006/130242 A2 | 000 0 00 O A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization ‘f '
International Bureau

(43) International Publication Date
7 December 2006 (07.12.2006)

IR
s |0 O O 00O O OO O

(10) International Publication Number

WO 2006/130242 A2

(51) International Patent Classification: Not classified
(21) International Application Number:
PCT/US2006/013962

(22) International Filing Date: 13 April 2006 (13.04.2006)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

11/139,427 27 May 2005 (27.05.2005) US

(71) Applicant (for all designated States except US): MI-
CROSOFT CORPORATION [US/US]; One Microsoft
Way, Redmond, Washington 98052-6399 (US).

(72) Inventors: MCKEON, Brendan; One Microsoft
Way, Redmond, 98052-6399 (US). PATWARDHAN,
Makarand, V.; One Microsoft Way, Redmond, Washing-
ton 98052-6399 (US). ABDO, Nadim, Y.; One Microsoft
Way, Redmond, Washington 98052-6399 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,

GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KN, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV,
LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI,
NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG,
SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US,
UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARTPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, 7ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, S, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant’s entitlement to apply for and be granted a
patent (Rule 4.17(ii))

as to the applicant’s entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Published:
without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: TECHNIQUES FOR PROVIDING ACCESSIBILITY OPTIONS IN REMOTE TERMINAL SESSIONS

102,

>

100A —,

(724

m

012

015
000

o
0oooo

O

SERVER DESKTOP 11 OAJ

AA-RTS SUPPORT J
SERVER 204

AA-UI INTERFACE)
(SERVER 206

SERVER OS 208

CLIENT 104A
[T | _|REMOTE DESKTOP 112A7y
oy} i
049 MeDIA O
E E PLAV152RO logn_AJ
g H
(Mg
nige
(M| |
nse
—————— ==~ T 7{[1_ CLIENT DESKTOP 222
|
== CLIENT
DISPLAY
224

(RTS CLIENT 212 J

AA-UI INTERFACE
CLIENT 214

(AA CLIENT 216 J

CLIENT OS 218

o (57) Abstract: Techniques relating to enabling accessibility functionality in remote terminal session scenarios are described. In one
instance, a process detects a request from an accessibility functionality regarding a display element in a remote terminal session. The
process sends a query relating to the request to a component located on a computing device which generated the display element.

The process also receives a response to the query.

WO 2006/130242 PCT/US2006/013962

10

15

20

Techniques for Providing Accessibility Options in Remote Terminal Sessions

BACKGROUND

[0001] Accessibility aids attempt to facilitate computer usage for individuals
who have difficulty utilizing a standard user-interface configuration. For instance,
an individual with reduced vision may want features of the user-interface increased
in size and/or augmented by accompanying verbal descriptions so that the user can

more easily locate and engage those features.

[0002] Remote terminal session support products, such as Terminal Services,
offered by Microsoft ® Corporation, enable a remote terminal session between a
client computer and a server computer. The remote terminal session (RTS) can
enable the client computer to connect over a network to the server computer to
generate a remote desktop on the client computer. Traditionally, in a remote desktop
scenario, an operating system and/or one or more applications run on the server
computer to generate a user-interface (UI). A representation of the Ul, such as a bit
map image, is then sent to the client over the network. The bit map image data has
limited value from an accessibility perspective. Solutions for providing

accessibility options for remote terminal session scenarios are desired.

SUMMARY

[0003] Techniques relating to enabling accessibility functionality in remote
terminal session scenarios are described. In one instance, a process detects a request

from an accessibility functionality regarding a display element in a remote terminal

WO 2006/130242 PCT/US2006/013962

10

15

session. The process sends a query relating to the request to a component located on
a computing device which generated the display element. The process also receives

a response to the query.

BRIEF DESCRIPTION OF THE DRAWINGS

[0004] Fig. 1 illustrates an exemplary system for enabling accessibility

functionality in remote terminal session scenarios.

[0005] Fig. 2 illustrates an exemplary system for enabling accessibility

functionality in remote terminal session scenarios.

[0006] Fig. 3 illustrates an exemplary system for enabling accessibility

functionality in remote terminal session scenarios in more detail.

[0007] Fig. 4 illustrates exemplary systems, devices, and components in an
environment for enabling accessibility functionality in remote terminal session

scenarios.

[0008] Fig. 5 illustrates a process diagram of one exemplary implementation

for enabling accessibility functionality in remote terminal session scenarios.

WO 2006/130242 PCT/US2006/013962

10

15

20

DETAILED DESCRIPTION

OVERVIEW

[0009] The techniques described below relate to remote terminal session
scenarios and enabling accessibility aids (AA) in remote terminal sessions. In this
document AA relates to a functionality for accessing information relating to display
elements or objects which may be displayed for a user. AAs are utilized in multiple
user scenarios. For instance, AAs are utilized in various speech command-and-
control scenarios, various testing scenarios, and in various scenarios to aid a user

having vision and/or hearing impairment.

[0010] In a standalone computer configuration, the computer generates a
user-interface (UI) which comprises one or more display elements such as icons,
toolbars etc. A display element can be any portion of the UI which is associated
with object data or information. An AA operating in the standalone configuration
can obtain some or all of the information about specific display elements of the UL
The AA includes, or communicates with, a means for interacting with the UI, such
as an accessibility aid-user-interface-interface (AA-Ul-interface) which facilitates
acquiring the requested display element information. The information relating to a
display element is then utilized in some manner to aid the user. For instance, if the
user places a cursor over a display element representing an icon for a recycle bin,
the AA requests information relating to that display element. The AA receives and
understands information relating to the specified display element. Examples of the
type of information received include descriptions of buttons, lists, menus, etc., and

their relative relationships, among other things. The AA then can aid the user, such

WO 2006/130242 PCT/US2006/013962

10

15

20

as in the case of visual impairment, by causing the words “recycle bin” to be audibly

generated for the user in but one example.

[0011] Remote terminal sessions (RTS) allow an operating system (OS)
and/or application(s) operating on the server to generate a UI including one or more
display elements. Remote terminal sessions further allow output or graphics of the
Ul to be forwarded to the client computer. Described another way, only a
representation of the UI is sent to, and displayed on a client computer. The Ul
representation is visibly displayed for a user on the client computer. A user at the
client computer can see and interact with the representation of the UL. The client
computer has a reduced level of responsibility relative to the server in that the client
is only responsible for displaying the representation received from the server and
relaying user-input back to the server. The server computer processes the user input
and updates the UI to reflect the user input, and sends an updated representation of
the UI to the client computer. From a visual perspective of the user, the Ul
representation may be indistinguishable from the actual UL. However, from an
accessibility perspective, the Ul representation is associated with a reduced level of

object data when compared to the actual corresponding UL

[0012] The present techniques further enable an AA in a remote terminal
session environment to achieve a functionality similar to the standalone
configuration described above. For instance, the AA can request and receive
information relating to specific portions of the client representation of the server’s
UL The request is detected and the information gathered and presented to the AA.

