# United States Patent Office

1

3,498,920
COMPOSITIONS OF LIQUID PARAFFINS CONTAINING MIXTURES OF ALKYL-SUBSTITUTED POLYNUCLEAR AROMATIC HYDROCARBONS AS SWELLING AGENTS
Clayton W. Nichols, Jr., Huntington, and Melvin I. Smith, Rockville Centre, N.Y., assignors to Mobil Oil Corporation, a corporation of New York

Corporation, a corporation of New York

No Drawing. Continuation-in-part of application Ser. No. 385,799, July 28, 1964. This application Oct. 16, 1968, Ser. No. 768,174

Int. Cl. C09k 3/00, 3/02; C10m 1/16 2 Claims

#### ABSTRACT OF THE DISCLOSURE

Compositions comprising liquid paraffins containing a small amount, sufficient to act as a swelling agent, of a mixture of alkyl-substituted polynuclear aromatic hydrocarbons comprising alkyl naphthalenes, acenaphthylenes, phenanthrenes and pyrenes.

#### CROSS REFERENCE TO RELATED APPLICATIONS

Continuation-in-part of application Ser. No. 385,799, filed July 28, 1964, now abandoned.

#### BACKGROUND OF THE INVENTION

#### Field of the invention

This invention, which is a continuation-in-part of our copending application Ser. No. 385,799, filed July 28, 1964, relates to liquid hydrocarbon compositions, particularly suitable for use as hydraulic or lubricating oils, having improved rubber-swell characteristics. More par- 35 ticularly, in this aspect, the invention relates to hydraulic or lubricating oils having the aforementioned improved rubber-swell characteristics, in which these desirable properties of the oil are retained during its use.

### Description of the prior art

Prior to the present invention, oils employed for hydraulic or lubricating purposes, under conditions in which the oil is being retained within a sealed area, have been comprised of predominantly naphthenic hydrocarbons, in 45 preference to paraffinic hydrocarbons, inasmuch as it was found that the use of paraffinic oils, in many systems, resulted in loss of lubricant which occurred largely past seals and packings. The use of naphthenic oils, on the other hand, was found to result in minimizing such leakage; 50 whereas the use of paraffinic oils, apart from the leakage problem, is highly attractive, inasmuch as the paraffinic oils are more stable to deterioration by oxidation, afford better wear protection, and, in many instances, possess better viscosity indexes. It has been found, however, that 55 the paraffinic oils do not possess the ability to swell seals and packings, to result in a tighter closure and thus minimize leakage in the system. Hence, the ability to employ paraffinic hydrocarbon oils in hydraulic or lubricating

systems, which will not result in leakage past seals or packings, is highly desirable from a practical standpoint.

#### SUMMARY OF THE INVENTION

In accordance with the present invention, it has now been found that improved liquid paraffinic hydrocarbons, suitable for use as hydraulic or lubricating oils and possessing the aforementioned advantages of oxidation stability, improved wear protection and high viscosity indexes, can be provided without the aforementioned disadvantages of leakage past seals and packing, by incorporating in such oils small quantities of a mixture of alkyl-substituted polynuclear aromatic hydrocarbons, as swelling agents, as more fully hereinafter described. In 15 this respect, it has been found that the use of even small quantities of the aforementioned aromatic hydrocarbons causes rubber or packings in enclosed systems to swell, thereby making for a tighter closure and minimizing, or completely avoiding leakage. In this manner, all of the advantages of paraffinic hydrocarbons over naphthenic hydrocarbons are realized, without encountering the aforementioned leakage problems.

