Title: COMMUNICATION SYSTEM

Absrtact: Telephone communication service is improved by efficiently harmonizing the communication of an IP telephone with that of a cellular phone. A connection control unit (31) controls connection interface with the cellular phone (20r) to read the cellular phone number of the connected cellular phone (20r). A telephone connection information notification unit (32) notifies telephone connection information including identification information and the cellular phone number if the cellular phone (20r) is connected. A telephone connection information storage control unit (41) stores and controls the notified telephone connection information. When a call request is made by a calling side IP telephone (10) to the cellular phone (20r), a communication control unit (42) determines whether the partner cellular phone (20r) is connected to a called side IP telephone (30) according to the telephone connection information. If the partner cellular phone (20r) is determined to be connected, the communication control unit (42) calls the called side IP telephone (30) in order to perform communication between the IP telephones (10) and (30).
I P電話機及び携帯電話機の通信を効率よく融合させて、電話通信サービスの
向上を図る。接続制御部（31）は、携帯電話機（20r）との接続インタフェ
ース制御を行い、接続した携帯電話機（20r）の携帯電話番号を読み取る。電
話接続情報通知部（32）は、識別情報と、携帯電話機（20r）が接続してい
れば携帯電話番号を含む電話接続情報を通知する。電話接続情報格納管理部
（41）は、通知された電話接続情報を格納管理する。通信制御部（42）は、
発呼側I P電話機（10）から携帯電話機（20r）へ発呼要求があったとき、
電話接続情報にもとづき、相手の携帯電話機（20r）が被発呼側I P電話機
（30）に接続されていると判断した場合は、I P電話機（10）、（30）同
士で通信を行うために、被発呼側I P電話機（30）に対して呼処理を行う。
明細書

通信システム

5 技術分野

本発明は通信システムに関し、特にネットワークを介して音声の通信を行う通信システムに関する。

背景技術

近年、xDSLやケーブルインターネット、光ファイバ、無線等によるアクセス回線のブロードバンド化、ネットワーク関連機器などの高機能化が進むと共に、その普及も加速しており、I P（Internet Protocol）ネットワーク上で様々なアプリケーションやサービスが提供されるようになってきた。

特に、音声をI Pで伝送するV o I P（Voice over IP）技術を利用して、音声電話をI Pネットワーク上で提供するI P電話（インターネット電話）のサービスが実用化されてきている。I P電話は、既存の電話と比較して安価で実現が可能であるため、今後のネットワーク技術の発展に伴ってますます普及が進むものと考えられる。

今後、I P電話サービスの普及が進むと、I P電話サービスと携帯電話サービスの両方を利用する人が増えることが予想される。例えば、企業においては、全事業所を網羅した企業内のI P電話システムが構築される一方で、社員は個人連絡用の携帯電話機を持って、各事業所を移動して作業するといったケースが多くなる。

一方、従来のインターネット電話の技術として、着席側のインターネット電話がインターネットにダイアルアップ設定されていなくても自動的に着信させるものがある。例えば、特開2001-177663号公報（段落番号[025]～[028]，第1図）参照。

しかし、上記のようなI P電話機と携帯電話機の両方を利用できる環境に対し、電話をかける人は、電話を受ける相手がI P電話機の近くにいるかどうかは
わからないことがほとんどである。したがって、発呼側のIP電話機から、着信相手が近くにいると思われる被発呼側のIP電話機へ電話し、もし相手がそのIP電話機付近にいなかった場合、あらためて相手の携帯電話機へ電話をかけ直すことになり、時間と手間がかかってしまう。

一方、従来、IP電話システムのIP電話網と携帯電話機の移動電話網は、それぞれ独立した通信網であるため、IP電話機から携帯電話機への発呼についてはサービスが提供されることは少なかった。また、サービスが提供される場合でも、IPネットワークと移動電話網を接続するゲートウェイ経由で携帯電話機へ発呼していた。

このような従来の接続形態を利用して、初めからIP電話機で相手の携帯電話機へ電話する場合でも、もし相手がIP電話機の近くにいたら、IP電話機から携帯電話機への通話は、IP電話機同士で通話するよりも通話料が高いために無駄となってしまう（なお、IP電話機と携帯電話機間の通話料は、携帯電話機同士の通話料よりも高い）。

このように、発信者は相手がどこにいるかがわからないければ（相手がIP電話機の近くにいるか否かがわからないければ）、IP電話機と携帯電話機の両方が使える環境であっても、双方の電話機を効率よく使用することができないといった問題があった。

また、上述した従来技術は、インターネット電話のダイアルアップ接続に関連したものであり、IP電話機と携帯電話機との適切な融合制御について考慮されたものではない。

発明の開示

本発明はこのような点に鑑みてなされたものであり、IP電話機及び携帯電話機の通信を効率よく融合させて、電話通信サービスの向上を図った通信システムを提供することを目的とする。

本発明では前記課題を解決するために、図1に示すような、IPネットワークN1を介して音声通信を行う通信システムにおいて、発呼側IP電話機10と、携帯電話機20rの接続インタフェース制御を行い、接続した携帯電話機
２０ｒの携帯電話番号を読み取る接続制御部３１と、識別情報と、携帯電話機２０ｒが接続していれば携帯電話番号を含む電話接続情報を通知する電話接続情報通知部３２と、から構成される被発呼側ＩＰ電話機３０と、通知された電話接続情報を格納管理する電話接続情報格納管理部４１と、発呼側ＩＰ電話機１０から携帯電話機２０ｒへ発呼要求があったとき、電話接続情報にもとづき、相手の携帯電話機２０ｒが被発呼側ＩＰ電話機３０に接続されていると判断した場合は、ＩＰ電話機１０、３０同士で通信を行うために、被発呼側ＩＰ電話機３０に対して呼処理を行う通信制御部４２と、から構成される音声制御サーバ４０と、を有することを特徴とする通信システム１が提供される。

