Deep tendon reflexes, plantar responses, muscle tone and release signs were studied as 14 individual clinical variables and as 5 summary variables in 135 aged subjects, including 27 controls, 20 subjects with mild cognitive impairment, and 88 subjects with successive stages of probable Alzheimer's disease (AD). Changes in activity of elicited responses were rated on a seven-point scale. Results were analyzed both as prevalence and mean degree of change in activity. Mild cognitive impairment was associated with a significantly higher rating than controls on a variable combining all 14 individual variables. Subjects with early AD had both higher prevalence of increased activity and increased mean scores of deep tendon reflexes and muscle tone. They had a higher prevalence of increased activity on a variable combining three release signs. Patients with late stage AD had significantly increased prevalence and mean scores of muscle tone, grasping and sucking reflexes compared with controls and early AD patients.
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>Austria</td>
<td>ES</td>
<td>Spain</td>
<td>MG</td>
<td>Madagascar</td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
<td>FI</td>
<td>Finland</td>
<td>ML</td>
<td>Mali</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>FR</td>
<td>France</td>
<td>MN</td>
<td>Mongolia</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>GA</td>
<td>Gabon</td>
<td>MR</td>
<td>Mauritania</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>GB</td>
<td>United Kingdom</td>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>GN</td>
<td>Guinea</td>
<td>NL</td>
<td>Netherlands</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>GR</td>
<td>Greece</td>
<td>NO</td>
<td>Norway</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>HU</td>
<td>Hungary</td>
<td>PL</td>
<td>Poland</td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>IT</td>
<td>Italy</td>
<td>RO</td>
<td>Romania</td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>JP</td>
<td>Japan</td>
<td>RU</td>
<td>Russian Federation</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>KP</td>
<td>Democratic People’s Republic of Korea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td></td>
<td></td>
<td>SD</td>
<td>Sudan</td>
</tr>
<tr>
<td>CI</td>
<td>Côte d'Ivoire</td>
<td></td>
<td></td>
<td>SE</td>
<td>Sweden</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td></td>
<td></td>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td>CS</td>
<td>Czechoslovakia</td>
<td></td>
<td></td>
<td>SU</td>
<td>Soviet Union</td>
</tr>
<tr>
<td>DE</td>
<td>Germany</td>
<td></td>
<td></td>
<td>TD</td>
<td>Chad</td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td></td>
<td></td>
<td>TG</td>
<td>Togo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>US</td>
<td>United States of America</td>
</tr>
</tbody>
</table>
System For Diagnosis And Staging Of Dementia.

Background Of The Invention

This invention relates to methods of neurologic examination for the diagnosis and staging of the severity of dementia. The invention further relates to a method of diagnosis based upon generalized cortical, frontal and other neurologic signs.

The use of conventional neurologic examination techniques as early indicators and predictors of dementia and its progress has not been successful. Presently, dementia is diagnosed and staged by using clinical assessments of cognitive and functional capacity. For example, there are global clinical staging measures such as the Global Deterioration Scale (Reisberg, B., Ferris, S.H., de Leon, M.J. and Crook, T., 1982), the Blessed Dementia Scale and Information-Memory-Concentration Test (Blessed, G., Tomlinson, B.E. and Roth, M., 1968) and the Alzheimer's Disease Assessment Scale (ADAS) (Rosen, W., Mohs, R. and Davis, K., 1984). There are mental status assessments such as the Mini Mental State (Folstein, M.F., Folstein, S.E. and Mc Hugh, P.R., 1975), and various psychological tests such as the Auid Memory Test (Gilbert, J.G. and Levee, R.F., 1971), and the Boston Naming Test (Goodglass, H., Kaplan, E. and Weintraub, S., 1976).

All of these measurements are of limited utility in part because they depend upon the educational attainment, intelligence and skill of the subject for early diagnosis. These factors and the magnitude of cooperation can also influence staging. None of these measures are useful for staging severe dementia (Mohs, R., Kim, Y., Johns, c., Dunn, D. and Davis, K., 1986; Wilson, R.E., Kazniak, A., 1986;
Reisberg, B., Ferris, S.H., de Leon, M.J. et al., (1988). Also, these measures are only a very indirect result of the actual brain changes occurring in dementia. We therefore developed the present invention of a cognition-independent system for early dementia diagnosis and staging.

Reflex phenomena such as deep tendon reflexes, paratonic muscle rigidity, and primitive reflexes (syn. release signs) have been studied in dementia, either individually or within the context of a clinical neurological examination. They have, however, not been used in a system to diagnose or stage dementia.