More specifically, in accordance with the present invention, the lubricating oil vehicle may comprise any liquid paraffinic hydrocarbon, or liquid hydrocarbons which are predominantly paraffinic in character. Thus, for example, the lubricating oil may comprise, in a preferred form, a liquid paraffinic petroleum hydrocarbon, or liquid petroleum hydrocarbons which are predominantly paraffinic in character. This paraffinic lubricating oil may, therefore, comprise any of the conventional paraffinic hydrocarbon oils of lubricating viscosity, and may include mineral or synthetic lubricating oils. The mineral lubricating oils, which are preferred as the lubricating vehicle, may be of any suitable lubricating viscosity, ranging from about 45 SUS at 100° F. to about 2000 SUS at 100° F. These oils may have viscosity indexes varying from about 70 to about 100 or higher. Viscosity indexes from about 75 to about 100 are preferred. The average molecular weights of these oils preferably range from about 250 to

about 800. The alkyl-substituted polynuclear aromatic hydrocar-

bons employed in combination with the aforementioned paraffinic hydrocarbons, as swelling agents, are present in the form of a mixture of alkyl-substituted polynuclear aromatic hydrocarbons comprising, by weight, from about 15 to about 25 percent alkyl naphthalenes, from about 15 to about 30 percent acenaphthylenes, from about 35 to about 55 percent phenanthrenes and from about 1 to about 5 percent pyrenes. In general, such mixtures have a boiling point of at least about 400° F. and usually a boiling point from about 400° F. to about 1000° F. Most preferred are mixtures of the aforementioned components which have boiling points from about 480° F. to about 1000° F. A more detailed description of these alkyl-substituted polynuclear aromatic hydrocarbons is disclosed in U.S. Patent 3,062,771, issued Nov. 6, 1962, and such disclosure is incorporated herein by reference. In general, although it is desirable to employ a pure alkyl-sub-

35

95

Wt. percent

stituted polynuclear aromatic hydrocarbon oil in combination with the aforementioned paraffinic oil vehicle, it is extremely difficult, from a commercial standpoint, to produce a substantially pure product. However, the use of thermal or catalytic processes results in the build-up of the aromatic fractions and a cracking of the paraffinic fractions, which, therefore, makes it possible to produce a highly aromatic material which can be used either in its entirety in the aforementioned boiling point range, or in any desired intermediate cuts. Analysis for the paraffinic 10 content of the commercially produced aromatic oils by adsorption on silica gel shows that they contain no more than about 8 percent paraffins by volume. The aromatics content, on the other hand, is at least about 90 percent, by volume.

Insofar as the quantity of the alkyl-substituted polynuclear aromatic hydrocarbons, which is employed in combination with the base liquid paraffinic hydrocarbon, is concerned, even small quantities of the aromatic hydrocarbons are effective; however, compositions are preferred which comprise liquid paraffinic hydrocarbons containing from about 5 percent to about 20 percent, by volume, of the alkyl-substituted polynuclear aromatic hydrocarbons. It should also be noted that the liquid paraffinic hydrocarbon compositions of the present invention may contain, in addition to the aforementioned alkyl-substituted polynuclear aromatic hydrocarbons, minor amounts of other additive materials such as antiwear, anti-oxidation, or anti-corrosion agents, if so desired.

The chemical and physical properties of a typical mixture of alkyl-substituted polynuclear aromatic hydrocarbons, which may be employed in the novel compositions of the present invention are illustrated by the following Table I:

TABLE I

| Paraffins                                     | 2.2    |      |
|-----------------------------------------------|--------|------|
| 1-ring naphthenes                             | 0.5    |      |
| 2-ring naphthenes                             | 0.3    | 40   |
| 3-ring naphthenes                             | 0.3    |      |
| 4-ring naphthenes                             | 0.3    |      |
| 5-ring naphthenes                             | 0.2    |      |
| Alkyl benzenes                                | 6.0    |      |
| Alkyl naphthalenes                            | 20.9   | 4 50 |
| Acenaphthylenes, including acenaphthenes      | 23.2   | 40   |
| Acenaphtnylenes, including acenaphtneses      |        |      |
| Phenanthrenes, including cyclanophenanthrenes | 2.0    |      |
| Pyrenes                                       | 2.0    |      |
| •                                             | 100.0  |      |
|                                               | 100.0  | 50   |
| Specific gravity                              | 1.0458 |      |
| Flash pt., ° F.                               | 320    |      |
| Pour pt., °F.                                 | -20    |      |
| Color                                         | 2.0    | ~ ~  |
| Viscosity at 100° F., SUS                     | 53     | 55   |
| Distillation range, ° F 52                    | 5-700  |      |
| Mixed aniline cloud pt., ° F.                 | 65     |      |
| Wixed anime cloud pt., 1                      | 05     |      |

