

CONFÉDÉRATION SUISSE

(51) Int. Cl.3: **B01 D**

11/04

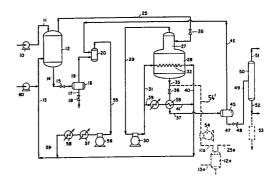
OFFICE FÉDÉRAL DE LA PROPRIÉTÉ INTELLECTUELLE

Brevet d'invention délivré pour la Suisse et le Liechtenstein

Traité sur les brevets, du 22 décembre 1978, entre la Suisse et le Liechtenstein

® FASCICULE DU BREVET A5

11)


642 271

② Numéro de la demande:	7118/80	73	Titulaire(s): Arthur D. Little, Inc., Cambridge/MA (US)
② Date de dépôt:	23.09.1980		
30 Prioritė(s):	28.09.1979 US 079935	1	Inventeur(s): Richard Paul De Filippi, Cambridge/MA (US) Johnson Edward Vivian, Arlington/MA (US)
② Brevet délivré le:	13.04.1984		
45) Fascicule du brevet publié le:	13.04.1984	74)	Mandataire: Jean Hunziker, Zürich

Procédé de séparation d'un liquide organique d'un mélange de liquide organique et de solvant et appareillage pour la mise en oeuvre de ce procédé.

57 Le mélange est mis en contact (12) avec un fluide d'extraction qui est à une température et à une pression qui en font un solvant pour la substance dissoute, mais non pour le solvant. Le produit d'extraction fluide résultant de la substance dissoute est ensuite détendu (15) de manière à produire une charge d'une tour de distillation (27) dans laquelle sont produites une fraction de tête en phase vapeur et une fraction de queue en phase liquide. La chaleur nécessaire à produire cette distillation est apportée par compression (30) du distillat de tête en phase vapeur afin de le chauffer et de permettre de chauffer indirectement (32) la charge de la tour de distil-

Ce procédé convient particulièrement pour la séparation de mélanges qui forment des azéotropes, par exemple des mélanges d'hydrocarbures oxygénés et d'eau.

REVENDICATIONS

- 1. Procédé de séparation d'un liquide organique d'un mélange de liquide organique et de solvant, caractérisé en ce qu'il consiste:
- a) à mettre en contact un mélange d'une substance organique liquide dissoute et d'un solvant de substance dissoute avec un fluide d'extraction à une pression et une température qui font de ce fluide d'extraction un solvant à pouvoir dissolvant plus grand pour la substance organique liquide dissoute que pour le solvant, de manière à obtenir un produit d'extraction fluide de substance organique liquide dissoute dans le fluide d'extraction et un raffinat se composant du solvant et de traces du fluide d'extraction et de la substance organique liquide dissoute, ce fluide d'extraction étant un gaz sous des conditions de température et de pression ambiantes ordinaires;
 - b) à séparer le produit d'extraction fluide du raffinat;
- c) à utiliser ce produit d'extraction fluide comme charge de distillation séparable en deux phases par distillation;
- d) à distiller la charge de distillation de manière à produire un distillat de tête en phase vapeur et des queues de distillation en phase liquide;
- e) à comprimer le distillat de tête en phase vapeur de manière à obtenir une vapeur comprimée;
- f) à effectuer un échange de chaleur indirect entre la vapeur comprimée et les queues de distillation de manière à obtenir l'énergie thermique nécessaire à la phase de distillation et à produire un condensat liquide de la vapeur;
- g) à récupérer un produit de queue liquide comprenant la substance liquide dissoute;
- h) à recycler le condensat liquide comme fluide d'extraction dans la phase de mise en contact;
- i) à provoquer la vaporisation brusque du fluide d'extraction pour l'éliminer du raffinat afin d'obtenir une vapeur de raffinat produite par vaporisation brusque;
- j) à produire la vaporisation brusque de la vapeur résiduelle pour l'éliminer des queues de distillation de manière à obtenir des queues de distillation détendues, et
- k) à séparer le produit liquide organique des queues de distillation détendues de manière à récupérer le produit de queue liquide et à produire une vapeur créée par vaporisation brusque.
- 2. Procédé selon la revendication 1, caractérisé en ce que le fluide d'extraction est à l'état liquide subcritique ou à l'état surcritique.
- 3. Procédé selon la revendication 1, caractérisé en ce que le fluide d'extraction est de l'anhydride carbonique, de l'éthane ou de l'éthylène
- 4. Procédé selon la revendication 3, caractérisé en ce que le fluide d'extraction est de l'anhydride carbonique à une pression comprise entre 30·10⁵ et 150·10⁵ Pa et à une température comprise entre 0 et 150°C.
- 5. Procédé selon la revendication 1, caractérisé en ce que la subs- 50 tance organique liquide dissoute est un hydrocarbure oxygéné, une fraction de pétrole, un hydrocarbure léger ou un hydrocarbure aromatique.
- 6. Procédé selon la revendication 5, caractérisé en ce que l'hydrocarbure oxygéné est un alcool, un ester, un acide, un aldéhyde, une cétone, un polyalcool ou du méthanol, de l'éthanol, de l'isopropanol, du propanol normal, du phénol, un monomère d'acétate de vinyle, de l'acide acétique, de la méthyléthylcétone ou de la glycérine.
- 7. Procédé selon la revendication 1, caractérisé en ce que le solvant est une fraction de pétrole ou de l'eau.
- 8. Procédé selon la revendication 1, caractérisé en ce que le mélange de substance organique liquide dissoute et de solvant forme un azéotrope et en ce que le produit de queue liquide est plus riche en substance dissoute que ne le serait ledit azéotrope.
- Procédé selon la revendication 1, caractérisé en ce que l'utilisation du produit d'extraction fluide comme charge de distillation comprend la réduction de sa pression.

- 10. Procédé selon la revendication 9, caractérisé en ce qu'il comprend la production d'énergie mécanique lors de la réduction de la pression du produit d'extraction fluide et en ce qu'on utilise cette énergie mécanique pour comprimer le distillat de tête en phase vapeur à la phase e ou pour comprimer les vapeurs produites par vaporisation brusque aux phases i et k.
- 11. Procédé selon l'une des revendications 1 à 10, caractérisé en ce que le produit de queue liquide est soumis à une autre distillation afin d'en éliminer le solvant résiduel.
- 12. Procédé selon l'une des revendications 1 à 11, caractérisé en ce que le produit de queue liquide est soumis à un processus se composant des phases a à h.
- Procédé selon l'une des revendications 1 à 12, caractérisé en ce que la vaporisation brusque du fluide d'extraction afin de l'éliminer du raffinat consiste à réduire la pression de ce raffinat à un niveau qui est intermédiaire entre celui de la phase d'extraction et la pression atmosphérique et à séparer la vapeur de raffinat provenant de la vaporisation brusque du raffinat liquide, la vapeur de raffinat produite par vaporisation brusque étant maintenue à ladite pression intermédiaire.
 - 14. Procédé selon l'une des revendications 1 à 13, caractérisé en ce qu'il comprend les phases consistant à retirer une partie de la vapeur comprimée de manière à en former un courant soutiré avant d'effectuer l'échange indirect de chaleur entre la vapeur comprimée et les queues de distillation et à effectuer ledit échange indirect de chaleur entre le courant soutiré et les queues de distillation détendues avant de séparer le produit liquide organique des queues de distillation détendues.
- 15. Procédé selon la revendication 14, caractérisé en ce que l'en-30 thalpie du courant soutiré est ajustée avant d'effectuer l'échange de chaleur indirect entre ce courant et les queues de distillation détendues.
- 16. Procédé selon l'une des revendications 1 à 15, caractérisé en ce que les vapeurs produites par vaporisation brusque aux phases i et k sont recomprimées pour faire du mélange fluide résultant un solvant de la substance organique liquide dissoute, en ce que le fluide résultant est réuni avec le condensat liquide de la vapeur provenant de la phase f et en ce que les fluides mélangés sont recyclés et utilisés comme fluide d'extraction à la phase de mise en contact.
 - 17. Procédé selon la revendication 16, caractérisé en ce que la température du mélange de fluides est ajustée avant de le réunir avec le condensat liquide.
- 18. Procédé selon la revendication 16, caractérisé en ce qu'un complément de fluide d'extraction est ajouté aux fluides réunis avant 45 la phase de recyclage.
 - 19. Procédé selon la revendication 1, destiné à séparer un hydrocarbure oxygéné liquide d'un mélange aqueux, caractérisé en ce qu'il consiste:
- a) à mettre en contact un mélange d'un hydrocarbure oxygéné 50 liquide et d'eau avec de l'anhydride carbonique à l'état fluide mis en condition d'être utilisé comme solvant, cette mise en contact étant effectuée à une pression comprise entre 30·10⁵ et 150·10⁵ Pa et à une température comprise entre 0 et 150°C, de manière à obtenir de l'anhydride carbonique sous la forme d'un fluide d'extraction dudit hy-55 drocarbure oxygéné liquide et un raffinat se composant d'eau et de traces de l'anhydride carbonique et de l'hydrocarbure oxygéné liquide;
 - b) à séparer le produit d'extraction fluide consistant en anhydride carbonique du raffinat;
- c) à abaisser la pression du produit d'extraction fluide consistant en anhydride carbonique de manière à produire une charge de distillation;
- d) à distiller la charge de manière à produire un distillat de tête se composant de la totalité de l'anhydride carbonique en phase
 65 vapeur, ainsi que des queues de distillation;
 - e) à recomprimer l'anhydride carbonique en phase vapeur de la phase d de manière à obtenir de l'anhydride carbonique recomprimé qui est à une pression sensiblement équivalente à celle de l'anhydride

