
US 20090083829A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2009/0083829 A1

Peterson (43) Pub. Date: Mar. 26, 2009

(54) COMPUTER SYSTEM (52) U.S. Cl. ... 726/1719/319

(75) Inventor: David A. Peterson, Cazenovia, NY (57) ABSTRACT

(US) The present invention is directed to computer systems, meth
Correspondence Address: ods and/or hardware where one or more guest operating sys
BOND, SCHOENECK & KING, PLLC tems exchange instructions with the processing hardware (see
ONE LINCOLN CENTER DEFINITIONS section) through a controller kernel. Even
SYRACUSE, NY 13202-1355 (US) though the instructions are exchanged through the controller

kernel, rather than directly between the OS and the processing
(73) Assignee: C & S OPERATIONS, INC., hardware, the controller kernel does not change the instruc

Syracuse, NY (US) tions out of native form. The controller kernel refrains from
virtualizing or emulating the instructions. For this reason, the

(21) Appl. No.: 12/234,131 controller kernel cannot be considered to be and/or include
middleware, a hypervisor or VMM. The use of the controller

(22) Filed: Sep.19, 2008 kernel can be helpful in computer systems with multiple guest
OS's because it allows multiple containerized OS's to simul

Related U.S. Application Data taneously run on a single set of processing hardware. For
example, the multiple containerized OS's can be used to run
multiple terminals. The use of the controller kernel may also
be useful even if there is a single guest operating system. For
example, a LINUX controller kernel has been found to speed
up the operation of the Windows Vista operating system run

(60) Provisional application No. 60/973,923, filed on Sep.
20, 2007.

Publication Classification

(51) Int. Cl. ning as the guest OS, relative to the speed of Windows Vista
G06F2L/00 (2006.01) running directly on the same processing hardware in the
G06F 9/54 (2006.01) conventional way.

INTERRUPT
DESCRIPTOR

TABLE

250

CRITICAL | NON-CRITICAL
POSIX KERNEL PORTION PORTION

7 || ||

Mar. 26, 2009 Sheet 1 of 11 Patent Application Publication

Patent Application Publication Mar. 26, 2009 Sheet 2 of 11 US 2009/0083829 A1

US 2009/0083829 A1 Mar. 26, 2009 Sheet 3 of 11 Patent Application Publication

TENXHEX X|SOd

G|Z

p0ZZOOZZQ0ZZ | ODOZZ

OT

(]O8W SOSOSOSO ||SET}0 | | |SE|(10 | | |SE|[10 || |SET,5) 0E

Patent Application Publication Mar. 26, 2009 Sheet 4 of 11 US 2009/0083829 A1

T4 T5 T6 T7

GUEST GUEST GUEST GUEST
OS OS OS OS
A B C D

2200 22Ob 220C 220c

POSIX
INTERRUPT SOCKET
DESCRIPTOR

TABLE

250
CRITICAL | NON-CRITICAL

POSIX KERNEL PORTION PORTION

f 215C 215b.
215

CPU 214

Patent Application Publication Mar. 26, 2009 Sheet 5 of 11 US 2009/0083829 A1

T11

BEGIN FIRST CYCLE S302
PORTION

GUEST OS A GUEST OS B GUEST OS C GUEST OS D
SENDS ACCESS SENDS ACCESS SENDS ACCESS SENDS ACCESS

REQUEST REQUEST REQUEST REQUEST

S304 S310

KERNEL KERNEL
SENDS POS SENDS NEG
RETURN CODE RETURN CODE
TO GUEST TO GUEST
OS A OS's B,C,D

S312 S314 V
YN 300

S316 1

GUEST OS A AND
CPU EXCHANGE
INSTURCTIONS IN
NATIVE FOR M

END FIRST
CYCLE PORTION S318

T8

FIG.5A

Patent Application Publication Mar. 26, 2009 Sheet 6 of 11 US 2009/0083829 A1

BEGIN SECOND CYCLE -S320
PORTION

GUEST OS B GUEST OS C GUEST OS D GUEST OS A
SENDS ACCESS SENDS ACCESS SENDS ACCESS SENDS ACCESS

REQUEST REQUEST REQUEST REQUEST

S322 S328

KERNEL KERNEL
SENDS POS SENDS NEG
RETURN CODE RETURN CODE
TO GUEST TO GUEST
OS B OS's A,C,D

S320 S332 V
N 300b

S354 /

GUEST OS BAND
CPU EXCHANGE
INSTURCTIONS IN
NATIVE FOR M

END SECOND
CYCLE PORTION S536

FIG.5B

Patent Application Publication Mar. 26, 2009 Sheet 7 of 11 US 2009/0083829 A1

BEGIN THIRD CYCLE S338
PORTION

GUEST OS C GUEST OS D GUEST OS A GUEST OS B
SENDS ACCESS SENDS ACCESS SENDS ACCESS SENDS ACCESS

REQUEST REQUEST REQUEST REQUEST

S340 S346

KERNEL KERNEL
SENDS POS SENDS NEG
RETURN CODE RETURN CODE
TO GUEST TO GUEST
OS C OS's BA,D

S348 S350 V
YN 300c

S352 /

GUEST OS C AND
CPU EXCHANGE
INSTURCTIONS IN
NATIVE FOR M

END THIRD
CYCLE PORTION S554

T10

FIG.5C

Patent Application Publication Mar. 26, 2009 Sheet 8 of 11 US 2009/0083829 A1

T10

BEGIN FOURTH CYCLE S356
PORTION

GUEST OS D GUEST OS A GUEST OS B GUEST OS C
SENDS ACCESS SENDS ACCESS SENDS ACCESS SENDS ACCESS

REQUEST REQUEST REQUEST REQUEST

S358 S364

KERNEL KERNEL
SENDS POS SENDS NEG
RETURN CODE RETURN CODE
TO GUEST TO GUEST
OS D OS's B,C,A

S366 S568 V
N 300d

S370 1

GUEST OS D AND
CPU EXCHANGE
INSTURCTIONS IN
NATIVE FOR M

END FOURTH
CYCLE PORTION S372

T11

FIG.5D

US 2009/0083829 A1 Mar. 26, 2009 Sheet 9 of 11 Patent Application Publication

Patent Application Publication Mar. 26, 2009 Sheet 10 of 11 US 2009/0083829 A1

502
START 1 7

KEYBOARD,
MOUSE, AND

AUDIO (KMA) ONLY
(KERNEL PROCESS)

KERNEL
ENTRY
(KE-L1)

ES STORACE
LMUX CONTROL EXECUTE ON

NATIVE HARDWARE KERNEL

ALL USER ACTIONABLE
TEM TO INCLUDE

VIRTUAL KMA, DISK I/O
VIDEO, ETC.

VIRTUAL MACHINE

DLE LOOP
(IL-W1)
STORAGE

MEZZANNE

EXECUTE
ON NATIVE PRIVILED
HARDWARE

IS IT

RECOMPLEDNN0 HEAD 1 lso
ALREADY

RECOMPLE 8

(RL1)
FIG.7A

FETCH FROM
STORE FOR STORAGE

LATER

Patent Application Publication Mar. 26, 2009 Sheet 11 of 11 US 2009/0083829 A1

2

- S.
O

KEYBOARD,
MOUSE, AND

AUDIO (KMA) ONLY ENTRY
(KERNEL PROCESS) (KE-L2)

STORACE

LMUX CONTROL EXECUTE ON
KERNEL NATIVE HARDWARE

KERNEL

ALL USER ACTIONABLE C D
TEM TO INCLUDE DLE LOOP

VIRTUAL KMA, DISK 1/0, (IL-W2)
VIDEO, ETC. STORAGE

VIRTUAL MACHINE
MEZZANINE

ANY W2
INSTRUCT

IS IT EXECUTE
PRIVILED- ON NATIVE

HARDWARE

L-y d d d d d d - 8 IS IT

506 HEAD 2 N0-1RECOMPLED
AL READY

RECOMPLE
(RL1)

FIG.7B C Cl
STORE FOR

LATER

US 2009/0083829 A1

COMPUTER SYSTEM

RELATED APPLICATION

0001. The present application claims priority to U.S. pro
visional patent application No. 60/973,923, filed on Sep. 20.
2007; all of the foregoing patent-related document(s) are
hereby incorporated by reference herein in their respective
entirety(ies).