Some implementations detect the AA’s request, obtain the -corresponding

WO 2006/130242 PCT/US2006/013962

10

15

20

information, and present the information to the AA in a manner which is transparent
to the AA so that the AA need not even be aware that it is functioning in other than a

standalone configuration.

[0013] For example, consider Fig. 1 which illustrates a system 100
configured to support a remote terminal session between a server 102 and a client
104 over a network 106 and which is configured to enable accessibility functionality
relative to the remote terminal session. Server 102 generates a Ul in the form of a
server desktop 110. The server desktop can be comprised of one or more display
elements such as display element 111 illustrated here. Examples of display elements
can include icons, toolbars menus etc. The remote terminal session generates a
representation of the UT in the form of a remote desktop 112 on client 104. The
remote desktop rather than including the one or more display elements is merely a
representation of the display elements which lacks much or all of the underlying
information associated with the display elements of the server UL. For instance,
display element 111 is represented as indicated by representation 113. To a user,
display element representation 113 may appear essentially identical to display
element 111, but from an accessibility perspective, display element representation

113 is associated with a reduced amount of associated information.

[0014] An accessibility aid functioning in relation to the client’s remote
desktop 112 can request information regarding a portion of the remote desktop. To
satisfy the AA’s request, at least some implementations, gather information at the
server relating to a corresponding portion of the server UL For instance, object data

related to the requested portion of the client Ul representation is effectively

WO 2006/130242 PCT/US2006/013962

10

15

20

retrieved at the server from the actual server UI and brought to the AA. For
instance, assume that the AA requests information relating to a display element of
the remote desktop. The request is detected, and information relating to the
requested portion of the remote desktop is obtained and presented to the AA. For
example, the information may be obtained in relation to a corresponding portion of
the server desktop. The information can be presented to the AA such that the AA
need not possess any functionality beyond which would be utilized if the remote

desktop was instead a UI generated locally on client 104.

[0015] For purposes of illustration, assume in another example that the AA
requests information regarding a portion of the remote desktop 112 proximate cursor
114. The AA’s request is detected and information is obtained from server 102
regarding the portion of the server desktop 110 proximate cursor 114. The obtained

information, or some derivative thereof, is supplied to the AA.

[0016] Responsive to the supplied information, the AA can enable an
accessibility-related user-perceptible output 116 to be generated at client 104 for the
user. The accessibility-related user-perceptible output 116 can include an audio
and/or video signal which augments the remote desktop as should be recognized by
the skilled artisan. For example, assume for purposes of explanation that cursor 114
is positioned over a display element in the form of an internet browser icon. In such
an instance, accessibility-related user-perceptible output 116 may be manifested as

the words ‘internet browser” audibly generated for the user.

[0017] As mentioned above, in at least some implementations, the AA need

not even be aware that only a representation of the user-interface exists on client

WO 2006/130242 PCT/US2006/013962

10

15

20

104 or that the AA is operating relative to a remote terminal session. Stated another
way, in some implementations a significant subset of information regarding the
remote desktop is made available locally at the client for the AA. In some of these
implementations, techniques are supported which allow the information to be made
available in a manner which is transparent to the AA. For instance, the information
is made available locally in a transparent manner when the AA utilizes a supported
technique to access the information. In such configurations, the AA may be blind to
the existence of a remote terminal session and still function consistent within

expected accessibility functionality parameters.

[0018] The implementations described above and below are described in the
context of a computing environment as commonly encountered at the present point
in time. Various examples can be implemented by computer-executable instructions
or code means, such as program modules, that are executed by a computer, such as a
personal computer or PC. Generally, program modules include routines, programs,
objects, components, data structures and the like that perform particular tasks or

implement particular abstract data types.

[0019] Various examples may be implemented in computer system
configurations other than a PC. For example, various implementations may be
realized in hand-held devices, multi-processor systems, microprocessor-based or
programmable consumer electronics, network PCs, minicomputers, mainframe
computers, cell phones and the like. Further, as technology continues to evolve,
various implementations may be realized on yet to be identified classes of devices.

For example, as the cost of a unit of processing power continues to drop and

WO 2006/130242 PCT/US2006/013962

10

15

20

wireless technologies expand, computing devices resembling today’s cell phones
may perform the functionalities of today’s PC, video camera, cell phone, and more
in a single mobile device. This single device may in one scenario act as a server and
in another scenario act as a client. This is but one of many existing and developing

examples for the described implementations.

[0020] The terms server and client as used herein do not connotate any
relative capabilities of the two devices. The client may have more, less, or equal
processing capabilities than the server. Rather, in this document, the names server
and client describe the relative relationship of the two components. For example, a
computing experience of a first or server device is remoted to a second or client

device.

[0021] Although the various implementations may be incorporated into many
types of operating environments as suggested above, a description of but one
exemplary environment appears in Fig. 4 in the context of an exemplary general-
purpose computing device and which is described in more detail later in this

document under the heading “Exemplary Operating Environment”.

EXEMPLARY IMPLEMENTATIONS AND PROCESSES

[0022] Consider Fig. 2 which illustrates a system 100A configured to enable
accessibility functionalities to be achieved in a remote terminal session. System
100A is configured to support a remote terminal session between a server 102A and
a client 104A over a network 106A. System 100A also is configured to enable

accessibility functionality to be achieved for client 104A during the remote terminal

WO 2006/130242 PCT/US2006/013962

10

15

20

session. In this system implementation, server 102A includes a RTS-server
component 202, an AA-RTS-support-server component 204, an AA-Ul-interface-
server component 206, and a server operating system (OS) 208. Client 104A
includes a RTS-client component 212, an AA-Ul-interface-client component 214, an

AA-client component 216, and a client OS 218.

[0023] In this configuration, server 102A is configured to generate a Ul
which is implemented in the form of a server desktop 110A for purposes of
illustration. Server desktop is illustrated here for purposes of explanation, but in
many scenarios a visual image of the server desktop is not actually generated on the
server. The RTS-server component 202 and the RTS-client component 212 are
configured to establish one or more communication channels 220 between server
102A and client 104A over network 106A for the remote terminal session. The
RTS-server component 202 is configured to generate a representation of the server
desktop for display on the client 104A. The representation is sent over
communication channel 220 and is displayed on client 104A as remote desktop
112A in this example.‘ In this instance, the remote desktop 112A lies within, and is
surrounded by a border or window. The border serves to distinguish the remote
desktop 112A from the locally generated client desktop 222 on client display 224.
In other configurations it may not be readily apparent to the user which components

are locally generated and which components are remotely generated.