carbonique mis en condition d'être utilisé comme solvant à la phase a et à une température supérieure au point d'ébullition des queues de distillation:

- f) à effectuer un échange indirect de chaleur entre l'anhydride carbonique recomprimé et les queues de distillation de manière à ap- 5 porter l'énergie thermique nécessaire à la phase de distillation et à produire un condensat liquide d'anhydride carbonique;
- g) à récupérer un produit liquide formé des queues de distillation et contenant l'hydrocarbure oxygéné;
- que à la phase a, dans laquelle il constitue l'anhydride carbonique mis en condition d'être utilisé comme solvant;
- i) à produire la vaporisation brusque de l'anhydride carbonique pour le séparer du raffinat afin d'obtenir un raffinat se composant d'anhydride carbonique en phase vapeur produit par vaporisation brusque;
- j) à produire la vaporisation brusque de l'anhydride carbonique résiduel pour l'extraire des queues de distillation et produire des queues de distillation détendues;
- k) à séparer le produit liquide se composant d'hydrocarbure oxygéné des queues de distillation détendues et à produire une vapeur d'anhydride carbonique obtenue par vaporisation brusque;
- l) à réunir les vapeurs d'anhydride carbonique obtenues par vaporisation brusque aux phases i et k;
- m) à transformer les vapeurs réunies, obtenues par vaporisation 25 mée par ce dernier vers l'échangeur de chaleur (32); brusque, en fluide se composant d'anhydride carbonique mis en condition d'être utilisé en solvant, et
- n) à réunir le fluide se composant d'anhydride carbonique obtenu à la phase m avec le condensat fluide d'anhydride carbonique provenant de la phase f.
- 20. Procédé selon la revendication 19, caractérisé en ce que l'hydrocarbure oxygéné est un alcool, un ester, un acide, un aldéhyde, une cétone ou un polyalcool.
- 21. Procédé selon l'une des revendications 19 ou 20, caractérisé en ce que le mélange aqueux forme un azéotrope et le produit liquide de queue est plus riche en hydrocarbure oxygéné que l'azéotrope.
- 22. Procédé selon l'une des revendications 19 à 21, caractérisé en ce qu'il comprend les phases consistant à produire de l'énergie mécanique lors de la réduction de ladite pression à la phase c et à utiliser cette énergie mécanique pour recomprimer la vapeur d'anhydride carbonique à la phase e.
- 23. Procédé selon l'une des revendications 19 à 22, caractérisé en ce que le produit de queue liquide est soumis à un processus se composant des phases a à g afin d'obtenir un produit de queue raffiné.
- 24. Procédé selon l'une des revendications 19 à 23, caractérisé en ce que le produit de queue liquide est soumis à une autre distillation afin d'en éliminer l'eau résiduelle.
- 25. Procédé selon la revendication 19, caractérisé en ce que le fluide consistant en anhydride carbonique mis en condition d'être utilisé comme solvant est à une pression d'environ 65·105 Pa et à une température de 28°C à la phase a, en ce que les vapeurs d'anhydride carbonique obtenues par vaporisation brusque sont à une pression d'environ 10·10⁵ Pa, et en ce que la charge de distillation de la phase ron 15°C.
- 26. Procédé selon la revendication 19, caractérisé en ce qu'il comprend en outre les phases consistant à retirer une partie de l'anhydride carbonique recomprimé provenant de la phase e sous la indirect de chaleur entre le courant soutiré et les queues de distillation détendues avant la séparation effectuée à la phase k.
- 27. Procédé selon la revendication 26, caractérisé en ce que l'enthalpie du courant soutiré est ajustée avant d'effectuer l'échange de chaleur indirect entre ce courant et les queues de distillation détendues.
- 28. Procédé selon la revendication 23, caractérisé en ce que le produit de queue liquide est distillé.

- 29. Appareillage pour la mise en œuvre du procédé selon la revendication 1, caractérisé en ce qu'il comprend:
- a) une cuve sous pression (12) pour mettre en contact un mélange d'une substance organique liquide dissoute et un solvant de cette substance dissoute avec un fluide d'extraction sous pression qui a un pouvoir dissolvant plus grand pour la substance organique liquide dissoute que pour le solvant, de manière à produire un produit d'extraction et un raffinat comprenant du solvant et des traces du fluide d'extraction et de la substance organique liquide dish) à recycler le condensat liquide constitué d'anhydride carboni- 10 soute, ce fluide d'extraction se présentant sous forme gazeuse sous des conditions ambiantes normales de température et de pression;
 - b) une tour de distillation (27) capable d'effectuer la séparation d'une charge de distillation en une fraction de tête en phase vapeur et une fraction de queue en phase liquide, cette tour étant combinée 15 avec un rebouilleur (28) renfermant un échangeur de chaleur (32) dans lequel circule un fluide de transfert de chaleur qui est en échange de chaleur indirect avec la fraction de queue liquide:
 - c) une première canalisation sous pression (25), destinée à transporter le produit d'extraction comme charge de distillation de la 20 cuve (12) à la tour de distillation (27);
 - d) un compresseur de vapeur (30);
 - e) une seconde canalisation sous pression (29, 31) incorporant ce compresseur de vapeur (30) et destinée à transporter la fraction de tête en phase vapeur vers le compresseur (30) et la vapeur recompri-
 - f) un détendeur (36) pour la réduction de la pression des queues de distillation:
 - g) un séparateur (45);

3

- h) une troisième canalisation sous pression (35, 37) incorporant 30 le détendeur (36) et destinée à transporter les queues de distillation du rebouilleur (28) vers ce détendeur (36) et les queues de distillation détendues par ce dernier vers le séparateur (45);
- i) un dispositif de récupération (47, 48, 49, 50, 52) récupérant des queues de distillation du séparateur (45) sous forme de produit 35 de substance organique liquide dissoute;
 - j) un dispositif de traitement (15, 16) du raffinat destiné à produire un raffinat en phase vapeur obtenu par vaporisation brusque;
 - k) un collecteur (20) pour la vapeur obtenue par vaporisation brusque, qui communique avec le séparateur (45) et avec le dispositif de traitement (15, 16), et
 - 1) un dispositif de transport (19, 46) destiné à transporter le raffinat en phase vapeur obtenu par vaporisation brusque et la vapeur de solvant obtenue par vaporisation brusque respectivement du dispositif de traitement (15, 16) et du séparateur (45) de produit vers le collecteur (20) pour les recirculer comme solvant.
 - 30. Appareillage selon la revendication 29, caractérisé en ce qu'il comprend en outre un détendeur (26) pour le produit d'extraction fluide associé à la première canalisation sous pression (25).
- 31. Appareillage selon l'une des revendications 29 ou 30, carac-50 térisé en ce que le dispositif du traitement (15, 16) du raffinat comprend:
- 1) un détendeur (15) destiné à abaisser la pression du raffinat à un niveau intermédiaire compris entre la pression régnant dans la cuve sous pression (12) et la pression ambiante afin de produire un c est à une pression d'environ 50·10⁵ Pa et à une température d'envi- 55 raffinat en phase vapeur obtenu par vaporisation brusque et un raffinat liquide;
 - 2) un séparateur de raffinat (16), destiné à séparer le raffinat en phase vapeur obtenu par vaporisation brusque du raffinat liquide;
- 3) une quatrième canalisation sous pression (14), sur laquelle est forme d'un courant soutiré avant la phase f et à effectuer un échange 60 monté le détendeur de raffinat (15) et destinée à mettre en communication la cuve sous pression (12) et le séparateur de raffinat (16);
 - 4) une cinquième canalisation sous pression (19) destinée à transporter le produit en phase vapeur, obtenu par vaporisation brusque, du séparateur de raffinat (16) au collecteur de vapeur (20), cet appareillage comprenant en outre:
 - m) une sixième canalisation sous pression (40, 13) destinée à transporter le condensat fluide de l'échangeur de chaleur (32) vers la cuve sous pression (12);