BACKGROUND OF THE INVENTION

0002 1. Field of the Invention
0003. The present invention relates to computer systems
with a computer running multiple operating systems and
more particularly to computer systems with a computer run
ning multiple containerized (see DEFINITIONS section)
operating systems to be respectively used by multiple termi
nals (see DEFINITIONS section).
0004 2. Description of the Related Art
0005. It is conventional to have a computer, such as a
modified PC desktop type host computer, which controls and
operates a plurality of terminals. In fact, mainframe comput
ers dating back to at least the 1970s operated in this way. More
recently, each terminal has been given its own operating sys
tem and/or instance of an operating system. These kind of
systems are herein called multi-terminal systems.
0006. It is conventional to use a hypervisor to run multiple
operating systems on a single computer. A hypervisor (or
virtual machine monitor) is a virtualization platform that
allows multiple operating systems to run on a host computer
at the same time. Some hypervisors take the form of software
that runs directly on a given hardware platform as an operat
ing system control program. With this kind of hypervisor, the
guest operating system runs at the second level above the
hardware. Other hypervisors take the form of software that
runs within an operating system environment.
0007 Hypervisors have conventionally been used in
multi-terminal systems where each terminal has a dedicated
guest operating system on a single host computer. In these
conventional multi-terminal systems, I/O devices communi
cate I/O data through the hypervisor to perform basic I/O
operations (see DEFINITIONS section). More specifically:
(i) data from the I/O devices is communicated through the
hypervisor to the computing hardware of the host computer;
and (ii) from the computing hardware (if any) is communi
cated through the hypervisor to the I/O devices. Because the
hypervisor is a virtualization platform, this means that the I/O
devices must be virtualized in the software of the hypervisor
and/or the guest operating system so that the communication
of I/O data through the hypervisor can take place.
0008 FIG. 1 shows prior art computer system 100 includ
ing: desktop PC 102 and four terminals 104a, 104b, 104C and
104d. Desktop PC 102 includes: video card 110; I/O ports
112: CPU 114; host operating system (“OS) 116; virtualiz
ing middleware 118, four guest OS's (see DEFINITIONS
section) 120a, 120b, 120c, 120d, and four guest applications
122a, 122b, 122c and 122d. Each terminal 104 includes:
display 130 and keyboard-mouse-audio (“KMA') devices
132. Host OS may be any type of OS, such as Windows, Apple
or POSIX (see DEFINITIONS section). As shown in FIG. 1,
host OS 116 runs at security level (see DEFINITIONS sec
tion) L0, which may be, for example in an x86 CPU architec

Mar. 26, 2009

ture, Ring Zero. This means that host OS 116 exchanges
instructions directly with CPU 116 in native form (see DEFI
NITIONS section).
0009. The guest OS's 120a, 120b, 120c, 120d are used to
respectively control the four terminals 104a, 104b, 104c,
104d. This means that the four guest OSs: (i) control the
visual displays respectively shown on displays 130a, 130b,
130c, 130d; (ii) receive input from the four keyboards 132a,
132b, 132c, 132d; (iii) receive input from the four mice 132a,
132b, 132c, 132d and (iv) control audio for the four audio
output devices (for example, speakers, headphones) 132a,
132b, 132c, 132d. The four guest OS's 120a, 120b, 120c,
120d are containerized virtual machines so that work by one
user on one terminal does not affect or interfere with work by
another user on another terminal. As shown in FIG. 1, they
can respectively run their own application(s) 122a, 122b,
122c, 122d in an independent manner.
0010. However, the four guest OSs are virtual machines,
running at a security level 13, which is above the OS security
level (see DEFINITIONS section) L0. For example, in an x86
architecture, the guest OS's 120a, 120b, 120c, 120d would be
running at Ring Three. This is an indirect form of communi
cation with the CPU 114. Furthermore, the instructions
exchanged between the guest OS's and the CPU are virtual
ized by virtualizing middleware 118, which may take the
form of a hypervisor or virtual machine manager (“VMM).
For example, some of the exchanged instructions relate to
basic I/O operations. When the exchanged instructions are
virtualized by virtualizing middleware 118, the instructions
are taken out of their native form and put in a virtualized form.
This virtualized form is generally a lot more code intensive
than native form. This virtualization makes operations slower
and more prone to error than similar exchanges between a
host OS, running at the OS security level and the CPU.
(0011 US published patent application 2008/0092145
(“Sun”) discloses a system including secure operating system
Switching. Sun discloses that to perform secure OSSwitching,
a logically independent piece of software referred to as the OS
switcher is used. When the Sun CPU is executing the SunOS
switcher code, the CPU is in the Switcher mode. Otherwise,
the CPU is operating in legacy mode. Sun discloses that its OS
Switching emulates multiple computer systems in one, where
at any time only one of them is active and others are Sus
pended. Sunfurther discloses that special care is taken during
OS switching, as OS kernels typically are not ready to deal
with the sudden loss of hardware ownership or loss of CPU
execution control. Sun further discloses that there are many
possible ways to achieve Strong security and isolation among
multiple OS's in OS switching with VT-X. Sun further dis
closes that the legacy mode is mapped into the non-root
operation mode in VT-x while the switcher code is imple
mented in the root operation mode (ring 0 specifically). In
order to ensure the continuing running of the OS's in legacy
mode, certain emulations are implemented in the OS
switcher.
(0012 US published patent application 2006/0267857
("Zhang') discloses a multi-terminal system wherein mul
tiple terminals are connected through a single graphical user
interface layer. The host computer includes an event queue
module for receiving each input command from the input
device(s) of each terminal.
(0013 US patent application 2007/0174414 (“Song) dis
closes a thin client/server computer system. Communication
between the server (or host) and multiple thin clients is per

US 2009/0083829 A1

formed by independent computing architecture (ICA) from
Citrix Systems, Inc., or a remote desktop protocol from
Microsoft Corporation. Each thin client includes a CPU,
separate individual operating system, a high capacity
memory, RAM, BIOS firmware and peripheral device con
nection hardware. The Song system includes a CPU at each
terminal. For example, an execution result is sent from the
host to the thin client as a bitmap image which the thin client
processes locally, with its processing unit, so that can be
displayed on a monitor at the thin client. Song does disclose
that its host may include an EEPROM, but does not mention
anything about partitions. It is believed that the X300 Access
Terminal Kit sold by Ncomputing is an embodiment of the
technology described in Song.
0014) The Applica PC Sharing Zero Client Network Com
puting Remote Workstation powered by Applica Inc. (see
www.applica.com website, cached versions 31 Jul. 2007 and
earlier) discloses a multi-terminal system.
0015 US patent application 2003/0018892 (“Tello”) dis
closes a secure boot process for a personal computer. In the
Tello process, a security kernel typically resides in the upper
area in memory for encrypting/decrypting data from any
application that is running under the operating system. In this
way, two operating systems can work separately using the
same hardware. In place of a standard BIOS, the Tello process
utilizes a security engine including a kernel stored in a flash
memory, a modified north bridge and a Smart card for auto
burning the flash memory portion of the security engine and
key generation.
0016 US patent application 2007/0097130 ("Margulis”)
discloses a multi-user host computer system. The Margulis
system includes a host computer that processes applications
and the desktop environments for multiple remote terminals.
The host computer also includes a terminal services offload
processor to supplement the processing of the host CPU. The
terminal services offload processor is alleged to improve the
Video and graphics performance and to allow the multi-user
host computer system to more efficiently support multiple
users. The host computer includes a graphics processor that
manages a virtual display for each remote terminal and pro
vides selective updates of subframe data. The sub frame data
is encoded and transmitted (as appropriate) over the network
to the remote terminals. Video data streams are optimized by
the terminal services offload processor and optimized for the
intended remote terminals and their network connections.
0017 US patent application 2008/01684.79 (“Purtell')
discloses a computer system that system augments machine
virtualization by entirely bypassing resource emulation for
performance-critical features. Such as 3D graphics accelera
tion, through the use of high-performance interfaces between
the guest OS and the host OS. The Purtell system is alleged to
ameliorate the performance penalties and functionality
restrictions of conventional resource emulation. Purtell
states: “Bypass virtualization avoids the performance penal
ties and functionality restrictions of conventional resource
emulation by a VMM by bypassing the VMM requests
issued by a guest OS for a host OS resource are instead
channeled through the Bypass Interface. The Bypass Inter
face intercepts the requests, forwards them to the host OS,
which passes the request on to the actual resource, and then
the returns the response from the host OS resource to the guest
OS. Since is unnecessary to implement the Bypass Interface
for every OS resource, problematic or performance-insensi
tive resources can be handled with machine virtualization.”