ここで、接続制御部３１は、携帯電話機２０ｒとの接続インタフェース制御を行い、接続した携帯電話機２０ｒの携帯電話番号を読み取る。電話接続情報通知部３２は、識別情報と、携帯電話機２０ｒが接続していれば携帯電話番号を含む電話接続情報を通知する。電話接続情報格納管理部４１は、通知された電話接続情報を格納管理する。通信制御部４２は、発呼側ＩＰ電話機１０から携帯電話機２０ｒへ発呼要求があったとき、電話接続情報にもとづき、相手の携帯電話機２０ｒが被発呼側ＩＰ電話機３０に接続されていると判断した場合は、ＩＰ電話機１０、３０同士で通信を行うために、被発呼側ＩＰ電話機３０に対して呼処理を行う。

本発明の上記および他の目的、特徴および利点は本発明の例として好ましい実施の形態を表す添付の図面と関連した以下の説明により明らかになるであろう。

図面の簡単な説明

図１は、本発明の通信システムの原理図である。
図２は、被発呼側ＩＰ電話機の構成を示す図である。
図３は、携帯電話機の接続動作を示す図である。
図４は、携帯電話機の接続動作シーケンスを示す図である。
図５は、通話動作を示す図である。
図６は、通話動作シーケンスを示す図である。
図７は、通話動作シーケンスを示す図である。
図８は、本発明の通信システムの原理図である。
図９は、発呼側ＩＰ電話機の構成を示す図である。
図１０は、携帯電話機の発呼動作を示す図である。
図１１は、携帯電話機の発呼動作シーケンスを示す図である。
図１２は、携帯電話機の発呼動作シーケンスを示す図である。

発明を実施するための最良の形態

以下、本発明の実施の形態を図面を参照して説明する。図１は本発明の通信システムの原理図である。通信システム１は、発呼側ＩＰ電話機１０、携帯電話機２０ｒが接続可能な被発呼側ＩＰ電話機３０、音声制御サーバ４０から構成され、ＩＰネットワークＮ１を介して音声通信を行うシステムである。なお、発呼側ＩＰ電話機１０と被発呼側ＩＰ電話機３０は、実際には互いに同じ本発明の機能を持つものである。

被発呼側ＩＰ電話機３０は、接続制御部３１と電話接続情報通知部３２から構成される。接続制御部３１は、携帯電話機２０ｒとの接続インタフェース制御を行い、携帯電話機２０ｒが接続すると、携帯電話機２０ｒの携帯電話番号を読み取る。

電話接続情報通知部３２は、電話接続情報を音声制御サーバ４０へ通知する。電話接続情報は、識別情報と、さらに携帯電話機２０ｒが接続していた場合は、携帯電話番号が含まれる。なお、識別情報とは、ＩＰアドレス及び電話番号（ＩＰ電話番号）のことである。また、音声制御サーバ４０がＩＰアドレスから電話番号への変換処理を行う場合は、電話番号は必ずしも含まなくてよい（すなわち、音声制御サーバ４０で変換処理を行う場合は、ＩＰ電話機からのＩＰ電話番号の通知は不要）。

音声制御サーバ４０は、電話接続情報格納管理部４１と通信制御部４２から構成される。電話接続情報格納管理部４１は、ＩＰネットワークＮ１に接続しているＩＰ電話機から通知された電話接続情報を格納管理する。

通信制御部４２は、発呼側ＩＰ電話機１０から携帯電話機２０ｒへ発呼要求があったとき、電話接続情報にもとづき、相手の携帯電話機２０ｒが被発呼側ＩＰ
電話機３０に接続されているか否かを判断する。

携帯電話機２０rが被発呼側ＩＰ電話機３０と接続していると判断した場合には、被発呼側ＩＰ電話機３０に対して呼処理を行って、発呼側ＩＰ電話機１０と被発呼側ＩＰ電話機３０間の通話を可能とする。

なお、音声制御サーバ４０は、ＩＰ電話通信として、ＭＧＣＰ（Media Gateway Control Protocol）プロトコルを用いる場合はコールエージェント、H．３２３プロトコルを用いる場合は、ゲートキーパに該当する。いずれも呼処理の詳細手順が異なるだけで、本発明は両方に適用できるので、以降では音声制御サーバ４０をコールエージェント４０として説明する（したがって、以降では、発呼側ＩＰ電話機１０、コールエージェント４０、被発呼側ＩＰ電話機３０間のシーケンスは、ＭＧＣＰプロトコルをベースとする）。

このように、本発明の通信システム１では、発呼側ＩＰ電話機１０から相手の携帯電話機２０rへ発呼したとき、着信相手が自分の携帯電話機２０rを被発呼側ＩＰ電話機３０に接続している場合には、携帯電話機２０rが接続されている被発呼側ＩＰ電話機３０へ着信させ、ＩＰ電話機同士での通話（ＩＰネットワークＮ１上での音声通信）を可能にするものである。

ここで、本発明で対象とするＩＰ電話の定義について説明する。本発明においてＩＰ電話は、ネットワークの一部または全部においてＩＰネットワーク技術を利用して提供する音声電話サービスのことで、ＩＰネットワークとしてインターネットを利用するインターネット電話の上位の概念とし、インターネット電話はＩＰ電話に包含されるものとする。

また、本発明のＩＰ電話機は、以下の（１）〜（４）のすべての形態を含むものとする。

（１）ＩＰネットワーク（なお、アクセスネットワークを一旦経由してＩＰネットワークへ接続する場合も含む）に接続したパソコンにスピーカまたはイヤホン等とマイクを付けたもの。通常はＩＰ電話のソフトウェアを動作させる。

