware/software systems. For example, the service 114 can be
deployed to dedicated hardware 206. The dedicated hardware 206 may include hardware
resources, such as servers, disks, operating systems, software packages, and so forth, that are
specifically assigned to the service 114. For example, a specific server may be allocated to handle

traffic flowing to and from the service 114.

10

15

20

25

30

WO 2019/068031 PCT/US2018/053620

[0052] In another example, the service 114 can be deployed to hardware/software that is
operated as one or more virtual machines 208. A virtual machine is an emulation of a computer
system that provides the functionality of the dedicated computer hardware 206. However, instead
of being dedicated to a specific function, the physical hardware can be shared by number of
different virtual machines. Each virtual machine can provide all the functionality needed to
execute including a complete operating system. This allows virtual machines having different
operating systems to run on the same physical hardware and allows multiple services to share a

single piece of hardware.

[0053] In a another example, the service 114 can be deployed to a container platform 210. The
container platform differs from the virtual machines 208 in a number of important ways. First, the
container platform 210 packages individual services into containers as described in greater detail
below in FIG. 3. Each container shares a host operating system kernel, and they also share
binaries, libraries, and other read-only components. This allows containers to be exceptionally
light — often only a few megabytes in size. Additionally, a lightweight container is very efficient,
taking just seconds to start versus the minutes required to boot up a virtual machine. Containers
also reduce management overhead by sharing the operating system and other libraries that can be
maintained together for the entire set of containers in the container platform 210. Even though
containers share the same operating system, they provide an isolated platform, as the operating
system provides virtual-memory support for isolation. Container technologies may include
Docker® containers, the Linux Libcontainer®, the Open Container Initiative (OCI), Kubernetes®,
CoeOS, Apache® Mesos, along with others. These containers can be deployed to a container
orchestration platform, which may be referred to herein as simply the “container platform” 210. A
container platform manages the automated arrangement, coordination, and management of
deployed software containers. The container platform 210 can provide service discovery, load-
balancing, health checks, multiple deployments, and so forth. The container platform 210 may be
implemented by any publicly available container platform, such as Kubernetes, that runs

containers organized in nodes and pods.

[0054] Regardless of the platform 206, 208, 210 on which the service 114 is deployed, each of
the platforms 206, 208, 210 can provide service endpoints 212, 214, 216 that provide public access
for calling the service 114. Generally, these endpoints can be accessed through an HTTP call and
are associated with an IP address and a port number. By connecting to the correct IP address and
port number, other services can call services deployed to any of the platforms 206, 208, 210 when
they are made publicly available. Each service, such as service 114, may include its own

proprietary formats and data requirements for calling the service. Similarly, each service may

10

10

15

20

25

30

WO 2019/068031 PCT/US2018/053620

return results that are specific in format and data type to that service 114. In addition to the
service-specific requirements, the particular deployment platform 206, 208, 210 may also include
additional requirements for interacting with the service 114, such as programming languages,
package formats (JSON, XML, etc.) that need to be complied with to properly interact with the

service, and so forth.

[0055] Although the examples above allow the service 114 to be deployed to any of the
described platforms 206, 208, 210, the embodiments described herein are specifically designed for
the container platform 210 described above. Thus, embodiments that are specifically recited to be
deployed in a “container platform” can be distinguished from other embodiments that are
specifically recited to be deployed in a virtual machine platform, on the server or dedicated

hardware platform, or generally in an [aaS environment.

[0056] FIG. 3 illustrates a data organization that may be specific to the container platform 210
used by some of the embodiments described herein. Generally, any deployment of a service to the
container platform will be deployed to a pod 304, 306. A pod is an abstraction that represents a
group of one or more application containers (e.g., Docker or rkt). A pod may also include some
shared resources that are commonly available to all of the containers within the pod. For example,
pod 304 includes container 310 and container 312. Pod 304 also includes a shared resource 308.
The resource may include a storage volume or other information about how containers are run or
connected within the pod 304. The pod 304 can model an application-specific logical host that
contains different service containers 310, 312 that are relatively tightly coupled. For example,
service 326 in container 310 can utilize the resource 308 and call service 320 in container 312.
Service 320 can also call service 322, which in turn calls service 324, each of which are deployed
to container 312. The output of service 324 can be provided to a network IP address and port 318,
which is another common resource shared by the pod 304. Thus, the services 320, 322, 324, 326
all work together with the shared resource 308 to provide a single service that can be accessed by
the IP address and port numbe 318 by services run in other containers. The service can also be
accessed through the IP address and port 318 by computer systems that are external to the
container platform, such as a workstation, a laptop computer, a smart phone, or other computing

device that is not part of the container platform or IaaS environment.

[0057] In the simplest deployment, each container may include a single service, and each pod
may include a single container that encapsulates the service. For example, pod 306 includes only a
single container 314 with a single service 328. The single service is accessible through the IP
address and port number 316 of the pod 306. Typically, when a service is deployed to the
container platform, a container and a pod will be instantiated to hold the service. A number of

11

10

15

20

25

30

WO 2019/068031 PCT/US2018/053620

different pods can be deployed to a container node 302. Generally, pods run within nodes. A node
represents a worker machine (either virtual or physical) in the container platform. Each node is
managed by a “master” that automatically handles scheduling pods within each of the nodes. Each
node can run a process that is responsible for communication between the master and the node and
for managing the pods in containers on the machine represented by the node. Each node may also
include a container runtime responsible for pulling a container image from a registry, unpacking

the container, and running the service.

[0058] FIG. 4 illustrates an API registry 404 that can be deployed to the IDE 102 and the
production/runtime environment 104, according to some embodiments. As described above, a
technical problem exists wherein when the service 114 is deployed from the IDE 102 to the
production/deployment environment 104, the service 114 loses runtime access to information that
is exclusively available in the IDE 102. The API registry 404 is accessible by the service 114
while it is deployed and operating during runtime in the production/development environment 104,
The previous technical problem that isolated development functions from runtime functions is
overcome by the API registry 404 by the registration of services with the API registry 404 during
development and providing an API definition and/or API properties to the API registry 404. The
information defining the API can be used by new services in development in the IDE 102 as well
as services that have been deployed to the production/deployment environment 104. After this
registration process is complete, the service 114 can operate using client libraries that access the
API registry 404 during runtime to ensure that the API functions are correctly bound to the current
IP address and port number of the corresponding service. The APIregistry 404 represents a new

data structure and processing unit that was specifically designed to solve these technical problems.

[0059] Another technical problem that existed in the art was implementing service properties as
they are deployed to the production/development environment 104. For example, if a service was
to be deployed with high availability, the developer would need to build container deployment
files that specifically instantiated multiple instances of the service in the container platform and
balanced traffic in such a way that the service was always available. Service developers did not
always have this expertise, nor were they often able to manage the deployment of their service. As
described below, the API registry 404 allows a service to simply select properties, such as high
availability, that can then be implemented automatically by the API registry 404. This technical
solution is possible because the API registry 404 bridges the gap between the IDE 102 and the

production/deployment environment 104.

[0060] FIG. S illustrates the deployment of the API registry 404 for use with the container

platform 210 at runtime, according to some embodiments. One of the technical solutions and
12

10

15

20

25

30

WO 2019/068031 PCT/US2018/053620

improvements to the existing technology offered by the API registry 404 is the maintenance of
stable endpoints for service calls, as well as the simplification and automatic code generation for
accessing the service calls. Prior to this disclosure, calls between services were point-to-point
connections using, for example, an HTTP call to an IP address and port number. As services are
updated, replaced, relocated, and redeployed in the container platform 210, the IP address and port
number may change frequently. This required all services that called an updated service to update
their IP address and port numbers in the actual code that called that service. The API registry 404
solves this technical problem by providing a dynamic binding between the IP address and port
number of a service and an API function that is made available through the APIregistry. The
client libraries that are automatically generated by the API registry 404 can include a function that
accesses the API registry 404 to retrieve and/or verify a current IP address and port number for a
particular service. Thus, a first service connecting to a second service need only perform a one-

time generation of a client library to provide a lifetime-stable connection to the second service.

[0061] Another technical problem solved by the API registry 404 is the automatic generation of
client libraries. Prior to this disclosure, a first service accessing a second service required the
developer to write custom code for accessing the second service. Because this code could change
over time, incompatibilities would a rise between the first and second services that required
updates to both services. The API registry 404 solves this technical problem by uploading an API
definition file that is used to automatically generate client libraries for calling services. Therefore,
a service can specify specifically how the calling code in any other service should operate, which
guarantees compatibility. These client libraries also greatly simplify and encapsulate the code for
calling the service. As described below, a complicated HTTP call using IP address and a port
numbers can be replaced with a simple member function call in a language that is specific to the
calling service (e.g., Java, C#, etc.). This allows a calling service to select an API function from
the API registry 404, and the code that implements at function can be downloaded to the calling

service as a client library.

[0062] FIG. 6A illustrates a flowchart of a method for deploying the API registry 404,
according to some embodiments. The method may include deploying the API registry service to
the container environment (601). The API registry can be implemented as a service operating in
the container environment within the container. Thus, the API registry can be actively running
after services are deployed within the container environment such that it can be accessed at run
time. The APIregistry can also be linked to the existing IDE described above. The method may
further include discovering ports for available services in the container platform (603). As

services are deployed to the container platform, the API registry can launch a discovery process

13

10

15

20

25

30

WO 2019/068031 PCT/US2018/053620

that sequentially traverses each of the services deployed to the container platform. For each
service, the API registry can detect and record an IP address and a port number. The listing of IP
address and port numbers discovered by this process can be stored in a data structure, such as a
table associated with the API registry. Each IP address and port number can also be stored with a
name for the service or other identifier that uniquely identifies the service on the container
platform. These initial steps shown in flowchart in FIG. 6A provide a starting point for the API
registry to begin operating in the runtime environment of the container platform and to be

available to services under development in the IDE.

[0063] FIG. 6B illustrates a software structure of the container platform 210 when the API
registry is deployed using the flowchart in FIG. 6A, according to some embodiments. As
described above, the API registry 404 can be deployed to a container 620 in the container platform
210. The container 620 can operate within one or more pods and within a node as described above
in FIG. 3. The API registry 404 can be made privately available to any of the other containers in
the container platform 210. In some embodiments, the API registry 404 can also be made publicly
available to other devices that are not part of the container platform 210. As a containerized
service, the API registry 404 may have an IP address and port number that are available to other
services. However, the IP address and port number of the API registry 404 would only be used by
the code that is automatically generated in client libraries, therefore some embodiments do not
need to publish the IP address and port number for the API registry 404. Instead, the client
libraries in the IDE itself can maintain an up-to-date listing of the IP address and port number for
the API registry 404 such that it can be contacted during development, deployment, and runtime of

other services.

[0064] After deploying the API registry 404 to the container 620, the API registry 404 can
execute a discovery process. The discovery process can use a directory listing for nodes in the
container platform to identify pods that implement services with an IP address and port number.
The API registry 404 can then access a unique identifier, such as a number or name for each
available service, and store an identifier with each IP address and port number in the container
platform 210. This discovery process can be periodically executed to detect new services that are
added to the container platform 210, as well as to identify existing services that are removed from
the container platform 210. As described below, this discovery process can also be used to detect
when an IP address and port number change for an existing service. For example, the API registry
404 can discover services having endpoints 602, 604, 606, 608. In the process described below,
the APIregistry 404 can bind each of these endpoints 602, 604, 606, 608 to an API function that is
registered with the API registry 404. At some point after this initial discovery, the IP address

14

10

15

20

25

30

WO 2019/068031 PCT/US2018/053620

and/or port number for endpoint 602 may be changed when the service associated with endpoint
602 1s replaced, updated, or revised. The API registry 404 can detect this change to endpoint 602
and update a binding to an existing API function provided by the API registry 44.

[0065] Similarly, the API registry 404 can use the discovery process to detect when endpoints
are no longer available, and then remove the API functions associated with the service. In some
embodiments, when a service has been registered with the API registry 404, but the corresponding
API functions are not currently bound to a valid endpoint, the API registry 404 can provide a mock
response to any service calling the corresponding API functions. For example, if an API has been
registered for the service corresponding to endpoint 604, but endpoint 604 is not currently
available, the API registry 404 can intercept a call made to endpoint 604 and provide default or
dummy data in response. This allows services that call the service associated with endpoint 604 to
maintain functionality and/or continue the design process without “breaking” the connection to

this particular service. Mock/testing data scenarios will be described in greater detail below.

[0066] FIG. 7A illustrates a flowchart of a method for registering a service with the API registry
404, according to some embodiments. The method may include receiving an upload of an API
definition (701). The API definition may be provided in the form of a data packet, file, or a link to
an information repository. The API definition may include any information that can be used to
identify and define API functions that should be bound to endpoints associated with the service.
For example, some embodiments of the API definition may include the following data: a service
name or other unique identifier; function names corresponding to service endpoints and calls, data
inputs required to call the service with corresponding descriptions and data types; result data
formats and data types; a current IP address and/or port number; documentation that describes the
functionality of the API functions that will be associated with the endpoint; default or dummy data
values that should be returned during mock/test scenarios; and any other information that may be
used by the API registry 404 to translate the HTTP request received by the endpoint into a client

library that uses API function calls of class data objects.

[0067] The method may also include creating corresponding API functions based on the
uploaded API definitions (703). These API functions can be generated automatically based on the
API definition. Each endpoint for a service may be associated with a plurality of different API
functions. For example, an endpoint implementing a RESTful interface may receive HTTP calls
for POST, GET, PUT, and DELETE functions at the same IP address and port number. This may
result in, for example, for different API functions. For example, if the interface represents a list of
users, this can correspond to at least four different API functions, such as GetUser(), AddUser(),
RemoveUser(), and UpdateUser(). Additionally, each API function may include a number of

15

10

15

20

25

30

WO 2019/068031 PCT/US2018/053620

different parameter lists, such as UpdateUser(id), UpdateUser(name), UpdateUser(firstname,
lastname), and so forth. These API functions can be generated and made available to other
services through the API registry. As will be described in greater detail below, it should be noted
that services are not required to call these functions through the API registry. Instead, these
functions are made available to browse in the API registry, and when selected, the API registry can

generate client libraries that implement these functions in the calling service.

[0068] The method may additionally include creating a binding in the API registry between the
API function and the corresponding endpoint of the service (705). Based on the discovery process
described above and the registration process of steps 701, the API registry can now create a
dynamic binding between an endpoint for a service in the container platform and the API function
created by the API registry. In the data structure formed above when discovering available
endpoints and services, the API registry can now store a corresponding function or set of functions
for each endpoint. As described above, this binding can be constantly updated as the discovery
process determines when services are updated, moved, replaced, or added to the container
platform. This allows the client libraries created in a calling service to first check with the API

registry to verify or receive a current IP address and port number for the service.

[0069] FIG. 7B illustrates a hardware/software diagram of the steps for registering an API with
the API registry 404, according to some embodiments. As described above, the API registry 404
can be instantiated and running in a container 620 in the container platform 210. Even though the
container platform 210 represents a production/deployment environment, the API registry 404 can
still be accessed by the IDE 102 used to develop the service. Thus, the IDE 102 can provide a
mechanism for uploading the API definition files 702 to the API registry 404. Specifically, the
user interface of the IDE 102 may include a window or interface that allows the developer to
define and/or populate fields for the API definition files 702. This information described above
may include function names, parameter lists, data types, field lengths, object class definitions, an
IP address and port number, a service name or other unique identifier, and so forth. This
information can be uploaded to the API registry 404 and linked in a dynamic binding to a
particular IP address and port number for the endpoint 602. Finally, the API registry 404 can
generate one or more API functions 704 that can be made available through the API registry 404.

[0070] After registering a service with the API registry 404 and generating one or more API

functions, the API registry can then make those functions available for developers as they design

services. FIG. 8 illustrates examples of a graphical interface 802 and a command line interface

804 for browsing and selecting APIs that are registered with the API registry 804, according to

some embodiments. When programming and developing a new service for the container platform,
16

10

15

20

25

30

WO 2019/068031 PCT/US2018/053620

the developer can access the graphical interface 802 to browse and select API functions that can be
used in their service. This graphical interface 802 is merely an example and not meant to be

limiting of the types of graphical interfaces that can be used to browse and select API functions.