Mar. 26, 2009

0018. Other publications potentially of interest include: (i)
U.S. Pat. No. 5,903,752 (“Dingwall); (ii) US patent appli
cation 2007/0028082 (“Lien'); (iii) US patent application
2008/0077917 (“Chen'); (iv) US published patent applica
tion 2007/0078891 (“Lescouet'): (v) US published patent
application 2007/0204265 (“Oshins'); (vi) US published
patent application 2007/0057953 (“Green'); (vii) US patent
application 2007/0174410 (“Croft”); (viii) US patent appli
cation 2004/0073912 (“Meza'); and/or (ix) US patent appli
cation 2007/0043928 (“Panesar).
(0019. Description Of the Related Art Section Disclaimer:
To the extent that specific publications are discussed above in
this Description of the Related Art Section, these discussions
should not be taken as an admission that the discussed pub
lications (for example, published patents) are prior art for
patent law purposes. For example, Some or all of the dis
cussed publications may not be sufficiently early in time, may
not reflect Subject matter developed early enough in time
and/or may not be sufficiently enabling so as to amount to
prior art for patent law purposes. To the extent that specific
publications are discussed above in this Description of the
Related Art Section, they are all hereby incorporated by ref
erence into this document in their respective entirety(ies).

BRIEF SUMMARY OF THE INVENTION

0020. The present invention is directed to computer sys
tems, methods and/or hardware where one or more guest
operating systems exchange instructions with the processing
hardware (see DEFINITIONS section) through a controller
kernel. Even though the instructions are exchanged through
the controller kernel, rather than directly between the OS and
the processing hardware, the controller kernel does not
change the instructions out of native form. The controller
kernel refrains from virtualizing or emulating the instruc
tions. For this reason, the controller kernel cannot be consid
ered to be and/or include middleware, a hypervisor or VMM.
The use of the controller kernel can be helpful in computer
systems with multiple guest OS's because it allows multiple
containerized OS's to simultaneously run on a single set of
processing hardware. For example, the multiple container
ized OS's can be used to run multiple terminals. The use of the
controller kernel may also be useful even if there is a single
guest operating system. For example, a LINUX controller
kernel has been found to speed up the operation of the Win
dows Vista operating system running as the guest OS, relative
to the speed of Windows Vista running directly on the same
processing hardware in the conventional way.
0021. Another aspect of the present invention is Multi
Sharing Software Cursor (modified event device). Modified
Linux kernel that creates a SW cursor for each input device.
Hides the HW cursor and allows multiple monitors to be
concurrently used (modified EVDEV event device). Note
that EVDEV is based on open source and not modularized,
but a unique aspect is the installation script (copyrightable)
that allows the EVDEV to be used in a manner for which it
was not designed: controlling/handling multiple Software
CUSOS.

0022. Another aspect of the present invention is Multi
Sharing. Separate desktops for the software cursor (modified
Zephyr) Modified Linux kernel from associating the same
device (KMA) with a different control file.
0023. Another aspect of the present invention is contain
erization. Containerized guest OS on each workstation The
ability for the operating system to host individual guest oper

US 2009/0083829 A1

ating systems. The controller kernel is used as a “traffic cop'
to allow the loading of guest containerized OS's. It is a modi
fied Linux kernel using propriety code in a module, using
elements of Linux to achieve a function for which the indi
vidual elements were not designed.
0024. Another aspect of the present invention is connec
tion to Ring Zero. The controller kernel runs guest operating
systems directly on Ring Zero, so that the “traffic cop' allows
host operating systems to link other applications to Ring Zero
for a small amount of time. Normally, Ring Zero is unman
aged and restricted to authorized code, and interacts most
directly with hardware, thus running faster. In the case of
running multiple operating systems, there is a need to manage
the invention the multiple operating systems use of Ring
Zero. The benefit of the invention is that it allows the host
OS's to work much faster when compared with other virtual
machines, as fast as a normal desktop setup. Modified Linux
kernel treats a host OS as an application—the controller ker
nel allows a Linux application that would normally run in a
slower Ring Three in a Ring Zero.
0025. Another aspect of the present invention is locating
the controller kernel in BIOS enables the software cursor and
separate desktops for the software cursor. The benefits of this
aspect of the present invention are that the start time is
decreased.
0026 Various embodiments of the present invention may
exhibit one or more of the following objects, features and/or
advantages:
0027 (1) decreased boot time:
0028 (2) eliminate limitations on applications encoun
tered with server based architectures;
0029 (3) reduce PC administration (for example, virus
updates, service pack updates);
0030 (4) extend capabilities of single PC to run a plurality
of terminals;
0031 (5) reduce cost of acquisition and cost of ownership;
0032 (6) allows legal sharing of certain software licenses;
0033 (7) multiple terminals with familiar desktop display;
0034 (8) multiple terminals with no custom configuration
or special protocols; and
0035 (9) system useful for libraries, classrooms, busi
nesses, governmental applications retail terminals and/or
retail kiosks.
0036. According to one aspect of the present invention, a
computer system includes processing hardware, a first guest
operating system, and a controller kernel. The processing
hardware defines an OS security level and at least a first
additional security level above the OS security level. The
controller kernel runs on the processing hardware. The con
troller kernel is programmed to allow the first guest operating
system exchange instructions with the processing hardware
through the controller kernel at the OS security level.
0037 According to a further aspect of the present inven

tion, a computer includes processing hardware, a first
memory portion, and a controller memory portion. The pro
cessing hardware defines an OS security level and at least a
first additional security level above the OS security level. The
first memory portion is programmed with a first guest oper
ating system. The controller memory portion is programmed
with a controller kernel running on the processing hardware.
The controller kernel is programmed to allow the first guest
operating system exchange instructions with the processing
hardware through the controller kernel at the OS security
level.

Mar. 26, 2009

0038 According to a further aspect of the present inven
tion, a method includes the following steps (not necessarily in
the following order): (i) providing a computer system; (ii)
running the controller kernel on the processing hardware; and
(iii) exchanging instructions through the controller kernel
between the first guest operating system and the processing
hardware at the OS security level. At the providing step, the
computer system includes processing hardware, a first guest
operating system, and a controller kernel. The processing
hardware defines an OS security level and at least a first
additional security level above the OS security level.
0039. According to a further aspect of the present inven
tion, a computer system includes processing hardware, a first
guest operating System, a second guest operating System and
a controller kernel. The processing hardware defines an OS
security leveland at least a first additional security level above
the OS security level. The first guest operating system and the
second guest operating system are containerized with respect
to each other. The controller kernel runs on the processing
hardware. The controller kernel is programmed to perform
cycles including: (i) a first cycle portion when the first guest
operating system exchanges instructions with the processing
hardware at the OS security level through the controller ker
nel, and (ii) a second cycle portion when the second guest
operating system exchanges instructions with the processing
hardware at the OS security level through the controller ker
nel.

0040. According to a further aspect of the present inven
tion, a computer includes processing hardware, a first
memory portion, a second memory portion and a controller
memory portion. The processing hardware defines an OS
security leveland at least a first additional security level above
the OS security level. The first memory portion is pro
grammed with a first guest operating system. The second
memory portion is programmed with a second guest operat
ing system. The first guest operating system and the second
guest operating system are containerized with respect to each
other. The controller memory portion is programmed with a
controller kernel running on the processing hardware. The
controller kernel being programmed to perform cycles
including: (i) a first cycle portion when the first guest oper
ating system exchanges instructions with the processing
hardware at the OS security level through the controller ker
nel, and (ii) a second cycle portion when the second guest
operating system exchanges instructions with the processing
hardware at the OS security level through the controller ker
nel.

0041 According to a further aspect of the present inven
tion, a method includes the step of providing a computer
system including processing hardware, a first guest operating
system, a second guest operating system and a controller
kernel. The processing hardware defines an OS security level
and at least a first additional security level above the OS
security level. The first guest operating system and the second
guest operating system are containerized with respect to each
other. The method further includes the step of running cycles
by the controller kernel. Each cycle include the following
Sub-steps: (i) during a first cycle portion, exchanging instruc
tions between the first guest operating system and the pro
cessing hardware at the OS security level through the con
troller kernel, and (ii) during a second cycle portion,
exchanging instructions between the second guest operating
system and the processing hardware at the OS security level
through the controller kernel.