[0024] The remote terminal session, via RTS-client component 212 and RT'S-
server component 202, is further configured to enable accessibility functionality

relative to the remote terminal session. For instance, the remote terminal session

WO 2006/130242 PCT/US2006/013962

10

15

20

can host accessibility components at the client and/or server. Alternatively or
additionally, the remote terminal session can provide a communication means for
AA components located on the server 102A and the client 104 to communicate

regarding Ul information desired for accessibility purposes.

[0025] AA-client component 216 is configured to request information from,
or otherwise interact, with the Ul occupying client display 224 via AA-Ul-interface-
client component 214. AA-Ul-interface-client component 214 is an interface such
as an application program interface (API) configured to interact with the UI to
obtain information for an AA. In some configurations, an AA-Ul-interface is an
application program interface (API) and system library configured to present
information relating to a Ul display element(s) to a client application. In but one
such configuration, the AA-Ul-interface presents the Ul information as a tree of
nodes where each node represents a UI display element. In at least some
configurations, the AA-Ul-interface is configured to provide access to structure,
properties, interactivity, and events for the nodes. Potential non-limiting examples
of AA-Ul-interfaces include UI Automation and Microsoft Active Accessibility
(MSAA), both of which are trademarked products offered by Microsoft ® Corp.
The skilled artisan should recognize other suitable AA-Ul-interfaces, some of which
may be more performant than others relative to the concepts described above and

below.

[0026] In this instance, client display 224 includes a client desktop portion
222 which is a locally generated Ul and the remote desktop portion 112A which is a

representation of a remotely generated UL In this instance, remote desktop 112A is

10

WO 2006/130242 PCT/US2006/013962

10

15

20

a bitmap representation of the server’s Ul or server desktop 110A. Remote desktop
112A contains a reduced amount of information for accessibility purposes when

compared to a locally generated Ul such as client desktop 222.

[0027] Consistent with system 100A, AA-client component 216 can request
and receive information regarding a specified portion of client display 224. If the
requested information is available locally on the client then the information is
obtained at the client and provided to the AA-client component 216. Such an
instance may occur if the AA’s request relates to the client desktop 222. If the
requested information is not available on the client, such as a request directed to a
portion of remote desktop 112A, then the information is obtained remotely. For
instance, in this particular configuration, if AA-client 216 requests information
regarding remote desktop 112A, then the request is detected and understood by a
client side component, such as RTS-client 212, and is directed to the server 102A.
In this particular configuration, the request is directed to the AA-RTS-support-server
component 204 over network 106A. The request may be sent over channels 220
associated with the remote terminal session or may be separate ‘out of band’

channels

[0028] AA-RTS-support-server component 204 acts on behalf of AA-client
component 216 and is configured to obtain the requested information related to the
server desktop 110A. AA-RTS-support-server component 204 acts in cooperation
with AA-Ul-interface-server component 206 to obtain the information at the server
102A. AA-RTS-support-server component 204 relays the information back to the

client and ultimately to client’s AA-client component 216. The system

11

WO 2006/130242 PCT/US2006/013962

10

15

20

configuration of Fig. 2 is but one configuration which allows the AA-client
component 216 to obtain Ul information in a RTS session regardless of whether the

Ul information exists on the client 104A or the server 102A.

[0029] In some configurations, AA-client‘component 216 need not be aware
whether the request relates to the locally generated UI or a mere representation of a
remote or server generated UL In such configurations a means to determine if the
request relates to the client Ul or a representation of a remote Ul may exist on client
104A, such as within RTS-client component 212. The RTS-client component then

obtains the information locally or remotely as appropriate.

[0030] Fig. 3 offers a non-limiting implementation consistent with the
concepts described above and below. Fig. 3 represents a system 100B which
includes a client 104B and a server 102B and within which an accessibility
functionality operating on client 104B can be provided with requested information
regarding a Ul whether the Ul is generated on a machine on which the accessibility
functionality is operating or a remote machine. This particular system configuration
provides an example of how, relative to a remote terminal session, RTS components
can provide infrastructure on both the client and server sides to host AA supplied

components which can obtain accessibility related information regarding a UL

[0031] In this implementation, RTS components can provide AA components
with means to pass a request for desired Ul information from the client side to the
server side and can provide a means to pass the obtained information from the
server side back to the client side. For purposes of explanation, Fig. 3 divides

processes occurring on client 104B into two process types: an AA process type 302;

12

WO 2006/130242 PCT/US2006/013962

10

15

20

and a RTS process type 304. Also, processes which occur on server 102B are
indicated as server process type 306. The server processes are grouped together into
a single process for ease of explanation and due to limits of the printed page. In
other configurations, the server UI 326 may be contained in a server process which
is separate and distinct from other server side components and/or processes.
Further, multiple instance of the server UI may exist in relation to other components

listed on server process 306.

[0032] System 100B includes, associated with AA process 302, an AA-client
component 216B, and an AA-Ul-interface component 214B. Also included in AA
process 302 is an AA-UI-RTS-local component 308 which in this instance is a sub
component of AA-Ul-interface component 214B. AA-UI-RTS-local component 308

acts to extend AA-UI functionality beyond the local or standalone scenario.

[0033] In this particular implementation, and in relation to RTS client process
304, system 100B includes a client display 222B upon which are displayed a bit
map representation 310 of a server Ul and a client generated UI 312. RTS client
process 304 also includes a RTS-client component 212B, an AA-UI-RTS-in-proc
component 314, a RTS-accessibility-support component 316, and a VC-host-client
component 318. The RTS-accessibility-support component 316 contains
information about accessibility aids which facilitates communication between the

RTS client components and the AA client components.

[0034] Relative to the server process 306, Fig. 3 includes a RTS-server
component 202B, an AA-UI-RTS-remote component 320, a VC-host-server

component 322, an AA-Ul-interface-server component 206B, and a server Ul 326.

13

WO 2006/130242 PCT/US2006/013962

10

Collectively, RTS-client component 212B, RTS-accessibility-support component
316, VC-host-client component 318, RTS-server component 202B, and VC-host-
server component 322 serve to enable AA-client component 216B to acquire data
regarding display elements represented on bit map representation 310. Since the bit
map representation is a representation of server UI 326, a broader scope of
accessibility related information is available from the server Ul. The above
mentioned components allow accessibility related information to be obtained from
the server 102B and the obtained information to be sent back for use by the AA-
client component 216B. The above mentioned components will be described in

more detail below by way of example.