[0071] In this embodiment, the IDE 102 can summon the graphical interface 802 to provide a
list of APIs that are registered with the API registry. In this embodiment, the APIs are categorized
based on endpoint. For example, one endpoint corresponding to a service may offer a RESTful
interface for storing user records (e.g., “UserStorage”). The graphical interface 802 can display all
of the API functions (e.g., “CreateUser”, “DeleteUser”, “UpdateUser”, etc.) that are available
through the selected endpoint. Other embodiments may group functions based on the overall
service in cases where the service offers multiple endpoints. The graphical interface 802 can
receive a selection of one or more API functions to be used in a calling the service. The API
registry can then provide documentation that illustrates how to use the API function, including
required parameters and return values. One having ordinary skill in the art will understand that the
command line interface 804 can provide similar information and can receive similar inputs as the

graphical interface 802.

[0072] The interfaces 802, 804 illustrated in FIG. 8 provide a number of technical benefits.

First, these interfaces 802, 804 provide an up-to-date listing of all APIs that are registered with the
API registry. This corresponds to a list of all services currently available in the container platform.
Instead of being required to look up documentation, contact a service developer, and/or perform
other inefficient tasks for locating a list of available services, a service developer can retrieve and
display this information in real-time. Additionally, as services are updated, the API definition files
can be updated in a corresponding fashion. This then updates the display illustrated in FIG. 8 to

provide up-to-date availability information for each API function.

[0073] FIG. 9 illustrates a flowchart of a method for using a service and its corresponding
function registered with the API registry, according to some embodiments. The method may
include providing a listing of registered APIs (901). This step may be omitted in cases where the
desired service is already known. However, generally the services can be displayed for browsing
and navigation using the interfaces described above in FIG. 8. The method may also include
receiving a selection of an API function (901). This selection may be received by the API registry
from a developer of the service. For example, a developer may decide to update a database of user
records using the CreateUser() function described above. FIG. 10 illustrates how a selection 1002
may be received by the API registry through the graphical interface 802 for the CreateUser()
function. Other embodiments may receive the selection through the command line interface or
through other input methods provided by the IDE.

17

10

15

20

25

30

WO 2019/068031 PCT/US2018/053620

[0074] Referring back to FIG. 9, once the selection of an API function is received, the API
registry can generate one or more client libraries for the calling service (905). Generating client
libraries may provide the calling service with the service endpoint that is dynamically bound to the
API function. Specifically, the IDE can generate a set of class objects in the IDE that encapsulate
the functionality required to interface directly with the service endpoint in the container platform.
In some embodiments, client libraries may include object classes that can be instantiated or used to
call member functions that embody the code required to communicate with the service. Examples

of these client libraries will be described in greater detail below.

[0075] The method may additionally include providing test data (907). When a service is
registered with the API registry, it need not be complete. Instead, the service can indicate to the
API registry that it is not yet ready to provide functional responses to calling services. In some
embodiments, the API definition file that is uploaded to the API registry can include a
specification of the type of information that should be returned before the service is functional.
When the calling service calls the API function, the client library generated by the API registry can
route requests to the API registry instead of the service endpoint. The API registry can then
provide a response using dummy, null, or default values. Alternatively, the code within the client

libraries themselves can generate the default data to be returned to the calling service.

[0076] It should be appreciated that the specific steps illustrated in FIG. 9 provide particular
methods of using an API registry according to various embodiments of the present invention.
Other sequences of steps may also be performed according to alternative embodiments. For
example, alternative embodiments of the present invention may perform the steps outlined above
in a different order. Moreover, the individual steps illustrated in FIG. 9 may include multiple sub-
steps that may be performed in various sequences as appropriate to the individual step.
Furthermore, additional steps may be added or removed depending on the particular applications.

One of ordinary skill in the art would recognize many variations, modifications, and alternatives.

[0077] FIG. 11 illustrates an example of a client library generated for a service automatically by
the API registry, according to some embodiments. This client library 1102 may correspond to a
service that stores user records. This client library 1102 and the corresponding class and service
are provided merely by way of example and not meant to be limiting. As described above, each
API function and service can specify how client libraries should be generated by virtue of the API
definition file uploaded to the API registry. Therefore, the principles described below in relation

to the “User” service may be applied to other services.

18

10

15

20

25

30

WO 2019/068031 PCT/US2018/053620

[0078] To represent the User service, the API registry can generate a class for a User. When the
calling service requests client libraries to be generated by the API registry, the calling service can
specify a programming language being used by the calling service. For example, if the calling
service is being written in Java in the IDE, then the API registry can generate class libraries in the
Java programming language. Alternatively, if the calling service is being written in C#, then the
API registry can generate class libraries in the C# programming language. The User class can be
generated to have member functions that correspond to different operations that may be performed
through the service endpoint. These member functions can be static such that they do not require

an instantiated instance of the User class, or they may be used with instantiated User objects.

[0079] In this example, the User service may use a RESTful interface to edit individual user
records that are stored by the service. For example, the API registry can generate the CreateUser(
) function to implement a POST call to the User service. One of the functions that can be
performed by the class library is to parse, filter, and format data provided as parameters to the API
function to be sent as a data packet directly to the service. In this example, the CreateUser()
function can accept parameters that are formatted for the convenience of the calling service. For
example, the calling service may separately store strings for the user first name and the user last.
However, the POST command may require a concatenated string of the first name in the last name
together. In order to accommodate a user-friendly set of parameters, the client library 1102 can
perform a set operations that format the data received as parameters to the function into a format
that is compatible with the service endpoint. This may include generating header information,
altering the format of certain data fields, concatenating data fields, requesting addional data from
other sources, performing calculations or data transforms, and so forth. This may also include

packaging the reformatted parameters into a format, such as JSON, XML, etc.

[0080] Once the parameters are correctly formatted into a package for the service endpoint, the
client library 1102 can also handle the POST call to the service. When the client library is
generated, the IP address and port number for the service can be inserted into the CreateUser()
function to be used in an HTTP request to the service. Note that the details of the HTTP request
are encapsulated in the CreateUser() function. When a developer for a calling service wants to
use the POST function made available by the service, instead of writing the code in the library
1102 themselves, they can instead select the User service from the API registry. The API registry
will then automatically generate the client library 1102 that includes the User class. Then, to use
the POST function, the service developer can simply use the User.CreateUser(“John”, “Smith”,

2112) function to add the user John Smith to the service.

19

10

15

20

25

30

WO 2019/068031 PCT/US2018/053620

[0081] FIG. 12 illustrates an embodiment of a client library 1202 that accommodates dynamic
binding between service endpoints and API functions, according to some embodiments. In this
example, when the API registry generates the client library 1202, the CreateUser() function can
include code 1204 that dynamically retrieves the IP address and port number for the service. The
calling service 114 can use the GetIPPort() function to send a request to the API registry 404 at
run time when the calling service 114 is operating in the production/deployment environment 104,
such as the container platform. The API registry 404 can access its internal table that is
consistently updated to maintain up-to-date bindings between the API functions and the service
endpoints. The API registry 404 can then return a current IP address and port number to the
calling service 114. The client library 1202 can then insert the IP address and port number into the
HTTP POST code that connects to the service. Because the API registry 404 can be accessed at
run time by any calling service in the container platform, none of these services need to be updated
or patched when the IP address for port number for the service being called changes. Instead, the
API registry 404 can provide up-to-date information every time a service is called. In some
embodiments, the GetIPPort() function may only need to call the API registry 404 once an hour,
once a day, once a week, and so forth, to minimize the number of function calls made outside of
the container for the service 114 under the assumption that the service endpoints do not change

frequently in the production environment.

[0082] FIG. 13 illustrates an embodiment of a client library 1302 that can marshal additional
data to complete an input data set for a service call, according to some embodiments. To simplify
using the client library 1302, the client library 1302 may minimize the number of parameters
required from the service developer. Additional data that may be required to make the service call
can be retrieved from other sources and thus may be omitted from the parameter list. These
additional parameters can instead be retrieved directly by the client library 1302 from these other
sources. For example, creating a new user may include specifying a user role for the user. Instead
of requiring the service developer to provide a user role as one of the parameters, the client library
1302 can instead include code 1304 that automatically retrieves a role for the user from some other
source. In this example, the user role can be retrieved from a database, from another service in the
container platform, or from another class storing user roles within the calling service. In any of
these cases, the code 1304 can automatically retrieve the user role and package it as part of the

input data for the HTTP POST command sent to the service.

[0083] In addition to marshaling and formatting data for inputs to the service, the client library
1302 can also parse and return data received from the service and handle error conditions. In this

example, the POST command may return a data packet into the Result variable. Often times, a

20

10

15

20

25

30

WO 2019/068031 PCT/US2018/053620

service may return a data packet that includes more information than the calling service needs.
Therefore, the client library 1302 can parse the data fields in the Result variable and extract,
format, and package data from the Result variable into a format that is more usable and expected
by the User class. In this example, the code 1306 can extract fields from the Result variable and
use them to create a new User object that is returned from the API function. In another example
using a GET command, individual API functions can be generated in the User class that extract
different fields from the Result variable from the GET command. For example, the User class
could provide a GetFirstName(id) function, a GetLastName(id) function, a GetRole(id) function,
and so forth. Each of these functions may include very similar code while returning different

fields from the Result variable.

[0084] In addition to parsing results, the client library 1302 may also generate code 1308 that
handles error conditions associated with using the service. In this example, the code 1308 can test
a status field in the Result variable to determine whether the POST command was successful. If
the command was successful, then the CreateUser() function can return a new User object. In
cases where the Post command failed, the function can instead return a null object and/or retry the

call to the service.

[0085] FIG. 14 illustrates a client library 1402 that can handle retries when calling a service,
according to some embodiments. Like the example of FIG. 13, the client library 1402 uses a status
in a Result variable populated by the POST HTTP call to determine whether the call was
successful or not. While the result is unsuccessful, the client library 1402 can continue to retry
until the call is successful. Some embodiments may use a counter or other mechanism to limit the

number of retries or add a wait time between retries.

[0086] As described above, some embodiments may also upload a set of API properties to the
API registry along with the API definition. FIG. 15A illustrates a method of providing API
properties to the API registry, according to some embodiments. The method may include
receiving an upload of an API definition (1501). The method may also include receiving an
upload of API properties (1503). The upload of properties may be part of the same transmission as
the upload of the API definition. In some embodiments, the API properties may be part of the API
definition. In some embodiments, the API properties may be one or more flags or predefined data
fields that are checked to indicate that property should be set by the API registry. In some
embodiments, the API properties need not conform to any pre-structured format, but can instead
be represented by instruction code that causes the API registry to implement the features described
below, such as authentication, encryption, and so forth. The API properties can be stored along

with the API definition for each service.
21

10

15

20

25

30

WO 2019/068031 PCT/US2018/053620

[0087] The method may additionally include creating the API binding between the service and
the API (1505). This operation may be performed as described in detail above. Additionally, the
method may include using the API properties to perform one or more operations associated with
the service (1507). The API properties may be used at different phases during the lifecycle of the
service. Generally, this may be described as using the API properties to to implement a function
associated with the property during the deployment of a service, when generating client libraries
for service, and/or when calling service. Examples of each of these functions will be described

below in greater detail.

[0088] It should be appreciated that the specific steps illustrated in FIG. 15A provide particular
methods of providing API properties to an API registry according to various embodiments of the
present invention. Other sequences of steps may also be performed according to alternative
embodiments. For example, alternative embodiments of the present invention may perform the
steps outlined above in a different order. Moreover, the individual steps illustrated in FIG. 15A
may include multiple sub-steps that may be performed in various sequences as appropriate to the
individual step. Furthermore, additional steps may be added or removed depending on the
particular applications. One of ordinary skill in the art would recognize many variations,

modifications, and alternatives.

[0089] FIG. 15B illustrates a hardware/software diagram of how a service can provide API
properties to the API registry, according to some embodiments. While developing a service in the
IDE 102, a service developer can provide the API definition file 1502 and one or more properties
1504 to the API registry 404. Because the API registry 404 is accessible in both the IDE 102 and
the container platform at runtime, the API registry 404 can store the properties 1504 and use them
to affect how a service is deployed, called, and/or used to generate client libraries during both

development and runtime scenarios.

[0090] FIG. 16 illustrates a hardware/software diagram where a property is used by the API
registry to deploy a service with high availability, according to some embodiments. In addition to
the API definition file 1505 for a particular service, the API registry 404 may receive a property
1602 indicating that the service should be deployed to be very resilient, or have high availability.
This property 1602 may be received as a set of instructions that are executed by the API registry
404 to deploy the service to have high availability. This option allows the developer to define
what it means to be “high-availability” for this service. For example, the property 1602 may
include instructions that cause the API registry 404 to deploy multiple instances 602, 604 of the

service to the container platform 210. By executing these instructions, the API registry 404 does

22

10

15

20

25

30

WO 2019/068031 PCT/US2018/053620

not need to make any decisions or determinations on its own, but can instead simply execute the

deployment code provided as part of the property 1602.

[0091] The property 1602 may also be received as a flag or setting that indicates to the API
registry 404 an option to execute existing instructions at the API registry 404 for deploying the
service with high availability. With this option, the API registry 404 need not receive any code to
be executed as the property 1602. Rather, the API registry 404 can recognize the high-availability
property 1602 and execute code that is maintained in the API registry 404 to deploy multiple
instances 602, 604 of the service. This allows the API registry 404 to define what it means to be
“high-availability” for the deployment of any service that is registered with the API registry 404.

[0092] Because the APIregistry 404 is connected to the runtime environment of the container
platform 210, the API registry 404 can interact with the container platform 210 to deploy the
instances 602, 604 that determine the runtime availability of the service. Note that the two
instances 602, 604 of the service illustrated in FIG. 16 are provided merely as an example and not
meant to be limiting. A high-availability service may include more than two redundant instances

of a service being deployed to the container platform.

[0093] Some embodiments may include code in the API registry 404 that can be executed as a
default. If the property 602 includes only a simple indication that high availability is desired, the
API registry 404 can execute its own code. If the property 602 includes deployment code for
deploying the service, the API registry 404 can instead execute the code of the property 1602. In
some cases, the property 1602 may include only a portion of the code needed to deploy the service
with high-availability. The APIregistry 404 can execute the portions of the code that are provided
by the property 1602, then execute any code not provided by the property 1602 using the code at
the APIregistry 404. This allows developers to overwrite an existing definition of how to execute
a property, such as high-availability, at the API registry 404, while still allowing the API registry
404 to provide a uniform definition for executing properties that can be used by registered

services.

[0094] In some embodiments, a high-availability property may also cause the container platform
210 to deploy a load balancing service 606 that distributes requests to the multiple instances 602,
604 of the service. The endpoint of the load balancing service 606 can be registered with the API
registry 404 and made available to other services. Alternatively or additionally, each of the
multiple instances of the service 602, 604 may be registered with the API registry 404 as service

endpoints.

23

10

15

20

25

30

WO 2019/068031 PCT/US2018/053620

[0095] In each of the examples described below, the same principles discussed in relation to
FIG. 16 may apply. For example, any property described below may be accompanied with code
that may be received by the API registry 404 and used to overrule code that would otherwise be
executed by the API registry 404. Prior to this disclosure, no method existed for creating a
uniform default for executing properties while simultaneously allowing service developers to
overrule those properties if needed. Therefore, the API registry 404 solves a technical problem by
allowing code to be executed at the API registry 404 as a default while still allowing that code to

be overruled by a property 1602 received from a developer.

[0096] FIG. 17 illustrates a hardware/software diagram of a property that enforces end-to-end
encryption through the API registry, according to some embodiments. Along with the API
definition file 1505, the API registry 404 may receive a property 1704 that indicates, or includes
code that generates, end-to-end encryption for calling the service 1708. During development, the
service 1708 can include its own decryption/encryption code 1710 that causes packets received by
the service 1708 to be decrypted and packets returned by the service 1708 to be encrypted. Prior
to this disclosure, the developer would need to provide a specification that indicated users of the
service 1708 needed to provide encryption to be compatible with the service 1708. This
embodiment solves a technical problem by allowing the service 1708 to dictate how the client
libraries are generated in a calling service 1706, which ensures compatibility with the encryption

of the service 1708.

[0097] In some embodiments, the developer of the service 1708 need not include the
encryption/decryption code 1710 in the service 1708. Instead, the property 1704 can simply
instruct the API registry 404 to enforce end-to-end encryption for the service 1708. When the
service 1708 is deployed to the container platform 210, the API registry 404 can cause the
encryption/decryption code 1710 to be inserted into the service 1708 when it is deployed. This
allows the developer to select between different encryption regimes based on the property 1704

and/or to allow the API registry 404 to select a preferred encryption regime as a default.