US 2009/0083829 A1

0042. According to a further aspect of the present inven
tion, a computer system includes processing hardware, a first
guest operating System, a second guest operating System, a
controller kernel, a first terminal hardware set and a second
terminal hardware set. The first guest operating system and
the second guest operating system are containerized with
respect to each other. The controller kernel is programmed to
control the exchange of instructions between the first guest
operating system and the processing hardware and the
exchange of instructions between the second operating sys
tems and the processing hardware. The first terminal hard
ware set is controlled by the first guest operating system. The
first terminal hardware set is in the form of an ultra thin
terminal. The second terminal hardware set is controlled by
the second guest operating system. The second terminal hard
ware set in the form of an ultra thin terminal.

0043. According to a further aspect of the present inven
tion, a computer includes processing hardware, a first
memory portion, a second memory portion, a controller
memory portion, a first terminal hardware set and a second
terminal hardware set. The first memory portion is pro
grammed with a first guest operating system. The second
memory portion is programmed with a second guest operat
ing system. The first guest operating system and the second
guest operating system are containerized with respect to each
other. The controller memory portion is programmed with a
controller kernel programmed to control the exchange of
instructions between the first guest operating system and the
processing hardware and the exchange of instructions
between the second operating systems and the processing
hardware. The first terminal hardware set is controlled by the
first guest operating system. The first terminal hardware set in
the form of an ultra thin terminal. The second terminal hard
ware set is controlled by the second guest operating system.
The second terminal hardware set is in the form of an ultra
thin terminal.

0044 According to a further aspect of the present inven
tion, a method includes the step of: (a) providing a computer
system including processing hardware, a first guest operating
system, a second guest operating system (with the first guest
operating system and the second guest operating system
being containerized with respect to each other), a controller
kernel, a first terminal hardware set (in the form of an ultra
thin terminal), and a second terminal hardware set (in the
form of an ultra thin terminal). The method further includes
the following steps: (b) controlling, by the controller kernel,
an exchange of instructions between the first guest operating
system and the processing hardware; (c) controlling, by the
first guest operating system, the first terminal hardware set
based on the exchange of instructions occurring at step (b):
(d) controlling, by the controller kernel, an exchange of
instructions between the second guest operating system and
the processing hardware; and (e) controlling, by the second
guest operating system, the second terminal hardware set
based on the exchange of instructions occurring at step (d).
0045. According to a further aspect of the present inven

tion, a computer system includes processing hardware, a first
guest operating System, a second guest operating System, and
a controller kernel. The processing hardware defines an OS
security leveland at least a first additional security level above
the OS security level. the controller kernel runs on the pro
cessing hardware. The controller kernel is programmed to: (i)
selectively allow the first guest operating system to have
access to the processing hardware at the OS security level

Mar. 26, 2009

under control of the controller kernel while pre-empting the
second guest operating system in a manner that allows the
second guest operating system to continue running, and (ii)
selectively allow the second guest operating system to have
access to the processing hardware at the OS security level
under control of the controller kernel while pre-empting the
first guest operating system in a manner that allows the first
guest operating system to continue running.
0046 According to a further aspect of the present inven
tion, a computer includes processing hardware, a first
memory portion, a second memory portion, and a controller
memory portion. The processing hardware defines an OS
security leveland at least a first additional security level above
the OS security level. The first memory portion is pro
grammed with a first guest operating system. The second
memory portion is programmed with a second guest operat
ing system. The controller memory portion is programmed
with a controller kernel running on the processing hardware.
The controller kernel is programmed to: (i) selectively allow
the first guest operating system to have access to the process
ing hardware at the OS security level under control of the
controller kernel while pre-empting the second guest operat
ing system in a manner that allows the second guest operating
system to continue running, and (ii) selectively allow the
second guest operating system to have access to the process
ing hardware at the OS security level under control of the
controller kernel while pre-empting the first guest operating
system in a manner that allows the first guest operating sys
tem to continue running.
0047 According to a further aspect of the present inven
tion, a method includes the step of: (a) providing a computer
system including processing hardware, a first guest OS, a
second guest OS and a controller kernel. The processing
hardware defines an OS security level and at least a first
additional security level above the OS security level. the
method further includes the steps of: (b) selectively allowing
the first guest operating system to have access to the process
ing hardware at the OS security level under control of the
controller kernel; (c) during step (b), pre-empting the second
guest operating system in a manner that allows the second
guest operating system to continue running; (d) selectively
allowing the second guest operating system to have access to
the processing hardware at the OS security level under control
of the controller kernel; and (e) during step (d), pre-empting
the first guest operating system in a manner that allows the
first guest operating system to continue running.

BRIEF DESCRIPTION OF THE DRAWINGS

0048. The present invention will be more fully understood
and appreciated by reading the following Detailed Descrip
tion in conjunction with the accompanying drawings, in
which:
0049 FIG. 1 is a schematic of a prior art computer system;
0050 FIG. 2 is a perspective external view of a first
embodiment of a computer system according to the present
invention;
0051 FIG. 3 is a schematic of the first embodiment com
puter system;
0.052 FIG. 4 is a more detailed schematic of a portion of
the first embodiment computer system;
0053 FIGS.5A, 5B, 5C and 5D are a flowchart of a first
embodiment of a method according to the present invention;
0054 FIG. 6 is a of a second embodiment of a computer
system according to the present invention; and

US 2009/0083829 A1

0055 FIGS. 7A and 7B are a flowchart of a second
embodiment of a method according to the present invention.

DETAILED DESCRIPTION OF THE INVENTION

0056 FIG. 2 shows computer system 200 according to the
present invention, including desktop PC 202 and four termi
nals 204a, 204b, 204c and 204d. Desktop PC 202 could
alternatively be any other type of computer now known or to
be developed in the future. Such as a laptop, a tablet, a mini
computer, a mainframe computer, a Super computer, a blade,
etc. Terminals 204 each includes I/O devices in the form of a
display, a keyboard, amouse and an audio device. The display
is the primary output device and may be any type of display
now known or to be developed in the future, such as an LCD
display or a CRT display. Alternatively or additionally, other
output devices could be present, such as printers, lights
(LEDs) and/or vibrating output devices. The keyboard,
mouse and audio speakers are the primary input devices, but
they may include output capabilities as well. Alternatively or
additionally, there may be other output devices of any type
now known or to be developed in the future. Such as drawing
tablets, joysticks, footpads, eyetracking input devices, touch
Screens, etc.
0057 Preferably, the display of each terminal 204 is con
nected to be in display data communication with desktop PC
202 by a standard parallel display connection, but may be
connected by any appropriate data connection now known or
to be developed in the future. Such as a wireless connection.
Preferably, the input devices of terminal 204 are connected to
desktop PC 202 by a USB connection. Alternatively, they
may be connected by any means now known or to be devel
oped in the future, such as PS2 connection or wireless con
nection. One or more USB hubs may be used between desk
top PC 202 and the input devices of terminals 204.
0058 Terminals 204 are preferably ultra thin terminals
(see DEFINITIONS section). Alternatively, some or all ter
minals 204 could include a client computer with memory and
processing capability. Terminals 204 may also include an I/O
port for a portable memory, such as a USB port for a detach
ably attachable USB flash memory or jump drive.
0059 FIG.3 is a schematic of system 200 including desk
top PC 202: terminals 204; video card 210; I/O ports 212:
CPU 214; POSIX kernel 215; four guest OS's 220a, 220b,
220c, 220d: four guest applications 222a, 222b, 222c, 222d
four displays 230a, 230b, 230c, 230d, and four sets of KMA
devices 232a, 232b, 232c, 232d.
0060 Video card 210 has at least four outputs to supply
display data to the four display devices 230a, 230b, 230c,
230d. Although not shown, video card 210 may have at least
one additional output for: (i) additional terminals; and/or (ii)
use with the POSIX kernel and/or any host operating system
that may be present. The video card may take the form of
multiple video cards.
0061 The CPU may be any type of processing hardware,
such as x86 architecture or other Windows type, Apple type,
Sun type, etc. The hardware structure of the CPU will deter
mine the native form for the instructions that it gives and
receives. For this reason, the guest OS's 220a, 220b, 220c,
220d must be fully compatible with CPU 214. Importantly,
there is substantially no virtualizing middleware layer in
desktop PC 202 to correct for any incompatibilities.
0062. The POSIX kernel is preferably a LINUX kernel
because LINUX is open source and also because a LINUX
kernel can be expanded to run LINUX applications. Alterna

