

United States Patent

Rosenthal

[15] 3,695,392

[45] Oct. 3, 1972

[54] APPARATUS FOR LUBRICATING AREAS ON ROTATING PARTS

[72] Inventor: Erich Rosenthal, Hochdahl, Germany

[73] Assignee: G. Schwartz & Co., Dusseldorf, Germany

[22] Filed: Aug. 2, 1971

[21] Appl. No.: 168,282

[30] Foreign Application Priority Data

Aug. 5, 1970 Germany P 20 38 918.8

[52] U.S. Cl. 184/6.28, 184/29, 417/398, 417/470

[51] Int. Cl. F16n 13/16

[58] Field of Search 184/6.28, 31; 417/398, 470

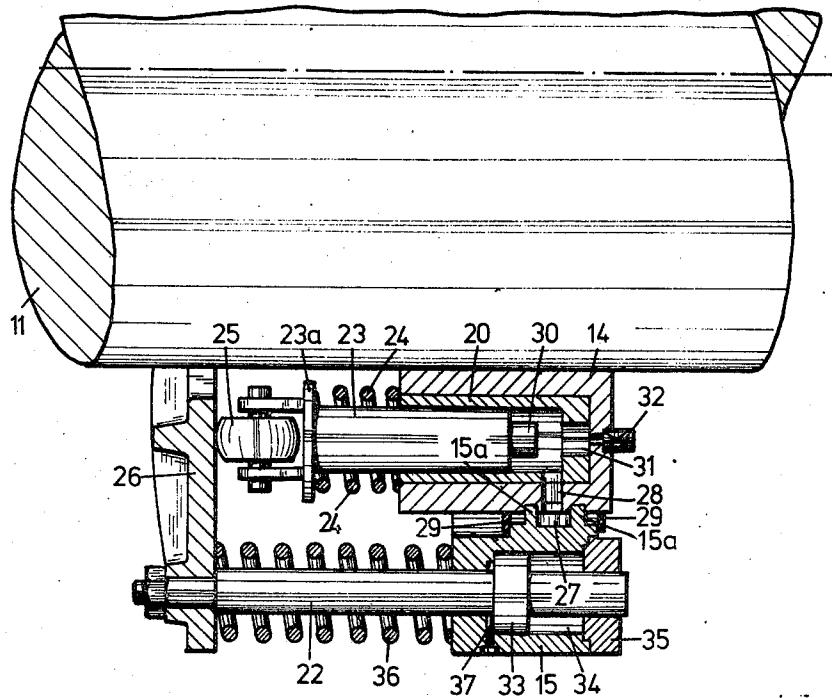
[56] References Cited

UNITED STATES PATENTS

3,420,182 1/1969 Zuhn 184/29 X

2,627,320 2/1953 Rotter 184/29 X

FOREIGN PATENTS OR APPLICATIONS

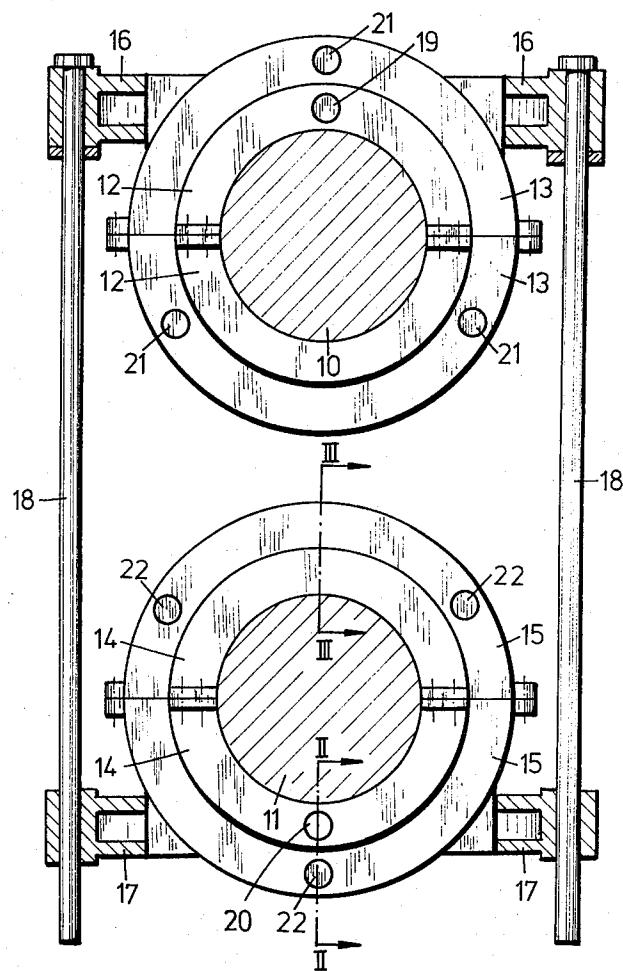

72,007 5/1943 Czechoslovakia 184/29

Primary Examiner—Manuel A. Antonakas
Attorney—Walter Becker

[57] ABSTRACT

The specification discloses a device for lubricating areas of rotating parts in which a pump structure is carried by the rotating part. A stationary part surrounds the rotating part and forms a lubricating chamber connected to the pump. An actuating ring carried by the stationary part is operable for actuating the piston means of the pump structure. Conduit means lead from the pump structure to the area to be lubricated.

8 Claims, 4 Drawing Figures



PATENTED OCT 3 1972

3,695,392

SHEET 1 OF 3

Fig.1

INVENTOR.