[0098] End-to-end encryption requires not only the encryption/decryption code 1710 to be
inserted into the service 1708 when it is deployed or during development, but it also requires that a
calling service 1706 also includes compatible encryption/decryption code. As described above,
when the calling service 1706 needs to use the service 1708, the API registry 404 can generate one
or more client libraries 1702 that completely implement the code needed to interact with the
service 1708 in a simple and efficient manner. When this client library 1702 is generated, the API
registry 404 can analyze the property 1704 to determine an encryption regime used by the service
1708. Then, based on that property 1704, the API registry 404 can cause a compatible

24

10

15

20

25

30

WO 2019/068031 PCT/US2018/053620

encryption/decryption code to be added to the client library 1702 for the calling service 1706.
Thus, when the calling service 1706 sends a request to the service 1708, the information may be
encrypted at the calling service 1706 and decrypted once received by the service 1708. Similarly,
the service 1708 can encrypt a response before it is sent to the calling service 1706, which can then
decrypt the response before passing the response outside of the client library 1702. This causes the
entire encryption process to be entirely transparent to a developer of the calling service 1706.
Instead of being required to implement a compatible encryption/decryption regime when calling
the service 1706, the property 1704 may ensure that the API registry 404 has already generated the
encryption/decryption code in the client library 1702 to be compatible and implement the end-to-
end encryption property.

[0099] FIG. 18 illustrates a property 1804 for an API registry to implement usage logging for a
service 1808, according to some embodiments. Prior to this disclosure, to monitor and log the
frequency, source, success rate, etc., of requests to a service, the service itself had to log this
information. Alternatively, the container environment had to monitor the service and log its usage
information. Logging information at the service 1808 itself is terribly inefficient, and slows down
the throughput for every request handled by the service. Similarly, the overhead of requiring the
container platform to monitor and log all the calls made to particular services also represents a
tremendous overhead to the scheduling and orchestration of container services. This embodiment
solves this technical problem by inserting code directly into client libraries for services that call the
service 1808. This allows the usage of the service 1808 to be logged and monitored without

affecting the performance of the service 1808 at all in terms of memory usage or CPU usage.

[0100] In addition to the API definition file 1505, the API registry 404 can receive a property
1804 that indicates, or includes code that implements, usage logging 1804. When a developer of a
calling service 1806 desires to submit requests to the service 1808, the API registry 404 can
automatically generate a client library 1802 that includes code for logging activity related to the
service 1808. As described above, this code can be generated based on default code maintained
and executed by the API registry 404, or can be generated by code received with the property 1804
and executed by the API registry 404.

[0101] The code for logging activity in the client library 1802 may include counters that are

incremented every time the service 1808 is called, functions that cause activity to be logged to a

log file when the service 1808 is called, and other functions that monitor and record characteristics

of the requests sent to the service 1808 and responses received from the service 1808. Depending

on the particular embodiment, this code may monitor many different types of characteristics

associated with requests made of the service 1808. For example, some embodiments may log the
25

10

15

20

25

30

WO 2019/068031 PCT/US2018/053620

total number of calls made to the service 1808. Some embodiments may log a success rate for
responses received from the service 1808. Some embodiments may log types of data that are sent
in requests to the service 1808. Some embodiments may log times of day or other external
information for when the service 1808 is called. Some embodiments may log input and output
packets to/from the service 1808 that can be used for debugging the service 1808. Some

embodiments may log any or all of these characteristics in any combination and without limitation.

[0102] FIG. 19 illustrates a hardware/software diagram of a property 1904 that can enforce an
authentication protocol for a service 1908, according to some embodiments. Some services may
require that a user identity be authenticated and that the user be authorized to use the service
before responding to a request. Prior to this disclosure, a technical problem existed where the
authentication and authorization procedures took place at the service 1908 itself. This added
overhead in terms of memory usage and CPU usage for every call received by the service 1908,
and increased the latency of the service in response. This in turn decreased throughput, and
limited the number of requests that could be processed by the service 1908 during any given time
interval. These embodiments solve this technical problem by moving authentication/authorization

code to the client library 1902 that is automatically generated by the API registry 1404.

[0103] When a calling service 1906 wants to use the service 1908, the API registry 404 can
generate the client library 1902 that includes code for performing the authorization
and/authentication. In some embodiments, this may include contacting external
authentication/authorization services 1920 that specifically verify user identities and/or determine
whether a user is authorized to use the service 1908. The external authentication/authorization
services 1920 may include an access manager, a Lightweight Directory Access Protocol (LDAP)
manager, an Access Control List (ACL), a network authentication protocol manager, and so forth.
The code in the client library 1902 can then send the call to the service 1908 when the

authentication/authorization procedure is successful.

[0104] By offloading the authentication/authorization enforcement to the API registry 404 and
the client library 1902, this code can be completely eliminated from the service 1908. Because
significant delays may often accompany interacting with the external authentication/authorization
services 1920, this delay can be removed from the service 1908 to increase throughput.
Additionally, rather than hard coding the authentication/authorization enforcement into the service
1908, the developer of the service 1908 can instead simply select a predefined
authentication/authorization regime using the property 1904 that is sent to the API registry 404.
The API registry 404 can maintain a predefined list of authorization/authentication with the
accompanying implementation code for the client library 1902. This also prevents the calling

26

10

15

20

25

30

WO 2019/068031 PCT/US2018/053620

service 1906 from sending requests to the service 1908 that cannot be authorized and/or
authenticated. Instead, if the authentication and/or authorization routine is unsuccessful, the call
can be aborted at the client library 1902. This ensures that the service 1908 only receives requests

that are authenticated and/or authorized.

[0105] Another technical improvement provided by the API registry 404 is the ability to upgrade
any of the functionality provided by the properties 1904 without being required to change any of
the code of any registered services. For example, because the authentication/authorization code
has been offloaded to the client library 1902 generated by the API registry 1404, the client library
1902 can be updated to change the authentication/authorization regime. None of the code in the
calling service 1906 or the service 1908 needs to be modified. Because code is only changed in a
single place, this greatly reduces the probability of code integration errors that would otherwise

accompany distributed patches sent out to every individual service.

[0106] FIG. 20 illustrates a hardware/software diagram for a property 2004 that enables runtime
instantiation of a service, according to some embodiments. Some services may be rarely used or
only used during predefined time intervals. Therefore, deploying a service to the container
platform need not always result in actually instantiating an instance of the service in a container
that is immediately available. In contrast to virtual machines, containers can be instantiated and
activated very quickly. Therefore, a service developer may desire to only have the service
instantiated when it is called. A service developer may also desire to only have the service
instantiated within a predefined time interval. Similarly, the service developer may specify that

the service instance should be deleted after a predefined time interval of inactivity.

[0107] In addition to receiving the API definition file 1505, the API registry 404 can receive a
property 2004 that specifies run-time instantiation or other instantiation parameters. For example,
the property may include a specification of one or more time intervals during which the service
2008 should be instantiated after deployment. In another example, the property may include an
indication that the service 2008 should only be instantiated on demand. In another example, the
property may specify a timeout interval after which the instantiated service 2008 should be deleted

from the container platform.

[0108] When a calling service 2006 wants to use the service 2008, the API registry 404 can
generate code in the client library 2002 that handles the run-time instantiation of the service 2008.
For example, the Createlnstance() function call in the client library 2002 can create a call to the
APl registry 404. The APIregistry can then interact with the container platform 210 to determine
whether an operating instance of the service 2008 is available. If not, the API registry 404 can

27

10

15

20

25

30

WO 2019/068031 PCT/US2018/053620

instruct the container platform 210 to instantiate an instance of the service 2008 in a container in
the container platform 2010. The container platform 210 can then return the endpoint (e.g., IP
address and port number) to the API registry 404. The API registry 404 can then create a binding
between that endpoint and the API function call created in the client library 2002. API registry
404 can then return the endpoint to the client library 2002 which can be used to create the direct

connection between the calling service 2006 and the newly instantiated service 2008.

[0109] For services that should only be instantiated during predefined time intervals, the API
registry 404 may establish a table of instantiation and deletion times for certain services. Based on
these stored instantiation/deletion times, the API registry 404 can instruct the container platform
210 to instantiate or delete instances of the service 2008. The API registry 404 can also specify a
number of instances that should be instantiated during these predefined intervals. For example,
from 5:00 PM to 10:00 PM the property 2004 may specify that at least 10 instances of the service
2008 are active on the container platform 210. When this time interval occurs, the API registry

404 can instruct the container platform 210 to create the additional instances.

[0110] FIG. 21 illustrates a hardware/software diagram of a property 2104 that implements a
rate limiting function for a service 2108, according to some embodiments. Some services may
need to limit the rate at which requests are received. Other services may need to limit requests
from certain senders or types of services. Prior to this disclosure, this function had to be
performed by the service itself by determining a source for each request, comparing the source to a
whitelist/blacklist, and throttling the rate at which it serviced these requests. As with most of the
examples described above, placing this overhead in the service itself increase the amount of
memory and CPU power used by the service and limited the throughput of the service. These
embodiments solve this technical problem by automatically generating the rate limiting code in the
client library generated by the API registry. This allows the service to specify rate limiting by
virtue of the property 2104 without requiring the service 2108 to implement that functionality with

all of its associated overhead.

[0111] When a calling service 2106 wants to send requests to the service 2108, the API registry
404 can automatically generate the client library 2102 that includes rate limiting code. When the
client library 2102 is generated, the API registry 404 can determine whether the particular service
2106 should be rate limited. If not, the client library 2102 can be generated as usual. If the API
registry 404 determines that the calling service 2106 should be rate limited (e.g., by comparison to
a whitelist/blacklist), then the API registry 404 can insert code in the client library 2102 that adds
delays, adds counters, and/or otherwise implements the rate limiting function to ensure that a

predefined maximum number of requests are made by the calling service 2106 in any given time
28

10

15

20

25

30

WO 2019/068031 PCT/US2018/053620

interval according to a predefined rate. This code may also implement time windows during
which the rate limiting function will be active. This allows the service 2108 to enforce rate

limiting during high-traffic intervals automatically.

[0112] FIG. 22 illustrates a functional diagram of an initial deployment of a plurality of pods to
a plurality of container nodes, according to some embodiments. Some embodiments of the
container platform 210 may utilize a container platform scheduler 2202 to scale and deploy a large
number of containers across the container platform 210. When services are scaled out across
multiple host systems within the container platform, the ability to manage each host system and
abstract away the complexity of the underlying container platform may become advantageous.
“Orchestration” is a broad term that refers to container scheduling, managing clustering of nodes,
and the possible provisioning of additional hosts in the container environment. “Scheduling” in
the container platform may refer to the ability for an administrator to load a service onto a host
system and establish how to run that specific container. While scheduling specifically refers to the
process of loading the service definition, it can also be responsible for managing other aspects of
the operation of the node cluster. Managing a cluster of nodes involves a process of controlling
the group of computing hosts. This is closely tied to scheduling because the scheduler 2202 may
need to access each node in the cluster in order to schedule services as defined above. However,
the process of the scheduler 2202 of most interest to the embodiments described herein involves
host selection. In this sense, the scheduler 2202 may be tasked with automatically selecting a
container node 2204, 2206, 2208 on which to deploy and run a specific pod encapsulating the

service.

[0113] When scheduling pods to be deployed on nodes, the scheduler can be provided with a set
of operating constraints for each node. For example, node 2204 may be associated with
constraints 2210 that define how much CPU usage, memory usage, bandwidth usage, and other
computing characteristic usages may be allocated to container node 2204. These allocations may
be allocated to virtual resources operated by a virtual machine, or they may be allocated to
physical resources that are dedicated at least in part to node 2204. CPU usage may entail a number
of CPU cores that are used or a number of operations per second that are dedicated to the node
2204. Memory usage may refer to both dynamic memory usage and static memory storage on disk
arrays and other storage mediums. Bandwidth usage may refer to an amount of network resources

required by node 224 or an amount of data transmitted per second to/from node 2204.

[0114] The constraints 2210 can be used by the scheduler 2202 when deploying and allocating
service pods to the node 2204 to optimize usage of each of these computing characteristics within

the constraints 2210. The constraints 2210 can act as either soft or hard limits on the actual usage
29

10

15

20

25

30

WO 2019/068031 PCT/US2018/053620

of these computing characteristics by the node 2204. When pods within the node 2204 begin using
more of a computing characteristic than the constraints 2210 allow, the container platform
scheduler 2202 can throttle the usage of the node 2204 to ensure that the constraints are followed.
In some cases, the constraints 2210 may represent physical limitations of the underlying computer
hardware that is used, and throttling may take place based on the physical capabilities of this
computing hardware. Although the example constraints 2210, 2212, 2214 described herein refer
to maximum usages as example, this is not meant to be limiting. In practice, the constraints 2210,
2212, 2214 may include maximums, minimums, ranges of values, time intervals, threshold
numbers operations, target values, optimal values, and any other type of classification that may be

used to characterize computing usage.

[0115] When allocating pods to nodes, the scheduler 2202 can attempt to maximize the usage of
each computing characteristic within each node while ensuring that the actual usage of the
computing characteristics stays within the constraints 2210, 2212, 2214. However, when initially
deploying pods to containers, the scheduler 2202 has to rely on an estimate of the actual usage of
the pods. This estimate will often come from the developer of a service in the pod. For example,
when developing the service, the developer may specify that this pod uses 2 units of CPU, 3 units
of memory, and 10 units of bandwidth. These estimates made by the developer may be considered
absolute maximums, averages, target values, or any other value that the developer feels
comfortable specifying as a constraint. The technical problem inherent with this type of estimation
is that many developers will overestimate the amount of computing usage actually required by
their pods in practice. Developers will often purposely overestimate to ensure that their service
has all of the computing resources necessary to run at an optimal level. While this may ensure that
no bottlenecks occur, it also leads to the scheduler 2202 under-utilizing the available resources. In
practice, an average of 20% of computing resources can go unused in a node based on an initial
deployment using estimated computing usage. Developers will also often use an absolute
maximum when estimating usage for their services. However, these maximums may only occur
very infrequently such that the steady-state usage of all of the pods within the node operates well
below the constraints. This inefficient allocation of pods to nodes results in either unnecessary

bottlenecks or under usage of computing resources.

[0116] The embodiments described herein solve these and other technical problems by
improving the performance of the container platform using the scheduler 2202 and, in some
embodiments, the API registry 404. After an initial deployment of pods based on an estimate of
computing resource usage, the scheduler 2202 can monitor the actual usage of the post-

deployment pod operations. Based on the actual usage of the pods, the scheduler 2202 can

30

10

15

20

25

30

WO 2019/068031 PCT/US2018/053620

redistribute and/or redeploy pods between the different nodes in the container platform to optimize
the hardware usage and performance of the pods. Additionally, because usage can be tracked in
real time, the scheduler 2202 and/or the API registry 404 can detect when a usage rate is increasing
such that it can be projected to exceed one or more of the constraints 2210, 2212, 2214. In
response, the scheduler 2202 can warm up an additional instance of the pod in another container
node with available computing resources. If the actual usage continues to increase at a rate
indicating that the constraints 2210, 2212, 2214 may be exceeded, the system can begin diverting

traffic to the new instance.

[0117] In discussing these embodiments, the units used for measuring and characterizing usage
of various computing characteristics will be simplified for convenience of discussion. Instead of
reciting microprocessor cycles, gigabytes of memory, bits-per-second bandwidth, and so forth,
each of these measurements will simply be referred to as “units” for the sake of comparison. For
example, the constraints 2210 may recite a maximum of “20 units” of CPU usage. This may
correspond to two processor cores running at 3.46 GHz. When comparing the usage of a pod 2220
in the node 2204 associated with the constraints 2210, the usage of pod 2220 can be described as
using 5 units of CPU usage, which would correspond to approximately 25% of the total amount
available under the constraints 2210. Similarly, “units” of memory usage by correspond to

megabytes, gigabytes, terabytes, or any other standard measurement of memory usage.

[0118] The example of FIG. 22 corresponds to an initial deployment of pods within the nodes
2204, 2206, 2208 using the estimated CPU usage for each of the pods displayed in FIG. 22. These
estimates may be provided by developers of the services or may be estimated using automated
tools or other methods. Additionally, FIG. 22 may exclusively illustrate CPU usage without
illustrating memory usage, bandwidth usage, and other computing characteristics. This is done for
the sake of clarity and is not meant to be limiting. One having ordinary skill in the art would
understand that in addition to balancing CPU usage, the scheduler 2202 would also simultaneously
schedule according to memory usage, bandwidth usage, and other usage characteristics in the
constraints 2210, 2212, 2214. An example of balancing multiple usage factors is described further

below.