Brief Description Of The Present Invention

We have discovered that reflexes can be useful to diagnose or stage dementia. Our discovery is based upon the following method:

1. cognition-dependent neurologic measures (such as language assessments, assessments of praxis constructional capacity, assessments of orientation laterality, etc.) are separated from cognition independent neurologic reflexes;

2. reflex responses are carefully quantified;

3. specific procedures, are then applied for early diagnosis and/or staging.

The invention is based upon the use of cognition-independent neurologic reflex phenomena as early diagnostic markers of dementia as well as stage specific determinants of dementia progression. The clinical syndrome of dementia is generally accompanied by more or less widespread pathologic changes in the brain. It had previously been theorized that motor activity requires participation of all parts of the central nervous system. It had also been theorized that the integrity of the motor
system can sometimes better be appraised by examination of reflexes than by other measures. Alterations in reflex activity and character had been known to be among the earliest and most subtle indications of certain disturbances in neurologic function. Exaggeration of deep tendon reflexes (syn. muscle stretch reflexes) is often present with widespread cerebral disease.

Muscle tone is another reflex phenomenon and has been reported to be a common motor system abnormality related to increasing dementia severity in patients with probable AD. Paratonia (paratonic muscle rigidity or gegenhalten) is a particular form of abnormal muscle tone. It is an abnormal increase in muscle resistance to passive movement of an extremity, head or trunk. It increases with the force and the rapidity of the passive movement of the extremity, head or trunk. It occurs in dementia, but has not been utilized as a measure of increasing dementia severity. The severity of paratonia has not previously been scaled.

Primitive reflexes (syn. frontal release signs) represent another category of reflex phenomena, and are known to occur in patients with diffuse brain damage. It is generally accepted that with progression of dementia more of these signs become manifest.

Although abnormal muscle tone has been related to increased dementia severity and primitive reflexes have been known to increase with dementia severity, these measures have never been proposed to be useful for the early diagnosis or staging of dementia. Only with the application of the methodology embodied in our discovery do the measures become useful for this purpose. This methodology is
summarized briefly above and described in detail below.

We have discovered that by accomplishing 1) the separation of cognitive and non-cognitive neurologic signs 2) systematically quantifying non-cognitive measures, and 3) systematically quantifying the occurrence of neurologic signs over the entire course of AD, we can use specific quantified neurologic measures in combination with a process developed by us, for the early diagnosis and staging of dementia.

One major reason for the difficulties in employing reflex phenomena as diagnostic markers in the early phase of dementia is the subtlety of the changes. We have discovered that this problem can be circumvented by careful quantification of these reflexes and by creating new measures through combining individual reflex measurements in specific groups of reflex measurements. The above-mentioned methodology can be utilized in severely impaired dementia patients who have completely lost their higher mental thought processes as well as their speech and language abilities.

It is an object of the present invention to provide a method for the modification of test procedures based on commonly used neurologic examination measures of reflexes, that results in cognition-independent test procedures effective in the early diagnosis of dementia.

It is further an object of the present invention to provide cognition independent neurologic examination tests effective in staging the progression and severity of dementia.

It is further an object of the present invention to provide a cognition independent neurologic examination method effective in tracking
the progress of dementia in very severely demented
patients who have reached bottom scores on cognition-
dependent measures.

It is further an object of the present
invention to provide a cognition independent
neurologic examination method for diagnosing, tracking
and staging AD based on modified existing neurologic
assessment procedures. These procedures have hitherto
not been used for diagnosing and staging dementia.

It is further an object of the present
invention to provide a method for distinguishing
between dementia subtypes, based upon the
characteristic pattern of neurologic changes which we
have described for the dementia of the Alzheimer's
type.

Detailed Description of a Preferred Embodiment

In accord with the present invention,

measures were derived from existing neurologic
examination methods (De Jong, 1979; Mayo Clinic and
Mayo Foundation, 1981; Paulson, 1977) and used to
assess healthy elderly individuals, elderly subjects
with mild cognitive impairment and patients with
dementia in all stages of clinical severity. Specific
scoring methodologies were developed to rate
increasing magnitudes of activity, obtained on these
measures. Specifically, these measures consisted of
four deep tendon reflexes (syn. muscle stretch
reflexes), namely the biceps reflexes, triceps
reflexes, quadriceps reflexes, and gastrocnemius-
soleus reflexes; the plantar reflexes; paratonic
muscle rigidity (syn. paratonia); and eight primitive
reflexes, namely the tactile sucking reflex, the
visual sucking reflex, the hand grasp reflex, the foot
grasp reflex, the rooting reflex, the snout reflex,
the glabellar blink reflex and the palomental reflex.