Erich Rosenthal
BY

Walter Becker

PATENTED OCT 3 1972

3,695,392

SHEET 2 OF 3

Fig.2

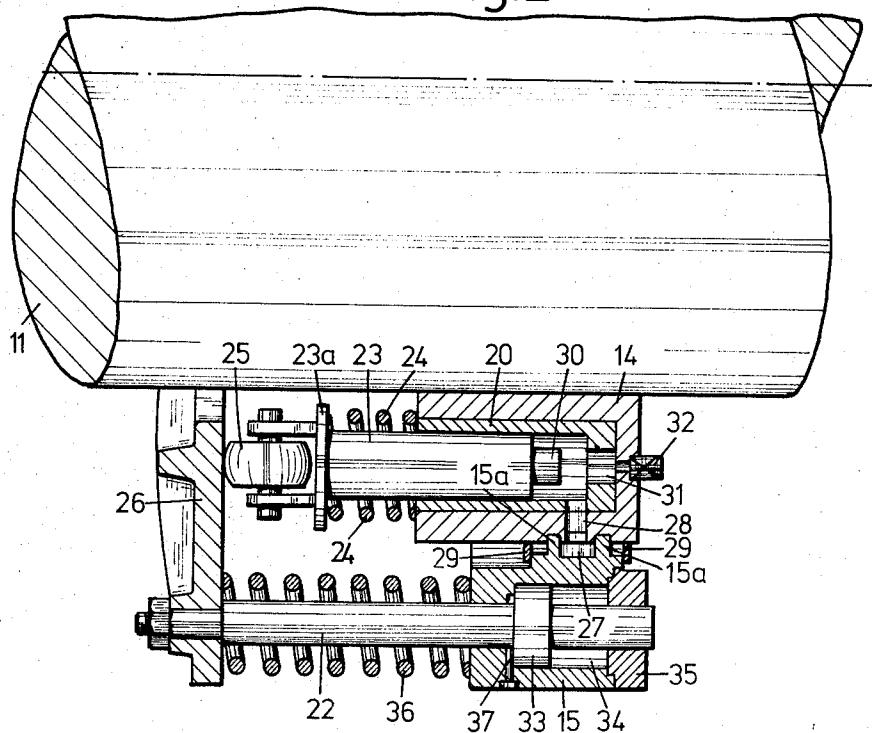
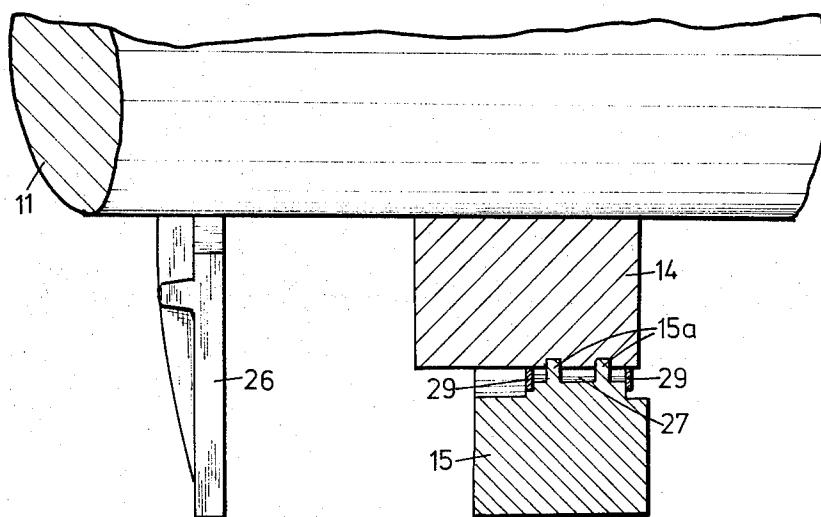
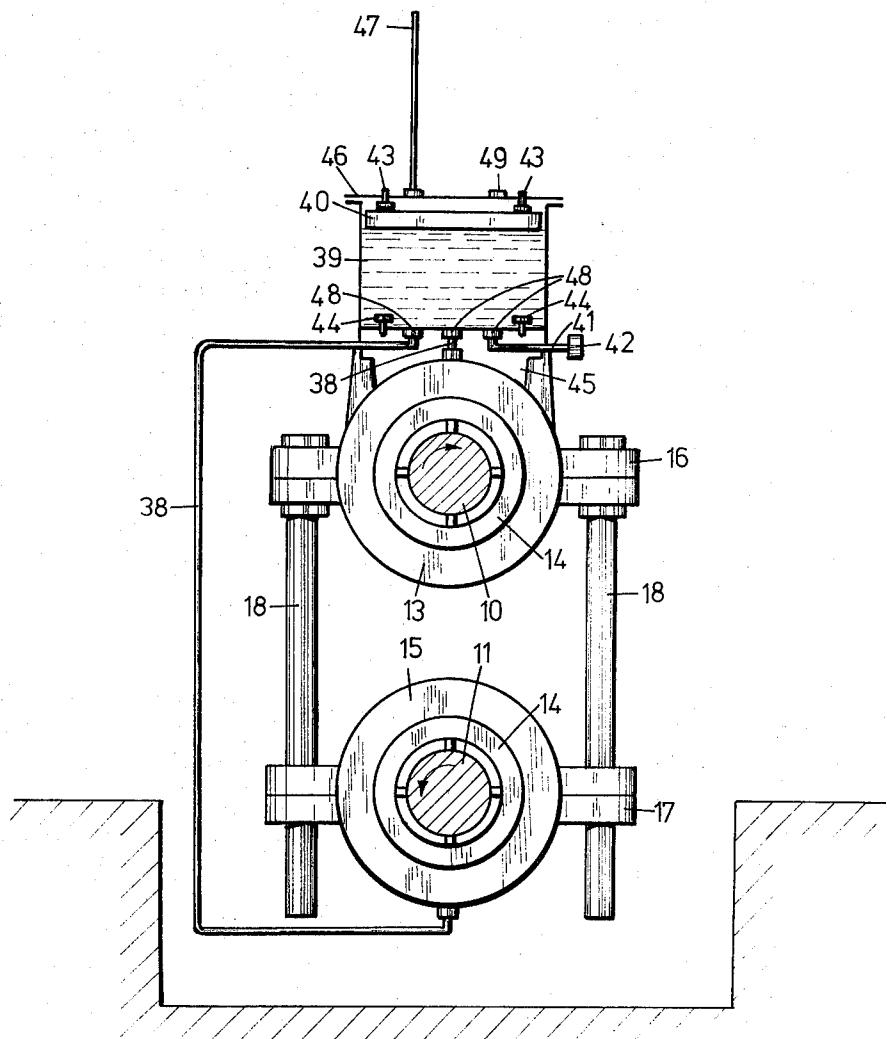



Fig.3

INVENTOR,

Erich Rosenthal

BY


Walter Becker

PATENTED OCT 3 1972

3,695,392

SHEET 3 OF 3

Fig.4

INVENTOR.

Erich Rosenthal

BY

Walter Becker

APPARATUS FOR LUBRICATING AREAS ON ROTATING PARTS

The present invention relates to an apparatus for lubricating area on rotating parts such as shafts, which areas are fed with lubricant through lubricant conveying conduits by a pump from an annular chamber surrounding the rotating element. More specifically, the present invention relates to an apparatus of the above mentioned type in which the annular chamber is formed by an inner ring firmly connected to the rotating part and by a stationary outer ring which is slidably sealing with regard to said inner ring, said annular chamber communicating with a lubricant storage container from which the lubricant is adapted through the stationary outer ring to be fed to said annular chamber.