[0119] For the sake of simplicity, it can be assumed that the CPU usage for each of the nodes
2204, 2206, 2208 specified in their respective constraints 2210, 2212, 2214 describe a maximum
CPU usage of 20 units for each of the nodes 2204, 2206, 2208. When the scheduler 2202 receives
the seven pods depicted in FIG. 22, the scheduler 2202 can deploy these pods in a way that
maximizes the resource usage within each node, but does not violate the constraints associated

with each node. This can be done by number of different methods, in some embodiments, the
31

10

15

20

25

30

WO 2019/068031 PCT/US2018/053620

scheduler 2202 can use a round-robin method. In some embodiments, the scheduler 2202 can use
a greedy algorithm that places pods with the most usage first. For example, the scheduler 2202
can first deploy pod 2232 into node 2208 as it has the highest CPU usage of 18 units. The
scheduler 2202 may then deploy pod 2222 into node 2204 as it has the second highest CPU usage
of 10 units. The scheduler 2202 may then deploy pod 2224 into node 2206 as it has the third
highest CPU usage of 90 units, and so forth. The scheduler 2202 can use this or other algorithms
to fill in the available usage space in each node. Some schedulers may also leave a guard band
between the total usage of the pods and the constraint usage for the node to leave a buffer between
the usage and the constraint, particularly when the constraint describes a limitation of the

underlying physical hardware.

[0120] However, as described briefly above, the actual CPU usage of one or more of the pods in
the nodes may not be constant at its estimated value during actual operation. FIG. 23 illustrates a
graph of CPU usage over time. Line 2312 represents the estimated usage of pod 2228 of 6 CPU
units. Line 2322 represents the actual measured CPU usage of pod 2228 over time. Notice that
the actual usage 2322 is between 10 units and 12 units, which far exceeds the estimated 6 units of
CPU usage that was used to initially deploy the pod 2228. This higher-than-estimated usage can
occur when a service is more popular than initially estimated. This can also occur when a service
is not run as efficiently as intended. Regardless of the reason, increasing the actual usage 5-6 units
above the initally estimated 6 units is sufficient to cause the total usage of node 2206 to exceed the

maximum constraint 2212 of 20 CPU units.

[0121] Similarly, line 2310 represents the initial estimated usage of pod 2222 of 10 CPU units.
However, line 2328 represents the actual CPU usage of pod 2222 over time. Note that the actual
usage 2328 is between 4-5 units, which is 5-6 units below the estimated usage 2310 of 10 units.
This may result in the total usage of node 2204 being far less than the constraint 2210 of 20 CPU
units. Although this will not cause a bottleneck, it may cause the host of node 2204 to be
underutilized. If this occurs in multiple nodes, then the efficiency of the overall container platform

will be greatly reduced.

[0122] The embodiments described herein solve these and other problems by monitoring the
usage after deployment of services in each node. When these usages deviate beyond a threshold
ammount from their estimated usages used in their initial deployment, the scheduler 2202 and/or
the API registry 404 can reallocate the deployment of pods to different nodes in the container
platform to ensure that the constraints 2210, 2212, 2214 are maintained, while at the same time
efficiently utilizing the available hosts. There are some embodiments that can be implemented
using the scheduler 2202 without the API registry 404. There are also some embodiments that can
32

10

15

20

25

30

WO 2019/068031 PCT/US2018/053620

be implemented using the API registry 404 without the scheduler 2202. There are other
embodiments that use a combination of both the API registry and the scheduler 2202.

[0123] Different embodiments may use different methods of monitoring the usage of different
computing characteristics at runtime and following deployment of the pods. In some
embodiments, the scheduler 2202 can monitor transactions between pods and between nodes. In
these implementations, a logging function has been added to the scheduler to log transmissions
that are received by each pod as a service request. A data structure can store a count of these
transmissions that is incremented with each new transmission. The log for each transmission
includes information regarding the particular computing resource usage described by the
constraints for the nodes in the container platform. For example, the log can monitor transmission
times, transmission frequencies, the size of data packets being transmitted, and so forth.
Additionally, the log can store processing and memory usage requests from the pods to the
container platform, including requests to allocate new memory or delete old memory locations,
requests for processing functions, and so forth. The scheduler 2202 combines this logging
capability with a real-time analysis algorithm to determine absolute usage, peak usage, minimum
usage, average usage, instantaneous usage, and so forth, by using the timing and magnitude of
each of the inputs stored in the log. The analysis algorithm can be executed in real-time
continuously such that the scheduler 2202 maintains a record of up-to-date usage information for

every required usage characteristic to be compared to the constraints.

[0124] In embodiments using the API registry 404, the API registry 404 can embed usage code
in the client libraries for each calling service as described above. Specifically, a property
indicating usage logging can be used to enable the logging of interactions between services. This
can cause the API registry 404 to generate usage logging code in the client libraries of the calling
services. Additionally, when a service is deployed, the API registry 404 can embed usage logging
code in the service being deployed. This can cause the service to self-report memory usage
information, CPU usage information, bandwidth usage information, and so forth, to the API
registry 404. Note that because this code is automatically generated by the API registry, there is
no need for the service developer to embed this code themselves. Instead, this code may be
automatically generated, logged, calculated, and analyzed by the API registry. Similar to the
analysis algorithm run by the scheduler 2202, the API registry 404 and/or the code in the client
libraries can analyze the usage information in real time to determine usage characteristics such as

peak usage, average usage, instantaneous usage, minimum usage, and so forth.

[0125] After monitoring the usage information, the scheduler 2202 and/or the API registry 404

can identify when the actual usage characteristics of any pods in the container platform deviate
33

10

15

20

25

30

WO 2019/068031 PCT/US2018/053620

beyond a threshold amount from their initial estimated usage. When this deviation occurs, the
scheduler 2202 and/or the API registry 404 can determine that any pods that deviate from their
initial estimate by more than a threshold amount should be redeployed based on their actual
estimates. FIG. 24 illustrates a diagram depicting the redeployment of pods based on actual
usage. Recall that pod 2222 was originally estimated to have a CPU usage of 10 units. However,
its actual usage was closer to 4-5 CPU units. Assuming that the constraints 2210, 2212 relate to a
maximum CPU usage, the estimated usage for pod 2222 can be redefined to be 6 units of CPU
usage based on the actual recorded usage. Similarly, recall that pod 2228 had an initial estimated
CPU usage of 6 units. However, the actual usage over time for pod 2228 was closer to a
maximum of 12 units. Therefore, the estimated usage for pod 2228 can be reassigned to be 12

units of CPU usage.

[0126] When sufficient deviation from a current estimate of an actual usage is detected, the
scheduler 2202 and/or the API registry 404 can reassign pods across the plurality of nodes. In
some embodiments, it may be inefficient to reassign pods that are not deviating from their usage
estimate. In this example, only pods 2222 and 2228 would need to be reassigned, while pods
2220, 2224, 2226, 2230, and 2232 could remain where they are currently deployed. In one
algorithm, the deviating pods can be removed from their containers and redeployed using the
algorithms described above (round-robin, greedy, etc.). If all the deviating pods are able to be
redeployed using this method, then that may represent the most efficient reallocation method
available. In cases where the deviating pods cannot be redeployed by themselves, the scheduler
2202 and/or API registry 404 can begin reassigning nodes with the smallest estimated usage, even
if they do not deviate from the actual usage. This algorithm can be recursively followed until all
pods have been redeployed within the constraints 2210, 2212, 2214. This also ensures that the

resources of each host are most efficiently used by the pod deployment.

[0127] In embodiments with an API registry 404, redeployment may cause the API registry 404
to generate new bindings between endpoints in the nodes and functions registered with the API
registry. As described above, when a new IP address and port number are assigned to a
redeployed pod, the API registry can update its binding. This can in turn also update any client
libraries that were generated to handle interactions between any of the redeployed services and the
calling service. This also decreases any ripple effect that might normally occur when endpoints

are changed for services in the container platform.

[0128] FIG. 25 illustrates how multiple usage characteristics can be simultaneously balanced
within a container node. In this embodiment, the estimated usage 2205 for pod 2220 includes

three different usage factors: CPU usage, memory usage, and bandwidth usage. These three usage
34

10

15

20

25

30

WO 2019/068031 PCT/US2018/053620

characteristics may be associated with three different values, namely 8 units of CPU usage, 3 units
of memory usage, and 5 units of bandwidth usage. Similarly, the estimated usage 2504 of pod
2222 includes three usage factors: 10 units of CPU usage, 13 units of memory usage, and 1 unit of
bandwidth usage. When deploying or redeploying pod 2220 and pod 2222 according to the
methods described above, each of these factors can be balanced together to determine a proper
node in which to allocate these pods. In some embodiments, pods can be placed first according to
their largest estimated usage. This would correspond to placing pod 2222 first according to
memory, and pod 2220 first according to CPU usage. Other embodiments can deploy pods based

on the constraints and/or usage characteristics that are least available or most available.

[0129] FIG. 26 illustrates a deployment of pods after an initial deployment, according to some
embodiments. In this embodiment, it may be assumed that the constraint 2212 includes a CPU
maximum usage of 20 units. The total usage of pods 2224, 2228, and 2230 in node 2206 is
approximately 17 CPU units. In some cases, a pod, such as pod 2224, may experience a usage rate
that is temporarily higher than its normal average are expected usage rate. In this case, it may not
be efficient to redeploy the pod and adjust its usage rate if such occurrences are transitory and
sparse. However, in order to prevent the performance of pod 2224 from being negatively affected
— along with the cumulative performance of any other pods in the same node 2206 — the API
registry 404 and/or the scheduler 2202 can take additional steps to temporarily deploy additional

instances of the pod 2224 to handle a temporary increase in usage rate.

[0130] In one example, the CPU usage of pod 2224 may increase from nine CPU units to 15
CPU units. Note that this would cause the total CPU usage of the node 2206 to exceed the 20 CPU
unit maximum usage defined by the constraint 2212. This may cause a bottleneck for all pods in
the node 2206, particularly if the underlying hardware host does not have the CPU resources
requested by the note 2206.

[0131] FIG. 27 illustrates a CPU usage graph over time, according to some embodiments. Line
2710 illustrates the actual usage rate of pod 2224 over time. Line 2702 represents the estimated
usage for pod 2224 of 9 CPU units. Line 2714 represents the estimated usage for pod 2224 that
would cause the node 2206 to exceed the constraint 2212 of 20 CPU usage units. If left
unchecked, the usage of pod 2224 would first exceed its estimated maximum usage of 9 CPU units
and then exceed the 12 CPU units, causing the node 2206 to exceed its constraint maximum of 20

CPU units.

[0132] Using the scheduler 2202 and/or the API registry 404, the container platform can
effectively curtail the usage of pod 2224 before exceeding these thresholds. As described above,

35

10

15

20

25

30

WO 2019/068031 PCT/US2018/053620

the CPU usage can be tracked by the scheduler 2202 and/or the API registry 404 in real time as
processing is requested by the service of pod 2224. Because the current CPU usage logging may
include timestamps, the scheduler 2202 and/or the API registry 404 can determine a rate of
increase of the CPU usage. When the rate of increase of the CPU usage exceeds a first threshold
2704, these systems can “warm-up” a new instance of the service of pod 2224 in another part of
node 2206 or in a different node, such as node 2204, Warming up a new instance of a service may
include instantiating a new pod and loading an instance of the service into the new pod. It may
also include performing an initialization routine for the new pod and sending test inputs/vectors to
the service to begin processing. A node may be selected for the new pod that has the lowest
aggregate usage rate for the selected usage factor, e.g. CPU usage. During the warm-up stage, no
live traffic needs to be routed to the new pod. This is a time interval that can be used to prepare
for a continued increase in CPU usage rate. If the rate continues to increase, the system may then

be ready to respond by diverting request traffic to a new pod.

[0133] If the usage rate begins to decrease or fails to sustain a predetermined threshold rate of
increase, the newly instantiated pod can be deleted. However, if the rate of increase maintains a
predetermined level and crosses a second threshold 2706, the system can respond by activating the
newly instantiated pod. In other words, if it is determined that the increasing CPU usage will
likely exceed the maximum constraint for the entire node, the service request traffic can be
rerouted to the new pod that is operating in a different node. This may include routing traffic from
pod 2224 in node 2206 to a new pod in container 2204. After the new pod is activated, curve 2712
shows the new CPU usage trajectory of pod 2224. This new trajectory is curtailed before it
significantly exceeds the line 2702 representing the estimated usage rate for pod 2224. This new
trajectory is also curtailed significantly before it comes close to exceeding line 2714 representing

the constraint limit of node 2206.

[0134] FIG. 28 illustrates a diagram of the pod instantiation process described in FIG. 27,
according to some embodiments. All the request traffic 2004 is initially sent to pod 2224. As the
CPU usage rate begins to increase, the scheduler 2202 and/or the API registry 404 can instantiate a
new pod 2002 in node 2204. Node 2204 can be selected because it currently has the lowest CPU
usage on the container platform of 8 CPU units. Note that even after the new pod 2802 is
instantiated in node 2204, none of the request traffic 2004 is diverted to the new pod 2002.

Instead, pod 2802 can be instantiated, initialized, and otherwise “warmed up” in preparation for
receiving some of the request traffic 2804 if the CPU usage rate of pod 2224 continues to increase

unabated.

36

10

15

20

25

30

WO 2019/068031 PCT/US2018/053620

[0135] FIG. 29 illustrates a diagram of pod instantiation and usage, according to some
embodiments. Continuing from the example of FIG. 28, it can be assumed that the CPU usage rate
of pod 2224 continued to increase after the new pod 2002 is instantiated in node 2204. After
increasing capacity threshold level of CPU usage increase, the API registry 404 and/or the
scheduler 2202 can begin to have traffic routed to the new pod 2802.

[0136] In some embodiments, this may include instantiating a pod that implements a load
balancer that receives incoming requests as directed by the API registry 404. The load balancer
can then equalize the number of requests between pod 2224 and pod 2802. In some embodiments,
the load balancer can begin by initially splitting request traffic equally between pod 2224 and pod
2802. The load balancer can then determine which of node 2204 and node 2206 is closest to their
CPU usage constraints 2210, 2012, respectively. The load balancer can then adjust the flow of
request traffic between the two pods 2224, 2802 to maintain an equal guard band between the
usage of the nodes 2204, 2206 relative to their respective constraints 2210, 2012. For example,
when two pods split request traffic equally, this may put the aggregate CPU usage of a first node
that contains the first pod closer to its constraint maximum than that of a second node containing
the second pod. In this case, the load balancer can shift traffic from the first pod to the second pod
so that it is not equally distributed, but so the buffer between the actual usage and the maximum

usage as dictated by the constraints are approximately equal.

[0137] In cases where the CPU usage increase that cause the new pod 2802 to be instantiated
and activated begins to subside over time, the scheduler 2202 and/or API registry 404 can detect
this decrease and subsequently shift the request traffic 2902 back to pod 2224. This allows the
process of temporary instantiation to handle additional request traffic to act as an intermediate
response to an increase of computing resource usage. If that increase is transient, and lasts less
than a threshold amount of time, the new pod 2002 can simply be deleted and operation can
continue as normal. However, in cases where the increase in computing resource usage is more
persistent, lasting longer than a threshold amount of time, the API registry 404 and/or the
scheduler 2202 can instead increase the estimated resource usage of pod 2224 and redeploying the
pod in a container node with sufficient resources for the single service instance. This
redeployment process can be followed as described above in FIGS. 22-24. In some embodiments,
this process of temporary instantiation can always preceed the rebalancing and redeployment of

FIGS. 22-24, though this is not mandatory.

[0138] FIG. 30 illustrates a flowchart of a method for dynamically rebalancing services in a
container platform, according to some embodiments. The method may include deploying a

plurality of pods to a plurality of nodes in a container platform (3001). As used herein, the term
37

10

15

20

25

30

WO 2019/068031 PCT/US2018/053620

“pods” may also refer to services or containers since services in some embodiments may deploye a
single service to a pod comprised of one or more containers. These pods may be distributed and
deployed on the plurality of nodes in the container platform as described in relation to FIG. 22
above. Each of the nodes may be associated with usage constraints that describe a constraint upon
computing resource usage within each node. As described above, these constraints may be
associated with any computing resource, such as CPU usage, memory usage, bandwidth usage,
power usage, time usage, software module usage, and so forth. Although the examples described
above refer specifically to CPU usage as an example, any of these other computing resources can

be substituted for CPU usage in any combination and without limitation.