14

WO 2006/130242 PCT/US2006/013962

10

15

20

Discovery

[0035] In this particular configuration, upon start-up of the RTS-client
component 212B, the RTS-client component loads RTS-accessibility-support
component 316 and the VC-host-client component 318 and causes the VC-host-
server component 322 to be loaded. Further, the RTS-client component exposes a
window interface for receiving communications, such as from AA-client component
216B. The interface also allows AA-Ul-interface component 214B to load the AA-
UI-RTS-in-proc component 314 into the RTS-client process 304. Once the interface
is exposed, the AA-Ul-interface component 214B can encounter or discover the
RTS-client component 212B. For instance, in one instance the AA-Ul-interface
component 214B encounters the RTS-client handle or HWND while traversing an
associated HWND tree. A HWND is a handle that represents a window. In a
Windows ® brand operating system many of the Ul elements are implemented as
windows. Each window is associated with a handle or HWND. Generally, AA
clients are provided with a tree of such hwnds, to represent various windows and
their relationship. The AA client uses the window handle to identify a window that
it wants to get more information about from the AA-Ul-interface-client component
214B. For example, the AA client may be navigating the tree, or noticing input
focus relative to the RTS-client, or hit-testing to the RTS-client. Responsive to
detecting the RTS-client, the AA-Ul-interface-client component 214B or AA-UI-
RTS-local component 308 loads AA-UI-RTS-in-proc component 314 in the RTS-
client process 304. This is but one example, other implementations may utilize

recognize whatever data type is utilized to represent a Ul on a particular platform.

15

WO 2006/130242 PCT/US2006/013962

10

15

20

[0036] In an instance where the HWND belongs to the RTS-client process,
the AA-client 216B, via its representative AA-UI-RTS-local component 308 can
send a communication to the RTS-client 212B utilizing the window interface
provided by the RTS-client 212B. In one such instance, the AA-UI-RTS-local
component 308 sends a process message such as WM. GETOBJECT to the RTS-

client 212B via the exposed interface.

[0037] The RTS-client 212B forwards the AA client’s process message to
AA-UI-RTS-in-proc component 314 and the accessibility support component 316.
Responsively, the accessibility support component exposes the RTS-client process
such that AA-UI-RTS-local component 308 can load AA-UI-RTS-remote
component 320 on the server side and access associated virtual channels. The
accessibility support component further allows the AA-UI-RTS-in-proc component
314 to get access to various terminal services properties of the RTS-client desktop
that are utilized by AA-UI-RTS-in-proc component 314 for proper handling of the
requests. Such properties may relate to scroll bars, visible, invisible and enabled,
among others. For example AA-UI-RTS-in-proc component 314 is responsible for
post-processing of various properties such as locational properties described below.
To enable such post-processing AA-UI-RTS-in-proc component 314 utilizes
window coordinates information that display the server desktop in the RTS-client
212B. For instance, if the RTS-client window is using scrollbars, AA-UI-RTS-in-
proc component 314 utilizes the positions of scrollbars to map correctly. In another
example, in some remote terminal session scenarios, the client desktop displayed by
the RTS-client 212B is a representation of a single window on the server, and not a

whole desktop per se. AA-UI-RTS-in-proc component 314 utilizes information

16

WO 2006/130242 PCT/US2006/013962

10

15

20

relating to such an RTS configuration and to which server desktop window does the
client desktop correspond. The RTS-accessibility support component 316 provides

this information for the AA-UI-RTS-in-proc 314.

[0038] Responsive to the AA client process message, the AA-UI-RTS-in-proc
component 314 checks the legitimacy of the process message and opens a
communication means and calls AA-UI-RTS-local component 308. For instance,
AA-UI-RTS-in-proc can check that the WM_GETOBJECT message includes a
parameter indicating that it is from AA-Ul-interface-client component 214B or other
accessibility component. The AA-UI-RTS-in-proc 314 handles WM_GETOBJECT
by creating a named pipe. AA-UI-RTS-in-proc then returns some key to the pipe
back to caller, i.e. AA-UI-RTS-local component 308. This is but one example of
how the AA-UI-RTS-local component 308 establishes a communication channel
with the AA-UI-RTS-in-proc component 314. The skilled artisan should recognize

other configurations.

[0039] In this instance, AA-UI-RTS-local component 308 receives the
returned pipe key from the WM_GETOBJECT message, and connects to the pipe to
establish communications between the AA client process 302 and the RTS-client

process 304.

[0040] Responsive to the RTS-client 212B command mentioned above, the
VC-host-client component 318 sends a command to start the VC-host-server
component 322. The VC-host-server component causes the AA-UI-RTS remote
component 320 to establish a link with AA-UI-RTS-in-proc 314. As mentioned

above a communication means was extended from the AA client process to the RTS

17

WO 2006/130242 PCT/US2006/013962

10

15

20

client process, this communication means is now effectively extended to processes
on server 102B. In this instance, the connection extends from the AA-UI-RTS-local
308 to the AA-UI-RTS-in-proc 314 and then to the AA-UI-RTS-remote component

320.

Requesting information

[0041] A request for accessibility related information from AA client 204B is
propagated from client side AA-Ul-interface-client 214B to the AA-UI-RTS-local
component 308. In one instance, the AA-UI-RTS-local component builds up a byte
message containing a reference to the requested display element or object, a list of
properties to retrieve, and a filter that identifies the elements of interest to the AA-
UI-RTS-local component 308. For example, when the request is for children of a
particular display element, the filter could specify “only visible elements” that way
instead of returning all the children of the particular display elements, only visible
children will be rgulrned. The AA-UI-RTS-local component 308 then sends the
message over the named pipe to AA-UI-RTS-in-proc component 314 and waits for a

response.

[0042] The AA-UI-RTS-in-proc component 314 receives the message, tags it
with an ID to identify which AA-UI-RTS-local component sent the message. The
AA-UI-RTS-in-proc component 314 forwards the message to AA-UI-RTS-remote
component 320. The AA-UI-RTS-remote component receives the message, de-

serializes the message (including looking up the object reference to determine the

18

WO 2006/130242 PCT/US2006/013962

10

15

20

target UI element), and uses the AA-Ul-interface APIs of AA-Ul-interface server
component 206B to collect the requested information via an interface exposed by
the AA-UI-RTS-remote component 320. The AA-Ul-interface-server component
206B can share some or all of the functionality of AA-Ul-interface-client
component 214B such that the AA-Ul-interface-server component 206B can operate
on behalf of AA-Ul-interface-client component 214B. The AA-Ul-interface-server

component 206B obtains the requested accessibility information from the server Ul

326.

