
(12) STANDARD PATENT (11) Application No. AU 2015288122 B2
(19) AUSTRALIAN PATENT OFFICE

(54) Title
Stream based event processing utilizing virtual streams and processing agents

(51) International Patent Classification(s)
G06F 9/54 (2006.01)

(21) Application No: 2015288122 (22) Date of Filing: 2015.07.06

(87) WIPO No: W016/007399

(30) Priority Data

(31) Number (32) Date (33) Country
14/326,239 2014.07.08 US

(43) Publication Date: 2016.01.14
(44) Accepted Journal Date: 2020.07.23

(71) Applicant(s)
Microsoft Technology Licensing, LLC

(72) Inventor(s)
Somuah, Henry Hooper;Bykov, Sergey;Melamed, Tamir;Rodi, Robert Louis;Cheung,
Felix;Malyuk, Michael William;Hesky, Andrew Alexander;Kliot, Gabriel;Thelin,
Jorgen;Geller, Alan Stuart

(74) Agent / Attorney
Davies Collison Cave Pty Ltd, Level 15 1 Nicholson Street, MELBOURNE, VIC, 3000, AU

(56) Related Art
US 6829770 B1
US 2009/0228563 Al

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization

International Bureau
(10) International Publication Number

(43) International Publication Date W O 2016/007399 Al
14 January 2016 (14.01.2016) W IPO IPOT

(51) International Patent Classification: (8/1172), One Microsoft Way, Redmond, Washington
G06F 9/54 (2006.01) 98052-6399 (US). MALYUK, Michael William; c/o Mi

crosoft Technology Licensing, LLC, LCA - International
(21) InternationalApplicationNumber: Patents (8/1172), One Microsoft Way, Redmond, Washing

PCT/US2015/039170 ton 98052-6399 (US). HESKY, Andrew Alexander; c/o

(22) International Filing Date: Microsoft Technology Licensing, LLC, LCA - Internation

6 July 2015 (06.07.2015) al Patents (8/1172), One Microsoft Way, Redmond, Wash
ington 98052-6399 (US). KLIOT, Gabriel; c/o Microsoft

(25) Filing Language: English Technology Licensing, LLC, LCA - International Patents

(26) Publication Language: English (8/1172), One Microsoft Way, Redmond, Washington
98052-6399 (US). THELIN, Jorgen; c/o Microsoft Tech

(30) Priority Data: nology Licensing, LLC, LCA - International Patents
14/326,239 8 July 2014 (08.07.2014) US (8/1172), One Microsoft Way, Redmond, Washington

(71) Applicant: MICROSOFT TECHNOLOGY LICENS- 98052-6399 (US). GELLER, Alan Stuart; c/o Microsoft

ING, LLC [US/US]; One Microsoft Way, Redmond, Technology Licensing, LLC, LCA - International Patents

Washington 98052-6399 (US). (8/1172), One Microsoft Way, Redmond, Washington
98052-6399 (US).

(72) Inventors: SOMUAH, Henry Hooper; c/o Microsoft
Technology Licensing, LLC, LCA - International Patents (81)DesignatedStates(unlessotherwiseindicated,forevery
(8/1172), One Microsoft Way, Redmond, Washington kind of national protection available): AE, AG, AL, AM,

98052-6399 (US). BYKOV, Sergey; c/o Microsoft Tech- AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,

nology Licensing, LLC, LCA - International Patents BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,

(8/1172), One Microsoft Way, Redmond, Washington DO, DZ, EC, EE, EG, ES, Fl, GB, GD, GE, GH, GM, GT,

98052-6399 (US). MELAMED, Tamir; c/o Microsoft HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,

Technology Licensing, LLC, LCA - International Patents KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,

(8/1172), One Microsoft Way, Redmond, Washington MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,

9805-639 (S).RODI RoertLous; co Mcrooft PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, 98052-6399 (US). RODI, Robert Louis; c/o Microsoft SD EG KSL MTVSY HTJMTN
Technology Licensing, LLC, LCA - International Patents SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,

(8/1172), One Microsoft Way, Redmond, Washington TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

98052-6399 (US). CHEUNG, Felix; c/o Microsoft Tech- (84) Designated States (unless otherwise indicated, for every
nology Licensing, LLC, LCA - International Patents kind of regional protection available): ARIPO (BW, GH,

[Continued on nextpage]

(54) Title: STREAM BASED EVENT PROCESSING UTILIZING VIRTUAL STREAMS AND PROCESSING AGENTS

EVENT PUBLICATION E NT 12 EVENT SUBSECTION
VIRTUAL STREAM - VI- - A STREAM

204A ENT206A

- 2048.................VIRTUAL :::::~- 2011
STRAM jB____Z XZ STREAM

PROOESSNG MODULE ---------- 206C

1 , LAYER

204C 202 06D

PA TO EVENTE

0/2A
7

\ SJUBCRPTION / 2

FIG. 2

(57) Abstract: Technologies are described herein for event delivery and stream processing utilizing virtual processing agents. Upon
receiving an event publication in a queue, a runtime system identifies one or more virtual processing agents that might be interested
in, but have not explicitly subscribed to, the published event. Event information of the published event is then delivered to the iden
tified virtual processing agents. Prior to the actual delivery, the runtime system further determines if the virtual processing agents

f4 have been activated and activates those processing agents that have not been activated. Based on the received event information,
some of the virtual processing agents might decide to explicitly submit subscriptions to receive more events from the queue. The ex
plicit subscriptions will trigger the runtime system to deliver the subscribed events to the processing agents, which might include
past events that have been published in the queue before the explicit subscription is received.