（２）ＩＰネットワークに接続した専用アダプタ（ルータ含む）に通常の一般電話機を接続したもの。

（３）ＩＰネットワークに接続したパソコンに専用アダプタを接続し、このアダ
プラを介して一般電話機を接続したもの。

（4）IPネットワークに接続できる専用のIP電話機端末。

次に発音側IP電話機30の詳細構成について説明する（発音側IP電話機10の構成も同様である）。図2は発音側IP電話機30の構成を示す図である。被発音側IP電話機30は、IP電話機制御部30-1、制御信号送信部30-2a、制御信号受信部30-2b、制御パケット送信部30-3a、制御パケット受信部30-3b、音声入力部33a、音声A/D变换部33b、音声コード部33c、IPパケット化部33d、音声出力部34a、音声D/A变换部34b、音声デコード部34c、IPパケット化部34d、オンフック/オフフック検出部35、ダイアル検出部36、携帯接続部37から構成される。

音声入力部33aは、ユーザの音声を入力する。音声A/D変換部33bは、音声入力部33aからのアナログ音声信号をデジタル音声信号へ変換する。音声コード部33cは、音声A/D変換部33bからのデジタル音声信号をコード化（符号化）する。

IPパケット化部33dは、音声コード部33cでコード化されたデータをIPパケット化し、IPネットワークN1へ出力する（VoIPパケットの送出）。なお、アクセスマネージャーを経由してIPネットワークN1へ接続する場合は、被発音側IP電話機30内にアクセスマネージャーとのインタフェース部が必要であるがこの例では省略する。

音声出力部34aは、音声D/A変換部34bからのアナログ音声信号を出力する。また、IP電話機制御部30-1からの指示で、発信音、呼び出音、リング音信号を出力する。音声D/A変換部34bは、音声デコード部34cでデコードされたデジタル音声信号をアナログ音声信号へ変換する。

音声デコード部34cは、IPパケット化部34dからのデータをデコード化（復号化）する。IPパケット化部34dは、IPネットワークN1からのVoIPパケットを受信し、データを取り出す。

制御パケット送信部30-3aは、コールエージェント40や他のIP電話機等と通信するため、IPネットワークN1へ制御パケット（VoIPパケット以外のパケット）を送信する。制御パケット受信部30-3bは、コールエージェ
ント40や他のIP電話機と通信するため、IPネットワークN1から制御パケットを受信する。

オンフック／オフフック検出部35は、ユーザがオンフックまたはオフフックを行ったことを検出し、検出結果をIP電話機制御部30−1へ通知する。ダイアル検出部36は、ユーザがダイアルした番号を検出し、検出結果をIP電話機制御部30−1へ通知する。また、IP電話機制御部30−1は、被発呼側IP電話機30内各部の検出情報を受け、また各部に動作を指示することによって、被発呼側IP電話機30の全体動作を制御する。

制御信号送信部30−2aは、IP電話機制御部30−1からの上り制御信号を上りシリアル信号へ変換し、携帯接続部37を介して、携帯電話機20rへ送信する。制御信号受信部30−2bは、携帯接続部37を介して、携帯電話機20rからの下りシリアル信号を受信し、下り制御信号としてIP電話機制御部30−1へ伝える。

なお、IP電話機制御部30−1、制御信号送信部30−2a、制御信号受信部30−2b、制御パケット送信部30−3aは、これらが互いに関連して制御することにより、本発明の接続制御部31と電話接続情報通知部32の機能を実現する。

すなわち、携帯電話機20rの接続有無の検出及び携帯電話番号の読み取りは、IP電話機制御部30−1が制御信号送信部30−2a及び制御信号受信部30−2bを使用して行う。また、電話接続情報のコールエージェント40へ通知する際には、IP電話機制御部30−1が制御パケット送信部30−3aを使用して行う。

また、被発呼側IP電話機30と携帯電話機20rとの接続インタフェースである携帯接続部37は、現在のPDC（Personal Digital Cellular）及びCDMA（Code Division Multiple Access）方式の携帯電話機の16芯携帯電話インタフェースを想定している。

次に被発呼側IP電話機30に対する携帯電話機20rの接続動作について図3、図4を用いて説明する。図3は携帯電話機20rの接続動作を示す図である。IPネットワークN1には、発呼側IP電話機10とコールエージェント4
0と被発呼側IP電話機30が接続し、IPネットワークN1と移動電話網N2はゲートウェイGWを介して接続する。また、携帯電話機20rは、被発呼側IP電話機30に接続している。なお、発信側の操作者をユーザA、着信側の操作者をユーザBとする。

発呼側IP電話機10のIPアドレスをmmmm、電話番号（IP電話番号）をxxxxxとし、被発呼側IP電話機30のIPアドレスをnnnn、IP電話番号をyyyyとし、携帯電話機20rの携帯電話番号をttttとする。

コールエージェント40は、被発呼側IP電話機30から通知された電話接続情報を、電話接続情報格納管理部41内の管理テーブルTに登録する。管理テーブルTは、IPアドレス、IP電話番号、接続状態、携帯電話番号の項目からなる。テーブル中例えば、IPアドレスにnnnnでIP電話番号がyyyyの被発呼側IP電話機30に携帯電話番号がttttの携帯電話機20rが接続されていることが示されている。

図4は携帯電話機20rの接続動作シーケンスを示す図である。

[S1] ユーザBが自分の携帯電話機20rを自分の近くにあるIP電話機30（被発呼側IP電話機30）に接続する。

[S2] IP電話機30は、接続制御部31を介して携帯電話機の接続有無を常に監視しており、携帯電話機20rが接続されると、その携帯電話番号ttttを読み取る。

[S3] IP電話機30の電話接続情報通知部32は、読み取った携帯電話番号ttttを、自身のIPアドレスnnnn及びIP電話番号yyyyと共にコールエージェント40へ通知する。なお、ここでは、IP電話番号yyyyをコールエージェント40へ通知しているのが、上述したように、コールエージェント40がIPアドレスからIP電話番号の変換処理を行う場合には、IP電話番号yyyyの通知は不要である。