Mar. 26, 2009

tive, the kernel may be written in other formats to be compat
ible with the CPU Such as Windows or BSD.
0063. The PC 202 preferably includes a software algo
rithm (not shown) that loads the POSIX kernel (Linux 2.6
preferably) onto an available motherboard EEPROM instead
of the currently installed proprietary BIOS. The kernel, along
with several other helpful C based programs preferably run in
32 bit mode, as opposed to the current method of running the
BIOS in 16 bit mode. These programs preferably include
BusyBox, uClibc, and XII. The result is a greatly decreased
boot time. All of this is preferably run in the cache memory of
the CPU instead of normal DRAM. The reason for this is that
DRAM is normally initialized by the BIOS and can’t be used
until it is initialized. The first program that runs is also written
in C and it is what initializes and uses this CPU memory.
0064. Once this is loaded, a larger module is called. This
would typically be invoked from the hard drive. The POSIX
kernel 215 does not necessarily have any sockets or run any
applications. It may only runs sub-modules that control mul
tiple video, keyboard, mouse, and the audio devices for mul
tiple, concurrent local connections. Current technology will
allow only one user to use the system at a time using one set
of keyboard, mice, and monitors. These modules have been
modified to allow multiple inputs (keyboards and mice) and
outputs (audio and video) devices to be used independently
and concurrently. Preferably, the terminals 204 are not
remotely located, but, in Some embodiments of the invention,
they may be.
0065 Preferably, the terminals are located on the same
machine and the output goes directly via the system bus to the
associated devices resulting in multi-user system with very
little slow-down. It utilizes the excess CPU power that is
available to control multiple sessions just like in a “thin cli
ent' environment. The difference is that in a “thin client’
environment the output is converted to TCP-IP protocol and
sent via a network connection. This conversion and pack
eteering of video results in slow screen redraws. This ability
to run multiple “sessions' is currently available with Linux
(XII) and Windows (RDP), on remote machines but the
remote machines must have the necessary hardware and soft
ware necessary to locally control the keyboard, mouse, audio
and video devices. Because everything is preferably loaded
from the local EEPROM, boot up from power-on to login is
approximately 6 seconds. This compares favorably to current
Windows, MacIntosh, or Linux startup times of 30-50 sec
onds.

0066. These modifications allow for a natural separation
of the “sessions' to a great degree. Because of this, the inven
tion is able to take advantage of the scheduling components
and modularity of Linux to use it as a Supervisor for other
operating systems to run concurrently. This can efficiently
install one guest operating system (for example, guest Win
dows OS) in conjunction with each set of keyboards, mice,
and monitors.

0067 FIGS. 7A and 7B are a flowchart showing exem
plary process flow for the exchange of instructions between
the guest OS's 220 and the CPU 214 through the POSIX
kernel 215 according to the present invention. This flowchart
will now be discussed in narrative terms, after which discus
sion, FIG.3 will be further discussed. Using a modified Linux
interrupt service code, ... /kernel/entry-V.S., the idle loop, . . .
/kernel/process.c., and a modified Interrupt Descriptor Table,
this can control and tell if a system "session' is: (i) running;
(ii) not running; or (iii) pre-empted. The kernel has priority

US 2009/0083829 A1

for all actions, but since it is only providing low throughput
I/O control and video rendering (video is mostly handled by
the GPU on the video card), preemption by the host kernel is
very low in proportion to time allowed for the “clients.”
0068. Since the architecture is the same for both the host
(Linux kernel) and the local "client' (x86-32 bit or 64bit)
operating system, there is little need for emulation of hard
ware and most instructions can be run directly on the appli
cable hardware. All CPU requests can be dynamically sched
uled by the controller kernel and run in Ring Zero of the
machine. If a protected call, privileged instruction, system
trap, or page fault is presented that will not run properly or
does not have permission to run in this unified system then it
is moved to Ring Three. Ring Three is normally unused on an
Intel system. All memory calls are directed to protected and
pre-allocated memory locations. All hardware except video,
ethernet, and audio devices is directly accessed by the "cli
ent OS. Video, ethernet, and audio devices are virtualized,
off-the-shelf drivers. Raw I/O from these devices is sent
through the modified Linux idle loop and Interrupt Descriptor
Table to the “real hardware in a prioritized fashion. This
allows a number of segregated "sessions' to be run at near
native speed.
0069. This is done without hardware virtualization exten
sion techniques as currently available with the Intel VT or
AMD V/SVM CPU chips, hardware emulation (VMWARE,
QEMU, Bochs, etc.), or hypervisors like Xen or KVM (these
require modification of source code). Finally, products like
Cooperative Linux and UserModeLinux work with Windows
as the host and Linux as the 'guest' because the guest in this
case (Linux) can be modified to give up control of the hard
ware when Windows asks for it. Since Windows can't easily
be modified this concept has not been realized in reverse, for
example Linux as host and Windows as guest. This aspect of
the present invention is the reverse of this in that Linux is the
host and Windows is the guest.
0070. It may be difficult to modify the guest OS (for
example, Windows) to give up control when the host (Super
visor) asks for it, we can use /kernel/process.c (idle loop) and
/kernel/entry-v.s (interrupt service) and the Interrupt Descrip
tor Table to trap privileged instructions and force the guest
(Windows) to wait, until it is no longer preempted. In other
words, we have modified the controller kernel (Linux) to put
the requests of the guest (Windows) into the Linux idle loop
if the guest is preempted. Since the host is not running appli
cations, since it is only controlling I/O, the wait time during
this preemption period is very short and it is not apparent to
the user. Finally, when privileged instructions are trapped to
Ring Three, the instructions are recompiled (sometimes on
the fly) using QEMU recompilation code so that the next time
this situation repeats itself, the trap is not needed.
(0071. Now that the operation of POSIX kernel has been
explained in detail, discussion will return to FIG.3. The guest
OS's 220 are preferably Windows OS's, such as Windows XP
or Windows Vista. Alternatively, any type of guest OS now
known or to be developed in the future may be used. In some
embodiments of the invention, there will be but a single guest
OS. For example, Windows Vista has been found to run faster
when run through the POSIX kernel according to the present
invention. In some embodiments of the invention, the guest
OS's will be different from each other. For example, there
may be a Windows XPOS, a Windows Vista OS, an Ubuntu
LINUXOS and a BSDOS. Systems with multiple OS's may
be preferred in embodiments of the present invention where

Mar. 26, 2009

there are not multiple terminals, but rather a single set of I/O
devices connected to desktop PC 202 in the conventional way.
In these single terminal embodiments, a single user can
Switch between various operating systems at will, taking
advantage of native applications 222 for a variety of operating
systems on a single physical machine.
0072 FIG. 4 shows a more detailed schematic of POSIX
kernel 215 including: critical portion 215a, non-critical por
tion 215b, interrupt descriptor table 250; idle loop 252; and
POSIX socket 254. Critical portion 215a is critical because
this is the portion that passes instructions in native form
between CPU 214 and guest OS's 220. In a sense, critical
portion 215a takes the place of the virtualizing middleware of
the prior art, with the important differences that: (i) the
POSIX kernel passes instructions in native form, rather than
translating them into virtualized or emulated format interme
diate portions of the exchange; and/or (ii) the POSIX kernel
permits the guest OS's to run at an OS security level (for
example, Ring Zero or Ring One), rather than a higher secu
rity level (see FIG.3 at reference numeral L0). It is noted that
applications running on top of the guest OS's will run at a
higher security level (see FIG. 3 at reference numeral L3),
Such as, for example, Ring Three. In other words, despite the
presence of the kernel, guest OS's run at the security level that
a host OS would normally run at in a conventional computer.
0073. In this preferred embodiment of the present inven
tion, the POSIX kernel accomplishes the exchange of native
form instructions using interrupt descriptor table 250 and idle
loop 252. Interrupt descriptor table 250 receives requests for
service from each of the guest OS's. At any given time it will
return a positive service code to one of the guest OS's and it
will return a negative service code to all the other guest OS's.
The guest OS that receives back a positive return code will
exchange instructions in native form with the CPU through
idle loop 252. The other guest OSs, receiving back a negative
return code from interrupt descriptor table 250 will be pre
empted and will remain running until they get back a positive
return code.

(0074 Preferably, and as shown in the flow chart of FIGS.
5A to D, the interrupt descriptor table cycles through all the
guest OS's over a cycle time period, so that each guest OS can
exchange instructions with the CPU in sequence over the
course of a single cycle. This is especially preferred in
embodiments of the present invention having multiple termi
nals, so that different users at the different terminals under
control of their respective guest OS's can work concurrently.
Alternatively, the interrupt descriptor table could provide for
other time division allocations between the various guest
OS's. For example, a user could provide user input to switch
between guest OS's. This form of time division allocation is
preferred in single terminal, multiple operating system
embodiments. There may be still other methods of time divi
sion allocation, such as random allocation (probably not pre
ferred) or allocation based on detected activity levels at the
various terminals.