- n) une septième canalisation (46) pour le transport du solvant en phase vapeur, obtenu par vaporisation brusque, du dispositif (45) de récupération des queues de distillation vers le collecteur de vapeur (20):
- o) un compresseur (56) pour le solvant en phase vapeur obtenu par vaporisation brusque, et
- p) une huitième canalisation sous pression (55, 59) sur laquelle est monté le compresseur (56) et destinée à transporter la vapeur provenant du collecteur (20) vers le compresseur (56) et le fluide d'extraction mis sous pression par ce dernier dans la sixième canalisation sous pression (13).
- 32. Appareillage selon la revendication 31, caractérisé en ce que le détendeur (26) comprend un générateur d'énergie.
- 33. Appareillage selon la revendication 32, caractérisé en ce que le générateur d'énergie est couplé au compresseur de vapeur (30) de manière à lui apporter une force motrice.
- 34. Appareillage selon l'une des revendications 29 à 33, caractérisé en ce qu'il comprend un dispositif (56) destiné à la distillation du produit organique liquide dissous afin d'en évacuer le solvant résiduel.
- 35. Appareillage selon l'une des revendications 31 à 34, caractérisé en ce qu'il comprend une neuvième canalisation sous pression (39, 41) raccordant les seconde (29, 31) et sixième (40, 13) canalisations sous pression et sur laquelle est monté un échangeur de chaleur supplémentaire (38) destiné à effectuer un échange de chaleur indirect entre le courant soutiré de vapeur recomprimée et les queues de distillation.
- 36. Appareillage selon la revendication 35, caractérisé en ce qu'il comprend un échangeur de chaleur associé à la neuvième canalisation sous pression (39) et destiné à régler l'enthalpie du courant soutiré avant son entrée dans ledit échangeur de chaleur (38) supplémentaire.
- 37. Appareillage selon l'une des revendications 29 à 36, caractérisé en ce qu'il comprend des échangeurs de chaleur (57, 58) destinés à régler la température du fluide d'extraction sous pression dans la huitième canalisation sous pression (55, 59).
- 38. Appareillage selon l'une des revendications 29 à 37, caractérisé en ce qu'il comprend une pompe (60) pour l'introduction d'un complément de fluide d'extraction sous pression dans la sixième canalisation sous pression (13).
- 39. Appareillage selon l'une des revendications 29 à 38, caractérisé en ce que le dispositif de récupération des queues de distillation du séparateur de produit (45) comprend un dispositif de séparation (50), un détendeur (48) et un conduit (47) raccordant le séparateur de produit (45) au dispositif de séparation (50) et incorporant le détendeur de produit (48), et des éléments de soutirage (52) destinés à extraire le produit liquide organique final séparé du dispositif de séparation (50).
- 40. Appareillage selon la revendication 39, caractérisé en ce qu'il comprend un dispositif de distillation (53) et un conduit pour le transport du produit organique liquide final séparé du dispositif de séparation (50) vers ce dispositif de distillation (53).
- 41. Appareillage selon l'une des revendications 31 à 40, caractérisé en ce qu'il comprend un second détendeur de raffinat (18) destiné à abaisser la pression du raffinat liquide provenant du séparateur de raffinat (16) à la pression atmosphérique.

L'invention a pour objet un procédé de séparation d'un liquide organique d'un mélange de liquide organique et de solvant.

Dans les processus mis en œuvre à l'échelle commerciale et utilisés pour la fabrication de nombreux composés organiques liquides de grands volumes, par exemple d'hydrocarbures oxygénés, il est en général nécessaire de séparer à la phase finale les composés organiques des solutions aqueuses. Dans de nombreux mélanges de ce type, l'eau représente une proportion majeure de la solution et, dans un grand nombre de ces cas, l'eau et les liquides organiques forment des azéotropes. Ainsi, la séparation de beaucoup de ces composés organiques de l'eau exige des appareillages relativement grands et complexes de distillation et sont la cause de consommation élevée d'énergie. De même, les fractions de pétrole telles que combustibles et carburants ainsi que les hydrocarbures légers doivent être séparés d'autres compositions organiques telles que des hydrocarbures à point d'ébullition élevé avec lesquels elles sont miscibles.

Actuellement, environ 3% de la consommation nationale totale d'énergie aux Etats-Unis sont utilisés pour la distillation dans le raffinage du pétrole et la production des produits chimiques. Il est donc évident qu'un procédé et un appareillage permettant de diminuer la consommation d'énergie utilisée pour la séparation même d'une partie de ces substances solubles de leurs solutions feraient faire une économie d'énergie hautement souhaitable.

L'invention a donc pour but de créer un procédé de séparation du type précité, qui permet l'extraction de substances liquides organiques dissoutes, par exemple des fractions de pétrole telles que carburant et combustible, des fractions de distillation directe du pétrole, des hydrocarbures légers et des substances aromatiques, de solvants organiques, ainsi que l'extraction des hydrocarbures oxygénés et analogues de leurs mélanges avec de l'eau en exigeant moins d'énergie par unité de liquide organique extrait que les procédés utilisés actuellement en distillation.

A cet effet le procédé selon l'invention consiste:

- a) à mettre en contact un mélange d'une substance organique liquide dissoute et d'un solvant de susbtance dissoute avec un fluide d'extraction à une pression et une température qui font de ce fluide
 30 d'extraction un solvant à pouvoir dissolvant plus grand pour la susbtance organique liquide dissoute que pour le solvant, de manière à obtenir un produit d'extraction fluide de substance organique liquide dissoute dans le fluide d'extraction et un raffinat se composant du solvant et de traces du fluide d'extraction et de la substance
 35 organique liquide dissoute, ce fluide d'extraction étant un gaz sous des conditions de température et de pression ambiantes ordinaires;
 - b) à séparer le produit d'extraction fluide du raffinat;
 - c) à utiliser ce produit d'extraction fluide comme charge de distillation séparable en deux phases par distillation;
- d) à distiller la charge de distillation de manière à produire un distillat de tête en phase vapeur et des queues de distillation en phase liquide;
- e) à comprimer le distillat de tête en phase vapeur de manière à obtenir une vapeur comprimée;
- f) à effectuer un échange de chaleur indirect entre la vapeur comprimée et les queues de distillation de manière à obtenir l'énergie thermique nécessaire à la phase de distillation et à produire un condensat liquide de la vapeur;
- g) à récupérer un produit de queue liquide comprenant la subs-50 tance liquide dissoute;
 - h) à recycler le condensat liquide comme fluide d'extraction dans la phase de mise en contact;
- i) à provoquer la vaporisation brusque du fluide d'extraction pour l'éliminer du raffinat afin d'obtenir une vapeur de raffinat pross duite par vaporisation brusque;
 - j) à produire la vaporisation brusque de la vapeur résiduelle pour l'éliminer des queues de distillation de manière à obtenir des queues de distillation détendues, et
- k) à séparer le produit liquide organique des queues de distilla tion détendues de manière à récupérer le produit de queue liquide et à produire une vapeur créée par vaporisation brusque.