Various devices have become known which serve for lubricating areas on rotating elements such as shafts and the like. According to one of these heretofore known devices a pump is inserted into the center of a shaft. This pump is fed from a storage container likewise arranged in said shaft. The essential drawbacks of this known device are seen in the fact that the shaft must have a relatively large diameter in order to permit installation of the pump in said storage container. In view of such large diameter, however, the shaft is easily unbalanced. Moreover, the cost of construction for such heretofore known device is rather high, while the said known device has the further drawback that the charging of the storage container is possible only when the rotating part is at a standstill.

For the above reasons it has been suggested according to another embodiment of a heretofore known device of the type involved to provide the lubricating device on the outer circumference of the shaft or of a corresponding spindle. This device has an inner ring connected to a shaft or a spindle, which inner ring together with an outer ring slideably and sealably mounted, forms an annular chamber in which in addition to the lubricant there is provided a gear ring which is connected to the inner ring and rotates together therewith. On the inner side of the stationary outer ring there is arranged a freely rotatable gear which meshes with said gear ring and presses the lubricant through passages at the bottom of the tooth spaces and in the inner ring to the individual tap areas for the areas to be lubricated. Gear and gear ring together form a kind of gear pump.

With this heretofore known device, the pressure and the quantity of the lubricant fed to an area to be lubricated are dependent on the speed of rotation of the shaft or spindle and on the number of the gears meshing with the gear ring as well as on the distance between the pitch circles of the teeth of the gear ring and of the gear. To vary the quantity of the delivered lubricant by a control mechanism is not possible. While with increasing speed also the lubricant consumption increases, above all the possibility is lacking to adapt the delivery and the conveying pressure to the viscosity of the respective employed lubricant which is dependent not only on the quality of the lubricant itself but also on the temperature of operation. In this connection, it is also disadvantageous that the delivery pressure occurs only during the very short time period during which a tooth of the gear meshes with a tooth space provided with a delivery bore. Therefore, it is hardly possible to assure a uniform supply of lubricant to each area to be lubricated. inner ring

Also, oil pressure generators have become known which are designed in the manner of an axial piston pump, by means of which oil under pressure is pumped as driving medium for a hydraulic motor.

It is an object of the present invention to provide a device for lubricating areas on rotating parts such as shafts or spindles, in which the delivery of equal quantities of lubricant with each lubricating operation will be assured while the frequency and the duration of the individual lubricating step and the respective furnished quantity of lubricant will be variable independently of the speed of the shaft or spindle and other structural features.

These and other objects and advantages of the invention will appear more clearly from the following specification, in connection with the accompanying drawings, in which:

FIG. 1 illustrates two roller spindles arranged one above the other and provided with devices according to the invention.

FIG. 2 is a section taken along the line II—II of FIG. 1.

FIG. 3 shows a section along the line III—III of the device according to FIG. 1.

FIG. 4 illustrates the device according to Fig. 1 with a storage container for supplying the annular chambers of the device with a lubricant.

The present invention is based on a device for lubricating areas on rotating parts, which areas through lubricant conveying conduits are fed by a pump from an annular chamber surrounding the rotating part, said annular chamber being formed by an inner ring firmly connected to the rotating part and by a stationary outer ring which is sealingly slideable relative to said outer ring. The said annular chamber communicates with a lubricant storage container from which the lubricant may be conveyed through the stationary outer ring into said annular chamber. The invention is characterized primarily in that the pumping device comprises at least one piston pump arranged in a manner known per se in axial direction, while the cylinder of said piston pump is arranged within the inner ring, and while the piston cooperates with a non-rotatably mounted actuating ring that is adjustable in axial direction.

The device according to the invention has the advantage that the quantity of the lubricant delivered with each pump stroke may be adjusted by a simple change in the spacing between actuating ring and inner ring by a simple variation in the distance between the actuating ring and the inner ring. Inasmuch as the actuating ring according to a further development of the invention is connected to the outer ring by guiding bolts extending in axial direction, said guiding bolts respectively comprise a working piston guided by a fluid pressure controlled cylinder piston system, it will be possible in addition to changing the quantity of the lubricant fed during a stroke, also to change the frequency of the pump strokes and the duration of the individual lubricating operations independently of the speed and other structural features.