[0043] The AA-UI-RTS-remote component 320 serializes the collected
information into a byte message, and sends it back over the virtual channel to the

AA-UI-RTS-in-proc component 314, with the tag ID intact.

[0044] The AA-UI-RTS-in-proc component 314 forwards the message from
AA-UI-RTS-remote component 320 via the virtual channel to the appropriate AA-
UI-RTS-local component via the named pipe using the tag ID to determine correct
AA-UI-RTS-local component. For ease of explanation only one AA-UI-RTS-local
component 308 is illustrated, but as mentioned below, in some implementations,
multiple instances of this, as well as other components, may be running. AA-UI-
RTS-local component 308 receives the response message and de-serializes the
message. In some instances, the AA-UI-RTS-local component 308 post-processes
the message. For instance the message may be post-processed regarding property
values to apply offsets or otherwise adjust properties that are affected by RTS

hosting. Once any appropriate post-processing is completed the AA-UI-RTS-local

19

WO 2006/130242 PCT/US2006/013962

10

15

20

component 308 sends the processed information to the AA-Ul-interface-client

component 214B.

[0045] One example of such post-processing relates to information regarding
the location of the requested element on the display. For instance, assume that the
AA-client requests accessibility related information about an element at the extreme
top left of bit map representation 310. The information is obtained on the server
side in relation to the server Ul 326. However, any associated location information
is in relation to the server Ul which in this instance is represented in bit map
representation 310 within client UI 312. In this instance, the location information
from the server Ul is adjusted relative to the overall client display 224B. So, in this
instance, expressed qualitatively, the element that is at the extreme upper left of the
bit map representation is generally in the middle of the upper left quadrant of client
display 224B. The skilled artisan should recognize how to undertake conversions in
a quantitative manner. The relative position adjustments and other post-processing
may be accomplished by any combination of the client components. For instance,
the AA-UI-RTS-local component 308 or the AA-Ul-interface client component

214B can process such adjustments.

[0046] Further, processing resources may be saved in some implementations
by minimizing the number of components which are launched at start-up of a
remote terminal session. The remaining components are launched responsive to
some cue, such as an information request from the AA-client 216B. Other

implementations may launch and enable most or all of the components upon start-

up.

20

WO 2006/130242 PCT/US2006/013962

10

15

20

[0047] System 100B is described above in a relatively simple scenario where
client display 224B includes a single client generated UI 312 and a single bit map
representation 310. The skilled artisan should recognize that this system
configuration is readily scalable across multiple facets. For instance, multiple AA
client applications can run simultaneously in relation to the client display 224B.
Alternatively or additionally, the server side components such as the AA-UI-RTS-
remote 320 can handle a many-to-one relationship with many ongoing remote
terminal sessions. Further still, other implementations may employ multiple
representations of remote Uls on client display 224B. To a user of the client
machine, the representations may be clearly demarcated by a border such as a

window, or indistinguishable from a locally generated UL

[0048] In an instance of many AA clients simultaneously running in relation
to the RTS client window, some means of distinguishing the various AA clients is
utilized. In one such configuration a communication means or pipe is dedicated to
each AA client. The various pipes can connect individual AA clients to a shared

AA-UI-RTS-in-proc 314 and VC-host-client 318.

[0049] The AA-UI-RTS-in-proc 314 component can be configured to
multiplex client requests and events between the per-client pipes and the single VC-
host-client component. In one such configuration, the AA-UI-RTS-in-proc 314
assigns unique identifiers for each AA client and appends packets sent to AA-UI-
RTS-remote 320, which treats the values as opaque but keeps them intact and sends
them back with events so that the AA-UI-RTS-in-proc knows to which client to

forward the event.

21

WO 2006/130242 PCT/US2006/013962

10

15

20

[0050] In such a scenario, any adjustment of coordinates relative to client
display 222B can be handled by each client’s AA-UI-RTS-local component. Such a
configuration avoids having the AA-UI-RTS-in-proc component understand the
semantic content of any of the messages it is forwarding between the pipes and the
VC. Finally, it allows the AA-UI-RTS-remote component to be ‘client agnostic’, as
it does not have to be aware of individual clients or track a client specific state on
their behalf. Placing the multiplexing burden on the AA-UI-RTS-local component

also helps keep the client-specific state out of the AA-UI-RTS-remote component.

[0051] As mentioned above, at least some implementations can handle
scenarios involving multiple bit map representations on client display 222B. For
instance, multiple remote applications may be represented as individual bit map
representations on client display 222B. In some of these configurations, RTS
functionality allows the AA-Ul-interface to create multiple virtual channels. Other
configuration may utilize a single virtual channel and a single corresponding AA-
UI-RTS-local component which multiplexes relative to the individual server side
applications represented as bit maps on the client display 224B. Some
configurations can then establish a pipe between an AA-UI-RTS-local component
and the AA-UI-RTS-in-proc component such that the pipe itself is identified with a
specific server side application. Another configuration may utilize one pipe per
client such that each AA-UI-RTS-local component would use one pipe to talk to the
AA-UI-RTS-in-proc component, regardless of which RTS Window it is working
against. The AA-UI-RTS-local component adds a parameter to its messages that
allows the AA-UI-RTS-in-proc component to determine to which window the

request relates. Other configurations may utilize the handle or HWND for each

22

WO 2006/130242 PCT/US2006/013962

10

15

20

application window from the server as another mapable aspect of the RTS-client

state that can be mapped by the AA-UI-RTS-local component.