L'invention a en outre pour objet un appareillage pour la mise en œuvre de ce procédé.

Selon l'invention cet appareillage est caractérisé en ce qu'il com-65 prend:

a) une cuve sous pression pour mettre en contact un mélange d'une substance organique liquide dissoute et un solvant de cette substance dissoute avec un fluide d'extraction sous pression qui a un pouvoir dissolvant plus grand pour la substance organique liquide dissoute que pour le solvant, de manière à produire un produit d'extraction et un raffinat comprenant du solvant et des traces du fluide d'extraction et de la substance organique liquide dissoute, ce fluide d'extraction se présentant sous forme gazeuse sous des conditions ambiantes normales de température et de pression;

- b) une tour de distillation capable d'effectuer la séparation d'une charge de distillation et une fraction de tête en phase vapeur et une fraction de queue en phase liquide, cette tour étant combinée avec un rebouilleur renfermant un échangeur de chaleur dans lequel circule un fluide de transfert de chaleur qui est en échange de chaleur indirecte avec la fraction de queue liquide;
- c) une première canalisation sous pression, destinée à transporter le produit d'extraction comme charge de distillation de la cuve à la tour de distillation;
 - d) un compresseur de vapeur;
- e) une seconde canalisation sous pression incorporant ce compresseur de vapeur et destinée à transporter la fraction de tête en phase vapeur vers le compresseur et la vapeur recomprimée par ce dernier vers l'échangeur de chaleur;
- f) un détendeur pour la réduction de la pression des queues de distillation;
 - g) un séparateur;
- h) une troisième canalisation sous pression incorporant le détendeur et destinée à transporter les queues de distillation du rebouilleur vers ce détendeur et les queues de distillation détendues par ce dernier vers le séparateur;
- i) un dispositif de récupération récupérant des queues de distillation du séparateur sous forme de produit de substance organique liquide dissoute;
- j) un dispositif de traitement du raffinat destiné à produire un raffinat en phase vapeur obtenu par vaporisation brusque;
- k) un collecteur pour la vapeur obtenue par vaporisation brusque, qui communique avec le séparateur et avec le dispositif de traitement, et
- l) un dispositif de transport destiné à transporter le raffinat en phase vapeur obtenu par vaporisation brusque et la vapeur de solvant obtenue par vaporisation brusque respectivement du dispositif de traitement et du séparateur de produit vers le collecteur, pour les recirculer comme solvant.

Un tel appareillage a pour avantage d'autoriser l'utilisation d'un solvant fluide, avec pour conséquence une économie de consommation d'énergie.

Des exemples de réalisation de l'invention sont décrits ci-après en se référant au dessin annexé sur lequel:

la fig. 1 est un diagramme représentant les états subcritique et surcritique de l'anhydride carbonique et la solubilité du naphtalène à ces états;

la fig. 2 est un graphique illustrant la relation entre le nombre d'atomes de carbone d'exemples de liquides organiques devant être extraits de l'eau et le coefficient de partage entre le CO₂ et l'eau par ces liquides;

la fig. 3 est un graphique d'un exemple de cycle de recompression de la vapeur d'anhydride carbonique dans une partie du diagramme de la température en fonction de l'entropie de l'anhydride carbonique;

la fig. 4 est un organigramme illustrant en détail un procédé dans lequel l'anhydride carbonique est utilisé en fluide d'extraction et dans lequel la solution consiste en hydrocarbure oxygéné, par exemple de l'éthanol, dans de l'eau, et

la fig. 5 est un schéma fonctionnel d'un appareillage conforme à l'invention.

L'aptitude de l'anhydride carbonique sous la forme d'un liquide à l'état subcritique ainsi que sous la forme d'un fluide à l'état surcritique à être utilisé en solvant d'extraction est connue depuis de nombreuses années. [Voir, par exemple, l'article de Francis, A. W. dans la revue «Journal de physique et de chimie», N° 58, p. 1099 (1954) et dans la revue «Ind. Eng. Chem.», N° 47, p. 230 (1955).] Il a été

suggéré d'utiliser des fluides à l'état subcritique et à l'état surcritique, y compris l'anhydride carbonique, en solvants pour de nombreuses matières, y compris différentes huiles (brevets des Etats-Unis d'Amérique Nos 1805751, 2130147, 2281865); pour des arômes (brevet des Etats-Unis d'Amérique Nº 3477856); pour la caféine du café (brevet des Etats-Unis d'Amérique Nº 3843832); pour le beurre de cacao d'une pâte de cacao (brevet des Etats-Unis d'Amérique No 3923847); pour des graisses de grains et analogues (brevet des Etats-Unis d'Amérique Nº 3939281); pour l'hexane résiduel de 10 grains dégraissés (brevet des Etats-Unis d'Amérique Nº 3966981), et pour différentes matières telles que la paraffine, la glycérine, des huiles et graisses de nombreuses compositions (brevet des Etats-Unis d'Amérique Nº 3969196). Une étude très détaillée du domaine général de l'extraction par des gaz à l'état surcritique se trouve dans 15 l'édition internationale en anglais de la revue «Angewandte Chemie», No 17:10, pp. 701-784 (octobre 1978). La fig. 5 reproduite à la p. 707 de ce numéro de la revue «Angewandte Chemie» est particulièrement intéressante, car elle représente un organigramme d'une installation pilote de distillation avec extraction en continu de 20 résidus de fraction de tête du pétrole par du propane.

Bien que le pouvoir de solvatation des gaz à leurs états subcritique et surcritique, et en particulier de l'anhydride carbonique à l'état liquide et surcritique, soit bien connu, l'application de ces propriétés n'a pas encore été faite à l'échelle commerciale pour des liquides organiques de grand volume et, facteur plus important encore, elle n'a pas été faite de manière à réduire matériellement la consommation d'énergie au-dessous du point auquel le supplément de frais occasionnés par les pressions élevées de traitement de gaz soit plus que compensé pour permettre d'effectuer une économie globale nette appréciable. Le procédé et l'appareillage de l'invention permettent d'obtenir cette économie nette.

De nombreux composés qui sont gazeux à la température et à la pression ambiantes peuvent être transformés en fluides surcritiques en les soumettant à des conditions telles qu'ils sont à leurs pressions et températures critiques ou surcritiques. A des pressions et/ou des températures légèrement inférieures aux points critiques, la plupart de ces gaz peuvent être liquéfiés pour permettre d'obtenir leur état dénommé subcritique. Ces gaz à l'état de liquide subcritique ou de fluide surcritique sont de bons solvants pour de nombreuses substances organiques. Il est donc possible de les désigner comme étant alors en condition leur permettant d'être utilisés en solvant, la température et la pression réelles d'un fluide quelconque étant en condition lui permettant de constituer un solvant pouvant être facilement déterminées pour les substances dissoutes devant être séparées et récupérées.

Parmi ces gaz qui peuvent être mis à l'état fluide en condition leur permettant d'être utilisés en solvant, on peut mentionner les hydrocarbures tels que le méthane, l'éthane, le propane, le butane, l'éthylène et le propylène; les hydrocarbures halogénés tels que les dérivés halogénés du méthane et de l'éthane, et des substances minérales telles que l'anhydride carbonique, l'ammoniac, l'anhydride sulfureux, l'oxyde d'azote, le chlorure d'hydrogène et l'hydrogène sulfuré. Il est aussi possible d'utiliser des mélanges convenables de 55 ces gaz.

Parmi les gaz qui peuvent être mis en condition de solvant, l'anhydride carbonique, l'éthylène et l'éthane peuvent être cités à titre d'exemple pour les températures et pressions requises. Ces gaz ont un intérêt particulier, car ils sont, aux états subcritique et surcritique, pratiquement à la température ambiante et leurs pressions critiques sont de 50 à 75·10⁵ Pa, pressions qui sont facilement supportables par les éléments des appareillages existants. La température et la pression critiques de chacun de ces gaz sont bien connues et, comme mentionné plus haut, les plages de températures et de pressions les mettant en condition de solvant peuvent être facilement déterminées. Par exemple, l'anhydride carbonique a une température critique de 31°C et sa température à laquelle il est en condition de solvant peut être comprise entre -40 et +150°C. La pression critique de l'anhy-

642 271

dride carbonique est de 73·10⁵ Pa et sa pression à laquelle il est en condition de solvant peut être comprise entre 30·10⁵ et 150·10⁵ Pa.

