SUPPORTING LEG CONSTRUCTION

Filed Oct. 18, 1924
To all whom it may concern:

Be it known that I, JOHN EDWARD GLOEKLER, a citizen of the United States of America, and a resident of the city of Pittsburgh, county of Allegheny, and State of Pennsylvania, have invented certain new and useful Improvements in Supporting-Leg Construction, of which the following is a detailed description.

My invention comprises new and improved means for attaching the supporting legs to sinks, tubs, table-tops and the like, and also in a new and improved leg construction for such purposes.

While useful for a great many purposes where an article of furniture or a horizontal surface is to be supported in spaced relation to the floor or ground, I particularly design my present invention for the support of relatively heavy sinks, tubs and table-tops which are frequently made of pressed sheet metal or plate, and such as are in use in hotel kitchens, public laundries, etc.

One of the objects which I have in view is a better and firmer support, thereby preventing the sagging or warping of the metal or other material. Another object is to facilitate the accurate leveling of the article or surface supported, thereby providing a firm stand for the same and compensating for irregularities in the floor.

My improved means for securing the upper end of the leg to the sink or other article of furniture comprises a bracket which is of the following construction. A horizontally disposed plate portion fits up beneath the bottom or horizontal portion of the article to be supported, the same being supported at the corners of the same, and said plate portion is provided with a down-turned flange which bears from within against the depending skirt of the article to be supported, clamping members such as bolts extending through said flange and skirt to anchor the bracket firmly in position. The plate portion is provided with a depending socket into which the upper end of the leg member is inserted at the proper degree to give the desired elevation. I prefer that the leg member be screwed into the socket. The lower end of the leg member is preferably provided with a foot member to give a more extended bearing surface, said foot member being adjusted on the leg, as by screw engagement, thus providing further means for leveling.

Other novel features of construction, and also of arrangement of parts will appear from the following description.

In the accompanying drawings Fig. 1 is a perspective of a metal sink to which my present invention is applied; Fig. 2 is an enlarged detail of the same in vertical section, and Fig. 3 is a further enlarged inverted perspective of one of my improved corner brackets.

The particular construction of the sink or other article of furniture is in itself no part of my invention, but in the attachment of my improved corner brackets it is necessary that the bottom or horizontal surface which is to be supported be set somewhat above the lower edges of the vertical wall, so that the brackets may be positioned in the corners of the latter and be bolted through the same as will be hereinafter explained.

B represents my corner brackets, which are preferably integral castings, and one of which is provided at each of the four corners of the sink. These brackets, as illustrated in Figs. 2 and 3, are of substantially the following construction. Fig. 4 is a horizontally disposed plate portion and of generally triangular shape, of which the two side edges in rectangular relation to each other fit against flanges 3 of the bottom 2, while the plate 4 supports the bottom 2 from below. The plate portion 4 may be flat to bear for its full area against the bottom, but I prefer to provide the plate with low ribs 5 upon which the bottom 2 rests. It is thus seen that the plate 4 constitutes a supporting platform for the bottom at the corners thereof. The edges of the plate 4 which bear against the flange 3 of the bottom 2 are provided with an integral depending flange 6 which fits flat up against the flange 3, or when the flange 3 is not provided with a depending flange, said flange 6 fits against the depending portion of the vertical walls 1.
The vertical walls 1 and the flange 3 are provided with registering bolt holes 7, which holes also register with bolt holes or notches 8 in the flange 6 of the bracket B. 9 are bolts inserted through the holes and slots with nuts tightened to their ends to firmly anchor the bracket B in place. If desired rivets or other clamping means may be substituted for the bolts.

The brackets B are provided with sockets 10 depending from the under side of the plates or platform 4, and the upper ends of the leg members C are inserted to the proper degree in said sockets and held stationary therein. I prefer to thread the interior of the sockets and the exterior of the leg ends, thus permitting the legs to be screwed into the sockets to the proper degree to give the desired elevation to the article supported.

The legs may be short lengths of pipe or metal rod. The lower ends of the legs are preferably provided with adjustable foot members D, thus furnishing a more extended bearing on the floor, and also providing for the accurate leveling so as to compensate for irregularities in the floor. I prefer to provide the foot members with threaded sockets 11 into which the lower threaded ends of the leg members C may be screwed.

It is evident that the leg members C are capable of a two-fold adjustment. Thus their degree of insertion into the sockets 10 may be regulated to obtain uniform length for all the legs. This may also be accomplished by adjusting the foot members D on the legs. In practice the legs are usually adjusted in the sockets 10 to obtain a uniform leg-length, and then when the article of furniture is installed the foot members D are adjusted to compensate for floor irregularities, thus insuring a level and firm support for the sink or the like.

The method now in general use for supporting pressed metal sinks and tubs is to bolt the legs to the exterior surface of the vertical walls of the sink or tub, thus affording the bottom no direct support but indirect support through its attachment to the vertical walls. The result is that in time the sink bottom buckles and sags downwardly under its burden or load and will not drain properly through the waste. Also the vertical walls lose their alignment by the down-drag of the bottom.

Such distortion of the sink or tub is avoided by the use of my invention, since my leg corner brackets afford direct support from below for the bottom of the sink or tub, and at the same time the vertical walls are also directly supported by the bracket. Thus the load carried by the bottom is transmitted directly to the legs and the undesirable results of indirect support are obviated.

My improved leg construction presents an attractive, substantial and durable appearance and is of relatively small cost.

What I desire to claim is:

1. For use for supporting a sink, tub, table-top and the like which is characterized by a skirt portion depending below the horizontal portion of the article and forming enclosed angles at the corner of the article, the combination of a corner bracket comprising a horizontal platform which supports the horizontal portion of the article from below and a depending perimetal flange which fits from within against the skirt portion and a socket depending from the platform within the planes of the skirt portion, and a leg member having its upper end inserted in and held fixed in said socket.

2. For use for supporting a sink, tub, table-top and the like which is characterized by a skirt portion depending below the horizontal portion of the article and forming enclosed angles at the corner of the article, the combination of a corner bracket comprising a horizontal platform which supports the horizontal portion of the article from below and a depending perimetal flange which fits from within against the skirt portion and is attached thereto to hold the bracket fixedly in position and a socket integral with and depending from said platform, and a leg portion having its upper end adjustably held in said socket.

Signed at Pittsburgh, Pa., this 13th day of October, 1924.

JOHN EDWARD GLOEKLER.