[0052] For instance, the AA-UI-RTS-local component can send a message to
the AA-UI-RTS-in-proc component including the HWND of the local RTS-client
window. The AA-UI-RTS-in-proc component can respond with information about
that RTS-client window state, such as its viewport, state, and also the remote
HWND. The viewport relates to information about the location of the RTS-client
desktop. The AA-UI-RTS-local can then send this HWND as a parameter in its
messages to the AA-UI-RTS-remote component. This approach can allow the AA-
UI-RTS-in-proc component to treat nearly all messages as being opaque (other than
those specifically asking for RTS window state). This allows the one-pipe-per-client
approach to be used. In effect, the AA-UI-RTS-local component is responsible for
multiplexing between multiple RTS windows. In such a configuration, calls that the
AA-UI-RTS-local component make to the AA-UI-RTS-remote component will
contain a HWND parameter indicating which HWND should be treated as the root
or root window. The term root window refers to the top level window. As
mentioned above, in some scenarios multiple RTS-clients represent corresponding
windows on the server desktop. These windows are not enclosed by the top level
RTS-client window, although they are representing some window on the same
server session. In such instances there could be two independent requests from the
AA-client to the AA-UI-RTS-in-proc. There are multiple ways of handling such
scenario. For instance, AA-UI-RTS-in-proc can use a dedicated virtual channel for
each such top level window with AA-UI-RTS-remote. In such a configuration, the

channel] itself identifies to which window the AA-client is referring. Alternatively

23

WO 2006/130242 PCT/US2006/013962

10

15

20

or additionally, AA-UI-RTS-in-proc could use a single virtual channel with the
server, and multiplex requests coming for various top level RTS-client windows. In
this approach, AA-UI-RTS-in-proc utilizes additional data for each request to
identify to which window AA-Ul-interface client is referring. This additional
information may be in the form of the handle of the top level window (root

window).

[0053] The system 100B is an example of but one configuration for enabling
accessibility functionality in a remote terminal session scenario. The configuration
of system 100 also is an example of a system which lends itself to adding modular
or plugin components upon a base functionality rather than rewriting the
instructions of the base functionality itself. For example, in this instance, various
components such as the RTS-accessibility-support component 316, and the VC-
host-client component 318 are added upon the base functionality of the RTS-client
component 212B as distinct modules or plugins. Among other advantages, such a
system may have a shorter development cycle and/or be more reliable than
customizing the RTS-client component to provide the desired functionality. Further
still, the above examples are described in relation to an entire remote desktop. In
other instances, the client window can contain a subset of the remote desktop as
opposed to the entire desktop. For example, this subset may be a specific remote
application window, and the UI that that application window contains. The
application could contain one or more Ul elements, and for instance, may include a

sub-tree of Ul elements.

24

WO 2006/130242 PCT/US2006/013962

10

15

20

EXEMPLARY SYSTEM ENVIRONMENT

[0054] Fig. 4 represents an exemplary system or computing environment 400
for enabling accessibility functionality in remote terminal sessions. System
environment 400 includes a general-purpose computing system in the form of a
server device or server 102. The components of server 102 can include, but are not
limited to, one or more processors 404 (e.g., any of microprocessors, controllers,
and the like), a system memory 406, and a system bus 408 that couples the various

system components. The one or more processors 404 process various computer

executable instructions to control the operation of server 102 and to communicate

with other electronic and computing devices. The system bus 408 represents any
number of several types of bus structures, including a memory bus or memory
controller, a peripheral bus, an accelerated graphics port, and a processor or local

bus using any of a variety of bus architectures.

[0055] Computing environment 400 includes a variety of computer readable
media which can be any media that is accessible by server 102 and includes both
volatile and non-volatile media, removable and non-removable media. The system
memory 406 includes computer-readable media in the form of volatile memory,
such as random access memory (RAM) 410, and/or non-volatile memory, such as
read only memory (ROM) 412. A basic input/output system (BIOS) 414 maintains
the basic routines that facilitate information transfer between components within
server 102, such as during start-up, and is stored in ROM 412. RAM 410 typically
contains data and/or program modules that are immediately accessible to and/or

presently operated on by one or more of the processors 404.

25

WO 2006/130242

10

15

20

PCT/US2006/013962

[0056] Server 102 may include other removable/non-removable, volatile/non-
volatile computer storage media. By way of example, a hard disk drive 416 reads
from and writes to a non-removable, non-volatile magnetic media (not shown), a
magnetic disk drive 418 reads from and writes to a removable, non-volatile
magnetic disk 420 (e.g., a “floppy disk™), and an optical disk drive 422 reads from
and/or writes to a removable, non-volatile optical disk 424 such as a CD-ROM,
digital versatile disk (DVD), or any other type of optical media. In this example, the
hard disk drive 416, magnetic disk drive 418, and optical disk drive 422 are each
connected to the system bus 408 by one or more data media interfaces 426. The
disk drives and associated computer readable media provide non-volatile storage of
computer readable instructions, data structures, program modules, and other data for

server 102.

[0057] Any number of program modules can be stored on the hard disk 416,
magnetic disk 420, optical disk 424, ROM 412, and/or RAM 410, including by way
of example, an operating system 426, one or more application programs 428, other
program modules 430, and program data 432. Each of such operating system 426,
application programs 428, other program modules 430, and program data 432 (or
some combination thereof) may include an embodiment of the systems and methods

described herein.

[0058] A user can interface with server 102 via any number of different input
devices such as a keyboard 434 and pointing device 436 (e.g., a “mouse”). Other
input devices 438 (not shown specifically) may include a microphone, joystick,

game pad, controller, satellite dish, serial port, scanner, and/or the like. These and

26

WO 2006/130242 PCT/US2006/013962

10

15

20

other input devices are connected to the processors 404 via input/output interfaces
440 that are coupled to the system bus 408, but may be connected by other interface

and bus structures, such as a parallel port, game port, and/or a universal serial bus

(USB).

[0059] A monitor 442 or other type of display device can be connected to the
system bus 408 via an interface, such as a video adapter 444. In addition to the
monitor 442, other output peripheral devices can include components such as
speakers (not shown) and a printer 446 which can be connected to server 102 via the

input/output interfaces 440.

[0060] Server 102 can operate in a networked environment using logical
connections to one or more remote computers, such as remote client device or client
104, By way of example, the remote client 104 can be a personal computer,
portable computer, a server, a router, a network computer, a peer device or other
common network node, and the like. The remote client 104 is illustrated as a
portable computer that can include many or all of the elements and features

described herein relative to server 102.

[0061] Logical connections between server 102 and the remote client 104 are
depicted as a local area network (LAN) 450 and a general wide area network
(WAN) 452. Such networking environments are commonplace in offices,
enterprise-wide computer networks, intranets, and the Internet. When implemented
in a LAN networking environment, the server 102 is connected to a local network
450 via a network interface or adapter 454. When implemented in a WAN

networking environment, the server 102 typically includes a modem 456 or other

27

WO 2006/130242 PCT/US2006/013962

10

15

means for establishing communications over the wide area network 452. The
modem 456, which can be internal or external to server 102, can be connected to the
system bus 408 via the input/output interfaces 440 or other appropriate mechanisms.
The illustrated network connections are exemplary and other means of establishing

communication link(s) between the computing devices 402 and 448 can be utilized.