In accord with the present invention, six new
neurologic examination measures were developed by the
authors, consisting of combinations of these fourteen
independent measures. A scoring methodology was
developed for these six combination measures as well.
In addition, instrumentation may be utilized to
measure paratonic rigidity or reflex responses.

Specifically, these combination
measures are: 1) a combination of all 14 individual
reflexes; 2) a combination of all 4 deep tendon
reflexes; 3) a combination of five primitive reflexes,
namely tactile sucking reflex, visual sucking reflex,
hand grasp reflex, foot grasp reflex and rooting
reflex, collectively termed "prehensile release
signs"; 4) a combination of three primitive reflexes,
namely the snout reflex, the glabellar blink reflex
and the palomental reflex, collectively termed
"nociceptive release signs"; 5) a combination of eight
primitive reflexes, namely the tactile sucking reflex,
visual sucking reflex, hand grasp reflex, foot grasp
reflex, rooting reflex, snout reflex, glabellar blink
reflex and the palomental reflex; and 6) a
combination of five primitive reflexes, collectively
termed "prehensile release signs" and paratonia,
namely the tactile sucking reflex, visual sucking
reflex, hand grasp reflex, foot grasp reflex, rooting
reflex and paratonia. In addition, a further measure
was derived from individual existing neurological
examination methods. One such example is a measure
based upon the plantar reflex. A scoring methodology
was also developed for diagnosis and staging dementia
utilizing paratonic muscular rigidity.

The 7-point rating scale for
neurologic examination of the present invention is as
follows:

Deep tendon reflexes:
1 = normal or decreased amplitude
 and/or speed of contraction
3 = notably increased amplitude
 and/or speed of contraction
5 = markedly increased amplitude
 and/or speed of contraction
 and/or with some extension of the
 stimulus zone
7 = greatly increased amplitude
 and/or speed of contraction,
 and/or clonus, and/or with marked
 extension of the stimulus zone
 and resulting in simultaneous
 contraction of adjacent joints
 and sometimes in mass response

Plantar response:
1 = plantar flexion of the great toe
3 = no distinct flexion or extension
 of the great toe
5 = tonic dorsiflexion of the great
 toe
7 = tonic dorsiflexion of the great
 toe with fanning of the toes. A
 spinal defense reflex may occur.

Muscle tone

Paratonic rigidity (gegenhalten):
1 = paratonic rigidity not present
 with 10 trials (of passive,
 rapid, irregular, alternating
 flexion and extension of the
 extremity with increasing force)
3 = occurrence of paratonic rigidity
 in 1 to 4 out of 10 trials
5 = paratonic rigidity in at least 5
 but less than 10 times out of 10
 trials
7 = paratonic rigidity is present on every attempt of passive limb manipulation.

Release signs

Sucking reflex (tactile): (15 sec. gentle stroking of the lips, with eyes closed or covered):

1 = absent
3 = slight parting of the lips
5 = lips grasp stimulus followed by distinct sucking movements
7 = very prominent sucking - lips will follow stimulus when it is withdrawn

Sucking reflex (visual): (15 sec. visual stimulus):

1 = absent
3 = slight parting of the lips in response to approaching visual stimulus
5 = lips grasp approaching stimulus followed by distinct sucking movements
7 = very prominent sucking - mouth follows stimulus when it is withdrawn

Hand grasp: (15 sec. stroking of palm of hand and palmar surface of fingers)

1 = absent
3 = flexion of fingers with occasional brief grasping of stimulus
5 = distinct grasping of stimulus
7 = trapping of stimulus with or without groping after stimulus; grasping may be clonic
Foot grasp (tonic foot response):

(15 sec. tactile stimulus)

1 = absent

3 = slight plantar flexion of the
toes in response to stimulus

5 = distinct tonic plantar flexion
and adduction of toes

7 = persistent prominent tonic
plantar flexion and adduction of
toes with arching of the foot

Rooting reflex: (15 sec. of continuous
tactile stimulus)

1 = absent

3 = slight movement of lips and head
toward stimulus

5 = head distinctly turns toward
stimulus

7 = lips and head turn prominently
toward stimulus and lips try to
grasp stimulus

Snout reflex:

1 = absent (after at least 10
attempts)

3 = slight brief puckering of lips,
occurs less than 5 times in
response to 10 or more subsequent
stimuli