In order to assure that the actuating ring following each pump stroke returns to its starting position, compression springs are arranged on the guiding bolts and expediently rest on the outer ring. Also between the piston and the cylinder there is provided a pressure spring so as to make sure that the piston pump will, fol-

lowing each pump stroke, again return to its starting position.

Referring now to the drawings in detail, it will be seen that two devices according to the invention are respectively arranged on spindles 10 and 11 which rotate in directions counter to each other. One of said spindles has an inner ring 12 and an outer ring 13 whereas the other one of said spindles has an inner ring 14 and an outer ring 15. The two outer rings 13, 15 respectively have supporting arms 16, 17. Connected to the supporting arm 16 is a guiding bar 18 which is slidably journaled on the supporting arm 17. A change in the spacing between the outer rings 13, 15 is also possible while the guiding bars 18 prevent a rotation of the outer rings 13, 15 with regard to each other.

According to the showing of Fig. 1, each inner ring 12, 14 is provided with one cylinder 19, 20 only. However, the number of the cylinders may be selected at will in conformity with the respective requirements. Outer rings 13, 15 are respectively supported by groups of three guiding bolts 21, 22. Of course any other number of guiding bolts may be selected.

The construction of the device according to the invention appears to be best in Figs. 2 and 3. In the cylinder 20 which has been inserted into the inner ring 14 there is slidably arranged a piston 23 which has an abutment 23a against which rests a compression spring 24 which is arranged on the piston 23. The other end of the compression spring 24 rests upon the marginal area of the cylinder 20 and on the inner ring 14 respectively. The compression spring 24 has the tendency to hold the piston 23 always in its rest position in which it will be pulled out as far as possible from the cylinder 20. The free end of piston 23 carries a roller 25 which, due to the effect created by the compression spring 24, continuously engages an actuating ring 26. The ordinary position of the actuating ring 26 as shown in the drawings thus also determines the rest position of the piston 23.

Between inner ring 14 and outer ring 15 there is provided an annular chamber 27 which through an inlet opening 28 communicates with the inner chamber of cylinder 20. The outer ring 15 has its inner side provided with two radial extensions 15a for engaging corresponding recesses on the outer side of the inner ring 14, thereby forming a labyrinth sealing. In addition, at both sides of the extensions 15a there are provided sealing discs 29. The piston 23 has its working surface provided with a cylindrical extension 30 which latter during a working stroke enters the conveying chamber 31 and presses the lubricant in said conveying chamber 31 through a check valve 32 into a non-illustrated lubricant conveying conduit leading to an area to be lubricated.

The guiding bolts 22 which carry the actuating ring 26 have a working piston 33 that is displaceable in a working cylinder 34 formed in the outer ring 15 and illustrated in the drawings as occupying its rest position. The working cylinder 34 is closed by a cover 35 in which the end of the guiding bolt 22 is guided.

A compression spring 36 is arranged between the actuating ring 26 and the outer ring 15 while being mounted on the guiding bolt 22. This compression spring 36 brings about that the actuating ring 26 is continuously pressed away from the outer ring 15, and the

working piston 33 occupies its rest position shown in the drawings. When the working piston 33 is subjected to pressure through an inlet opening 37, the guiding bolt 22 is tightened toward the outer ring 15.

As pressure medium for actuating the working pistons 33, compression air is particularly suitable. If all three working pistons 33 are uniformly acted upon by fluid, it may be done by a corresponding control of the compressed air supply in a simple manner, on guiding bolts 22 which are simultaneously tightened. The device itself will then operate as follows: In view of the uniform tightening of the guiding bolts 22, the actuating ring 26 is displaced in axial direction so that it approaches the inner ring 14 and thereby remains parallel thereto. In this way, all pistons 23 are uniformly pushed into cylinder 20 while the inner ring 14 rotates and the rollers 25 roll along the actuating ring 26. The lubricant contained in the conveyor chamber 31 is, in these circumstances, pressed into the individual lubricating conduits. The lubrication proper is effected as long as the working piston 33 is subjected to air and pressure. During the end phase of the lubricating operation, the air pressure prevailing on the working piston 33 is turned off so that the compression spring can become effective and the actuating ring 26 is pressed into its rest position. Thus, also the force of the compression spring can become effective and can press the piston 23 out of the cylinder 20. In view of the blocking of the check valve 32 during a suction stroke of piston 23, new lubricant is withdrawn from annular chamber 27 through the inlet opening 28. This filling operation is aided by the pressure of the lubricant prevailing in the annular chamber 27. The device is then ready for carrying out the next lubricating operation, which may be effected as soon as the inlet opening 37 conveys compressed air to the working pistons 33.