[0062] In a networked environment, such as that illustrated with computing
environment 400, program modules depicted relative to the server 102, or portions
thereof, may be stored in a remote memory storage device. By way of example,
remote application programs 458 are maintained with a memory device of remote
client 104. For purposes of illustration, application programs and other executable
program components, such as the operating system 426, are illustrated herein as
discrete blocks, although it is recognized that such programs and components reside
at various times in different storage components of the server 102, and are executed

by the processors 404 of the server.

28

WO 2006/130242 PCT/US2006/013962

10

15

20

EXEMPLARY PROCESSES

[0063] Fig. 5 illustrates an exemplary process 500 for enabling accessibility
functionality in remote terminal sessions. The order in which the process is
described is not intended to be construed as a limitation, and any number of the
described process blocks can be combined in any order to implement the process.
Furthermore, the process can be implemented in any suitable hardware, software,

firmware, or combination thereof.

[0064] For purposes of explanation, the following process blocks are
described in the context of a remote terminal session scenario which defines a server
side and a client side of a remote terminal session. As such, in this particular
process configuration, process blocks 502, 504, 510, 512, and 514 occur on the

server side, while process blocks 506, 508, and 516 occur on the client side.

[0065] At block 502, the process generates a Ul. The Ul can include one or
more display elements such as icons, toolbars, menus, etc. The Ul can be utilized
for the remote terminal session in relation to a RTS-client. The Ul may be a
complete Ul such as a server desktop, a single application, or some other

configuration.

[0066] At block 504, the process sends a representation of the UI to the RTS-
client. In one such instance, the RTS functionality causes a bit map representation

of the UI to be generated and sent to the RTS-client.

[0067] At block 506, the process detects a request from an accessibility

functionality regarding a display element of the Ul in a remote terminal session. In

29

WO 2006/130242 PCT/US2006/013962

10

15

20

this particular process configuration, such detection occurs on the client side. In
other configurations, such detection may occur on the server side. The request may
relate to some portion of the UI representation received from the server in the
remote terminal session. The request may be received directly from an AA
component or some intermediary component such as an AA-Ul-interface operating
in cooperation with the AA component. In some configurations, the requesting
accessibility functionality may recognize that the request relates to a portion of a Ul
which is merely a representation of a UL In other configurations, the requesting
accessibility functionality may not have any ability to distinguish between an actual
UI and a representation of a UL In the latter configuration, a functionality may be
included which determines whether the request relates to an actual U, such as a
locally generated UI or a representation of a remotely generated Ul (from the
perspective of thé client machine). This functionality may then handle the request
locally or by directing the request to a remote component as appropriate. The
following scenario assumes that the request relates to a remotely generated Ul or its

display element.

[0068] At block 508, the process sends a query relating to the request to a
component located on a computing device which generated the display element. In
this instance, the computing device which generated the display element is
designated as the server. The query may be sent over a communication means
facilitated by the remote terminal session, or an independently established

communication means.

30

WO 2006/130242 PCT/US2006/013962

10

15

20

[0069] At block 510, the process receives the query relating to the UI at the
server side. At block 512, the process accesses Ul information responsive to the
query. In one such configuration, the information is obtained from the server Ul via
an AA-Ul-interface functionality operating on the server and which is configured to

obtain accessibility-related information from the UL

[0070] At block 514, the acquired information is sent to the client. The
information can be sent over the same communication means utilized to send the

request at block 508 or some other suitable communication means.

[0071] At block 516, the process receives the response to the query at the
client. The response can be provided to the accessibility functionality. In some
instances, further processing is conducted to the response prior to providing the
response to the accessibility functionality. For instance, information regarding a
relative location of a display element may be adjusted to take into account other
facets of the overall client display. For instance, a display element may be a portion
of a Ul representation received from the server. The server provided location data
relative to the server Ul, but the representation of the UI may comprise only a subset
of the overall client display which may also include locally generated UI
components and/or other remotely generated components. As such the location data
can be adjusted in relation to the overall client display. In some instances, the
information may be provided to an AA-Ul-interface functionality acting on behalf
of the AA. The AA-Ul-interface may refine or in some other way prepare the

information for use by the AA.

31

WO 2006/130242 PCT/US2006/013962

[0072] Although implementations relating to enabling accessibility
functionalities in remote terminal sessions have been described in language specific
to structural features and/or methods, it is to be understood that the subject of the
appended claims is not necessarily limited to the specific features or methods
5 described. Rather, the specific features and methods provide examples of

implementations for the concepts described above and below.

32

WO 2006/130242 PCT/US2006/013962

10

15

20

CLAIMS

1. A method, comprising:

detecting a request from an accessibility functionality regarding a display
element in a remote terminal session;

sending a query relating to the request to a component located on a
computing device which generated the display element; and,

receiving a response to the query.

2. A method as recited in claim 1, wherein the display element comprises a

portion of a remote desktop generated for the remote terminal session.

3. A method as recited in claim 1, wherein the accessibility functionality
comprises an accessibility aid-user-interface-interface (AA-Ul-interface)

functionality.

4. A method as recited in claim 1, wherein said sending comprises exposing an

interface configured to allow the accessibility functionality to establish a virtual

channel with the component.

33

WO 2006/130242 PCT/US2006/013962

10

15

20

5. A method as recited in claim 1 further comprising enabling the accessibility
functionality to establish communications with an accessibility functionality
representative component located on the computing device generating the display

element.

6. A method as recited in claim 5, wherein said enabling comprises providing
interfaces configured to allow the accessibility functionality to communicate with

the accessibility functionality representative component.

7. A method as recited in claim 5, wherein said enabling comprises providing
interfaces for the accessibility functionality to launch one or more components
configured to allow the accessibility functionality to communicate with the

accessibility functionality representative component.

8. A method as recited in claim 1, wherein the display element comprises a
single user-interface (UI) object, and further comprising presenting the response to

the accessibility functionality as nodes of an object tree reflecting the Ul object.

9. A method as recited in claim 8, wherein said presenting comprises processing

the response to compensate for at least one factor relating to the remote terminal

session.

34

WO 2006/130242 PCT/US2006/013962

10

10. A method as recited in claim 9, wherein the at least one factor comprises
adjusting location data obtained from a source of the display element to reflect a

location of the display element relative to a client display.

11. A method as recited in claim 1, wherein said sending comprises sending the

request over a virtual channel enabled by the remote terminal session.

12. A computer-readable media comprising computer-executable instructions
that, when executed, perform acts, comprising:
generating a user-interface (UI);
sending a representation of the Ul to a remote terminal session client;
receiving a query relating to the Ul; and,

accessing Ul information responsive to the query.