(0075. Non-critical portion 215b shows that the controller
kernel may be extended beyond the bare functionality
required to control the exchange of instructions between the
guest OS's and the CPU. For example, a POSIX socket may
be added to allow POSIX applications to run on the kernel
itself. Although the kernel is called a kernel herein, it may be
extended to the point where it can be considered as a host
operating system, but according to the present invention,
these extensions should not interfere (that is virtualize or

US 2009/0083829 A1

emulate) instructions being exchanged through the kernel in
native form between the guest OS(es) and the CPU.
0076 FIGS. 5A to 5D show an embodiment of process
flow for one cycle for the exchange of instructions in native
form between guest OS's 220 and CPU 214 through a kernel
including an interrupt descriptor table and an idle loop. The
process includes: a first portion (steps S302, S304, S306,
S308, S310, S312, S314, S316, S318); a second portion (steps
S320, S322, S324, S326, S328, S330, S332, S334, S336); a
third portion (steps S338, S340, S342, S344, S346, S348,
S350, S352, S354); and a fourth portion (steps S356, S358,
S360, S362, S364, S366, S368, S370, S372).
0077. The cycle has four portions because four guest OS's
(and no host OSs) are running each portion allows the
exchange of instructions between one of the four guest OS's
and the CPU so that all four operating systems can run con
currently and so that multiple users can respectively use the
multiple operating systems as if they had a dedicated com
puter instead of an ultra thin terminal.
0078 Preferably, the entire cycle allows each OS to get a
new video frame about every 30 microseconds (MS). In this
way, each terminal display gets a about 30 frames per second
(fps), which results in a smooth display. Above 30 frames per
second, there is little, if any, improvement in the appearance
of the video, but below 30fps, the display can begin to appear
choppy and/or aesthetically irritating. Because the cycle time,
in this four portion embodiment is preferably about 30 MS to
maintain a good 30 fps frame rate in the displays, this means
that each cycle portion is about 30/4MS, which equals about
8 MS. With current CPUs, 8 MS out of 30 MS is sufficient to
handle most common applications that would be run at the
various guest OSs, such as word processing, educational
software, retail kiosk software, etc. As CPU's get faster over
time, due to improvements such as multiple cores, it will
become practical to have a greater number of guest operating
systems on a single desktop computer perhaps as many as
40 OS's or more.

007.9 FIG. 6 is a schematic of a second embodiment com
puter system 400 according to the present invention includ
ing: guest OS 402a, guest OS 402b, guest OS 402c, guest OS
402d hardware control sub-modules 408; controller kernel
410; hard drive 414; hardware layer; and EEPROM 418.
Hardware control sub-modules 408 include the following
sub-modules: network interface card (NIC) 434; keyboard
436; mouse 438; audio 440; video 442, memory 444 and CPU
446. Controller kernel 410 includes the following portions:
kernel process module 448; kernel entry module 450; idle
loop 452; interrupt service code 454; and interrupt descriptor
table 456. Hardware layer 416 includes the following por
tions: network interface card (NIC) 420; keyboard 422;
mouse 424; audio 426; video 428, memory 430 and CPU 432.
0080. As shown by the guest OS boxes 402, the operating
systems are containerized. As shown schematically by arrow
404, the presentation layer in this embodiment is Windows.
As shown schematically by arrow 406, there are OS contain
ers and virtual drivers for NIC, audio and video. Additionally,
there may be additional modules. Such as video acceleration
modules. The hardware control sub-modules 408 are direct
access drivers and may additionally include other Sub-mod
ules, such as a video acceleration module. The EEPROM 418
is the normal location for BIOS, but in this embodiment of the
present invention is loaded with the controller kernel 410 and
X11. EEPROM 418 invokes the hard drive after the initial
boot up. The control kernel is invoked from hard drive 414

Mar. 26, 2009

during the original EEPROM 418 boot. At the NIC portion
420, it is noted that each card preferably has its own MAC
address and own IP address.
0081 FIGS. 7A and 7B, discussed above, show a more
detailed embodiment of the process flow through an interrupt
descriptor table and idle loop in a LINUX controller kernel
according to the present invention. Figures &A and 7B
include LINUX control kernel level steps 502; Head 1 steps
504 and Head 2 steps 506.

Definitions

I0082. The following definitions are provided to facilitate
claim interpretation:
0083 Present invention: means at least some embodi
ments of the present invention; references to various feature
(s) of the “present invention' throughout this document do
not mean that all claimed embodiments or methods include
the referenced feature(s).
I0084 First, second, third, etc. (“ordinals’): Unless other
wise noted, ordinals only serve to distinguish or identify (e.g.,
various members of a group); the mere use of ordinals implies
neither a consecutive numerical limit nor a serial limitation.
I0085 Receive/provide/send/input/output: unless other
wise explicitly specified, these words should not be taken to
imply: (i) any particular degree of directness with respect to
the relationship between their objects and subjects; and/or (ii)
absence of intermediate components, actions and/or things
interposed between their objects and subjects.
I0086 containerized: code portions running at least Sub
stantially independently of each other.
I0087 terminal/terminal hardware set: a set of computer
peripheral hardware that includes at least one input device
that can be used by a human user to input data and at least one
output device that outputs data to a human user in human user
readable form.
I0088 ultra thin terminal: any terminal or terminal hard
ware set that has substantially no memory; generally ultrathin
terminals will have no more processing capability than the
amount of processing capability needed to run a video dis
play, but this is not necessarily required.
I0089 basic I/O operations: operations related to receiving
input from or delivering output to a human user, basic I/O
operations relate to control of I/O devices including, but not
limited to keyboards, mice, visual displays and/or printers.
0090 guest OS: a guest OS may be considered as a guest
OS regardless of whether: (i) a host OS exists in the computer
system; (ii) the existence or non-existence of other OS's on
the system; and/or (iii) whether the guest OS is contained
within one or more subsuming OS's.
0091 security level: a level of privileges and permissions
for accessing or exchanging instructions with processing
hardware; for example, some types of processing hardware
define security levels as Ring Zero (level of greatest permis
sions and privilege), Ring One, Ring Two, and so on; not all
security levels may be used in a given computer system.
0092 OS security level: any security level defined in a
given system that is consistent with normal operations of a
typical operating system running directly on the processing
hardware (and not as a virtual machine); for example, for an
Intel/Windows type of processing hardware Ring Zero, Ring
One and perhaps Ring Two would be considered as “OS
security levels, but Ring Three and higher would not.
0093 native form: a form of instructions that can be opera
tively received by and/or is output from processing hardware

US 2009/0083829 A1

directly and without any sort of translation or modification to
form by Software running on the hardware; generally speak
ing, different processing hardware types are characterized by
different native forms.
0094 POSIX: includes, but is not limited to, LINUX.
0095 processing hardware: typically takes the form of a
central processing unit, but it is not necessarily so limited;
processing hardware is not limited to any specific type and/or
manufacturer (for examples, Intel/Windows, Apple, Sun,
Motorola); processing hardware may include multiple cores,
and different cores may or may not be allocated to different
guest operating systems and/or groups of operating systems.
0096 Computer system: any computer system without
regard to: (i) whether the constituent elements of the system
are located within proximity to each other; and/or (ii) whether
the constituent elements are located in the same housing.
0097 Exchange instructions: includes: (i) two way
exchanges of instructions flowing in both directions between
two elements; and/or (ii) one way transmission of instructions
flowing in a single direction from one element to another.
0098 Memory portion: any portion of a memory structure
or structures, including, but not necessarily limited to, hard
drive space, flash drive, jump drive, Solid State memory, cache
memory, DRAM, RAM and/or ROM; memory portions are
not limited to: (i) portions with consecutive physical
addresses; (ii) portions with consecutive logical address; (iii)
portions located within a single piece of hardware; (iv) por
tions located so that the entire portion is in the same locational
proximity; and/or (V) portions located entirely on a single
piece of hardware (for example, in a single DRAM).
0099 cycle: any process that returns to its beginning and
then repeats itself at least once in the same sequence.
0100 selectively allow: the selectivity may be imple
mented in many, various ways, Such as regular cycling, user
input directed, dynamically scheduled, random, etc.
0101 pre-empt: includes, but is not limited to, delay,
queue, interrupt, etc.
0102) To the extent that the definitions provided above are
consistent with ordinary, plain, and accustomed meanings (as
generally shown by documents such as dictionaries and/or
technical lexicons), the above definitions shall be considered
supplemental in nature. To the extent that the definitions
provided above are inconsistent with ordinary, plain, and
accustomed meanings (as generally shown by documents
Such as dictionaries and/or technical lexicons), the above
definitions shall control. If the definitions provided above are
broader than the ordinary, plain, and accustomed meanings in
some aspect, then the above definitions shall be considered to
broaden the claim accordingly.
0103) To the extent that a patentee may act as its own
lexicographer under applicable law, it is hereby further
directed that all words appearing in the claims section, except
for the above-defined words, shall take on their ordinary,
plain, and accustomed meanings (as generally shown by
documents such as dictionaries and/or technical lexicons),
and shall not be considered to be specially defined in this
specification. In the situation where a word or term used in the
claims has more than one alternative ordinary, plain and
accustomed meaning, the broadest definition that is consis
tent with technological feasibility and not directly inconsis
tent with the specification shall control.
0104. Unless otherwise explicitly provided in the claim
language, steps in method steps or process claims need only
be performed in the same time order as the order the steps are