A titre d'exemple de l'aptitude de l'anhydride carbonique à être utilisé comme solvant lorsqu'il est en condition correspondante, la fig. 1 est un graphique représentant la solubilité du naphtalène dans l'anhydride carbonique. On remarque que, lorsque l'anhydride carbonique est à l'état porté sur la fig. 1, il a des propriétés de solvant semblables à celles de liquides normaux.

L'anhydride carbonique en condition dans laquelle il constitue un solvant est un fluide d'extraction avantageux pour la mise en œuvre du procédé de l'invention, car il possède une combinaison spéciale de propriétés. En plus de ses bonnes propriétés de solvant dans les conditions dans lesquelles il est utilisé, il a des coefficients extrêmement favorables de diffusion, comparés à ceux de liquides normaux, cette propriété faisant apparaître des coefficients élevés de transfert de masse. Ce facteur offre de son côté la possibilité de minimiser ou même d'éliminer toute résistance notable au transport dans la phase anhydride carbonique, avec pour conséquence une augmentation du débit global d'extraction. Il offre ainsi également la possibilité de diminuer la dimension et de mieux optimiser la conception des tours de distillation utilisées.

Une autre propriété favorable de l'anhydride carbonique mis en condition d'être utilisé comme solvant est sa faible viscosité, qui est approximativement dix fois plus faible que celle des solvants liquides usuels. La viscosité représentant un facteur des caractéristiques d'écoulement d'une colonne d'extraction, de grandes vitesses d'écoulement et ainsi des capacités élevées de circulation peuvent être obtenues avec une réduction concomitante du diamètre de la tour de distillation.

La volatilité élevée de l'anhydride carbonique par rapport à de nombreux liquides organiques de grand volume, par exemple par rapport à l'éthanol, la méthyléthylcétone et analogues devant être extraits d'un mélange avec de l'eau, signifie que la tour de distillation peut fonctionner en évaporateur avec une faible longueur de séparation comportant un petit nombre d'étages. Un facteur extrêmement important est que le débit de vapeur et donc la chaleur consommée par le bouilleur sont faibles. De plus, la chaleur de vaporisation de l'anhydride carbonique mis en condition d'être utilisé comme solvant est très faible: elle correspond à environ $^{1}/_{5}$ de celle des solvants liquides normaux et à environ $^{1}/_{13}$ de celle de l'eau.

Finalement, l'anhydride carbonique est peu coûteux, il n'est ni polluant ni toxique, il n'exige aucun appareillage spécial ni aucun procédé particulier pour son emmagasinage et sa manipulation autres que ceux mis en œuvre normalement pour des systèmes sous pression.

L'utilisation de fluides mis en condition d'être utilisés comme solvants est applicable à l'extraction de nombreuses substances organiques liquides dissoutes de leurs solutions, indépendamment du fait que le solvant devant être extrait de ces substances est de l'eau ou un autre liquide organique, à condition que le solvant soit relativement non miscible avec le fluide d'extraction aux températures et pressions utilisées. Ces substances organiques liquides dissoutes comprennent, à titre d'exemples non limitatifs, des fractions de pétrole telles que combustibles et carburants qui sont produites par craquage catalytique et hydrocraquage, des fractions de distillation directe du pétrole et des hydrocarbures légers; des substances aromatiques telles que le styrène et l'orthoxylène, et des hydrocarbures oxygénés miscibles à l'eau, parmi lesquels des alcools aliphatiques tels que l'éthanol, l'isopropanol et analogues; les polyalcools ainsi que des acides, aldéhydes, esters et cétones.

La séparation des hydrocarbures oxygénés de leurs mélanges avec de l'eau représentant un processus commercial important, l'extraction de cette classe de substances dissoutes d'une solution aqueuse sera prise par la suite à titre d'exemple du procédé et de l'appareil de l'invention. Plus particulièrement, l'éthanol est utilisé comme exemple de substance liquide organique dissoute. L'éthanol est totalement miscible et forme un azéotrope avec l'eau qui contient 89,4 mol % d'éthanol. L'énergie consommée pour la distillation de

ce mélange est de 20 952,6 J/g d'alcool produit. Le volume des ventes d'éthanol synthétique en 1976 aux Etats-Unis d'Amérique a été de 404·106 kg, et donc environ 8,5·10¹5 J ont été consommés pour la séparation de l'éthanol synthétique de son mélange avec de l'eau. Cet exemple montre à lui seul que la réduction de l'énergie nécessaire à produire ces produits intermédiaires organiques liquides tels que l'éthanol est hautement souhaitable.

Il est nécessaire de choisir un fluide d'extraction mis en condition d'être utilisé comme solvant et dont le coefficient de partage entre le 10 fluide d'extraction et l'eau ait une valeur suffisante pour la substance organique liquide dissoute pour garantir que cette substance dissoute soit prélevée sur le fluide d'extraction, de préférence à l'eau. En général, un coefficient de partage d'au moins 0,1 aux température et pression utilisées convient bien. Ces coefficients de partage peuvent être facilement trouvés dans la littérature ou être déterminés par un essai simple afin d'utiliser les conditions optimales pour un système donné de liquide d'extraction et de liquide organique. Par exemple, la fig. 2, qui est un graphique représentant la relation entre le coefficient de partage et le nombre d'atomes de carbone dans les 20 alcools aliphatiques normaux et dans des éthers, montre que ce coefficient augmente rapidement avec le nombre d'atomes de carbone. Toutefois, même avec des coefficients de partage inférieurs à l'unité, comme dans le cas de l'alcool éthylique, le procédé décrit permet de faire des économies matérielles d'énergie telles que spécifiées plus

Une particularité importante du procédé décrit réside dans la combinaison de la recompression de la vapeur du solvant d'extraction et de l'utilisation d'un fluide d'extraction mis en condition de solvant. Cela permet d'utiliser l'enthalpie de la vapeur constituant la fraction de tête comme source de chaleur pour le bouilleur. A cette fin, la température à laquelle la chaleur est apportée par la vapeur doit subir une élévation pour produire une force d'entraînement par différence de température pour le transfert de chaleur aux queues de distillation se trouvant dans le bouilleur. Ce résultat est obtenu par la compression de la vapeur, de manière que la condensation et le dégagement de chaleur se produisent à une température supérieure au point d'ébullition du liquide se trouvant dans le bouilleur.

Le diagramme de la fig. 3 permet de montrer un cycle caractéristique de recompression de vapeur dans le diagramme de la tempéra-40 ture en fonction de l'entropie de l'anhydride carbonique, l'anhydride carbonique étant à nouveau utilisé en exemple de fluide d'extraction mis en condition de solvant. Dans cet exemple, l'anhydride carbonique mis en condition de solvant et quittant la colonne d'extraction se trouve au point A qui est pris dans le cas particulier à 25°C et 45 65·10⁵ Pa, ce qui signifie que le fluide d'extraction est utilisé à l'état liquide subcritique. En se dilatant dans la tour de distillation, le flux constituant la charge de cette tour subit une chute de pression à enthalpie constante et atteint 50·10⁵ Pa. Il s'agit du point B qui, dans cet exemple, représente environ 22% de vapeur et 78% de liquide à 50 15°C. De la chaleur est ajoutée dans le rebouilleur et le liquide subit une vaporisation et atteint le point C représentant la totalité de la vapeur à la même pression et à la même température. Finalement, cette vapeur passant à la tête de la tour de distillation est ensuite recomprimée et atteint le point D et, en abandonnant sa chaleur au 55 rebouilleur, le flux retourne du point D au point A.

Les phases du processus de l'invention sont détaillées dans l'organigramme de la fig. 4 et l'appareil est représenté schématiquement sur la fig. 5. La description détaillée qui va suivre sera faite en regard de ces deux figures. L'anhydride carbonique est à nouveau utilisé à titre d'exemple de fluide d'extraction et l'alcool éthylique à titre d'exemple de substance liquide organique dissoute.