[S4] コールエージェント40は、電話接続情報格納管理部41の管理テーブルT1に、IP電話機30のIPアドレスnnnn及びIP電話番号yyyyに対応させて、携帯電話番号ttttを登録する。

なお、図3、図4に示す説明では、携帯電話機20rの取り外しについては記
述していないが、IP電話機30は、携帯電話機20rの接続有無を常に監視しており、携帯電話機20rを取り外すと、状態の変化を検出して、携帯電話機20rが取り外されたことを、自身のIPアドレス及びIP電話番号と共にコールエージェント40へ通知する。そして、コールエージェント40は、通知を受け取ると、管理テーブルTに携帯電話機20rが接続されていないことを登録することになる。

次に携帯電話機20rが接続された状態で、通話を行う動作について図5～図7を用いて説明する。図5は通話動作を示す図であり、図6、図7は通話動作シーンスを示す図である。なお、図5に示す全体構成は図3と同じである。今、ユーザAが、IP電話機10（発呼側IP電話機10）から、ユーザBの携帯電話機20rへ発呼する。

[S11] ユーザAは、IP電話機10をオフフックする。
[S12] IP電話機10は、コールエージェント40へオフフック通知を送信する。
[S13] コールエージェント40は、IP電話機10へ発信音指示を送る。
[S14] IP電話機10は、発信音を出力する。
[S15] ユーザAは、携帯電話機20rの携帯電話番号ttttをダイアルする。
[S16] IP電話機10は、コールエージェント40へ呼設定要求を送信する。
[S17] コールエージェント40は、管理テーブルTに携帯電話番号ttttが登録されているか否かを検索し、IPアドレスnnnn、IP電話番号yyyyであるIP電話機30と接続されていることを知る。
[S18] コールエージェント40は、IP電話機10に対して、携帯電話機20rが接続されているIP電話機30のIPアドレスnnnnとIP電話番号yyyyを通知する。
[S19] IP電話機10は、IP電話機30へ相手先IP電話番号yyyyを通知する。
[S20] コールエージェント40は、IP電話機10へ呼出音指示を送信する。
る。
[S21] IP電話機10は、呼出音を出力する。
[S22] コールエージェント40は、IP電話機30へリングング信号指示を
送信する。
[S23] IP電話機30は、リングング信号を出力する。
[S24] ユーザBは、IP電話機30をオフフックする。
[S25] IP電話機30は、コールエージェント40へオフフック通知を送信
する。
[S26] ユーザAとユーザBは、それぞれIP電話機10とIP電話機30を使
用して通話する（通話以降の終端シーケンスについては省略する）。
このような動作シーケンスにより、IP電話機10から相手の携帯電話機20
rへ発呼したとき、電話する相手がIP電話機30に携帯電話機20rを接続し
てあるならば、携帯電話機20rが接続しているIP電話機30へ着信させて、
IP電話機同士での通話を実現する。なお、上述の通話シーケンスと通常のMG
CPプロトコルとの大きな違いは、コールエージェント40が行うステップS17,
ステップS18の個所である。
一方、IP電話機10にディスプレイ等の表示部を備え、ステップS18でコ
ールエージェント40が通知してきた情報をディスプレイに表示させてもよい。
このような表示部を持つことにより、相手の携帯電話機の接続有無や接続されて
いるIP電話番号が表示されることになり、非常に有用である。
次に本発明の他の実施の形態について説明する。図1～図7で上述した本発明
の通信システム1は、発呼側IP電話機10から相手の携帯電話機20rに発呼
したとき、被発呼側IP電話機30に携帯電話機20rが接続されている場合に
は、被発呼側IP電話機30へ着信させるものであった。
一方、以降で説明する実施の形態では、発呼側IP電話機10から相手の携帯
電話機20rに発呼したとき、携帯電話機20rが発呼側IP電話機30に接
続されていない場合には、発呼側IP電話機10に接続している携帯電話機から
相手の携帯電話機20rへ着信させるものである。
図8は本発明の通信システムの原理図である。本発明の通信システム1aは、
携帯電話機２０sが接続可能な発呼側ＩＰ電話機１０、携帯電話機２０ｒが接続可能な被呼呼側ＩＰ電話機３０、コールエージェント４０から構成されて、ＩＰネットワークＮ１を介して互いに接続する。また、ＩＰネットワークＮ１と移動電話網Ｎ２は、ゲートウェイGWを介して接続し、通信システム１ａは移動電話網Ｎ２を介して音声通信を行うシステムである。

発呼側ＩＰ電話機１０は、発呼側接続制御部１１（以下、単に接続制御部１１）と音声インタフェース制御部１２から構成される。接続制御部１１は、携帯電話機２０sとの接続インタフェース制御を行う（上述した接続制御部３１と同様な機能を持つ）。

音声インタフェース制御部１２は、コールエージェント４０から後述する非接続通知を受信した場合には、携帯電話機２０s、２０ｒ同士で通信を行うために、自己（発呼側ＩＰ電話機１０）と接続している携帯電話機２０sとの音声インタフェース制御を行って、携帯電話機２０sから相手側の携帯電話機２０ｒへ発呼させる。

被発呼側ＩＰ電話機３０は、図１と同様の構成を持つ（被発呼側接続制御部３１は単に接続制御部３１と呼ぶ）。コールエージェント４０は、図１と同様の構成を持つ。

ただし、通信制御部４２は、発呼側ＩＰ電話機１０から携帯電話機２０ｒへ発呼要求があったとき、電話接続情報にもとづき、相手の携帯電話機２０ｒが被発呼側ＩＰ電話機３０に接続されていないと判断した場合は、接続していない旨の非接続通知を発呼側ＩＰ電話機３０へ送信する。そして、コールエージェント４０を介しての呼処理は中止する。