5 = distinct puckering of lips which
does not exhaust (habituate)
after continuing stimuli

7 = prominent continuous pursing of
lips in response to repetitive
stimuli, with extension of
stimulus zone - no habituation
occurs

Glabella blink reflex:
10

1 = less than 5 blinks (in response to repetitive stimuli)
2 3 = 5 to 10 blinks to subsequent stimuli
4 5 = 10 to 20 blinks to subsequent stimuli
6 7 = absence of habituation to repeated stimuli and extension of stimulus zone
8
9 Palmomental reflex:
10
11 1 = absent (after at least 10 subsequent stimuli)
12 3 = 1 to 5 slight contractions of the ipsilateral mentalis muscle in response to 10 subsequent stimuli
13 5 = 5 to 10 distinct subsequent contractions of the ipsilateral mentalis muscle in response to 10 subsequent stimuli
14 7 = no habituation occurs, prominent muscle contraction, extension of stimulus zone outside the palm of the hand may occur
15
16 In situations falling between the four well-defined points 1, 3, 5 and 7, intermediate numerical scores 2, 4, and 6 are used.
17
18 The inventors have discovered that the present invention can be employed to diagnose mild cognitive impairment. When a combination measure was employed which combines the obtained scores on all 14 individual measures, 80% of subjects with mild cognitive impairment as measured on the Global Deterioration Scale (GDS stage 3) had abnormal scores on this measure. Consequently, this measure is a sensitive marker for early dementia.
Of elderly subjects with mild
cognitive impairment (GDS stage 3), 55% have abnormal
values on the measure which combines 4 deep tendon
reflexes versus 26% of cognitively normal elderly.
Consequently, this combinatorial measure is useful as
an early marker of dementia.

Paratonic muscle rigidity (paratonia)
is not present in elderly cognitively normal subjects,
but is present in 10% of individuals with mild
cognitive impairment (GDS stage 3); it is present in
12% of subjects with mild dementia (GDS stage 4) of
the Alzheimer type; it is present in respectively 42%
of patients with moderate dementia associated with
Alzheimer's disease (GDS stage 5); in 75% of patients
in the severe dementia stage of Alzheimer's disease
(GDS stage 6) and in 100% of patients with very severe
dementia associated with Alzheimer's disease (GDS
stage 7). Consequently, we have discovered that this
measure is a sensitive indicator of dementia and
dementia progression.

Seventy percent of elderly subjects
with mild cognitive impairment (GDS stage 3) have
abnormal values on a measure which combines three
primitive reflexes, which we have collectively termed
nociceptive reflexes, as compared to only 30% of
cognitively normal subjects. Consequently, the
inventors believe this measure to be useful as an
early marker for dementia.

Thirty-five percent of subjects with
severe dementia (GDS stage 6) have abnormal scores on
a combination measure which combines 5 primitive
reflexes, collectively termed "prehensile release
signs." Cognitively intact subjects do not score on
this measure, whereas 100% of very severely demented
subjects (GDS stage 7) have abnormal scores on this
measure. Consequently, this measure is an indicator of severe dementia.

Subjects who attain abnormal scores on a combination of paranoia and prehensile release signs are almost all unable to ambulate independently. Consequently, the combination of these measures is a diagnostic indicator of imminent loss of independent ambulation in dementia.

Clinical Advantages Of The Assessment Procedures.

This invention has accomplished the following:

(1) it provides a sensitive cognition independent method for diagnosing and staging dementia,

(2) it provides the only objective, observationally based, staging instrument hitherto capable of continuously tracking the course of dementia, even into the severe stages where cognition-dependent measures bottom out,

(3) it provides an instrument for evaluating motor system impairment in demented patients,

(4) it improves clinical and research capacity to evaluate the benefit of psychopharmacologic intervention strategies for these patients,

(5) it improves the ability of research and health professionals to track and monitor the course of deterioration of persons with severe dementia, and

(6) it provides the clinician with a set of relatively rapid and simple bedside tests to evaluate severity of dementia in a patient with probable AD.
We claim:

The process for developing cognition independent tests for the diagnosis and staging of dementia comprising -

1. (a) separation of cognition-dependent measures from the clinical neurologic examination

(b) selecting a group of cognition-independent measures from the clinical neurologic examination, more specifically, reflex phenomena, for the purpose of diagnosing and staging dementia

(c) developing and modifying scoring methodology of cognition-independent clinical measures, specifically, reflexes

(d) developing new neurologic measurements from specific combinations of individual quantified neurologic measurements, that is, from reflexes

(e) utilizing these quantified individual clinical neurologic measurements as well as the combination neurologic quantified measurements to diagnose and stage dementia using
algorithms which we have discovered.