[0139] The method may also include monitoring usage factors associated with the plurality of
pods after deployment (3003). Monitoring of these usage factors may be performed by a
scheduler, by an implementation of the API registry described above, or by other software process
operating within the container platform. Monitoring usage factors may include maintaining a log
with time-stamped information describing service/pod operations. These operations may include
requests for memory resources, requests for CPU usage, data transmissions through a network,
requests sent between services in the container platform, hardware measurements including power
measurements and/or CPU clock cycles or operations, and/or other characterizations of the
operations of the pod/service. In some embodiments, the system may also monitor usage factors in
the aggregate for an entire node in comparison to the constraints for the node. These operations
may include timing factors that allow the system to calculate usage rates including, instantaneous
rates, average rates, maximum rates, minimum rates, target rates, and so forth, these rates may be
calculated in addition to the logged average, minimum, maximum, instantaneous, etc.,
measurements of these factors themselves. Other mathematical calculations may be applied to the
measured usage factors, such as first derivatives, second derivatives, statistical characterizations,

comparisons, differences, and so forth.

[0140] The method may also include identifying when actual usage of a pod deviates from an
initial characterization of its usage factor (3005). This deviation may compare a type of usage
information measured after deployment to a type of usage information estimated prior to
deployment. For example, if the usage of absolute memory usage was limited by the constraint to
10 GB, then the estimated usage prior to deployment may be a measurement such as 5 GB for a
particular pod within the node. The actual deviation can comprise a comparison between the
measured usage after deployment to the estimated usage used during deployment. For example,
the 5 GB estimate prior to deployment can be compared to a 7 GB measurement after deployment.

When this deviation exceeds a predetermined threshold, such as 1 GB, this pod can be identified as

38

10

15

20

25

30

WO 2019/068031 PCT/US2018/053620

a deviation. In another example, if the constraint specified a rate of memory allocation, such as 10
MB/s, then the system may use the recorded memory allocation requests to calculate a rate of
memory allocation to be compared to the estimated usage prior to deployment. Some
embodiments may require the deviation to be maintained for at least a predetermined time interval
before being reported as a deviation to prevent transient or temporary deviations from causing

system changing deployments or initiating the instantiation of new pods.

[0141] The method may further include redistributing at least a portion of the plurality of pods
based on their usage factor deviation (3007). This redistribution may include moving a pod from
one node to a second node. This redistribution may also include adjusting the estimated usage
factor that resulted in the deviation to be in line with the actual usage measured by the system after
deployment. In some embodiments, this redistribution may include first instantiating and warming
up a duplicate or cloned pod in a second node after surpassing a first usage threshold, and
diverting traffic from a first pod to the duplicate or cloned pod to handle temporary changes in
usage and to prevent the usage from exceeding a constraint for the node that encapsulates the

original first pod.

[0142] It should be appreciated that the specific steps illustrated in FIG. 30 provide particular
methods of dynamically rebalancing services in a container platform according to various
embodiments of the present invention. Other sequences of steps may also be performed according
to alternative embodiments. For example, alternative embodiments of the present invention may
perform the steps outlined above in a different order. Moreover, the individual steps illustrated in
FIG. 30 may include multiple sub-steps that may be performed in various sequences as appropriate
to the individual step. Furthermore, additional steps may be added or removed depending on the
particular applications. One of ordinary skill in the art would recognize many variations,

modifications, and alternatives.

[0143] Each of the methods described herein may be implemented by a specialized computer
system. Each step of these methods may be executed automatically by the computer system,
and/or may be provided with inputs/outputs involving a user. For example, a user may provide
inputs for each step in a method, and each of these inputs may be in response to a specific output
requesting such an input, wherein the output is generated by the computer system. Each input may
be received in response to a corresponding requesting output. Furthermore, inputs may be
received from a user, from another computer system as a data stream, retrieved from a memory
location, retrieved over a network, requested from a web service, and/or the like. Likewise,
outputs may be provided to a user, to another computer system as a data stream, saved in a

memory location, sent over a network, provided to a web service, and/or the like. In short, each
39

10

15

20

25

30

WO 2019/068031 PCT/US2018/053620

step of the methods described herein may be performed by a computer system, and may involve
any number of inputs, outputs, and/or requests to and from the computer system which may or
may not involve a user. Those steps not involving a user may be said to be performed
automatically by the computer system without human intervention. Therefore, it will be
understood in light of this disclosure, that each step of each method described herein may be
altered to include an input and output to and from a user, or may be done automatically by a
computer system without human intervention where any determinations are made by a processor.
Furthermore, some embodiments of each of the methods described herein may be implemented as
a set of instructions stored on a tangible, non-transitory storage medium to form a tangible

software product.

[0144] FIG. 31 depicts a simplified diagram of a distributed system 3100 that may interact with
any of the embodiments described above. In the illustrated embodiment, distributed system 3100
includes one or more client computing devices 3102, 3104, 3106, and 3108, which are configured
to execute and operate a client application such as a web browser, proprietary client (e.g., Oracle
Forms), or the like over one or more network(s) 3110. Server 3112 may be communicatively

coupled with remote client computing devices 3102, 3104, 3106, and 3108 via network 3110.

[0145] In various embodiments, server 3112 may be adapted to run one or more services or
software applications provided by one or more of the components of the system. In some
embodiments, these services may be offered as web-based or cloud services or under a Software as
a Service (SaaS) model to the users of client computing devices 3102, 3104, 3106, and/or 3108.
Users operating client computing devices 3102, 3104, 3106, and/or 3108 may in turn utilize one or
more client applications to interact with server 3112 to utilize the services provided by these

components.

[0146] In the configuration depicted in the figure, the software components 3118, 3120 and 3122
of system 3100 are shown as being implemented on server 3112. In other embodiments, one or
more of the components of system 3100 and/or the services provided by these components may
also be implemented by one or more of the client computing devices 3102, 3104, 3106, and/or
3108. Users operating the client computing devices may then utilize one or more client
applications to use the services provided by these components. These components may be
implemented in hardware, firmware, software, or combinations thereof. It should be appreciated
that various different system configurations are possible, which may be different from distributed
system 3100. The embodiment shown in the figure is thus one example of a distributed system for

implementing an embodiment system and is not intended to be limiting.

40

10

15

20

25

30

WO 2019/068031 PCT/US2018/053620

[0147] Client computing devices 3102, 3104, 3106, and/or 3108 may be portable handheld
devices (e.g., an iPhone®, cellular telephone, an iPad®, computing tablet, a personal digital
assistant (PDA)) or wearable devices (e.g., a Google Glass® head mounted display), running
software such as Microsoft Windows Mobile®, and/or a variety of mobile operating systems such
as 108, Windows Phone, Android, BlackBerry 10, Palm OS, and the like, and being Internet, e-
mail, short message service (SMS), Blackberry®, or other communication protocol enabled. The
client computing devices can be general purpose personal computers including, by way of
example, personal computers and/or laptop computers running various versions of Microsoft
Windows®, Apple Macintosh®, and/or Linux operating systems. The client computing devices
can be workstation computers running any of a variety of commercially-available UNIX® or
UNIX-like operating systems, including without limitation the variety of GNU/Linux operating
systems, such as for example, Google Chrome OS. Alternatively, or in addition, client computing
devices 3102, 3104, 3106, and 3108 may be any other electronic device, such as a thin-client
computer, an Internet-enabled gaming system (e.g., a Microsoft Xbox gaming console with or
without a Kinect® gesture input device), and/or a personal messaging device, capable of

communicating over network(s) 3110.

[0148] Although exemplary distributed system 3100 is shown with four client computing
devices, any number of client computing devices may be supported. Other devices, such as

devices with sensors, etc., may interact with server 3112,

[0149] Network(s) 3110 in distributed system 3100 may be any type of network familiar to those
skilled in the art that can support data communications using any of a variety of commercially-
available protocols, including without limitation TCP/IP (transmission control protocol/Internet
protocol), SNA (systems network architecture), IPX (Internet packet exchange), AppleTalk, and
the like. Merely by way of example, network(s) 3110 can be a local area network (LAN), such as
one based on Ethernet, Token-Ring and/or the like. Network(s) 3110 can be a wide-area network
and the Internet. It can include a virtual network, including without limitation a virtual private
network (VPN), an intranet, an extranet, a public switched telephone network (PSTN), an infra-red
network, a wireless network (e.g., a network operating under any of the Institute of Electrical and
Electronics (IEEE) 802.11 suite of protocols, Bluetooth®, and/or any other wireless protocol);

and/or any combination of these and/or other networks.

[0150] Server 3112 may be composed of one or more general purpose computers, specialized
server computers (including, by way of example, PC (personal computer) servers, UNIX® servers,
mid-range servers, mainframe computers, rack-mounted servers, etc.), server farms, server

clusters, or any other appropriate arrangement and/or combination. In various embodiments, server

41

10

15

20

25

30

WO 2019/068031 PCT/US2018/053620

3112 may be adapted to run one or more services or software applications described in the
foregoing disclosure. For example, server 3112 may correspond to a server for performing

processing described above according to an embodiment of the present disclosure.

[0151] Server 3112 may run an operating system including any of those discussed above, as well
as any commercially available server operating system. Server 3112 may also run any of a variety
of additional server applications and/or mid-tier applications, including HTTP (hypertext transport
protocol) servers, FTP (file transfer protocol) servers, CGI (common gateway interface) servers,
JAVA® servers, database servers, and the like. Exemplary database servers include without
limitation those commercially available from Oracle, Microsoft, Sybase, IBM (International

Business Machines), and the like.

[0152] In some implementations, server 3112 may include one or more applications to analyze
and consolidate data feeds and/or event updates received from users of client computing devices
3102, 3104, 3106, and 3108. As an example, data feeds and/or event updates may include, but are
not limited to, Twitter® feeds, Facebook® updates or real-time updates received from one or more
third party information sources and continuous data streams, which may include real-time events
related to sensor data applications, financial tickers, network performance measuring tools (e.g.,
network monitoring and traffic management applications), clickstream analysis tools, automobile
traffic monitoring, and the like. Server 3112 may also include one or more applications to display
the data feeds and/or real-time events via one or more display devices of client computing devices

3102, 3104, 3106, and 3108.

[0153] Distributed system 3100 may also include one or more databases 3114 and 3116.
Databases 3114 and 3116 may reside in a variety of locations. By way of example, one or more of
databases 3114 and 3116 may reside on a non-transitory storage medium local to (and/or resident
in) server 3112. Alternatively, databases 3114 and 3116 may be remote from server 3112 and in
communication with server 3112 via a network-based or dedicated connection. In one set of
embodiments, databases 3114 and 3116 may reside in a storage-area network (SAN). Similarly,
any necessary files for performing the functions attributed to server 3112 may be stored locally on
server 3112 and/or remotely, as appropriate. In one set of embodiments, databases 3114 and 3116
may include relational databases, such as databases provided by Oracle, that are adapted to store,

update, and retrieve data in response to SQL-formatted commands.

[0154] FIG. 32 is a simplified block diagram of one or more components of a system
environment 3200 by which services provided by one or more components of an embodiment

system may be offered as cloud services, in accordance with an embodiment of the present

42

10

15

20

25

30

WO 2019/068031 PCT/US2018/053620

disclosure. In the illustrated embodiment, system environment 3200 includes one or more client
computing devices 3204, 3206, and 3208 that may be used by users to interact with a cloud
infrastructure system 3202 that provides cloud services. The client computing devices may be
configured to operate a client application such as a web browser, a proprietary client application
(e.g., Oracle Forms), or some other application, which may be used by a user of the client
computing device to interact with cloud infrastructure system 3202 to use services provided by

cloud infrastructure system 3202.

[0155] It should be appreciated that cloud infrastructure system 3202 depicted in the figure may
have other components than those depicted. Further, the embodiment shown in the figure is only
one example of a cloud infrastructure system that may incorporate an embodiment of the
invention. In some other embodiments, cloud infrastructure system 3202 may have more or fewer
components than shown in the figure, may combine two or more components, or may have a

different configuration or arrangement of components.

[0156] Client computing devices 3204, 3206, and 3208 may be devices similar to those
described above for 3102, 3104, 3106, and 3108.

[0157] Although exemplary system environment 3200 is shown with three client computing
devices, any number of client computing devices may be supported. Other devices such as devices

with sensors, etc. may interact with cloud infrastructure system 3202.

[0158] Network(s) 3210 may facilitate communications and exchange of data between clients
3204, 3206, and 3208 and cloud infrastructure system 3202. Each network may be any type of
network familiar to those skilled in the art that can support data communications using any of a

variety of commercially-available protocols, including those described above for network(s) 3110.

[0159] Cloud infrastructure system 3202 may comprise one or more computers and/or servers

that may include those described above for server 3112.

[0160] In certain embodiments, services provided by the cloud infrastructure system may
include a host of services that are made available to users of the cloud infrastructure system on
demand, such as online data storage and backup solutions, Web-based e-mail services, hosted
office suites and document collaboration services, database processing, managed technical support
services, and the like. Services provided by the cloud infrastructure system can dynamically scale
to meet the needs of its users. A specific instantiation of a service provided by cloud infrastructure
system is referred to herein as a “service instance.” In general, any service made available to a
user via a communication network, such as the Internet, from a cloud service provider's system is

referred to as a “cloud service.” Typically, in a public cloud environment, servers and systems that
43

10

15

20

25

30

WO 2019/068031 PCT/US2018/053620

make up the cloud service provider's system are different from the customer's own on-premises
servers and systems. For example, a cloud service provider's system may host an application, and
a user may, via a communication network such as the Internet, on demand, order and use the

application.

[0161] In some examples, a service in a computer network cloud infrastructure may include
protected computer network access to storage, a hosted database, a hosted web server, a software
application, or other service provided by a cloud vendor to a user, or as otherwise known in the art.
For example, a service can include password-protected access to remote storage on the cloud
through the Internet. As another example, a service can include a web service-based hosted
relational database and a script-language middleware engine for private use by a networked
developer. As another example, a service can include access to an email software application

hosted on a cloud vendor's web site.

[0162] In certain embodiments, cloud infrastructure system 3202 may include a suite of
applications, middleware, and database service offerings that are delivered to a customer in a self-
service, subscription-based, elastically scalable, reliable, highly available, and secure manner. An
example of such a cloud infrastructure system is the Oracle Public Cloud provided by the present

assignee.

[0163] In various embodiments, cloud infrastructure system 3202 may be adapted to
automatically provision, manage and track a customer’s subscription to services offered by cloud
infrastructure system 3202. Cloud infrastructure system 3202 may provide the cloud services via
different deployment models. For example, services may be provided under a public cloud model
in which cloud infrastructure system 3202 is owned by an organization selling cloud services (e.g.,
owned by Oracle) and the services are made available to the general public or different industry
enterprises. As another example, services may be provided under a private cloud model in which
cloud infrastructure system 3202 is operated solely for a single organization and may provide
services for one or more entities within the organization. The cloud services may also be provided
under a community cloud model in which cloud infrastructure system 3202 and the services
provided by cloud infrastructure system 3202 are shared by several organizations in a related
community. The cloud services may also be provided under a hybrid cloud model, which is a

combination of two or more different models.

[0164] In some embodiments, the services provided by cloud infrastructure system 3202 may
include one or more services provided under Software as a Service (SaaS) category, Platform as a

Service (PaaS) category, Infrastructure as a Service (IaaS) category, or other categories of services

44

10

15

20

25

30

WO 2019/068031 PCT/US2018/053620

including hybrid services. A customer, via a subscription order, may order one or more services
provided by cloud infrastructure system 3202. Cloud infrastructure system 3202 then performs

processing to provide the services in the customer’s subscription order.

[0165] In some embodiments, the services provided by cloud infrastructure system 3202 may
include, without limitation, application services, platform services and infrastructure services. In
some examples, application services may be provided by the cloud infrastructure system via a
SaaS platform. The SaaS platform may be configured to provide cloud services that fall under the
SaaS category. For example, the SaaS platform may provide capabilities to build and deliver a
suite of on-demand applications on an integrated development and deployment platform. The
SaaS platform may manage and control the underlying software and infrastructure for providing
the SaaS services. By utilizing the services provided by the SaaS platform, customers can utilize
applications executing on the cloud infrastructure system. Customers can acquire the application
services without the need for customers to purchase separate licenses and support. Various
different SaaS services may be provided. Examples include, without limitation, services that
provide solutions for sales performance management, enterprise integration, and business

flexibility for large organizations.