35

WO 2006/130242 PCT/US2006/013962

10

15

20

13. The computer-readable media of claim 12, wherein the accessing is
accomplished by an accessibility aid-user-interface (AA-UI) interface component

which is started responsive to said receiving.

14. The computer-readable media of claim 12, wherein the receiving is
accomplished by a component which is started responsive to receiving a start-up

request from the remote terminal session client.

15. The computer-readable media of claim 12, wherein said Ul comprises a sub-

tree of Ul elements.

16. The computer-readable media of claim 12 further comprising sending the UI
information to the client over a communication means enabled by a terminal

services session with the terminal services client.

17. A system, comprising:
means for requesting accessibility related information relative to a display
element displayed in a remote terminal session; and,

means for determining if the display element is remotely generated.

36

WO 2006/130242 PCT/US2006/013962

10

18. A system as recited in claim 17 further comprising means for enabling
communication with a remote source of the display element through which

accessibility related information can be obtained.

19. A system as recited in claim 18, wherein the means for enabling
communication provides at least one interface through which the means for
requesting can access a communication means for communicating with the remote

source.

20. A system as recited in claim 19, wherein the interface allows the means for

requesting to launch a component within a process boundary of the means for

enabling communication.

37

PCT/US2006/013962
1/5

WO 2006/130242

l Old

| . | | 1 :]
- -
D - J\)o:\ dODISAA HINEAS
] T T T T T T T T T -~) D _
O]
] L]
14285y] LT [m
O - - 0O
L]] 901 MHOMLAN L1 [] ﬁ
0 O mimg
(€L 14 C L]
O O O O OO
L] S | O g 1
¢ll d0.1xs3a m._.o_\,_m;u_lu Y0l INAITO 201 Y3any3s
v(oo_\

9l | 1NdLiNO F191Ld=30d3d
-3ASN ALV IRI-ALINEISSIOOV

PCT/US2006/013962

WO 2006/130242

2/5

81T SO INAIT)

\

1T INAIID VV
J

Y17 INATID)
HOVAYHINL [N-VV

N

CICINATIO SI1Y¥

e
-

| {44
AV1dsia

INTITD

/

=t =

il

—
=
E—1
E—4
=

P01 LNHI'TO

\

i

Z¢ doMs3a INano U

N

LIC 0]

(174

Y~ NOOI ¥3AVId

m viaapw
4 vzl dopisaa 310

0000000000

1000000

=
=
JIx|
e

Y¥0l IN3IINO

207 SO YHAYAS

é 907 dAAIAS
_ TOVIIAINI IN-VV
>

Y0OC NAAYAS
I¥OddNS SIN-VV

707 daA¥HES SIY u
/

-
-
—
-

|

V0T JIAYHS

| | 1
J T

-

3

\J<orr dOIXS3A HEAHES

onooo
Doooooooo

L0
[
U

V20l daAY3S

G oL

>— V00!

PCT/US2006/013962

WO 2006/130242

3/5

90¢ SSHO0YUd JIAYES

9C€ 1N YIAJAS

ﬁ q90¢C qaAdAS
HOVIIHINT IN-VV

m ZZE 9AA¥AS ISOH DA w

w
0z a1oma mE-S.«@

~

70 ¥AA¥ES ST w
\\

q00l —*

d201 dHAYHS

avec
AV1dSId

P0OE SSHOO¥d INAITD ST

Q1 INANODINOD
| INGITO ISOH DA

|
|
|
|
_
|
- — .
91¢ _
INANOJNOD LI0dd1S _
_ ALTTAISSADDV S LY) _
a N
fS € D0¥d-NJ m,HM-HD.«:« _
_
4 ~\ _
qcic INAITO SIY _
—, _ _
l\.— : _
- |
ZI€ I INAr) |

INTRD
/ N oTE _
NOILV INASTIdTI |
dVIN 11 _
|
-

m@m

$SII0Ud VYV

mwom TVO0T1S FM.HDL«}@
gy1¢ INAI'TD
HOVANELIN] [[1-VV

ﬁ TOTC INAIT) VV u

WO 2006/130242 PCT/US2006/013962
4/5

400 |
\ 418
429

420 104
a4

fox}
== 1 Remote
Client
442 —
Monitor L]
E — 0000000 Remote
//\\ Application
102 Programs
, A N 400 — (Fres
444 f]
/— 454 _\ 1l System Memory
10 58 % 1 ~>auigilﬁl e — = = = — ———
ooooa [| V10 ooges Operating
e J Network System 426
426 Video Adapter Adapter \
T\ 408 System [Application
[Data Media N\ Bus N Programs428
Interfaces - \
404 Other Program
) _\' | Modules 430
N e','\ | -
Operating 496 416 ‘:DE = Program
System /_ ' --i\hm B \ Data 432}
App|icati0228 Processing 410 RAM
Programs > Unit e = ——— -
Program 440 [BIOS
Modules 430} 4 /— 414
1 0lq ES
Program 432 DDIE;DDD k 412 ROM
Data |
| \/ - I/O Interfaces
IR |

\ / v \ - 438

= =k [o0s000] [00]

Printer \ Mouse \ Keyboard komer Device(s) Fi 4
446 436 434 g -

[¢]

PCT/US2006/013962
5/5

WO 2006/130242

|
I
AdIND FHL OL ISNOJS3IY V 3SAIFO3Y ._ﬂ

915 7 A ANFINTO IHL OL NOILYWHOLINI ANIS

A —p1G

|
|
|
|
!
i
|
i
|
" AY3N0 FHL OL SAISNOdSTY NOILYINHOANI |} SS300VY
I
!
I
1
!
|
|
|

NOISS3S TYNINGIL 3LON3YH
V¥ NI LNINFT3 AV1dSIA V ONIGEYO3d ALITYNOILONNA
ALITAISS3O0V NV WOYHL 1S3N0IY V 103130

A N— 215
......... > {N 3HL OL ONILVYTZY AHIND V IAIFOIY
AININZTI AVI4SIA FHL d31VHIANTD HOIHM I “
JOINIA DONILNGNOD V¥ NO a3 LvO07T ININOJINOD “ A N 0OLS
L VY OL 1S3N03Y JHL OL SNILYT1IH AHIND Y AN3S) “
806 — _
1 |
]
|
I
|

_ gl

905 —’
IN3ITO NOISSIS TYNINYEAL
H1L0NW3Y ¥V OL |} FHL 4O NOILVINISIHd3d vV AN3IS

A 05

IV 2LYHANZD

G b4 .

3AIS YANYES ¢0S

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