## DESCRIPTION OF SPECIFIC EMBODIMENTS

Silica gel analysis (aromatics) \_\_\_\_percent\_\_

The following examples will serve to illustrate the efficacy of the novel and improved compositions of the present invention, containing the aforementioned alkylsubstituted polynuclear aromatic hydrocarbons in minor 65 proportions. In these examples, as more fully hereinafter discussed, the alkyl-substituted polynuclear aromatic hydrocarbons are designated as "aromatic oil additive" for simplicity. The properties of the aromatic oil additive employed in these examples are indicated in Table I.

In Examples 1 through 5 of the following Table II, are shown the improved rubber swell properties obtained by the addition of the aforementioned aromatic oil additive of Table I, to a 200 SUS paraffinic hydrocarbon oil with respect to a nitrile rubber, tested in accordance 75 available oils, in which the aforementioned aromatic oil

with a standard test ASTM D571-59T using a temperature of 250° F. and an immersion period of 70 hours.

| TABI                                                          | LE II                                                                     |                                                                       |
|---------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------|
|                                                               | Percent<br>200 SUS<br>paraffin/<br>percent<br>aromatic<br>oil<br>additive | Percent<br>rubber<br>swell                                            |
| Example 1<br>Example 2<br>Example 3<br>Example 4<br>Example 5 | 100/0<br>94/6<br>92/8<br>91/9<br>90/10                                    | $ \begin{array}{r} -1.1 \\ +5.3 \\ +6.6 \\ +8.3 \\ +9.3 \end{array} $ |

From the data in Table II, it will be noted that the aromatic oil additives of the present invention are markedly effective in achieving the desired degree of rubber swell when used in combination with liquid paraffinic hydrocarbons.

In another series of preferred formulations, three types of the improved liquid paraffinic hydrocarbons of the present invention, containing the aforementioned aromatic oil additive, described in Table I (supra), were tested for their efficacy as hydraulic oils on a comparative basis with conventional commercially available paraffinic oils, in which the aforementioned aromatic oil additive was not present. The compositions of the aforementioned hydraulic oils which were subjected to comparative tests, are shown in Examples 6, 7, and 8 of the following Table III, in which the various components are expressed in percent by volume.

TABLE III

|   |                                  | Ex. 6 | Ex. 7  | Ex. 8  |
|---|----------------------------------|-------|--------|--------|
|   | 100 SUS solvent paraffin         | 8.00  |        |        |
| • | 200 SUS solvent paraffin         |       | 82. 35 | 44. 35 |
|   | 125 SUS solvent bright           |       | 7.00   | 45.00  |
|   | Aromatic oil additive of Table I | 9.00  | 10.00  | 10.00  |
|   | Anti-wear additive 1             | 0.60  | 0.60   | 0.60   |
|   | Anti-rust additive 2             |       | 0.05   | 0.05   |
|   |                                  |       |        |        |

A zinc dialkyldithiophosphate.
 An amine derivative of an alkenyl substituted succinic acid.

The characteristics and specifications of the hydraulic oil formulations of Examples 6, 7, and 8, are shown in 50 the following Table IV.

TABLE IV

|                           | Ex. 6   | Ex. 7   | Ex. 8   |
|---------------------------|---------|---------|---------|
| Gravity, ° API            | 26. 8   | 26.6    | 25. 9   |
| Pour, ° F. (max.)         | 20      | 20      | 25      |
| Flash, ° F. (min.)        | 360     | 360     | 360     |
| Viscosity at 100 ° F. SUS | 145/155 | 190/210 | 290/310 |
| Viscosity at 210° F. SUS  | 43      | 45      | 52      |
| Viscosity Index           | 92      | 97      | 100     |
| Color (max.)              | 2       | 3       | 5       |
| Aniline Point, ° F        | 195     | 200     | 210     |
| Rust Test (ASTM D665-60)  | Pass    | Pass    | Pass    |
| Neutralization No         | 1. 2    | 1. 2    | 1. 2    |

In the following Table V, are shown the performance 70 properties of the improved liquid paraffinic hydrocarbon oils containing the aforementioned alkyl-substituted polynuclear aromatic hydrocarbons, as swelling agents, and as represented by the formulation of Examples 6, 7, and 8 of Table III, compared with conventional commercially

6

additives were not present, and in which there was a large proportion of naphthenic hydrocarbons.