La charge formée d'un mélange de liquide organique et d'eau est comprimée et envoyée par une pompe 10 et par une canalisation convenable 11 sous pression dans une cuve 12 destinée à mettre en 65 contact le mélange de la charge avec le gaz d'extraction en condition de solvant qui est introduit dans cette cuve sous pression 12 par une canalisation 13. Pour faciliter la description du procédé et de l'appareil, il sera admis, à titre d'exemple uniquement, que le mélange

7

formant la charge est un mélange d'eau et d'éthanol et que le fluide d'extraction est de l'anhydride carbonique. La colonne d'extraction 12 peut être toute cuve convenable sous pression conçue pour assurer un contact efficace entre les liquides, par exemple par une circulation à contre-courant dans une tour chargée d'éléments de garnissage ou de plateaux perforés.

Le raffinat liquide se composant d'eau, d'anhydride carbonique et d'une très faible quantité résiduelle d'éthanol est soutiré de la colonne d'extraction 12 par une canalisation 14 sur laquelle est monté un détendeur 15; le raffinat résultant détendu est un mélange à deux phases de liquide se composant d'eau, d'une faible quantité d'anhydride carbonique dissous ainsi que de l'éthanol résiduel et de vapeur d'anhydride carbonique. La phase aqueuse est soutirée par une canalisation 17 et un détendeur 18 et constitue le raffinat déchargé. L'anhydride carbonique formant la phase vapeur est transféré, comme vapeur de raffinat produite par vaporisation brusque, à une pression se situant entre celle dans la colonne d'extraction 12 et la pression atmosphérique, du séparateur 16 par une canalisation 19 dans une cuve de réserve de vapeur 20, pour être ensuite remis en condition de solvant de la manière décrite plus en détail ci-après.

Le produit d'extraction liquide formé de l'anhydride carbonique contenant l'éthanol en solution est soutiré de la colonne d'extraction 12 dans les mêmes conditions que celles régnant dans cette dernière et il est transféré, par une canalisation sous pression 25 et par un sion, par exemple à 50·105 Pa, que subit l'anhydride carbonique extrait donne la fraction de tête de la charge qui est partiellement liquide, partiellement en phase vapeur, à une faible température, par exemple d'environ 15°C. La tour de distillation 27 comporte un nombre suffisant d'étages pour garantir que pratiquement la totalité 30 de l'éthanol est recueillie par le rebouilleur 28 avec l'anhydride carbonique liquide formant la queue de distillation.

Il doit être bien entendu que ces conditions opératoires sont données à titre d'exemple et ne sont pas limitatives. Par exemple, la pression de l'anhydride carbonique formant le produit d'extraction 35 peut être abaissée à une valeur comprise entre 30·105 et 80·105 Pa avant son introduction dans la tour de distillation 27 et la charge résultante formant la fraction de tête peut être à une température comprise entre 0 et 31°C.

Suivant une particularité importante, la chaleur apportée au rebouilleur 28 est produite par échange de chaleur sans contact ou indirect avec la vapeur recomprimée d'anhydride carbonique soutirée de la tête de la tour de distillation 27 et introduite par une canalisation 29, un compresseur 30 et une canalisation 31 dans les serpentins d'échange de chaleur 32 situés dans les rebouilleurs 28. En variante de réalisation, le détendeur 26 peut être remplacé par une turbine servant de moyen générateur d'énergie et dont l'énergie produite peut être utilisée pour délivrer au moins une partie de l'énergie nécessaire à faire marcher le compresseur 30 avec lequel la turbine est reliée mécaniquement.

Au cours de l'évaporation ou de la distillation par recompression de la vapeur, l'élévation du point d'ébullition du composant le plus volatil (dans le cas particulier, le fluide d'extraction, c'est-à-dire l'anhydride carbonique) due à la présence du composant moins volatil (dans le cas particulier, la substance liquide organique dissoute) est importante. La fraction de tête quittant la tour de distillation 27 par la canalisation 29 se trouve au point d'ébullition ou est proche du point d'ébullition du composant le plus volatil et le liquide (une solution de la substance dissoute et du fluide d'extraction) se trouvant dans le rebouilleur 28 est à une température élevée, la différence de température étant fonction de l'élévation du point d'ébullition due à la présence de la substance dissoute.

La fraction de tête de la tour de distillation 27 subit une compression adiabatique dans le compresseur 30, de manière à apporter une chaleur supplémentaire qui doit être transférée au liquide se trouvant dans le rebouilleur, afin de le vaporiser partiellement pendant qu'il refroidit et condense la vapeur comprimée lors de son passage dans l'échangeur de chaleur 32. Ainsi, le mécanisme de dis-

tillation par recompression de vapeur exige que la fraction de tête de la tour de distillation soit chauffée par compression et portée à une température suffisamment élevée et supérieure à la température du liquide se trouvant dans le rebouilleur pour produire une force d'en-5 traînement bon marché par différence de température afin de provoquer le transfert nécessaire de chaleur à l'intérieur de ce rebouilleur 28. Il en résulte que plus l'élévation du point d'ébullition est forte par suite de la présence de la substance dissoute, par exemple de l'éthanol, plus forte est la compression nécessaire et plus fort est 10 le supplément de chaleur qui doit être ajouté par le compresseur pour produire une force d'entraînement bon marché par différence de température pour le transfert de chaleur. L'importance de ce supplément de chaleur peut dans certains cas rendre non rentable la distillation par recompression de vapeur.

L'élévation du point d'ébullition des solutions d'éthanol et d'anhydride carbonique n'ayant pas été trouvée dans la littérature, un premier essai a été fait en calculant ce paramètre à l'aide des principes connus des propriétés colligatives et en admettant que la loi de Raoult est valable, cette technique étant courante pour permettre de 20 prévoir l'état d'équilibre entre une vapeur et un liquide. En prenant pour point de départ une solution à 50% d'éthanol dans de l'anhydride carbonique sous une pression de 50·10⁵ Pa, la valeur calculée pour l'élévation du point d'ébullition est approximativement de 50°C, c'est-à-dire que la température à laquelle le liquide se trouvant détendeur 26, vers une tour de distillation 27. La réduction de pres- 25 dans le rebouilleur doit être chauffé par échange indirect de chaleur avec l'anhydride carbonique comprimé dans l'échangeur de chaleur 32 devrait être d'environ 50°C supérieure au point d'ébullition normal de l'anhydride carbonique sous une pression de 50·10⁵ Pa. Toutefois, la valeur réellement mesurée de l'élévation du point d'ébullition dans ces conditions est d'environ 3°C. Ce grand écart entre la valeur calculée et la valeur réelle de l'élévation du point d'ébullition peut être attribué au fait que l'anhydride carbonique n'obéit pas à la loi de Raoult dans les conditions dans lesquelles il

> Il a donc été trouvé que l'élévation du point d'ébullition de ces solutions d'anhydride carbonique telles qu'utilisées dans le procédé de l'invention atteint une faible valeur qui est favorable de manière surprenante. On comprend donc que cette faible élévation du point d'ébullition n'exige qu'une augmentation modérée de la pression du 40 distillat de tête. Cela signifie qu'une quantité d'énergie relativement faible est nécessaire pour comprimer le distillat de tête et donc pour séparer la substance dissoute du produit d'extraction liquide formé de l'anhydride carbonique. Ce facteur fait apparaître, de son côté, une caractéristique majeure du procédé de l'invention qui est celle de 45 la faible consommation d'énergie.

Dans l'exemple utilisé pour la suite de la description des fig. 4 et 5, le distillat de tête en phase vapeur qui est envoyé au compresseur est sensiblement dans le même état, c'est-à-dire à une pression de 50·10⁵ Pa et à une température de 15°C, que celui qui règne dans la 50 tour de distillation 27; par contre, la vapeur comprimée et chauffée qui est introduite dans l'échangeur de chaleur 32 est à une pression de 65·10⁵ Pa (qui est pratiquement la pression d'extraction) et à une température de 36°C. Comme on le décrira par la suite, une partie de la vapeur comprimée et chauffée provenant du compresseur 30 55 peut être utilisée pour chauffer la fraction détendue de queue de distillation provenant du rebouilleur 28.