Mar. 26, 2009

recited in the claim only to the extent that impossibility or
extreme feasibility problems dictate that the recited step order
(or portion of the recited step order) be used. This prohibition
on inferring method step order merely from the order of step
recitation in a claim applies even if the steps are labeled as (a),
(b) and so on. This broad interpretation with respect to step
order is to be used regardless of whether the alternative time
ordering(s) of the claimed Steps is particularly mentioned or
discussed in this document.

What is claimed is:
1. A computer system comprising:
processing hardware that defines an OS security level and

at least a first additional security level above the OS
security level;

a first guest operating system;
a controller kernel running on the processing hardware,

with the controller kernel being programmed to allow
the first guest operating system exchange instructions
with the processing hardware through the controllerker
nel at the OS security level.

2. The system of claim 1 wherein the controller kernel is
programmed to allow the first guest operating system access
to the processing hardware at the OS security level for basic
I/O operations level.

3. The system of claim 2 further comprising a host operat
ing system wherein:

the first guest operating system generates a plurality of
first-guest-to-hardware instructions;

the processing hardware generates a plurality hardware-to
first-guest privileged instructions instructions;

the controller kernel is further programmed to selectively
and temporarily pre-empt the first guest operating sys
tem by temporarily trapping at least some first-guest-to
hardware instructions and at least Some hardware-to
first-guest privileged instructions;

the controller kernel is further programmed to deliver the
trapped first-guest-to-hardware instructions to the pro
cessing hardware when the first guest operating system
is no longer pre-empted; and

the controller kernel is further programmed to deliver the
trapped hardware-to-first-guest instructions to the first
guest operating system when the first guest operating
system is no longer pre-empted.

4. The system of claim 3 wherein the controller kernel
further comprises an interrupt descriptor table programmed
to control the selective pre-emption of the first guest operat
ing System.

5. The system of claim 4 wherein the kernel further com
prises an idle loop that temporarily stores the trapped first
guest-to-hardware instructions and the trapped hardware-to
first-guest instructions during periods when the first guest
operating system is pre-empted.

6. The system of claim 3 wherein the controller kernel is a
POSIX kernel.

7. The system of claim 6 wherein the controller kernel is a
LINUX kernel.

8. The system of claim 13 wherein the controller kernel
comprises:

a modified interrupt service code:
an idle loop programmed to temporarily store the instruc

tions that are exchanged between the first guest operat
ing system and the processing hardware; and

a modified interrupt descriptor table.

US 2009/0083829 A1

9. The system of claim 1 further comprising a second guest
operating system wherein:

the controller kernel is further programmed to allow the
second guest operating system access to the processing
hardware at the OS security level; and

the first guest operating system and the second guest oper
ating system are containerized with respect to each
other.

10. The system of claim 1 wherein:
the processing hardware defines a native form for instruc

tions that the processing hardware receives from and
sends to operating systems; and

the controller kernel is programmed so that the instructions
communicated through the controller kernel between
the first guest operating system and the processing hard
ware remain in the native form.

11. A computer comprising:
processing hardware that defines an OS security level and

at least a first additional security level above the OS
security level;

a first memory portion programmed with a first guest oper
ating System;

a controller memory portion programmed with a controller
kernel running on the processing hardware, with the
controller kernel being programmed to allow the first
guest operating system exchange instructions with the
processing hardware through the controller kernel at the
OS security level.

12. A method comprising the steps of:
providing a computer system comprising:

processing hardware that defines an OS security level
and at least a first additional security level above the
OS security level,

a first guest operating system, and
a controller kernel;

running the controller kernel on the processing hardware;
exchanging instructions through the controller kernel
between the first guest operating systemand the process
ing hardware at the OS security level.

13. A computer system comprising:
processing hardware that defines an OS security level and

at least a first additional security level above the OS
security level;

a first guest operating system;
a second guest operating system, with the first guest oper

ating system and the second guest operating system
being containerized with respect to each other; and

a controller kernel running on the processing hardware,
with the controller kernel being programmed to perform
cycles including at least:
a first cycle portion when the first guest operating system

exchanges instructions with the processing hardware
at the OS security level through the controller kernel,
and

a second cycle portion when the second guest operating
system exchanges instructions with the processing
hardware at the OS security level through the control
ler kernel.

14. The system of claim 13 further comprising a third guest
operating system, with the first guest operating system, the
second guest operating system and the third guest operating
system being containerized with respect to each other,
wherein the cycles performed by the controller kernel further
include at least a third cycle portion when the third guest

Mar. 26, 2009

operating system exchanges instructions with the processing
hardware at the OS security level through the controller ker
nel.

15. The system of claim 14 further comprising a fourth
guest operating system, with the first guest operating system,
the second guest operating system, the third guest operating
system and the fourth being containerized with respect to
each other, wherein the cycles performed by the controller
kernel further include at least a fourth cycle portion when the
fourth guest operating system exchanges instructions with the
processing hardware at the OS security level through the
controller kernel.

16. The system of claim 13 wherein the OS security level is
Ring Zero and/or Ring One.

17. The system of claim 13 further comprising:
a first terminal controlled by the first guest operating sys

tem; and
a second terminal controlled by the second guest operating

system.
18. The system of claim 13 wherein:
the processing hardware defines a native form for instruc

tions that the processing hardware receives from and
sends to operating systems;

the controller kernel is programmed so that the instructions
communicated through the controller kernel between
the first guest operating system and the processing hard
ware remain in the native form; and

the controller kernel is programmed so that the instructions
communicated through the controller kernel between
the second guest operating system and the processing
hardware remain in the native form.

19. The system of claim 13 wherein:
the controller kernel is programmed so that the instructions

exchanged through the controller kernel between the
first guest operating system and the processing hardware
comprise instructions for basic I/O operations; and

the controller kernel is programmed so that the instructions
exchanged through the controller kernel between the
second guest operating system and the processing hard
ware comprise instructions for basic I/O operations.

20. The system of claim 19 wherein the controller kernel is
programmed to:

during at least the first portion of the cycle, pre-empt the
second guest operating system; and

during at least the second portion of the cycle, pre-empt the
first guest operating system.

21. The system of claim 20 wherein the controller kernel
further comprises an interrupt descriptor table programmed
to control the selective pre-emption of the first guest operat
ing system and the second guest operating system.

22. The system of claim 21 wherein the kernel further
comprises an idle loop that temporarily stores instructions to
and/or from the first guest operating system and the second
guest operating system while they are respectively pre
empted.

23. The system of claim 19 wherein the controller kernel is
a POSIX kernel.

24. The system of claim 23 wherein the first guest operating
system is a Windows type operating system.

25. The system of claim 24 further comprises a POSIX
application program, wherein:

the processing hardware defines a native form for instruc
tions that the processing hardware receives from and
sends to operating systems;

US 2009/0083829 A1

the instructions exchanged through the controller kernel
between the first guest operating system and the process
ing hardware comprise native form video frame data;

the controller kernel comprises a socket programmed to
run the POSIX application program:

the running of the POSIX application program generates
POSIX application display data; and

the processing hardware incorporates the POSIX applica
tion display data into the native form video frame data.