このように、本発明の通信システム１ａでは、発呼側ＩＰ電話機１０から相手の携帯電話機２０ｒへ発呼したとき、着信相手が自分の携帯電話機２０ｒを被発呼側ＩＰ電話機３０に接続していない場合には、発呼側ＩＰ電話機１０に接続されている携帯電話機２０sから携帯電話機２０ｒへ着信させ、携帯電話機同士での通話（移動電話網Ｎ２上の音声通信）を可能にするものである。

次に発呼側ＩＰ電話機１０の詳細構成について説明する（被発呼側ＩＰ電話機３０の構成も同様である）。図９は発呼側ＩＰ電話機１０の構成を示す図であ
る。発呼側I P電話機10は、図2で上述したI P電話機の構成に対して、セレクタSEL1、上り音声インタフェース変換部10-4a、セレクタSEL2、下り音声インタフェース変換部10-4bが追加したものになっている。さらに、携帯接続部17は、上り／下りシリアル信号の他に送信／受信音声信号のインタフェース部分を持っている。その他の構成は同じなので（ただし、符号は10番台の符号にしてある）、追加構成要素のみ説明する。

セレクタSEL1は、音声入力信号の送信先を選択して、音声A／D変換部13bまたは上り音声インタフェース変換部10-4aのどちらか一方へ音声入力信号を送信する。この選択は、I P電話機制御部10-1によって制御される。

通常のI P電話機として動作するときは、音声A／D変換部13b側が選択されるが、携帯電話機20sを使って発呼・通話を行う時は、上り音声インタフェース変換部10-4a側が選択される。上り音声インタフェース変換部10-4aは、音声入力信号を携帯電話機20sの送信音声信号に変換する。

セレクタSEL2は、音声出力の受信先を選択する。この選択は、I P電話機制御部10-1によって制御される。通常のI P電話機として動作するときは、音声D／A変換部14b側が選択されるが、携帯電話機20sを使って発呼・通話を行う時は、下り音声インタフェース変換部10-4b側が選択される。下り音声インタフェース変換部10-4bは、携帯電話機20sの受信音声信号を音声出力部14aへ出力できるように信号変換する。

なお、I P電話機制御部10-1、制御信号送信部10-2a、制御信号受信部10-2b、上り音声インタフェース変換部10-4a、下り音声インタフェース変換部10-4b、セレクタSEL1、SEL2は、これらが互いに関連して制御することにより、本発明の発呼側接続制御部11と音声インタフェース制御部12の機能を実現する。

このような構成により、発呼側I P電話機10は、I P電話機としての受話・送話信号を、携帯電話機20sの受話・送話信号と相互に変換し、音声入出力部13a、14aによって、携帯電話機20sの送受話を可能としている（すなわち、発呼側I P電話機10に携帯電話機20sを接続すれば、例えば、ユーザは、発呼側I P電話機10のハンドセットを持ったまま、携帯電話機20sを介
して、相手の携帯電話機２０ｒと通話できるということ）。なお、携帯電話機２０ｓの動作制御は、ＩＰ電話機制御部１０－１が制御信号送信部１０－２ａ及び制御信号受信部１０－２ｂを使用して行う。

次に発呼側ＩＰ電話機１０に接続された携帯電話機２０ｓによる発呼動作について図１０～図１２を用いて説明する。図１０は携帯電話機２０ｓの発呼動作を示す図である。なお、図１０に示す全体構成は図８と同じである。また、コールエージェント４０の電話接続情報格納管理部４１内の管理テーブルＴでは、ＩＰアドレスがｍｍｍｍでＩＰ電話番号がｘｘｘｘの発呼側ＩＰ電話機１０に携帯電話番号がｓｓｓｓの携帯電話機２０ｓが接続されていることが示されている。

図１１、図１２は携帯電話機２０ｓの発呼動作シーケンスを示す図である。
【Ｓ３１】ユーザＡは、ＩＰ電話機１０をオフフックする。
【Ｓ３２】ＩＰ電話機１０は、コールエージェント４０へオフフック通知を送信する。
【Ｓ３３】コールエージェント４０は、ＩＰ電話機１０へ発信音指示を送信する。
【Ｓ３４】ＩＰ電話機１０は、発信音を出力する。
【Ｓ３５】ユーザＡは、携帯電話機２０ｒの携帯電話番号ｔｔｔｔをダイアルする。
【Ｓ３６】ＩＰ電話機１０は、コールエージェント４０へ呼設定要求を送信する。
【Ｓ３７】コールエージェント４０は、管理テーブルＴに携帯電話番号ｔｔｔｔが登録されているか否かを検索し、どこにも登録されていないことを知る。同時に、管理テーブルＴによって、発呼してきたＩＰ電話機１０に携帯電話機２０ｓが接続されていることを知る。
【Ｓ３８】コールエージェント４０は、ＩＰ電話機１０に対して、携帯電話機２０ｒがどのＩＰ電話機にも接続されていないことを通知する。なお、コールエージェント４０はこの時点で呼処理を終了する。
【Ｓ３９】ステップＳ３８の通知を受けたＩＰ電話機１０は、自分自身に接続された携帯電話機２０ｓを制御し、携帯電話番号ｔｔｔｔへ発呼するよう制御する。
る。
[S40] 携帯電話機20sは携帯電話機20rへ発呼する（移動電話網N2が使用される）。
[S41] ユーザBは携帯電話機20rをオフックし、ユーザAとユーザBは通話可能となる。ここで、ユーザAは携帯電話機20sに持ち替えることなく、IP電話機10の音声入力部13a、音声出力部14aを使用して通話を行う（実際に通話に使用されているのは携帯電話機20sである）。なお、通話以降の終活シーケンスについては省略する。