Le transfert de chaleur au liquide se trouvant dans le rebouilleur 28 par échange de chaleur avec les vapeurs comprimées et chauffées a pour effet de faire bouillir une quantité supplémentaire d'anhy-60 dride carbonique. La très faible chaleur de vaporisation de ce dernier a pour conséquence que la chaleur apportée par la vapeur recomprimée suffit à faire bouillir l'anhydride carbonique, ce facteur ayant pour effet de réduire matériellement l'énergie consommée, par exemple par rapport à la chaleur nécessaire à la distillation d'un 65 mélange de liquide organique et d'eau.

Les queues de distillation chauffées sont déchargées du rebouilleur 28 par une canalisation 35 et un détendeur 36 dont elles sortent à une pression, par exemple, de 10·10⁵ Pa, c'est-à-dire à une pression 642 271

intermédiaire entre celle de la tour de distillation et la pression atmosphérique, et à une basse température, par exemple de -40° C. Les queues de distillation refroidies et détendues sont ramenées à une température, par exemple d'environ 10°C, qui est comprise entre celle à laquelle elles ont été déchargées du détendeur 36 dans la 5 canalisation 37 et la température ambiante. Ce chauffage est effectué à l'intérieur d'un échangeur de chaleur 38 utilisant la vapeur comprimée circulant dans la canalisation 31 sur laquelle une partie en est prélevée par une canalisation 39 et qui constitue une source de chaleur. Etant donné qu'il est souhaitable que deux courants d'anhydride carbonique condensé quittent, d'une part, l'échangeur de chaleur 28 par la canalisation 40 et, d'autre part, l'échangeur de chaleur 38 par la canalisation 41 à la température ou à une température proche de celle de l'extraction, par exemple de 28°C, il peut être nécessaire de monter un réfrigérant dans la canalisation 39 pour évacuer de la chaleur de l'anhydride carbonique avant de le recycler dans la colonne d'extraction.

Les queues de distillation qui sont à une pression et à une température intermédiaires sont transportées, avec la vapeur résiduelle qui a été vaporisée brusquement, par une canalisation 37 dans un séparateur 45 à la sortie duquel le produit, ayant subi une évaporation brusque et consistant en anhydride carbonique ne contenant que de très faibles quantités résiduelles d'eau et d'éthanol, est prélevé par une canalisation 46 et dirigé dans le réservoir à vapeur 20, dans lequel il est mélangé avec le raffinat ayant subi une vaporisation brusque. L'éthanol, qui constitué le produit liquide, est soutiré du séparateur 45 par une canalisation 47 et ramené à la pression atmosphérique dans un détendeur 48, puis transporté sous forme de liquide par une canalisation 49 dans une tour de séparation 50 de laquelle le résidu d'anhydride carbonique gazeux est déchargé par une canalisation 51, et le produit qui est de l'éthanol est soutiré par une canalisation 52.

Le mélange de vapeurs d'anhydride carbonique dans le réservoir 20 doit être remis en condition lui permettant d'être utilisé comme solvant — dans l'exemple particulier, il doit être porté, par compres- 35 qui entre dans l'échangeur de chaleur 32 soit supérieure au point sion, de 10·10⁵ à 65·10⁵ Pa et envoyé dans la colonne d'extraction 12 à une température de 28°C. La vapeur est donc prélevée par une canalisation 55 qui l'envoie dans un compresseur 56 qui est de préférence à deux étages avec refroidissement intermédiaire et qui peut être entraîné par la turbine. La chaleur de compression est ensuite évacuée de l'anhydride carbonique comprimé dans deux postréfrigérants 57 et 58 avant d'être transportée par une canalisation 59 dans la canalisation 40 de retour du produit de condensation qui devient la canalisation 13 d'alimentation en fluide d'extraction. Le complément nécessaire d'anhydride carbonique mis en condition de solvant 45 est introduit dans la canalisation d'alimentation 13 par une pompe 60.

Il apparaît clairement qu'il est possible de mettre en œuvre le procédé à l'aide d'une large plage de paramètres opératoires sous réserve que certaines conditions soient satisfaites. Le fluide utilisé pour l'extraction du liquide organique doit être à une pression et à une température qui en font un solvant pour le liquide organique devant être extrait. En procédant au choix d'un fluide convenant comme solvant, il est préférable que le coefficient de partage du liquide organique entre le fluide d'extraction et l'eau soit au moins égal à 0,1 pour les conditions utilisées. Le choix des conditions utilisées pour mettre le fluide d'extraction soit à l'état liquide subcritique, soit à l'état de fluide surcritique est fonction des propriétés physiques du gaz, de la solubilité de la substance organique liquide dissoute devant être extraite à ces états et de la solubilité du fluide d'ex- 60 traction, par exemple de l'anhydride carbonique, dans le solvant, par exemple de l'eau, qui est évacué. Donc, le produit d'extraction qui est retiré de la colonne d'extraction 12 peut être un liquide ou un fluide à l'état surcritique ou un mélange de ceux-ci. Il est préférable en général d'adopter les pressions et les températures qui s'approchent des limites inférieures des plages de travail possibles en raison des économies qui en résultent, d'une part, dans les frais d'investissement initiaux et, d'autre part, dans les frais d'exploitation.

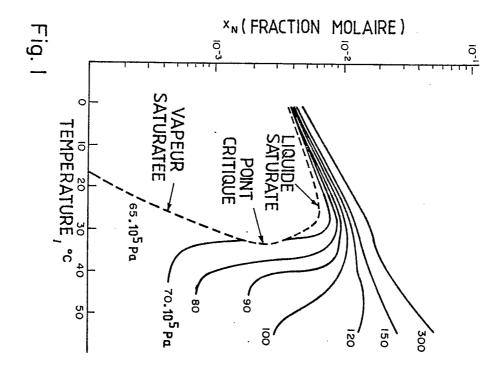
Etant donné qu'il est nécessaire de maintenir un système à deux phases dans la tour de distillation 27, la pression du produit d'extraction doit être abaissée au-dessous de la pression critique du mélange de gaz d'extraction et de liquide organique avant son introduction dans cette tour. Il est toutefois souhaitable de maintenir la différence entre la pression régnant dans la colonne d'extraction 12 et celle qui règne dans la tour de distillation 27 à une valeur relativement faible afin de minimiser la quantité d'énergie exigée par le système. Cette énergie est essentiellement sous forme du travail de 10 compression nécessaire à remettre le gaz d'extraction à la pression utilisée dans la colonne d'extraction.

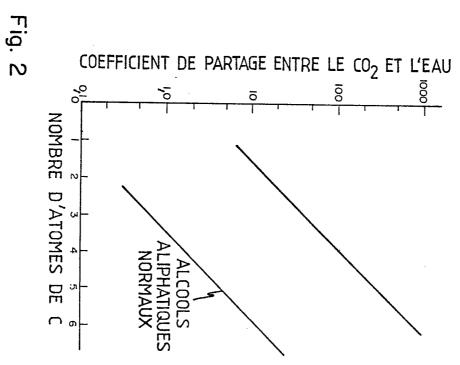
La température de la charge de la tour de distillation à son point d'introduction dans cette dernière est bien entendu déterminée par la chute de pression subie par le produit d'extraction dans le détendeur 15 26, tandis que la température des queues de distillation doit être maintenue à celle du point d'ébullition du liquide. Bien que la tour de distillation puisse fonctionner dans une certaine plage de températures allant de celle qui est juste inférieure à la température critique de la charge de la tour à celle qui est juste supérieure au point de congélation des queues de distillation, il est préférable de la faire fonctionner à une température aussi proche que possible de celle de l'ambiance dans la mesure dans laquelle les autres paramètres opératoires mentionnés le permettent.

Le point d'ébullition des queues de distillation permet de son 25 côté de déterminer une température ou une plage de températures optimales de la vapeur comprimée circulant dans l'échangeur de chaleur 32 situé dans le rebouilleur 28, cette température permettant de son côté de déterminer le taux optimal de compression du distillat de tête dans le compresseur 30. Il appartient aux spécialistes de la 30 technique d'établir un équilibre entre ce taux de compression ainsi que l'augmentation concomitante de température et la conception ainsi que la complexité de l'échangeur de chaleur monté dans le rebouilleur.