W O 2 0 16 /0 0 7 3 9 9 A 1 l l lll|||1ll||1 llll l||||11 ||||||||11 |||1 ||||1111 |||||||||||||||||||||||||||1|

GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, Declarations under Rule 4.17:
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, - as to applicant's entitlement to apply for and be granted
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, a patent (Rule 4.17(ii))
DK, EE, ES, Fl, FR, GB, GR, HR, HU, IE, IS, IT, LT,
LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, - as to the applicant's entitlement to claim the priority of
SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, the earlier application (Rule 4.17(iii))
GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG). Published:

- with international search report (Art. 21(3))

BACKGROUND

[0001] In a stream processing system, a stream processing unit may communicate with

other processing units to receive events for processing. This may be done through either a

direct communication from one processing unit with another or through a publication

5 subscription model where a processing unit subscribes to certain events and receives the

events when they are published.

[0002] As the scale of a stream processing system increases, e.g., where millions of

processing units are involved, it may be impractical to utilize direct communication

techniques between processing units. While the publication-subscription model might

10 seem feasible, the traditional publication-subscription model requires a processing unit to

explicitly submit event subscriptions before receiving any information related to the

events. This may be a problem because, in some cases, it may be impossible for a

processing unit to predict what events to subscribe to before certain events occur. For

example, a processing unit configured to process events occurring on a map of a game

15 application does not know which game to subscribe to until a game has started on that

map. In such situations, in order for the processing unit to receive the events it is interested

in, the processing unit has to subscribe to all possible events, which again becomes

impractical and inefficient in a large-scale stream processing system.

[0003] It is desired to address or ameliorate one or more disadvantages or limitations

20 associated with the prior art, or to at least provide a useful alternative.

SUMMARY

[0003a] In at least one embodiment, the present invention provides a computer

implemented method for delivering events to a processing agent executing on one or more

servers, the method comprising:

25 receiving a publication of an event in a queue of events, wherein the event

includes information that describes a player interaction with a game application;

mapping the event to a processing agent of a plurality of different processing

agents, wherein the processing agent has not explicitly subscribed to receive the event;

determining that the processing agent is not activated;

30 in response to determining that the processing agent is not activated, activating

the processing agent such that the processing agent is available to provide functionality to

the game application;

delivering the event to the processing agent;

1

receiving a subscription from the processing agent; receiving one or more

additional publications of one or more additional events in the queue of events, the one or

more additional events occurring after the subscription is received from the processing

agent;

5 delivering, based at least in part on the subscription, the one or more additional

events to the processing agent;

determining that the subscription requests that one or more past events be

delivered, the one or more past events having been published in the queue of events prior

to the receiving the subscription from the processing agent; and

10 in response to determining that the subscription requests that the one or more past

events be delivered, delivering the one or more past events to the processing agent.

[0003b] In at least another embodiment, the present invention provides a system,

comprising one or more computing devices having instructions that, when executed by one

or more processors, configure the one or more computing devices to:

15 manage a queue for receiving and persisting publications of events, wherein an

individual event includes information that describes a player interaction with a game

application;

receive a publication of an event in a virtual stream;

forward the publication of the event to the queue;

20 map the event to a processing agent of a plurality of different processing agents,

wherein the processing agent has not explicitly subscribed to receive the event and the

processing agent is addressable for delivering the event independent of whether the

processing agent is activated or not activated;

determine that the processing agent is not activated;

25 in response to determining that the processing agent is not activated, activate the

processing agent such that the processing agent is available to provide functionality to the

game application;

deliver the event to the processing agent;

receive an explicit subscription to the virtual stream from the processing agent

30 after the event is delivered to the processing agent;

receive one or more additional publications of one or more additional events in

the virtual stream after the explicit subscription is received;

2

forward the one or more additional publications of the one or more additional

events to the queue; deliver, based at least in part on the explicit subscription, the one or

more additional events to the processing agent;

determine that past events have been published in the queue before the explicit

5 subscription is received;

retrieve the past events that have been published in the queue; and

deliver the past events to the processing agent.