このような動作シーケンスにより、IP電話機10から相手の携帯電話機20rへ発呼したとき、電話する相手がIP電話機30に携帯電話機20rを接続してないならば（コールエージェント40から携帯電話機20rがIP電話機30に接続されていないことが通知されると）、IP電話機10に接続された携帯電話機20sを使用し、携帯電話機20rへ着信させて、携帯電話機同士での通話を実現する。

なお、上記では、発呼側IP電話機10に接続している携帯電話機20sを使用して、発呼側IP電話機10が自律的に発呼・通話を行っているが、携帯電話機20sを使用して発呼することを許可するか否かを発呼側IP電話機10に設定できる設定機能を設けてもよい。そして、この場合、設定情報もコールエージェント40へ通知され、発呼許可がなされていれば上記のような動作が行われ、発呼が許可されていないならばコールエージェント40側から発呼処理を行って、携帯電話機20s、20r間の通話を可能にするような構成にしてもよい。

次にIP電話機10に対しても携帯電話機20sが接続されていない場合の動作について説明する。コールエージェント40がIP電話機10に対して、携帯電話機20rがどのIP電話機にも接続されていないことを通知し、IP電話機10にも携帯電話機20sが接続されていない場合は、コールエージェント40は、携帯電話機20rに対して、ゲートウェイGWを用いて、IPネットワークN1から移動電話網N2に接続することで、携帯電話機20rへ発呼する(従来技術となる)。

次にIP電話機に対して複数台の携帯電話機を接続した場合について説明す
る。上記ではＩＰ電話機に１台の携帯電話機を接続した際の動作について説明したが、複数台接続した場合でも基本動作は同じである。ただし、通信システムで、発呼側ＩＰ電話機に複数の携帯電話機が接続する場合には、発呼側ＩＰ電話機の１台内の音声インターフェース制御部１２は、複数の携帯電話機から任意の１台を選択して発呼制御することになる。

また、上記ではＩＰ電話機と携帯電話機の接続インタフェースは、図中有線で示したが（PDC及びCDMA方式の携帯電話機の１６芯インタフェースとしたが）、Bluetooth等の無線インタフェースを用いることも可能である。

以上説明したように、本発明によれば、ＩＰ電話機から相手の携帯電話機へ発呼した際、着信相手が自分の携帯電話機をＩＰ電話機に接続している場合には、携帯電話機を接続したＩＰ電話機の方へ着信させることにより、ＩＰ電話機同士での通話は可能とし、通話料を安く済ませるようにする。

したがって、携帯電話機をＩＰ電話機に接続しておけば、その携帯電話機への電話は、接続したＩＰ電話機にかかるのではなく、発信側は着信相手がどこにいるかを意識せずに相手の携帯電話機へ電話すればよい。また、着信側も自分の側のＩＰ電話機へ電話がかかってくるので非常に便利である。

さらに、着信相手がＩＰ電話機に携帯電話を接続していない場合（ＩＰ電話機の近くにおらず、携帯電話機を携帯している場合）、コールエージェントから被発呼携帯電話機がＩＰ電話機に接続されていないことが通知されると、発呼側のＩＰ電話機が自身に接続された携帯電話機を使用して、被発呼側の携帯電話機へ発呼し、携帯電話同士の通話ができるようにする。これにより、携帯電話機同士の通話となるため、ＩＰ電話機から携帯電話への通話と比較して通話料を安くすることができる。

なお、上記では、MGCPプロトコルにもとづいて、本発明の動作シーケンスを説明したが、H.323プロトコルに本発明を適用してもよい。この場合、コールエージェントの代わりにゲートキーパが置かれ、ゲートキーパにより呼処理が行われることになる。

以上説明したように、本発明の通信システムは、発呼側ＩＰ電話機と、携帯電話機と接続して電話接続情報を通知する機能を持つ被発呼側ＩＰ電話機と、音声
制御サーバとから構成され、音声制御サーバは、発呼側電話機から携帯電話機へ発呼要求があったとき、電話接続情報にもとづき、相手の携帯電話機が発呼側IP電話機に接続されていると判断した場合には、発呼側IP電話機に対して呼処理を行う構成とした。これにより、携帯電話機をIP電話機に接続しておけば、その携帯電話機への電話は、接続したIP電話機にかかるので、発信者は着信相手がどこにいるか意識せずに相手の携帯電話機へ電話すればよく、IP電話機間の通話となるので通話料が安くなり、電話通信サービスの向上を図ることが可能になる。

上記については単に本発明の原理を示すものである。さらに、多数の変形、変更が当業者にとって可能であり、本発明は上記に示し、説明した正確な構成および応用例に限定されるものではなく、対応するすべての変形例および均等物は、添付の請求項およびその均等物による本発明の範囲とみなされる。
請求の範囲

1. ネットワークを介して音声通信を行う通信システムにおいて、
発呼側I P電話機と、
携帯電話機との接続インタフェース制御を行い、接続した携帯電話機の携帯電話番号を読み取る接続制御部と、識別情報と、携帯電話機が接続していれば前記携帯電話番号とを含む電話接続情報を通知する電話接続情報通知部と、から構成される被発呼側I P電話機と、
通知された前記電話接続情報を格納管理する電話接続情報格納管理部と、前記発呼側I P電話機から携帯電話機へ発呼要求があったとき、前記電話接続情報にもとづき、相手の携帯電話機が前記被発呼側I P電話機に接続されていると判断した場合は、I P電話機同士で通信を行うために、前記被発呼側I P電話機に対して呼処理を行う通信制御部と、から構成される音声制御サーバと、
を有することを特徴とする通信システム。