The inlet openings leading into the annular chamber 27 are not shown in FIGS. 1 and 2. These inlet openings are, however, provided in the outer ring 15 as shown in FIG. 4, and to each device there is leading a distributing conduit 38 which leads into the annular chamber 27 of the respective device. The supply conduits 38 are connected to one storage container 39 which is filled with a lubricant. A pressure plate 40 sealingly engages the inner wall of the storage container 39 and by means of its own weight presses upon the lubricant in the storage container 39. The weight of the pressure plate 40 is so great that the pressure exerted upon the lubricant will suffice to overcome the resistance in the supply lines 38 up to the annular chambers 27. In addition to the supply lines 38, a feeding line 41 with a connecting member 42 is connected to the storage container 39 at the bottom thereof. To the connecting member 42 there may be connected a lubricant conveying conduit through which the storage container 39 may be filled when the lubricant contained in said storage container has been used or nearly used.

For purposes of ascertaining the maximum admissible upper filling level, there is provided a feeler member 43, whereas the maximum permissible lower filling level at which a post filling of the storage container 39 is necessary is ascertained by a feeler 44 adapted to emit optical and acoustic signals.

The storage container 39 by means of a framework placed upon the upper one of the two devices 47 is

passed through a cover 46 of the storage container 39 by means of which air under pressure can additionally be conveyed to the pressure plate 40 when the pressure exerted through the pressure plate 40 upon the lubricant should not be sufficient.

The connections of the supply lines 38 and the feeding line 41 at the bottom of the storage container 39 are adapted to be blocked by a valve 48. A safety valve 49 serves as protection against undue pressure in the storage container 39.

In view of the weight of the pressure plate 40, a pressure can be maintained in the storage container 39 and in the supply lines 38 which pressure is of the magnitude of that pressure that is necessary for overcoming the resistance in the conduits. This pressure value varies in conformity with the viscosity of the lubricant and also in conformity with the outer temperature. For purpose of equaling this varying pressure supply, the air pressure conveyed through the compressed line 37 may be employed. A compressor for generating this air pressure may likewise be mounted on the framework 45.

It is, of course, to be understood that the present invention is by no means limited to the specific showing in the drawings, but also comprises any modifications within the scope of the appended claims.

What is claimed is:

1. In a device for lubricating an area on a rotating element, such as a shaft: a first ring fixed to the said element to rotate therewith, a second nonrotatable ring mounted on said first ring and forming a sealed chamber therewith, lubricant supply means connected to said chamber, cylinder means in said first ring parallel to the axis of rotation of said element and communicating with said chamber, lubricant supply conduit means leading from said cylinder means to said area, piston means also parallel to the axis of rotation of said element and reciprocably mounted in said cylinder

means, an axially movable nonrotatable ring carried by and operatively connected to said second ring and engaging the said piston means at the axial end thereof opposite said cylinder means, and means for adjusting 5 said actuating ring in the axial direction of said piston means.

2. A device according to claim 1 in which said actuating ring is coaxial with said first ring and is parallel thereto.

10 3. A device according to claim 1 which includes axial rods connected to said actuating ring and extending toward said second ring, axial cylinders in said second ring and pistons on said rods reciprocable in said cylinders, and means for supplying fluid under pressure to at least one end of said cylinders for moving said actuating ring in the axial direction.

4. A device according to claim 3 which includes a spring on each rod acting on said actuating ring for urging the actuating ring in the axial direction opposite to 20 the direction in which it is moved by the said pistons.

5. A device according to claim 1 which includes spring means acting on said piston means and urging the piston means axially toward said actuating ring.

6. A device according to claim 1 which includes 25 check valve means controlling the flow into said chamber and one of said cylinder means.

7. A device according to claim 1 in which said lubricant supply conduit means are connected to said cylinder means at one end thereof, and said piston means when moved toward said one end of said cylinder means entrap fluid therein and force the fluid 30 into said lubricant supply conduit means.

8. A device according to claim 1 in which said second ring surrounds said first ring on the radially outer side thereof and is sealed thereto at axially spaced annular regions, the space between said annular regions comprising said chamber.

* * * * *