F. containing at least about 5 percent by volume of a swelling agent, boiling from about 525° F. to about 700°

TABLE V

|                                                                                                 | 150 SUS<br>conventional<br>oil | 200 SUS<br>conventional<br>oil | Oil of<br>Ex. 6 | Oil of<br>Ex. 7 | Oil o |
|-------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------|-----------------|-----------------|-------|
| Viscosity Index. Rubber swell percent vol. increase (D-471; 70 hrs.; 250° F.):                  | 63                             | 71                             | 92              | 97              | 100   |
| Rubber A                                                                                        | 9.7                            | 9.6                            | 8.1             | 8.6             | 8. 8  |
| Rubber B                                                                                        | 16.5                           | 16.8                           | 15.2            | 16.3            | 16.   |
| Rubber C                                                                                        | 2.5                            | 2.0                            | 1.7             | 2.5             | 2.    |
| Percent kinematic viscosity increase at 100° F                                                  | 54. 7                          | 49. 1                          | 14.2            | 11.7            | 12.0  |
| Neutralization number increase                                                                  | 4.3                            | 3.9                            | 0.2             | 0.8             | 1.    |
| Deposits                                                                                        | (3)                            | (3)                            | 0               | , 0             | 1     |
| Hydraulic service test 2 (150 hrs.; 1,000 p.s.i., 175° F.): Ring wt. loss, mg Vane wt. loss, mg |                                |                                |                 | <b>.</b>        |       |
| Total wt. loss, mg                                                                              | 228. 6                         |                                | 3. 3            |                 |       |
| Emulsion test at 130° F                                                                         |                                |                                | (4)             | (4)             | (4)   |

<sup>&</sup>lt;sup>1</sup> Described in ASTM Standards on Petroleum Products and Lubricants, 1956 Edition, pp. 940-943.

<sup>2</sup> Wear of a Vickers V-104-E pump is measured after running at the stated conditions pumping 3 gallons of oil around a closed circuit consisting of a reservoir, cooler, filter, pump, relief valve, flowmeter, and instrument. instruments.

3 Moderate-heavy.

4 Less than 3 cc. emulsion after 30 minutes.

From the foregoing pertinent data, the marked superiority of the improved liquid paraffinic hydrocarbons of the present invention containing alkyl-substituted polynuclear aromatic hydrocarbons, as swelling agents, will become apparent when compared with conventional commercially available oils containing a large proportion of naphthenic hydrocarbons in which the aforementioned aromatic oil additives are not present. More specifically, the improved liquid paraffinic hydrocarbons are markedly superior with respect to viscosity index, oxidation stability and wear protection, yet their rubber-swell properties are about the same as the aforementioned conventional oils.

Although the present invention has been described with 40 preferred embodiments, it will be understood that various modifications and adaptations thereof may be resorted to without departing from the spirit and scope of the invention, as those skilled in the art will readily appreciate.

We claim:

1. A liquid paraffinic hydrocarbon composition having a viscosity from about 45 SUS to about 2000 SUS at 100°

F., consisting of a mixture of alkyl-substituted polynuclear aromatic hydrocarbons comprising, by weight: from about 15 to about 25 percent alkyl naphthalenes; from about 15 to about 30 percent acenaphthalenes; from about 35 to about 55 percent phenanthrenes; from about 1 to about 5 percent pyrens; 1- to 5-ring naphthalenes; and alkyl benzenes.

2. A composition as defined in claim 1 wherein said swelling agent is present in an amount from about 5 to about 20 percent by volume.

## References Cited UNITED STATES PATENTS

2,816,867 3/1955 Moore et al.

LEON D. ROSDOL, Primary Examiner DAVE SILVERSTEIN, Assistant Examiner

U.S. Cl. X.R.

252---73