26. The system of claim 25 wherein:
the controller kernel is a LINUX kernel; and
the POSIX application program is a LINUX application

program.
27. The system of claim 13 wherein the controller kernel

comprises:
a modified interrupt service code:
an idle loop; and
a modified interrupt descriptor table.
28. A computer comprising:
processing hardware that defines an OS security level and

at least a first additional security level above the OS
security level;

a first memory portion programmed with a first guest oper
ating system;

a second memory portion programmed with a second guest
operating system, with the first guest operating system
and the second guest operating system being container
ized with respect to each other; and

a controller memory portion programmed with a controller
kernel running on the processing hardware, with the
controller kernel being programmed to perform cycles
including at least:
a first cycle portion when the first guest operating system

exchanges instructions with the processing hardware
at the OS security level through the controller kernel,
and

a second cycle portion when the second guest operating
system exchanges instructions with the processing
hardware at the OS security level through the control
ler kernel.

29. A method comprising the following steps:
providing a computer system comprising:

processing hardware that defines an OS security level
and at least a first additional security level above the
OS security level,

a first guest operating system,
a second guest operating system, with the first guest

operating system and the second guest operating sys
tem being containerized with respect to each other,
and

a controller kernel;
running cycles by the controller kernel, with each cycle

including the following sub-steps:
during a first cycle portion, exchanging instructions

between the first guest operating system and the pro
cessing hardware at the OS security level through the
controller kernel, and

during a second cycle portion, exchanging instructions
between the second guest operating system and the
processing hardware at the OS security level through
the controller kernel.

30. A computer system comprising:
processing hardware;
a first guest operating system;

Mar. 26, 2009

a second guest operating system, with the first guest oper
ating system and the second guest operating system
being containerized with respect to each other;

a controller kernel programmed to control the exchange of
instructions between the first guest operating system and
the processing hardware and the exchange of instruc
tions between the second operating systems and the
processing hardware;

a first terminal hardware set controlled by the first guest
operating system, with the first terminal hardware set in
the form of an ultra thin terminal; and

a second terminal hardware set controlled by the second
guest operating system, with the second terminal hard
ware set in the form of an ultra thin terminal.

31. The system of claim 30 further comprising:
a third guest operating system, with the first guest operat

ing system, the second guest operating system and the
third guest operating system being containerized with
respect to each other; and

a third terminal hardware set controlled by the third guest
operating system, with the third terminal hardware set in
the form of an ultra thin terminal; and

wherein the controller kernel further being programmed to
control access by the third guest operating system to the
processing hardware.

32. The system of claim 31 further comprising:
a fourth guest operating system, with the first guest oper

ating system, the second guest operating system, the
third guest operating system and the fourth guest oper
ating system being containerized with respect to each
other; and

a fourth terminal hardware set controlled by the fourth
guest operating system, with the fourth terminal hard
ware set in the form of an ultra thin terminal; and

wherein the controller kernel further being programmed to
control access by the fourth guest operating system to
the processing hardware.

33. The system of claim 30 wherein:
the processing hardware defines a native form for instruc

tions that the processing hardware receives from and
sends to operating systems;

the controller kernel is programmed so that the instructions
communicated between the first guest operating system
and the processing hardware remain in the native form:
and

the controller kernel is programmed so that the instructions
communicated between the second guest operating sys
tem and the processing hardware remain in the native
form.

34. The system of claim 30 wherein:
the first terminal hardware set comprises a first keyboard, a

first mouse and a first visual display; and
the second terminal hardware set comprises a second key

board, a second mouse and a second visual display.
35. The system of claim 30 wherein the controller kernel is

a POSIX kernel.
36. The system of claim35 wherein the first guest operating

System is a Windows type operating system.
37. The system of claim 35 wherein the controller kernel is

a LINUX kernel.
38. The system of claim 30 wherein the controller kernel

comprises:
a modified interrupt service code:
an idle loop; and
a modified interrupt descriptor table.

US 2009/0083829 A1

39. A computer comprising:
processing hardware;
a first memory portion programmed with a first guest oper

ating System;
a second memory portion programmed with a second guest

operating system, with the first guest operating system
and the second guest operating system being container
ized with respect to each other;

a controller memory portion programmed with a controller
kernel programmed to control the exchange of instruc
tions between the first guest operating system and the
processing hardware and the exchange of instructions
between the second operating systems and the process
ing hardware;

a first terminal hardware set controlled by the first guest
operating system, with the first terminal hardware set in
the form of an ultra thin terminal; and

a second terminal hardware set controlled by the second
guest operating system, with the second terminal hard
ware set in the form of an ultra thin terminal.

40. A method comprising the following steps:
(a) providing a computer system comprising:

processing hardware,
a first guest operating system,
a second guest operating system, with the first guest

operating system and the second guest operating sys
tem being containerized with respect to each other;

a controller kernel,
a first terminal hardware set in the form of an ultra thin

terminal, and
a second terminal hardware set in the form of an ultra

thin terminal;
(b) controlling, by the controller kernel, an exchange of

instructions between the first guest operating system and
the processing hardware;

(c) controlling, by the first guest operating system, the first
terminal hardware set based on the exchange of instruc
tions occurring at step (b):

(d) controlling, by the controller kernel, an exchange of
instructions between the second guest operating system
and the processing hardware; and

(e) controlling, by the second guest operating system, the
second terminal hardware set based on the exchange of
instructions occurring at Step (d).

41. A computer system comprising:
processing hardware that defines an OS security level and

at least a first additional security level above the OS
security level;

a first guest operating system;
a second guest operating System;
a controller kernel running on the processing hardware,

with the controller kernel being programmed to:
Selectively allow the first guest operating system to have

access to the processing hardware at the OS security
level under control of the controller kernel while pre
empting the second guest operating system in a man
ner that allows the second guest operating system to
continue running, and

Selectively allow the second guest operating system to
have access to the processing hardware at the OS
security level under control of the controller kernel
while pre-empting the first guest operating system in
a manner that allows the first guest operating system
to continue running.

Mar. 26, 2009

42. The system of claim 41 wherein the controller kernel
being programmed to:

dynamically schedule the first guest operating system to
have access to the processing hardware at the OS Secu
rity level under control of the controller kernel while
pre-empting the second guest operating system in a
manner that allows the second guest operating system to
continue running, and

dynamically schedule the second guest operating system to
have access to the processing hardware at the OS Secu
rity level under control of the controller kernel while
pre-empting the first guest operating system in a manner
that allows the first guest operating system to continue
running.

43. The system of claim 41 wherein the controller kernel
being programmed to:

selectively allow based on user input the first guest oper
ating system to have access to the processing hardware
at the OS security level under control of the controller
kernel while pre-empting the second guest operating
system in a manner that allows the second guest operat
ing system to continue running, and

selectively allow based on user input the second guest
operating system to have access to the processing hard
ware at the OS security level under control of the con
troller kernel while pre-empting the first guest operating
system in a manner that allows the first guest operating
system to continue running.

44. The system of claim 41 wherein the controller kernel
comprises:

a modified interrupt service code:
an idle loop; and
a modified interrupt descriptor table.
45. A computer comprising:
processing hardware that defines an OS security level and

at least a first additional security level above the OS
security level;

a first memory portion programmed with a first guest oper
ating System;

a second memory portion programmed with a second guest
operating system;

a controller memory portion programmed with a controller
kernel running on the processing hardware, with the
controller kernel being programmed to:
Selectively allow the first guest operating system to have

access to the processing hardware at the OS security
level under control of the controller kernel while pre
empting the second guest operating system in a man
ner that allows the second guest operating system to
continue running, and

Selectively allow the second guest operating system to
have access to the processing hardware at the OS
security level under control of the controller kernel
while pre-empting the first guest operating system in
a manner that allows the first guest operating system
to continue running.

46. A method comprising the steps of
(a) providing a computer system comprising:

processing hardware that defines an OS security level
and at least a first additional security level above the
OS security level,

US 2009/0083829 A1 Mar. 26, 2009
12

a first guest operating system, (d) selectively allowing the second guest operating system
a second guest operating system, and to have access to the processing hardware at the OS
a controller kernel running on the processing hardware: security level under control of the controller kernel; and (b) selectively allowing the first guest operating system to
have access to the processing hardware at the OS Secu- (e) during step (d), pre-empting the first guest operating
rity level under control of the controller kernel; system in a manner that allows the first guest operating

(c) during step (b), pre-empting the second guest operating system to continue running.
system in a manner that allows the second guest operat
ing system to continue running; ck