[0166] In some embodiments, platform services may be provided by the cloud infrastructure
system via a PaaS platform. The PaaS platform may be configured to provide cloud services that
fall under the PaaS category. Examples of platform services may include without limitation
services that enable organizations (such as Oracle) to consolidate existing applications on a shared,
common architecture, as well as the ability to build new applications that leverage the shared
services provided by the platform. The PaaS platform may manage and control the underlying
software and infrastructure for providing the PaaS services. Customers can acquire the PaaS
services provided by the cloud infrastructure system without the need for customers to purchase
separate licenses and support. Examples of platform services include, without limitation, Oracle

Java Cloud Service (JCS), Oracle Database Cloud Service (DBCS), and others.

[0167] By utilizing the services provided by the PaaS platform, customers can employ
programming languages and tools supported by the cloud infrastructure system and also control
the deployed services. In some embodiments, platform services provided by the cloud
infrastructure system may include database cloud services, middleware cloud services (e.g., Oracle
Fusion Middleware services), and Java cloud services. In one embodiment, database cloud
services may support shared service deployment models that enable organizations to pool database
resources and offer customers a Database as a Service in the form of a database cloud. Middleware

cloud services may provide a platform for customers to develop and deploy various business
45

10

15

20

25

30

WO 2019/068031 PCT/US2018/053620

applications, and Java cloud services may provide a platform for customers to deploy Java

applications, in the cloud infrastructure system.

[0168] Various different infrastructure services may be provided by an IaaS platform in the
cloud infrastructure system. The infrastructure services facilitate the management and control of
the underlying computing resources, such as storage, networks, and other fundamental computing

resources for customers utilizing services provided by the SaaS platform and the PaaS platform.

[0169] In certain embodiments, cloud infrastructure system 3202 may also include infrastructure
resources 3230 for providing the resources used to provide various services to customers of the
cloud infrastructure system. In one embodiment, infrastructure resources 3230 may include pre-
integrated and optimized combinations of hardware, such as servers, storage, and networking

resources to execute the services provided by the PaaS platform and the SaaS platform.

[0170] In some embodiments, resources in cloud infrastructure system 3202 may be shared by
multiple users and dynamically re-allocated per demand. Additionally, resources may be allocated
to users in different time zones. For example, cloud infrastructure system 3230 may enable a first
set of users in a first time zone to utilize resources of the cloud infrastructure system for a
specified number of hours and then enable the re-allocation of the same resources to another set of

users located in a different time zone, thereby maximizing the utilization of resources.

[0171] In certain embodiments, a number of internal shared services 3232 may be provided that
are shared by different components or modules of cloud infrastructure system 3202 and by the
services provided by cloud infrastructure system 3202. These internal shared services may
include, without limitation, a security and identity service, an integration service, an enterprise
repository service, an enterprise manager service, a virus scanning and white list service, a high
availability, backup and recovery service, service for enabling cloud support, an email service, a

notification service, a file transfer service, and the like.

[0172] In certain embodiments, cloud infrastructure system 3202 may provide comprehensive
management of cloud services (e.g., SaaS, PaaS, and laaS services) in the cloud infrastructure
system. In one embodiment, cloud management functionality may include capabilities for
provisioning, managing and tracking a customer’s subscription received by cloud infrastructure

system 3202, and the like.

[0173] In one embodiment, as depicted in the figure, cloud management functionality may be
provided by one or more modules, such as an order management module 3220, an order
orchestration module 3222, an order provisioning module 3224, an order management and

monitoring module 3226, and an identity management module 3228. These modules may include
46

10

15

20

25

30

WO 2019/068031 PCT/US2018/053620

or be provided using one or more computers and/or servers, which may be general purpose
computers, specialized server computers, server farms, server clusters, or any other appropriate

arrangement and/or combination.

[0174] In exemplary operation 3234, a customer using a client device, such as client device
3204, 3206 or 3208, may interact with cloud infrastructure system 3202 by requesting one or more
services provided by cloud infrastructure system 3202 and placing an order for a subscription for
one or more services offered by cloud infrastructure system 3202. In certain embodiments, the
customer may access a cloud User Interface (UI), cloud UI 3212, cloud UI 3214 and/or cloud Ul
3216 and place a subscription order via these Uls. The order information received by cloud
infrastructure system 3202 in response to the customer placing an order may include information
identifying the customer and one or more services offered by the cloud infrastructure system 3202

that the customer intends to subscribe to.

[0175] After an order has been placed by the customer, the order information is received via the

cloud Uls, 3212, 3214 and/or 3216.

[0176] At operation 3236, the order is stored in order database 3218. Order database 3218 can
be one of several databases operated by cloud infrastructure system 3218 and operated in

conjunction with other system elements.

[0177] At operation 3238, the order information is forwarded to an order management module
3220. In some instances, order management module 3220 may be configured to perform billing
and accounting functions related to the order, such as verifying the order, and upon verification,

booking the order.

[0178] At operation 3240, information regarding the order is communicated to an order
orchestration module 3222. Order orchestration module 3222 may utilize the order information to
orchestrate the provisioning of services and resources for the order placed by the customer. In
some instances, order orchestration module 3222 may orchestrate the provisioning of resources to

support the subscribed services using the services of order provisioning module 3224,

[0179] In certain embodiments, order orchestration module 3222 enables the management of
business processes associated with each order and applies business logic to determine whether an
order should proceed to provisioning. At operation 3242, upon receiving an order for a new
subscription, order orchestration module 3222 sends a request to order provisioning module 3224
to allocate resources and configure those resources needed to fulfill the subscription order. Order
provisioning module 3224 enables the allocation of resources for the services ordered by the

customer. Order provisioning module 3224 provides a level of abstraction between the cloud
47

10

15

20

25

30

WO 2019/068031 PCT/US2018/053620

services provided by cloud infrastructure system 3200 and the physical implementation layer that
is used to provision the resources for providing the requested services. Order orchestration module
3222 may thus be isolated from implementation details, such as whether or not services and
resources are actually provisioned on the fly or pre-provisioned and only allocated/assigned upon

request.

[0180] At operation 3244, once the services and resources are provisioned, a notification of the
provided service may be sent to customers on client devices 3204, 3206 and/or 3208 by order

provisioning module 3224 of cloud infrastructure system 3202.

[0181] At operation 3246, the customer’s subscription order may be managed and tracked by an
order management and monitoring module 3226. In some instances, order management and
monitoring module 3226 may be configured to collect usage statistics for the services in the
subscription order, such as the amount of storage used, the amount data transferred, the number of

users, and the amount of system up time and system down time.

[0182] In certain embodiments, cloud infrastructure system 3200 may include an identity
management module 3228. Identity management module 3228 may be configured to provide
identity services, such as access management and authorization services in cloud infrastructure
system 3200. In some embodiments, identity management module 3228 may control information
about customers who wish to utilize the services provided by cloud infrastructure system 3202.
Such information can include information that authenticates the identities of such customers and
information that describes which actions those customers are authorized to perform relative to
various system resources (e.g., files, directories, applications, communication ports, memory
segments, etc.) Identity management module 3228 may also include the management of
descriptive information about each customer and about how and by whom that descriptive

information can be accessed and modified.

[0183] FIG. 33 illustrates an exemplary computer system 3300, in which various embodiments
of the present invention may be implemented. The system 3300 may be used to implement any of
the computer systems described above. As shown in the figure, computer system 3300 includes a
processing unit 3304 that communicates with a number of peripheral subsystems via a bus
subsystem 3302. These peripheral subsystems may include a processing acceleration unit 3306, an
I/O subsystem 3308, a storage subsystem 3318 and a communications subsystem 3324. Storage
subsystem 3318 includes tangible computer-readable storage media 3322 and a system memory

3310.

48

10

15

20

25

30

WO 2019/068031 PCT/US2018/053620

[0184] Bus subsystem 3302 provides a mechanism for letting the various components and
subsystems of computer system 3300 communicate with each other as intended. Although bus
subsystem 3302 is shown schematically as a single bus, alternative embodiments of the bus
subsystem may utilize multiple buses. Bus subsystem 3302 may be any of several types of bus
structures including a memory bus or memory controller, a peripheral bus, and a local bus using
any of a variety of bus architectures. For example, such architectures may include an Industry
Standard Architecture (ISA) bus, Micro Channel Architecture (MCA) bus, Enhanced ISA (EISA)
bus, Video Electronics Standards Association (VESA) local bus, and Peripheral Component
Interconnect (PCI) bus, which can be implemented as a Mezzanine bus manufactured to the IEEE

P1386.1 standard.

[0185] Processing unit 3304, which can be implemented as one or more integrated circuits (e.g.,
a conventional microprocessor or microcontroller), controls the operation of computer system
3300. One or more processors may be included in processing unit 3304. These processors may
include single core or multicore processors. In certain embodiments, processing unit 3304 may be
implemented as one or more independent processing units 3332 and/or 3334 with single or
multicore processors included in each processing unit. In other embodiments, processing unit
3304 may also be implemented as a quad-core processing unit formed by integrating two dual-core

processors into a single chip.

[0186] In various embodiments, processing unit 3304 can execute a variety of programs in
response to program code and can maintain multiple concurrently executing programs or
processes. At any given time, some or all of the program code to be executed can be resident in
processor(s) 3304 and/or in storage subsystem 3318. Through suitable programming, processor(s)
3304 can provide various functionalities described above. Computer system 3300 may additionally
include a processing acceleration unit 3306, which can include a digital signal processor (DSP), a

special-purpose processor, and/or the like.

[0187] I/O subsystem 3308 may include user interface input devices and user interface output
devices. User interface input devices may include a keyboard, pointing devices such as a mouse or
trackball, a touchpad or touch screen incorporated into a display, a scroll wheel, a click wheel, a
dial, a button, a switch, a keypad, audio input devices with voice command recognition systems,
microphones, and other types of input devices. User interface input devices may include, for
example, motion sensing and/or gesture recognition devices such as the Microsoft Kinect® motion
sensor that enables users to control and interact with an input device, such as the Microsoft Xbox®
360 game controller, through a natural user interface using gestures and spoken commands. User

interface input devices may also include eye gesture recognition devices such as the Google
49

10

15

20

25

30

WO 2019/068031 PCT/US2018/053620

Glass® blink detector that detects eye activity (e.g., ‘blinking” while taking pictures and/or making
a menu selection) from users and transforms the eye gestures as input into an input device (e.g.,

Google Glass®). Additionally, user interface input devices may include voice recognition sensing
devices that enable users to interact with voice recognition systems (e.g., Siri® navigator), through

voice commands.

[0188] User interface input devices may also include, without limitation, three dimensional (3D)
mice, joysticks or pointing sticks, gamepads and graphic tablets, and audio/visual devices such as
speakers, digital cameras, digital camcorders, portable media players, webcams, image scanners,
fingerprint scanners, barcode reader 3D scanners, 3D printers, laser rangefinders, and eye gaze
tracking devices. Additionally, user interface input devices may include, for example, medical
imaging input devices such as computed tomography, magnetic resonance imaging, position
emission tomography, medical ultrasonography devices. User interface input devices may also
include, for example, audio input devices such as MIDI keyboards, digital musical instruments and

the like.

[0189] User interface output devices may include a display subsystem, indicator lights, or non-
visual displays such as audio output devices, etc. The display subsystem may be a cathode ray
tube (CRT), a flat-panel device, such as that using a liquid crystal display (LCD) or plasma
display, a projection device, a touch screen, and the like. In general, use of the term "output
device" is intended to include all possible types of devices and mechanisms for outputting
information from computer system 3300 to a user or other computer. For example, user interface
output devices may include, without limitation, a variety of display devices that visually convey
text, graphics and audio/video information such as monitors, printers, speakers, headphones,

automotive navigation systems, plotters, voice output devices, and modems.

[0190] Computer system 3300 may comprise a storage subsystem 3318 that comprises software
elements, shown as being currently located within a system memory 3310. System memory 3310
may store program instructions that are loadable and executable on processing unit 3304, as well

as data generated during the execution of these programs.

[0191] Depending on the configuration and type of computer system 3300, system memory 3310
may be volatile (such as random access memory (RAM)) and/or non-volatile (such as read-only
memory (ROM), flash memory, etc.) The RAM typically contains data and/or program modules
that are immediately accessible to and/or presently being operated and executed by processing unit
3304. In some implementations, system memory 3310 may include multiple different types of

memory, such as static random access memory (SRAM) or dynamic random access memory

50

10

15

20

25

30

WO 2019/068031 PCT/US2018/053620

(DRAM). In some implementations, a basic input/output system (BIOS), containing the basic
routines that help to transfer information between elements within computer system 3300, such as
during start-up, may typically be stored in the ROM. By way of example, and not limitation,
system memory 3310 also illustrates application programs 3312, which may include client
applications, Web browsers, mid-tier applications, relational database management systems
(RDBMY), etc., program data 3314, and an operating system 3316. By way of example, operating
system 3316 may include various versions of Microsoft Windows®, Apple Macintosh®, and/or
Linux operating systems, a variety of commercially-available UNIX® or UNIX-like operating
systems (including without limitation the variety of GNU/Linux operating systems, the Google
Chrome® OS, and the like) and/or mobile operating systems such as i10S, Windows® Phone,
Android® OS, BlackBerry® 10 OS, and Palm® OS operating systems.

[0192] Storage subsystem 3318 may also provide a tangible computer-readable storage medium
for storing the basic programming and data constructs that provide the functionality of some
embodiments. Software (programs, code modules, instructions) that when executed by a processor
provide the functionality described above may be stored in storage subsystem 3318. These
software modules or instructions may be executed by processing unit 3304. Storage subsystem

3318 may also provide a repository for storing data used in accordance with the present invention.

[0193] Storage subsystem 3300 may also include a computer-readable storage media reader
3320 that can further be connected to computer-readable storage media 3322. Together and,
optionally, in combination with system memory 3310, computer-readable storage media 3322 may
comprehensively represent remote, local, fixed, and/or removable storage devices plus storage
media for temporarily and/or more permanently containing, storing, transmitting, and retrieving

computer-readable information.

[0194] Computer-readable storage media 3322 containing code, or portions of code, can also
include any appropriate media known or used in the art, including storage media and
communication media, such as but not limited to, volatile and non-volatile, removable and non-
removable media implemented in any method or technology for storage and/or transmission of
information. This can include tangible computer-readable storage media such as RAM, ROM,
electronically erasable programmable ROM (EEPROM), flash memory or other memory
technology, CD-ROM, digital versatile disk (DVD), or other optical storage, magnetic cassettes,
magnetic tape, magnetic disk storage or other magnetic storage devices, or other tangible computer
readable media. This can also include nontangible computer-readable media, such as data signals,
data transmissions, or any other medium which can be used to transmit the desired information and

which can be accessed by computing system 3300.
51

10

15

20

25

30

WO 2019/068031 PCT/US2018/053620

[0195] By way of example, computer-readable storage media 3322 may include a hard disk
drive that reads from or writes to non-removable, nonvolatile magnetic media, a magnetic disk
drive that reads from or writes to a removable, nonvolatile magnetic disk, and an optical disk drive
that reads from or writes to a removable, nonvolatile optical disk such as a CD ROM, DVD, and
Blu-Ray® disk, or other optical media. Computer-readable storage media 3322 may include, but
is not limited to, Zip® drives, flash memory cards, universal serial bus (USB) flash drives, secure
digital (SD) cards, DVD disks, digital video tape, and the like. Computer-readable storage media
3322 may also include, solid-state drives (SSD) based on non-volatile memory such as flash-
memory based SSDs, enterprise flash drives, solid state ROM, and the like, SSDs based on volatile
memory such as solid state RAM, dynamic RAM, static RAM, DRAM-based SSDs,
magnetoresistive RAM (MRAM) SSDs, and hybrid SSDs that use a combination of DRAM and
flash memory based SSDs. The disk drives and their associated computer-readable media may
provide non-volatile storage of computer-readable instructions, data structures, program modules,

and other data for computer system 3300.

[0196] Communications subsystem 3324 provides an interface to other computer systems and
networks. Communications subsystem 3324 serves as an interface for receiving data from and
transmitting data to other systems from computer system 3300. For example, communications
subsystem 3324 may enable computer system 3300 to connect to one or more devices via the
Internet. In some embodiments communications subsystem 3324 can include radio frequency
(RF) transceiver components for accessing wireless voice and/or data networks (e.g., using cellular
telephone technology, advanced data network technology, such as 3G, 4G or EDGE (enhanced
data rates for global evolution), WiFi (IEEE 802.11 family standards, or other mobile
communication technologies, or any combination thereof), global positioning system (GPS)
receiver components, and/or other components. In some embodiments communications subsystem
3324 can provide wired network connectivity (e.g., Ethernet) in addition to or instead of a wireless

interface.