2. 前記音声制御サーバは、前記電話接続情報を前記発呼側I P電話機へ通知し、前記発呼側I P電話機は、通知された情報をユーザに表示することを特徴とする請求の範囲第1項記載の通信システム。

3. 前記接続制御部は、接続インタフェース制御として、無線インタフェースで携帯電話機と接続することを特徴とする請求の範囲第1項記載の通信システム。

4. ネットワークを介して音声通信を行うI P電話機において、
携帯電話機との接続インタフェース制御を行い、接続した携帯電話機の携帯電話番号を読み取る接続制御部と、
識別情報と、携帯電話機が接続していれば前記携帯電話番号とを含む電話接続情報を通知する電話接続情報通知部と、
を有することを特徴とするI P電話機。

5. ネットワークを介して音声の通信制御を行う音声制御サーバにおいて、
I P電話機から通知された電話接続情報を格納管理する電話接続情報格納管理部と、
発呼側IP電話機から携帯電話機へ発呼要求があったとき、前記電話接続情報にもとづき、相手の携帯電話機が被発呼側IP電話機に接続されていると判断した場合は、IP電話機同士で通信を行うために、前記被発呼側IP電話機に対して呼処理を行う通信制御部と、

を有することを特徴とする音声制御サーバ。

6. ネットワークを介して音声通信を行う通信システムにおいて、

携帯電話機との接続インタフェース制御を行う発呼側接続制御部と、非接続通知を受信した場合には、携帯電話機同士で通信を行うために、自己と接続してい

る携帯電話機との音声インターフェース制御を行う音声インターフェース制御部と、

から構成される発呼側IP電話機と、

携帯電話機との接続インタフェース制御を行い、接続した携帯電話機の携帯電話番号を読み取る被呼呼側接続制御部と、識別情報と、携帯電話機が接続してい

れば前記携帯電話番号を含む電話接続情報を通知する電話接続情報通知部と、

から構成される発呼側IP電話機と、

通知された前記電話接続情報を格納管理する電話接続情報格納管理部と、前記
発呼側IP電話機から携帯電話機へ発呼要求があったとき、前記電話接続情報に
もとづき、相手の携帯電話機が前記被発呼側IP電話機に接続されていないと判
断した場合は、前記非接続通知を前記発呼側IP電話機へ送信する通信制御部と、

から構成される音声制御サーバと、

を有することを特徴とする通信システム。

7. 前記音声制御サーバは、前記電話接続情報の前記発呼側IP電話機へ通知し、前記発呼側IP電話機は、通知された情報をユーザーに表示することを特徴とする請求の範囲第6項記載の通信システム。

8. 前記発呼側接続制御部及び前記被発呼側接続制御部は、接続インタフェー
ス制御として、無線インタフェースで携帯電話機と接続することを特徴とする請
求の範囲第6項記載の通信システム。

9. 前記発呼側IP電話機は、接続している携帯電話機を使用して、自律的に
発呼するか否かの設定機能を有し、設定された情報を前記音声制御サーバへ通知し、発呼許可がされていれば前記発呼側IP電話機から発呼し、発呼許可されて
いなければ前記音声制御サーバから発呼処理を行うことを特徴とする請求の範囲第6項記載の通信システム。

10. 前記発呼側接続制御部は、複数の携帯電話機との接続インタフェースを有し、前記音声インタフェース制御部は、非接続通知を受信した際、複数の携帯電話機が接続している場合には、1台の携帯電話機を任意に選択して、音声インタフェース制御を行うことを特徴とする請求の範囲第6項記載の通信システム。

11. ネットワークを介して音声通信を行うIP電話機において、携帯電話機との接続インタフェース制御を行い、接続した携帯電話機の携帯電話番号を読み取る接続制御部と、
識別情報と、携帯電話機が接続していれば前記携帯電話番号とを含む電話接続情報を通知する電話接続情報通知部と、

相手側の携帯電話機がIP電話機に接続されていない旨の非接続通知を受信した場合には、携帯電話機同士で通信を行うために、自己と接続している携帯電話機との音声インタフェース制御を行う音声インタフェース制御部と、
を有することを特徴とするIP電話機。

12. ネットワークを介して音声の通信制御を行う音声制御サーバにおいて、IP電話機から通知された電話接続情報を格納管理する電話接続情報格納管理部と、
発呼側IP電話機から携帯電話機へ発呼要求があったとき、前記電話接続情報にもとづき、相手の携帯電話機が発呼側IP電話機に接続されていないと判断した場合は、非接続通知を前記発呼側IP電話機へ送信する通信制御部と、
を有することを特徴とする音声制御サーバ。

13. ネットワークを介して電話の音声通信を行う電話通信方法において、携帯電話機との接続インタフェース制御を行い、接続した携帯電話機の携帯電話番号を読み取り、
識別情報と、携帯電話機が接続していれば前記携帯電話番号とを含む電話接続情報を通知し、
通知された前記電話接続情報を格納管理し、
前記発呼側IP電話機から携帯電話機へ発呼要求があったとき、前記電話接続
情報にもとづき、相手の携帯電話機が前記発呼側IP電話機に接続されていると判断した場合は、前記発呼側IP電話機に対して呼処理を行って、IP電話機同士で通信を行うことを特徴とする電話通信方法。

14. ネットワークを介して電話の音声通信を行う電話通信方法において、携帯電話機との接続インタフェース制御を行い、接続した携帯電話機の携帯電話番号を読み取り、識別情報と、携帯電話機が接続していれば前記携帯電話番号を含む電話接続情報を通知し、通知された前記電話接続情報を格納管理し、

発呼側IP電話機から携帯電話機へ発呼要求があったとき、前記電話接続情報にもとづき、相手の携帯電話機が被発呼側IP電話機に接続されていないと判断した場合は、非接続通知を前記発呼側IP電話機へ送信し、