Il faut, bien entendu, que la température de la vapeur comprimée d'ébullition des queues de distillation de manière à produire la différence de température nécessaire à provoquer la force d'entraînement pour l'échange de chaleur. Il est préférable que cette différence de température soit suffisante pour permettre d'utiliser des échangeurs 40 de chaleur efficaces mais relativement peu compliqués. Pratiquement, la totalité de l'échange de chaleur doit de préférence avoir lieu lors de la condensation de la vapeur dans le rebouilleur pour réaliser le système thermiquement le plus efficace.

Finalement, les pressions intermédiaires adoptées pour les séparateurs 16 et 45 doivent être celles qui établissent un équilibre optimal entre le maximum possible de la quantité de fluide d'extraction récupérée et le minimum possible exigible de travail de compression devant être utilisé.


Dans les procédés actuels de distillation de mélanges formant des 50 azéotropes, le produit dissous résultant peut exiger une distillation azéotropique supplémentaire dans les cas dans lesquels le produit est plus pauvre en substance dissoute que la composition azéotropique. Toutefois, dans le procédé de l'invention, le fluide utilisé en solvant et les conditions dans lesquelles se déroulent les processus peuvent 55 être adoptés de manière que le produit dissous obtenu soit plus riche en substance dissoute que la composition azéotropique correspondante, ce qui permet d'éliminer la phase de distillation azéotropique qui est la plus difficile à réaliser et qui consomme le plus d'énergie, et de la remplacer par une distillation classique. Donc, dans certains cas dans lesquels une quantité suffisante de solvant demeure dans le produit organique liquide dissous, il peut être souhaitable de soumettre le produit sous forme liquide qui est retiré par la canalisation 52 à une phase finale de distillation dans un appareil correspondant classique 53. Cette distillation finale facultative exige, bien entendu, 65 beaucoup moins d'énergie que celle qui serait nécessaire pour effectuer la séparation de la substance liquide organique dissoute et du solvant uniquement par distillation classique suivie d'une distillation azéotropique quelconque qui serait nécessaire.


Il est aussi possible de soumettre le produit liquide des queues de distillation déchargé du rebouilleur 28 à une seconde extraction pratiquement à l'aide du même procédé et du même appareil que ceux qui ont été décrits. Ainsi, comme indiqué en lignes brisées sur les fig. 4 et 5, les queues de distillation sous pression qui sont déchargées par la canalisation 35 peuvent être dirigées par une canalisation 54' et une pompe 54 dans une seconde colonne d'extraction 12a dans laquelle le fluide d'extraction est introduit par une canalisation 13a, et l'anhydride carbonique formant le produit d'extraction est soutiré par une canalisation 25a. Les queues de distillation soutirées 10 du rebouilleur 28 étant à une pression et une température légèrement inférieures à celles auxquelles la colonne d'extraction 12a fonctionne, une certaine compression de ces queues de distillation est nécessaire. Il peut aussi être nécessaire de régler la température de la charge résultante comprimée de la colonne d'extraction par un échangeur de chaleur convenable (non représenté). Finalement, dans la mesure où les queues de distillation formant la charge de la colonne d'extraction 12a contiennent une certaine quantité d'anhydride carbonique, la quantité de fluide d'extraction introduite dans cette colonne d'extraction doit être réglée de manière à en tenir compte.

Les différentes pièces des appareillages soit sont disponibles actuellement, soit peuvent facilement être conçues et réalisées à l'aide des informations disponibles concernant les matériels et les performances des pièces disponibles mentionnées. Il peut être souhaitable, pour certaines pièces, d'utiliser des modes de réalisation spéciaux ou des variantes des appareillages connus pour obtenir un équilibre optimal de conception de l'ensemble du système. Ainsi, par exemple, il peut être souhaitable d'utiliser une colonne d'extraction à pulsations pour garantir que les petites gouttelettes d'eau qui représentent la phase discontinue soient réellement en suspension dans la totalité du liquide d'extraction pendant la mise en contact et le processus d'extraction.

Pratiquement la totalité des pièces des appareillages — cuves, canalisations, détendeurs, échangeurs de chaleur, séparateurs, tours de distillation et rebouilleurs — devant fonctionner à des pressions supérieures à celle de l'ambiance, il est préférable de choisir un fluide d'extraction qui soit un gaz ayant une pression critique relativement basse, c'est-à-dire inférieure à environ 100·10⁵ Pa. De même, il est préférable d'utiliser des gaz dont les températures critiques sont relativement basses et de préférence ne sont pas très éloignées des températures ambiantes.

La mise en œuvre du procédé et de l'appareillage décrits permet de réduire la consommation d'énergie nécessaire à la séparation de liquides organiques de leurs mélanges avec de l'eau. Nombreux étant, parmi ces liquides organiques, ceux qui sont produits à des volumes très grands, l'obtention d'une réduction même partielle de l'énergie nécessaire actuellement est hautement souhaitable.

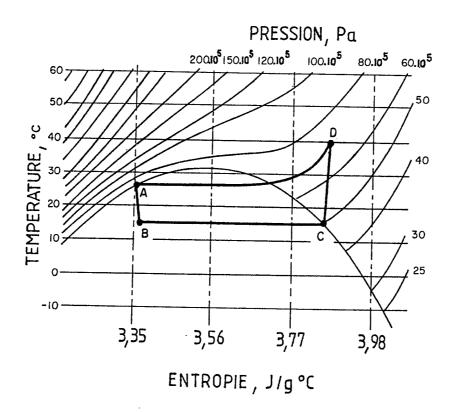
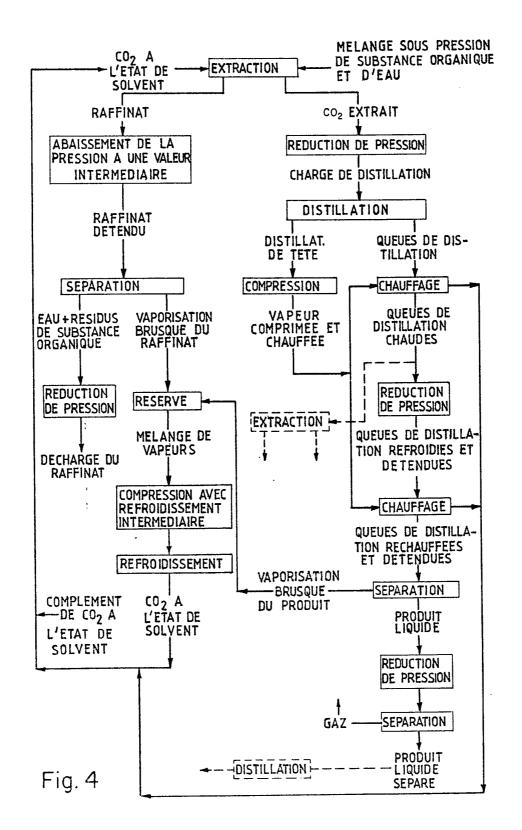
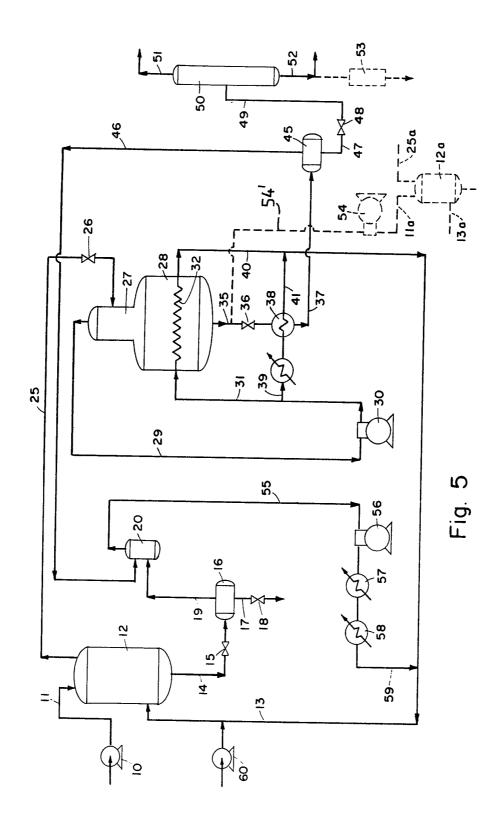




Fig. 3