[0197] In some embodiments, communications subsystem 3324 may also receive input
communication in the form of structured and/or unstructured data feeds 3326, event streams 3328,
event updates 3330, and the like on behalf of one or more users who may use computer system

3300.

[0198] By way of example, communications subsystem 3324 may be configured to receive data
feeds 3326 in real-time from users of social networks and/or other communication services such as
Twitter® feeds, Facebook® updates, web feeds such as Rich Site Summary (RSS) feeds, and/or
real-time updates from one or more third party information sources.

52

10

15

20

25

30

WO 2019/068031 PCT/US2018/053620

[0199] Additionally, communications subsystem 3324 may also be configured to receive data in
the form of continuous data streams, which may include event streams 3328 of real-time events
and/or event updates 3330, that may be continuous or unbounded in nature with no explicit end.
Examples of applications that generate continuous data may include, for example, sensor data
applications, financial tickers, network performance measuring tools (e.g. network monitoring and
traffic management applications), clickstream analysis tools, automobile traffic monitoring, and

the like.

[0200] Communications subsystem 3324 may also be configured to output the structured and/or
unstructured data feeds 3326, event streams 3328, event updates 3330, and the like to one or more
databases that may be in communication with one or more streaming data source computers

coupled to computer system 3300.

[0201] Computer system 3300 can be one of various types, including a handheld portable device
(e.g., an iPhone® cellular phone, an iPad® computing tablet, a PDA), a wearable device (e.g., a
Google Glass® head mounted display), a PC, a workstation, a mainframe, a kiosk, a server rack, or

any other data processing system.

[0202] Due to the ever-changing nature of computers and networks, the description of computer
system 3300 depicted in the figure is intended only as a specific example. Many other
configurations having more or fewer components than the system depicted in the figure are
possible. For example, customized hardware might also be used and/or particular elements might
be implemented in hardware, firmware, software (including applets), or a combination. Further,
connection to other computing devices, such as network input/output devices, may be employed.
Based on the disclosure and teachings provided herein, a person of ordinary skill in the art will

appreciate other ways and/or methods to implement the various embodiments.

[0203] In the foregoing description, for the purposes of explanation, numerous specific details
were set forth in order to provide a thorough understanding of various embodiments of the present
invention. It will be apparent, however, to one skilled in the art that embodiments of the present
invention may be practiced without some of these specific details. In other instances, well-known

structures and devices are shown in block diagram form.

[0204] The foregoing description provides exemplary embodiments only, and is not intended to
limit the scope, applicability, or configuration of the disclosure. Rather, the foregoing description
of the exemplary embodiments will provide those skilled in the art with an enabling description for

implementing an exemplary embodiment. It should be understood that various changes may be

53

10

15

20

25

30

WO 2019/068031 PCT/US2018/053620

made in the function and arrangement of elements without departing from the spirit and scope of

the invention as set forth in the appended claims.

[0205] Specific details are given in the foregoing description to provide a thorough
understanding of the embodiments. However, it will be understood by one of ordinary skill in the
art that the embodiments may be practiced without these specific details. For example, circuits,
systems, networks, processes, and other components may have been shown as components in
block diagram form in order not to obscure the embodiments in unnecessary detail. In other
instances, well-known circuits, processes, algorithms, structures, and techniques may have been

shown without unnecessary detail in order to avoid obscuring the embodiments.

[0206] Also, it is noted that individual embodiments may have beeen described as a process
which is depicted as a flowchart, a flow diagram, a data flow diagram, a structure diagram, or a
block diagram. Although a flowchart may have described the operations as a sequential process,
many of the operations can be performed in parallel or concurrently. In addition, the order of the
operations may be re-arranged. A process is terminated when its operations are completed, but
could have additional steps not included in a figure. A process may correspond to a method, a
function, a procedure, a subroutine, a subprogram, etc. When a process corresponds to a function,
its termination can correspond to a return of the function to the calling function or the main

function.

[0207] The term “computer-readable medium” includes, but is not limited to portable or fixed
storage devices, optical storage devices, wireless channels and various other mediums capable of
storing, containing, or carrying instruction(s) and/or data. A code segment or machine-executable
instructions may represent a procedure, a function, a subprogram, a program, a routine, a
subroutine, a module, a software package, a class, or any combination of instructions, data
structures, or program statements. A code segment may be coupled to another code segment or a
hardware circuit by passing and/or receiving information, data, arguments, parameters, or memory
contents. Information, arguments, parameters, data, etc., may be passed, forwarded, or transmitted
via any suitable means including memory sharing, message passing, token passing, network

transmission, etc.

[0208] Furthermore, embodiments may be implemented by hardware, software, firmware,
middleware, microcode, hardware description languages, or any combination thereof. When
implemented in software, firmware, middleware or microcode, the program code or code segments
to perform the necessary tasks may be stored in a machine readable medium. A processor(s) may

perform the necessary tasks.

54

10

15

WO 2019/068031 PCT/US2018/053620

[0209] In the foregoing specification, aspects of the invention are described with reference to
specific embodiments thereof, but those skilled in the art will recognize that the invention is not
limited thereto. Various features and aspects of the above-described invention may be used
individually or jointly. Further, embodiments can be utilized in any number of environments and
applications beyond those described herein without departing from the broader spirit and scope of
the specification. The specification and drawings are, accordingly, to be regarded as illustrative

rather than restrictive.

[0210] Additionally, for the purposes of illustration, methods were described in a particular
order. It should be appreciated that in alternate embodiments, the methods may be performed in a
different order than that described. It should also be appreciated that the methods described above
may be performed by hardware components or may be embodied in sequences of machine-
executable instructions, which may be used to cause a machine, such as a general-purpose or
special-purpose processor or logic circuits programmed with the instructions to perform the
methods. These machine-executable instructions may be stored on one or more machine readable
mediums, such as CD-ROMs or other type of optical disks, floppy diskettes, ROMs, RAMs,
EPROMSs, EEPROMs, magnetic or optical cards, flash memory, or other types of machine-
readable mediums suitable for storing electronic instructions. Alternatively, the methods may be

performed by a combination of hardware and software.

55

— O O 0 NN N N R W N -

e S
AW

—_—
AN WO

WO 2019/068031 PCT/US2018/053620

WHAT IS CLAIMED IS:

1. A method of rebalancing container pod usage in a containter environment,
the method comprising:
deploying a plurality of container pods to a plurality of container nodes in a
container environment, wherein:
each of the plurality of container pods comprises one or more services;
each of the plurality of container nodes comprises one or more container
pods; and
the plurality of container pods are deployed to the plurality of container
nodes based on initial characterizations of usage factors for each of the plurality of
container pods;
monitoring actual usage factors for each of the plurality of container pods after
deployment to the plurality of container nodes;
identifying one or more container pods in the plurality of container pods that
deviate from their initial characterizations of usage factors; and
redistributing the one or more container pods throughout the plurality of container

nodes based on the actual usage factors.

2. The method of claim 1, wherein the usage factors comprise a CPU usage
factor.

3. The method of claim 1, wherein the usage factors comprise a bandwidth
usage factor.

4. The method of claim 1, wherein the usage factors comprise a memory usage
factor.

5. The method of claim 1, wherein the usage factors comprise a maximum

value for at least one of the usage factors.

6. The method of claim 1, wherein the usage factors comprise an average value

for at least one of the usage factors.

7. The method of claim 1, wherein the usage factors comprise a rate for at least

one of the usage factors.

56

0w ~N O N R W~

10
11
12
13
14
15
16
17

wm B~ W NN =

~N O L kAW N =

—_—

WO 2019/068031 PCT/US2018/053620

8. A non-transitory, computer-readable medium comprising instructions that,
when executed by one or more processors, causes the one or more processors to perform
operations comprising:

deploying a plurality of container pods to a plurality of container nodes in a
container environment, wherein:

each of the plurality of container pods comprises one or more services;

each of the plurality of container nodes comprises one or more container
pods; and

the plurality of container pods are deployed to the plurality of container
nodes based on initial characterizations of usage factors for each of the plurality of
container pods;

monitoring actual usage factors for each of the plurality of container pods after
deployment to the plurality of container nodes;

identifying one or more container pods in the plurality of container pods that
deviate from their initial characterizations of usage factors; and

redistributing the one or more container pods throughout the plurality of container

nodes based on the actual usage factors.

9. The non-transitory, computer-readable medium of claim 8, wherein
redistributing the one or more container pods throughout the plurality of container nodes based on
the actual usage factors comprises:

distributing the one or more container pods using a weighted combination of a

plurality of the usage factors.

10. The non-transitory, computer-readable medium of claim 8, wherein the
operations further comprise:

determining that at least one of the actual usage factors for a first container pod
exceeds a first threshold; and

in response to determining that the at least one of the actual usage factors for the
first container pod exceeds the first threshold, instantiating a clone of the first container pod in a

different container node.

11. The non-transitory, computer-readable medium of claim 10, wherein the
clone of the first container pod is warmed up, but request traffic is not routed to the clone of the

first container pod.

57

~N O N kW N =

WD =

0w N N W bW N

11
12
13
14
15
16
17

WO 2019/068031 PCT/US2018/053620

12. The non-transitory, computer-readable medium of claim 10, wherein the
operations further comprise:

determining that the at least one of the actual usage factors for the first container
pod exceeds a second threshold; and

in response to determining that the at least one of the actual usage factors for the
first container pod exceeds the second threshold, routing request traffic from the first container pod

to the clone of the first container pod in the different container node.

13. The non-transitory, computer-readable medium of claim 12, wherein
exceeding the first threshold indicates that the actual usage factor for the first container pod has a

trajectory that will exceed the initial characterization of the usage factor for the first container pod.

14. The non-transitory, computer-readable medium of claim 12, wherein
exceeding the second threshold indicates that the actual usage factor for the first container pod has
a trajectory that will cause an actual usage factor for a container node that includes the first

container pod to exceed a usage factor limit for the first container node.

15. A system comprising;
one or more processors; and
one or more memory devices comprising instructions that, when executed by the
one or more processors, cause the one or more processors to perform operations comprising:
deploying a plurality of container pods to a plurality of container nodes in a
container environment, wherein:
each of the plurality of container pods comprises one or more
services;
each of the plurality of container nodes comprises one or more
container pods; and
the plurality of container pods are deployed to the plurality of
container nodes based on initial characterizations of usage factors for each of the
plurality of container pods;
monitoring actual usage factors for each of the plurality of container pods
after deployment to the plurality of container nodes;
identifying one or more container pods in the plurality of container pods that

deviate from their initial characterizations of usage factors; and

58

18
19

WO 2019/068031 PCT/US2018/053620

redistributing the one or more container pods throughout the plurality of

container nodes based on the actual usage factors.

16. The system of claim 15, wherein the one or more container pods are

redistributed throughout the plurality of container nodes by a container platform scheduler.

17. The system of claim 15, wherein the one or more container pods are

redistributed throughout the plurality of container nodes by an API registry.

18. The system of claim 17, wherein the API registry is deployed as a service

encapsulated in a container in the container environment.

19. The system of claim 17, wherein the API registry is available to:
services in development in an Integrated Development Environment (IDE); and

services already deployed in the container environment.

20. The system of claim 17, wherein the API registry maps service endpoints

for the plurality of container pods to one or more API functions.

59

PCT/US2018/053620

WO 2019/068031

1/36

I E

salelqi
0poD) Jabbngaq
S S
oSS | ¢kl oLl
JoJdisyu| Joyjip3
S /adwod 8p0J
142 /pling 82Jn0S
S S
801 90l
JuswiuoldiAug Juswho|deg/uononpold JuswiuoliAug JuswdojaAaaq pajelbalu|
S S
148 cOl

PCT/US2018/053620

WO 2019/068031

2/36

¢ 9Old

%

See|

¢—— 9o1M8eS

f

wJone|d
Jaulgjuo)
|

000¢ -dl

aulyoe
[ENUIA

¥4
0009 dI

il

0c

alempleH

=

AX4
0008 -dI

PCT/US2018/053620

WO 2019/068031

3/36

¢ Old

8¢t

HOd.dI

ol Coureiiog

pPod

90¢

143>

HOd.dI

8l¢

Y

80IAIBS

80IAIBS

90IAIBS [

/

ENET

~——

cle

vZe
44>

0ce

80IAIBS

Jsulgjuo)

0l€

20JN0SoY

1402

SPON Jaulejuo)

c0¢

PCT/US2018/053620

WO 2019/068031

4/36

¥ Old

sallelqi
opoD) JebbngaQ
S S
oSS |-g 4% oLl
s|joo] Joyp3g
S uonewolny apo)H
147" pling 82Jn0g
S S
801 o0l

Asibay |dv

JuswiuoJIAUg Juswhojdaq/uononpold

S
14814

f
ol

JuswiuoJIAUg Juswdojaasq pajelbalu|

f
c0l

PCT/US2018/053620

WO 2019/068031

5/36

g Old

%

See| ——— 30IAISS
I
147"
\ /A& 0¢ 0z
wJopeld auIyoB slemplen
Jauieuon [ENMIA
|
ST AT A
(I I
0\©_\N O\v_\m O\.N_\N
000¢ ‘dl 0009 dI 0008 -dI
fysibay 14V Vet
[) o
(Mesnasiepdn (Jlesnsieal)
[]

(Mesnaiied .

WO 2019/068031

601

6/36

Deploy API registry service

603

l

Discover ports for available
services in the platform

FIG. 6A

PCT/US2018/053620

PCT/US2018/053620

WO 2019/068031

7/36

a9 Old

wogeld
Jauieo)
M\
IIIIIIIIIIIII _ =
_ 09 09 09 209 |
_ pod:dl pod:dl podidl wWodd |

_ S80IAIag/sIulodpug 8|ge|leAy JeAoosi(g ANV.“

WO 2019/068031

8/36

701
Receive upload of API definition
703 l
N
Create API functions
705 l
N
Create API binding between the
service and the API.

FIG. 7A

PCT/US2018/053620

PCT/US2018/053620

WO 2019/068031

9/36

33l dIAIBS

3l
uoniuyeq Idv

a

a. 'Old

wJiojeld
Jauigjuo)

@@ﬂﬂ@ﬂﬁ@@ﬂ%

_. il e |
| | 209 _
uod:dl Hod:dl Hod-dl “ E_oq_ocm_
20, | oot)|
rIIIIL
oY
Aisibay 1dv

sijuomugeay

|dV peoidn (1)

J

PCT/US2018/053620

WO 2019/068031

8 'Old

* - JuswabeuepAiojuanu]

(pH1oeuoouIn}ay Aiojsodayoriuod

()sqlenauyay Aloysodayioejuon

(- - “gloJ ‘piasnaiepdn abeioigiasn

(pNJasnaleleq-ebeloigiasn

(p! ‘ewreUT)SE| ‘aWeU}SIp)Iasnaleal) abriolgiasn
B- Ansibay 14y ISI\:D

X¥E0

jusWUoAIAUT JuSWdOl3A3(Q PRIl XAO (o)

10/36

S
¥08

¢08
o

wLmEOmmmcm_\/_H
wswAedsseooidH

wawabeueAlojusaul B

(pN1oEIUODUINIEY —
()sQlensuey —
Aoysodayioeuodg

(- ‘alol ‘priesnerepdn —
(p)sesnajeled—

(p! ‘sweu ise| ‘sWeu jsliy)lesnoieal) —
abesoysiesnNga

uonound |dv 10918S

SIdv
paJaisiday

[&] _—wiess |

[

DS X

BYea @)

digH sjool sydewoog AJOISIH MBIA UPT S

X181~

juswWuUoIIAUT 1usWdolaAs(Q palelSalul XAO

®)

WO 2019/068031 PCT/US2018/053620

11/36

901
I I
: Provide a listing of registered APIs :
I I
e e e — e —— — —— — —— — — — — — -
903
Receive a selection of an API
905
Generate client libraries
907

FIG. 9

PCT/US2018/053620

WO 2019/068031

12/36

0L "Old

¢08
[

c00l
-

wLmEOmmmcm_\/_mE
JuswAedssad0.4H
WswabeueAlojusAu| B
(PIoEIODUINEY —

()sdlensujey —
AiojisodeyioejuodH

(- ‘olol ‘pr)issnaepdn —
(p1)Jssnsislog—

(p! ‘eweu 1sg| .mEmclﬁwL_uEmeBmEol_l

SbelososNe @]

uonound |dv 10918S 1dv

paJaisiday

[

D x 0 ()