前記非接続通知を受信した場合には、自己と接続している携帯電話機との音声インタフェース制御を行って、携帯電話機同士で通信を行うことを特徴とする電話通信方法。
コール エージェント

<table>
<thead>
<tr>
<th>IPアドレス</th>
<th>IP電話番号</th>
<th>接続状態</th>
<th>携帯電話番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>nnnnn</td>
<td>yyy</td>
<td>有</td>
<td>tttt</td>
</tr>
<tr>
<td>mmmm</td>
<td>xxx</td>
<td>無</td>
<td></td>
</tr>
</tbody>
</table>

A

電話接続情報の通知及び発呼側の呼び出し

B

被発呼側の呼び出し

IPアドレス: nnnnn
IP電話番号: yyy

携帯電話番号: tttt

IPネットワーク

10 発呼側IP電話機

A

IPアドレス: mmmm
IP電話番号: xxx

移動電話網

N1

N2

GW

通話

20r 携帯電話機

30 被発呼側IP電話機

携帯電話番号: tttt

图5
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
 Int.Cl \(^7\) H04M3/00, H04L12/56

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
 Int.Cl \(^7\)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

<table>
<thead>
<tr>
<th>Document</th>
<th>Date/Year</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>JP 11-168773 A (Nippon Telegraph And Telephone Corp.), 22 June, 1999 (22.06.99), Full text; all drawings (Family: none)</td>
<td>1-5,13</td>
</tr>
<tr>
<td>A</td>
<td>JP 2002-084369 A (Kabushiki Kaisha Rekkusu), 22 March, 2002 (22.03.02), Full text; all drawings (Family: none)</td>
<td>6-12,14</td>
</tr>
<tr>
<td>A</td>
<td>JP 2001-186240 A (Fujitsu Ltd.), 06 July, 2001 (06.07.01), Full text; all drawings (Family: none)</td>
<td>2,7</td>
</tr>
</tbody>
</table>

[X] Further documents are listed in the continuation of Box C. [] See patent family annex.

- "\(\)" Special categories of cited documents:
 - "A" document defining the general state of the art which is not considered to be of particular relevance
 - "E" earlier document but published on or after the international filing date
 - "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - "O" document referring to an oral disclosure, use, exhibition or other means
 - "P" document published prior to the international filing date but later than the priority date claimed
 - "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 - "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 - "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 - "&" document member of the same patent family

Date of the actual completion of the international search
30 September, 2002 (30.09.02)

Date of mailing of the international search report
29 October, 2002 (29.10.02)

Name and mailing address of the ISA/
Japanese Patent Office

Authorized officer

Facsimile No.

Telephone No.

Form PCT/ISA/210 (second sheet) (July 1998)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>JP 2002-101198 A (Matsushita Electric Industrial Co., Ltd.), 05 April, 2002 (05.04.02), Full text; all drawings (Family: none)</td>
<td>1-14</td>
</tr>
<tr>
<td>A</td>
<td>JP 2002-051146 A (Kabushiki Kaisha Rin Rin), 15 February, 2002 (15.02.02), Full text; all drawings (Family: none)</td>
<td>1-14</td>
</tr>
</tbody>
</table>
A. 発明の属する分野の分類（国際特許分類（IPC））

Int. C17 H04M3/00, H04L12/56

B. 調査を行った分野
調査を行った最小限資料（国際特許分類（IPC））

C. 関連すると認められる文献

<table>
<thead>
<tr>
<th>引用文献のカテゴリ※</th>
<th>引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求の範囲の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>JP 11-168773 A（日本電信電話株式会社） 1999.06.22, 全文, 全図 (ファミリーなし)</td>
<td>1－5, 13</td>
</tr>
<tr>
<td>A</td>
<td>JP 2002-084369 A（株式会社レックス） 2002.03.22, 全文, 全図 (ファミリーなし)</td>
<td>6－12, 14</td>
</tr>
<tr>
<td>A</td>
<td>JP 2001-186240 A（富士通株式会社） 2001.07.06, 全文, 全図 (ファミリーなし)</td>
<td>2, 7</td>
</tr>
</tbody>
</table>

※ 引用文献のカテゴリ
「A」特に関連のある文献ではなく、一般的技術水準を示すもの
「E」国際出願日前の出願または特許であるが、国際出願日の出願である
「L」優先権主張に頑意を提起する発明又は他の発明の発明日若しくは他の特別な理由を有する発明（理由を含む）
「O」引用による開示、使用、展示等に該当する文献
「P」国際出願日前で、かつ優先権の主張の基礎となる出願

国際出願番号 PCT/JP02/08650

国際調査報告

国際調査報告の発送日 29.10.02

国際調査機関の名称及び住所
日本国特許庁（ISA/JP）
郵便番号100-8915
東京都千代田区霞が関三丁目4番3号

特許庁審査官（権限のある職員）

電話番号 03-3581-1101 内線 3524

様式PCT/ISA/210（第2ページ）（1998年7月）
<table>
<thead>
<tr>
<th>引用文献のカテゴリー</th>
<th>引用文献名及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求の範囲の番号</th>
</tr>
</thead>
</table>
| A | JP 2000-507417 A（ブリティッシュ・テレコミュニケーションズ・パブリック・リミテッド・カンパニー）
 2000.06.13, 全文, 全図
 AU 9722229 A & NO 9804465 A
 & CN 1214180 A & NZ 331102 A
 & KR 2000005099 A | 1-14 |
| A | JP 2002-101198 A（松下電器産業株式会社）
 2002.04.05, 全文, 全図（ファミリーなし） | 1-14 |
| A | JP 2002-051146 A（株式会社リン・リン）
 2002.02.15, 全文, 全図（ファミリーなし） | 1-14 |

様式PCT／ISA／210（第2ページの続き）（1998年7月）