2. The method of claim 1 wherein said step of selecting a battery of cognition-independent neurological tests for the sole purpose of diagnosing and staging dementia comprises the selection of specific deep tendon reflexes, plantar reflexes, paratonia and primitive reflexes (release signs).

3. The method of claim 1 wherein said step of developing scoring methodology comprises the creation of scales for rating the activity of deep tendon reflexes, plantar reflexes, paratonic rigidity, and primitive reflexes.

4. A cognition, independent measure formed from scores for diagnosing and staging dementia comprising in combination measures which are reflexes selected from the group consisting of deep tendon reflexes, plantar reflex, paratonic rigidity, and primitive reflexes.

5. A cognition, independent measure formed from scores for diagnosing and staging dementia comprising in combination measures which are selected from the group of deep tendon reflexes consisting of biceps reflexes, triceps reflexes, quadriceps reflexes and gastrocnemius-soleus reflexes.

6. A cognition, independent measure formed from scores for diagnosing and staging dementia comprising in combination measures which are prehensile primitive reflexes selected from the group consisting of tactile and visual sucking reflexes, hand grasp and foot grasp reflexes and rooting reflex.

7. A cognition, independent measure formed from a combination of scores for diagnosing and staging dementia comprising in combination measures which are nociceptive primitive reflexes selected from
the group consisting of the snout reflex, the
glabellar blink reflex and the palmomental reflex.

8. A cognition, independent measure
formed from a combination of scores for diagnosing and
staging dementia comprising in combination measures
which are all primitive reflexes selected from the
group consisting of prehensile primitive reflexes and
nociceptive reflexes.

9. A cognition, independent measure
formed from a combination of scores for diagnosing and
staging dementia comprising in combination measures
which are all prehensile reflexes and paratonia.

10. A cognitive, independent measure
for diagnosing and staging dementia comprising a score
based on the plantar reflex.

11. A cognitive, independent measure
for diagnosing and staging dementia comprising a score
based on the severity and magnitude of abnormal
paratonic muscular rigidity.
INTERNATIONAL SEARCH REPORT

International Application No. PCT/US92/00725

I. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate all)

According to International Patent Classification (IPC) or to both National Classification and IPC

| IPC(5): | A61B 5/103 |
| U.S. CL. | 128/774 |

II. FIELDS SEARCHED

<table>
<thead>
<tr>
<th>Classification System</th>
<th>Minimum Documentation Searched?</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S.</td>
<td>128/731 774 782</td>
</tr>
<tr>
<td></td>
<td>733 779</td>
</tr>
</tbody>
</table>

Documentation Searched other than Minimum Documentation to the extent that such Documents are Included in the Fields Searched

III. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of Document, 11 with indication, where appropriate, of the relevant passages 12</th>
<th>Relevant to Claim No. 13</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US, A, 3,322,115 (RICHARDS) 30 May 1967 (See entire reference)</td>
<td>1-11</td>
</tr>
<tr>
<td>A</td>
<td>Medicine and Biology Engineering, Vol. 9, 01 July 1971 Bowley et al., “A New Simple Detector For Achilles Reflex Measurement” pgs. 351-357 (See entire article)</td>
<td>1-11</td>
</tr>
<tr>
<td>A</td>
<td>SU, A, 1,055,473 (LEXP) 23 November 1983 (See abstract)</td>
<td>1-11</td>
</tr>
<tr>
<td>A</td>
<td>SU, A, 1,438,695 (NEUR) 23 November 1988 (See abstract)</td>
<td>1-11</td>
</tr>
</tbody>
</table>

* Special categories of cited documents: 10

 "A" document defining the general state of the art which is not considered to be of particular relevance

 "E" earlier document but published on or after the international filing date

 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

 "O" document referring to an oral disclosure, use, exhibition or other means

 "P" document published prior to the international filing date but later than the priority date claimed

 "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

 "X" document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step

 "Y" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

 "Z" document member of the same patent family

IV. CERTIFICATION

<table>
<thead>
<tr>
<th>Date of the Actual Completion of the International Search</th>
<th>Date of Mailing of this International Search Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>29 April 1992</td>
<td>08 JUN 1992</td>
</tr>
</tbody>
</table>

International Searching Authority

ISA/US

Signature of Authorized Officer

[Signature]

Max Hindenburg