XEC]

djgH sjool sydewoog AJOISIH MSIA UP3

o4

juswWuUoIIAUT 1usWdolaAs(Q palelSalul XAO

o

PCT/US2018/053620

WO 2019/068031

13/36

L1 "Old

40) "

{

<EJep>/a)esio/1asn/LA/0008/00} 2891 '261//:dRuU 1SOd

T = JepesH
pl =qapesn
aWeU]Ske| + saWeu }sJlj = sweNJasN

} (priul ‘sweu Ise| J3s ‘sweu 1S4l J)s)lasnaleal) Jasn dlignd

} Jesn sse|D

PCT/US2018/053620

WO 2019/068031

an
O
90IAJ8S
?o&:m@
Ansibay |dv
f
¥OP

JUSWUOJIAUT
WwswAio|daq
Juononpold

14/36

j
ol

JUswiuoJIAUg
wswdojenrsq
pajelbaju|

¢l "Old

c0cl

f
c0l

{

<ejep>/ajea.0/8sn/ L AMOddI/ 4Ry 1SOd
soeT) (Jasnajessn sasn)HoddineD = Hoddl
" = JopesH

pl = dlesn

SWeU]Se| + aWeU }sJl} = sWeNJasN

(p! ‘'sweu jse| ‘sweu jslipiasnaieal) Jesn
} (pryul ‘sweu se| sis ‘sweu 1Sl J}s)lasnaleal) Jasn olignd

} Jesn sse|D

PCT/US2018/053620

WO 2019/068031

15/36

€L Old

c0cl

|®omT\.A " ** ‘gloac)INsay ‘aweu’)Nsay)iasn Mau uinjal

/- uayl (MO == sniejsynsay) 4

80ET
<ejep>/0}ea10/Jesn/LA/0008/00} 2’89} Z6L//:dNY 1SOd = 1insey
" = JopesH
P! = auesn

socT/ (dweNJasn)aloy}eD = sjoysasn

aWeU]Ske| + saWeu }sJlj = sweNJasN

} (priul ‘sweu Ise| J3s ‘sweu 1S4l J)s)lasnaleal) Jasn dlignd

} Jesn sse|D

PCT/US2018/053620

WO 2019/068031

16/36

¥l "Old

401 4"

<B}ep>/0)eala/1asn/LA/0008/00L°Z'891°Z61L//:dNU 1SOd = }Insay
vovt-

(MO =i ynsay) alym

MOION = SNje}S }Nsay

" = JapesH

pI=qapssn

aWeU]Ske| + saWeu }sJlj = sweNJasN
} (priul ‘sweu Ise| J3s ‘sweu 1S4l J)s)lasnaleal) Jasn dlignd

} Jesn sse|D

WO 2019/068031

17/36

1501

Receive upload of API definition

1503
Receive upload of API properties

1505
Create API binding between the

service and the API.
1507

Use the properties to generate client
libraries, deploy the service, and/or
handle service calls.

FIG. 15A

PCT/US2018/053620

PCT/US2018/053620

WO 2019/068031

18/36

33l dIAIBS

c0l

3l
uoniuyeq Idv
-
c0Gl 14801
94 uomuyed |dv peoldn

N

agl "Old

wJiojeld
Jauigjuo)

09 O\Now
Hod: dI Hod: d| Hod: dl Hod d|
Asibey |dV
\
1401%
(Mesnaeiepdn (JJesneieal)
[]

(MesnalsleQg

PCT/US2018/053620

19/36

WO 2019/068031

91 'Old

wuopeld
Jauiejuo)
r = - I_ _- - - - /
_ _ _
09 | | 09 209 |
yod:dl | voddl | Modid pod:dl |
_umc_ocm_mm_ peoT _ _ saoue)suy| m_Q;_s_\/_ _
=
0 53
"\ AnsiBey 14V —|T = s
V .
<[vomuueq 1av
/ 2091 0G|
[J

S0IAISS & burkojda(

PCT/US2018/053620

20/36

WO 2019/068031

| comesbuied ————————— = —
_ _ a0InIeS palslsiBay _
| | | |
| | | J—
_ _ _
_ _ 0LLL
| | &l
_ { | | Wdroeq | |1
_ (" N1dAioug <« _ton_ o I IERINES _
lole _ _
_ ”“.AN.\A .Xv Loun4 qruai) _ _ \} _
" seueIqI] sl _ _ N~ |
_ 1 ME | “. |
b ~,— -
“ _ 80/
_
[= B S ——
nﬂ
90/1
25
(O]
Auysiboy o<
IdV) 55
c < S|
0 L0
uoniuijeqd I1dv
S S
S y0.1 G0oGlL
14014

UONJdAIDUS - SSUBIgI] Jual) DUNelaust)

PCT/US2018/053620

WO 2019/068031

21/36

20IAI8S buljen

++J8)UN0)
L8p0o2

Hz A x)oung qimusi)
saueiqIT JuslD

¥ S
c08l

_
_
_
_
_
_
| ()Aunnoybo
_
_
_
_
_
_
_

[— e e e e e e e —— —
<
908|

Aisibay
VY

14814

Usage
Logging

uoniuyeq Idv

3l

,J
¥08

L

f

Ggogl

80InI8g pals)sibay

A Y

Hod »Lod | 9d1neg |

|

I
I
I
I
I
I
I
I
d
L —

BUIDDO | SDES[] — SeNBIgI] Jual) DUNelaust)

PCT/US2018/053620

WO 2019/068031

80IAI9S
uonesnusyiny
1 dvaT

22/36

/

0c6l

.AIAIII

a0IAJ8S bulje)

— ()ajeonusuyiny i

()eoineg|[eD Usyy

L9p0o2
Hz A x)oung qmusi)
saleJqI sl

¥ S
c061

rlﬂllll ||||||

9061

Asibay
dVY

S
14814

Hod

Authentication

uoniuyeq Idv

SlIE|

fJ

061

fJ

Ggogl

UONBONUSINY — SSNBIgI] Jual) DUNEIaus5)

80InIeg paJs)sibay

A Y

| o4 | 8oIAJeS |

|

d
L —

PCT/US2018/053620

WO 2019/068031

23/36

| eomesbuied | ————————— = —
_ _ a0InIeS palslsiBay _
_ | | _
_ _ | _
\}
l _ | l
l _ _ _
_ _
_ { X
_ ()souesujeieal) = di <« _toa > Hod | samnies | ||
R=Telels! _ _
_ ”“.AN.\A .Xv Loun4 qruai) _ _ \} _
" soLleJqI ual) _ | N~ |
~ |
_ 1 2002 _ L _ |_
|
_ 5
| _ 8002
_
[- —es e e e e e e e -
900¢ % wJope|d
< HOd: 4| uinjal pue asjeljuelisu| JOUIBUOD \O_\N
Aisibay c
o ©
IV E®
«—5 &
¥ o Sl
< = uoniueqg |dv
vOv ~ ~N
7002 GOGlL

UONERUBISU| PUBLUS(-UQ) — [[E7) 90IAI9S alununy

PCT/US2018/053620

WO 2019/068031

24/36

LZ "Old

(S —

90l¢

BUITT Sey — [[8)) S0IAIS SWnuny

" ocomesbuiged | ————————— = —
_ a0InIeS palslsiBay _
_ _ _
_ _ _
_ _ _
e LAY ,H | | _
uay) ()I[eOMOINY J DL _toa p[Hod [soniss | ||
L9poo _ _
Wz K X)Loung-qrjuaii) _ | !
salelqi usiiD _ _ N~ I
P e !] |
- T ~—
_ 8012
— e e e _
Aisibay 2
1dY 2
=
2 ol
S o | uoniuyeq Idv
vOv ~ ~N
¥01Z G0Sh

PCT/US2018/053620

WO 2019/068031

¢¢ Old

Ja|npayos wuope|d Jauleyuo)

25/36

5l=lo 5l=lo Afl=zlo Ndmm
riez/|3|g| 2 zize /3|2 |2 Otec13 3| @
= = =
NdD 8l 40 2 Ndo 9 AdD o) NdD 8
[D] e g T g I g
) || L)) L — =
Pod pod pod pod pod
(4424 0£22 8222 2222 0222
NdD € NdD 6
] T g
S f] (]
pod pod
9222 vcce
SPON Jauleyuo) SPON Jaulejuo) SPON Jauleyuo)
S S =
8022 0022 ¥022
Asibay |dv
f
pOP

PCT/US2018/053620

WO 2019/068031

26/36

€¢ Old

swllL
-
8cec
................................ 0 B
clec
................. e —————
ccec
-1 ¢l
\l

Ndd

PCT/US2018/053620

WO 2019/068031

¥¢ "Old

Ja|npayos wuope|d Jaulejuo)

27/36

5l=z|lo 5l=|o A%l=zlo NMNN
ree/|3|z| 2 zize /|32 |2 Otecr13 e @
= = =
Ndo 81 Ndo 8
-y g]
] L)
pPod pod
ceee 0222
Ndo ¢l
—— “--_
D
pod
SPON Jaulejuo) SpPON Jaulejuo)
~ ~
8022 7022
Risibay |dv
f
0¥

PCT/US2018/053620

WO 2019/068031

28/36

062

ANpuegd

TEN
NdO

L

el

0l

G¢ Old

Ndd 0l Ndd 8
<> <>
pod pod

¢cce 0cce
9PON Jaulejuo)
S
¥0Z¢

205z |

Apued

E

Ndd

g

PCT/US2018/053620

WO 2019/068031

9¢ Old

Ja|npayos wuope|d Jauleyuo)

29/36

5l=zlo 5|=zlo 5l=z]|o Ndmm
riez/|3|g| 2 zize /3|2 |2 SNNHWW e
= = =
NdO 81 Ndd Z NdD 9 NdO 8
_— D] T g T g
=) (]]
pod pod POod pod
ANAA 0£72 8222 0222
Ndo 6
<>
pod
vZ22
SPON Jaulejuod SPON Jaulejuod SPON Jaulejuod
~ ~ ~
8022 0022 022
Aysibey |dV
f
0%

PCT/US2018/053620

WO 2019/068031

30/36

swil

LZ Old

PCT/US2018/053620

WO 2019/068031

8¢ Old

Ja|npayos wuope|d Jauleyuo)

r1zz

Mpueg
E
NdO

E
NdO

o
z1zz/12
=

oLzz

ANpuegd

c0cc

E
NdO

31/36

Ndd ¢
|
<>
pod
0€22
reee §
SPON Jauleyuod
~ ~ ~
8022 902¢ 022
Asibay |dv
f
4014

PCT/US2018/053620

WO 2019/068031

6¢ Old

Ja|npayos wuope|d Jauleyuo)

32/36

5l=lo 5l=lo Afl=zlo Ndmm
riez/|3|g| 2 zize /3|2 |2 Otec13 3| @
= = =
Ndo ¢z
s
<>
pod
0e2e
vZzT
SpON Jaulejuo)
= <
8022 9022
Aisibey |dv
f
Oy

WO 2019/068031

3001

33/36

Deploy a plurality of pods to a
plurality of nodes in a container
platform

3003

3005

3007

Monitor usage factors associated
with the plurality of pods after
deployment

Identify pods that deviate from an
initial characterization of their usage
factor

Redistribute at least a portion of the
plurality of pods based on their
usage factor deviation

FIG. 30

PCT/US2018/053620

WO 2019/068031 PCT/US2018/053620

3100

DATABASE
3116

DATABASE
3114

COMPONENT COMPONENT
3118 3120

COMPONENT
3122

SERVER
3112

NETWORK(S)
3110

FIG. 31

PCT/US2018/053620

WO 2019/068031

35/36

00ce

¢t Old

444>

80¢¢

301A3Q
IN3MND

90¢¢E

301A3Q
IN3MND

voce

c0ce
INILSAS IHNLONFLSYHENI ANOTD

301A3Q

— “ IDINGTS
cece a3aainoxd
SIVINYIAS AFIYHS TYNYILN|) /
0EcE) / /
$304NO0STY FHNLONILSVHAN|) * ,,|/vmNm R 4
Qzce) JOING3S
LNIWNIDYNVYIN ALILNIQ|)
9Zes 01¢¢E
ONIYOLINO ANV (s)»domLaN
LNIWIDVYNVYN H3ad
AL © e
— ovce .\# IOINAAS
4443 p— a3aainodd
NOILYHLSIHOHO vece /
¥3AHO ONINOISINOHd ¥3AH0
\» Zvie Yere Lsanoay
ovece IDINGTS
— 81¢E
ﬁ 0cce m_w<m_<k<n_ ISE(a} o) pyze
LNIWIDVYNYIN 93QH0
geze IDINGTS
9¢ce a3aainodd
olce 2443 clce N 7oA >
IN ano1o IN ano1o IN ano1p 1sano3y
IDINYTG

IN3MND

PCT/US2018/053620

WO 2019/068031

36/36

€e Old

AA

00¢e

0cee 8¢ee 9¢ee

s3lvadn| |swvadLs sa3ad

INang IN3AZ vivQa
vcee

NFLSASANS SNOILYIINNWINOD

glee
INILSASENG IOVHOLS
acee
S— vIQ3 39VHOLS
olce
W3LSAS ONILYH3HO Favavay
-43LNdNOD
vlee
V1V Wyd904d
— 0cee
clee y3avay viaap
SINYHD0¥d NOILYDITddy JovaoLS
olee I1gvavay
AHOWIN NILSAS d3LNdNOD

c0ee

80¢¢
INALSASENS O/l

90¢¢
1IN
NOILY¥3IT300Y
ONISSIO0Ud

LINN ONISS300dd

yeee FANAN
LINN LINN
ONISSIO0Hd aNg ONISSIOOHd aNg
JHOVD JHOVD JHOVYD
IHOD 340D 340D
yoce

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2018/053620

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F11/36 GO6F8/60
ADD.

GO6F8/61

GO6F9/455 GO6F9/50

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, INSPEC, IBM-TDB, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X Openshift:

XP055541429,
Retrieved from the Internet:

1ing.adoc
[retrieved on 2019-01-14]
the whole document

"Out of Resource Handling",

27 June 2017 (2017-06-27), pages 1-8,

URL:https://github.com/openshift/openshift
-docs/blob/41cd59febl10cfe694fb41d8f315938d
39e76e540/admin_guide/out_of resource hand

1-20

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

14 January 2019

Date of mailing of the international search report

23/01/2019

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Hoareau, Samuel

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2018/053620

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A

Jelastic: "Containers Live Migration
Behind the Scene !",

16 April 2017 (2017-04-16), XP055541443,
Retrieved from the Internet:
URL:https://vdocuments.mx/jelastic-contain
ers-live-migration-behind-the-scene.html
[retrieved on 2019-01-14]

the whole document

US 2016/217050 Al (GRIMM ANDREW [US] ET
AL) 28 July 2016 (2016-07-28)

paragraph [0038] - paragraph [0045]
abstract

paragraph [0050] - paragraph [0054]

Openshift: "Compute resources",

20 June 2016 (2016-06-20), XP055541482,
Retrieved from the Internet:
URL:https://github.com/openshift/openshift
-docs/blob/8c9a464035a0a46d807e1893b5125bc
601196b89/dev_guide/compute resources.adoc
[retrieved on 2019-01-14]

the whole document

1-20

1-20

1-20

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

International application No
Information on patent family members

PCT/US2018/053620
Patent document Publication Patent family Publication
cited in search report date member(s) date

US 2016217050 Al 28-07-2016 NONE

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - claims
	Page 59 - claims
	Page 60 - claims
	Page 61 - claims
	Page 62 - drawings
	Page 63 - drawings
	Page 64 - drawings
	Page 65 - drawings
	Page 66 - drawings
	Page 67 - drawings
	Page 68 - drawings
	Page 69 - drawings
	Page 70 - drawings
	Page 71 - drawings
	Page 72 - drawings
	Page 73 - drawings
	Page 74 - drawings
	Page 75 - drawings
	Page 76 - drawings
	Page 77 - drawings
	Page 78 - drawings
	Page 79 - drawings
	Page 80 - drawings
	Page 81 - drawings
	Page 82 - drawings
	Page 83 - drawings
	Page 84 - drawings
	Page 85 - drawings
	Page 86 - drawings
	Page 87 - drawings
	Page 88 - drawings
	Page 89 - drawings
	Page 90 - drawings
	Page 91 - drawings
	Page 92 - drawings
	Page 93 - drawings
	Page 94 - drawings
	Page 95 - drawings
	Page 96 - drawings
	Page 97 - drawings
	Page 98 - wo-search-report
	Page 99 - wo-search-report
	Page 100 - wo-search-report