[0003c] In at least another embodiment, the present invention provides a system

comprising:

10 one or more processors; and

one or more computer-readable storage media having computer-executable

instructions stored thereon which, when executed by the one or more processors, cause the

system to:

receive a publication of an event in a queue of events, wherein the event

15 includes information that describes a player interaction with a game application;

map the event to a processing agent of a plurality of different processing

agents, wherein the processing agent has not explicitly subscribed to receive the event;

determine that the processing agent is not activated;

in response to determining that the processing agent is not activated, activate

20 the processing agent such that the processing agent is available to provide functionality to

the game application;

deliver the event to the processing agent;

receive a subscription from the processing agent;

receive one or more additional publications of one or more additional events in

25 the queue of events, the one or more additional events occurring after the subscription is

received from the processing agent;

deliver, based at least in part on the subscription, the one or more additional

events to the processing agent;

determine that the subscription requests that one or more past events be

30 delivered, the one or more past events having been published in the queue of events prior

to the receiving the subscription from the processing agent; and

in response to determining that the subscription requests that the one or more

past events be delivered, deliver the one or more past events to the processing agent.

[0004] It should be further appreciated that the above-described subject matter may

3

also be implemented as a computer-controlled apparatus, a computer process, a computing

system, or as an article of manufacture such as a computer-readable storage medium.

[0005] This Summary is provided to introduce a selection of concepts in a simplified

form that are further described below in the Detailed Description. This Summary is not

5 intended to identify key features or essential features of the claimed subject matter, nor is

it intended that this Summary be used to limit the scope of the claimed subject matter.

Furthermore, the claimed subject matter is not limited to implementations that solve any or

all disadvantages noted in any part of this disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

10 [0006] FIGURE 1 is a computer system diagram providing an overview

description of one mechanism disclosed herein for stream processing utilizing virtual

processing agents;

[00071 FIGURE 2 is a block diagram showing aspects of a queue and virtual

streams;

15 [0008] FIGURE 3 is a flow diagram showing further aspects of one illustrative

process for delivering events to virtual processing agents;

[0009] FIGURE 4 is a flow diagram showing aspects of one illustrative process for

event subscription and processing by a virtual processing agent;

[0010] FIGURES 5A-5D illustrate operations by example virtual processing

20 agents in response to events published in a queue at different points in time; and

[0011] FIGURE 6 is a computer architecture diagram showing an illustrative

computer hardware architecture for a computing system capable of implementing the

technologies presented herein.

DETAILED DESCRIPTION

25 [0012] Technologies are described herein for event delivery and stream processing

utilizing virtual processing agents. One or more virtual processing agents might be created

and configured to receive and process stream events. A mechanism, such as a queue,

might be utilized and/or configured to receive event publications from various entities in a

stream processing system. The published events might also be persisted or stored for later

30 retrieval and delivery when needed. Upon receiving an event publication, a runtime

system might identify one or more virtual processing agents that might be interested in

receiving the published events, but have not explicitly subscribed to the published event.

Event information of the published event may then be delivered to the identified virtual

processing agents. Prior to the actual delivery of the event or event information, the

3a

runtime system may further determine if the virtual processing agents have been activated,

and the runtime system may activate the processing agents if the processing agents have

not been activated. The event or event information contained therein may then be

delivered to the activated processing agents.

5 [0013] Based on the received event or event information, the virtual processing agents

might decide to explicitly submit subscriptions to receive more events from the queue. The

explicit subscriptions might then trigger the subscribed events to be delivered to the

processing agents, which might include past events that have been published in the queue

before the explicit subscription is submitted. By utilizing the techniques described herein,

10 a virtual processing agent may be able to subscribe, receive and process events that the

processing agent might not otherwise know about before the event is published in the

queue. By utilizing virtual processing agents to subscribe, receive and process events, the

scalability, reliability and flexibility of computing resources may be improved.

[0014] Technologies are described herein for event delivery and stream processing

15 utilizing virtual processing agents. In technologies disclosed herein, one or more virtual

processing agents, which may be referred to herein as "processing agents" or "PAs," may

be employed as processing units for stream processing. These virtual processing agents

might execute on one or more servers, and may be addressable for operations and

interactions independent of whether the processing agents are activated or not activated.

20 Each of the virtual processing agents may be configured to publish, receive, and/or process

various events. Events may be published in a queue, and may further be persisted or stored

in the queue for later retrieval.

[0015] Once a publication of an event is received in the queue, one or more processing

agents may be identified to receive the published events. The identified processing agents

25 may include processing agents that have not explicitly subscribed to receive the published

event, referred to herein as "implicit subscriber processing agents" or "implicit

subscribers." The identification of an implicit subscriber may be performed based on the

settings or configurations of the virtual processing agent, including, but not limited to, the

actions to be performed by the virtual processing agent, the input and output of the virtual

30 processing agent, the status of the virtual processing agent, and potentially other

configurations of the virtual processing agent. The configurations of the virtual processing

agent may be derived from a declarative definition of the processing agent, or obtained

programmatically.

[0016] The published event or the information contained within or associated with the

3b

published event, referred to herein as "event information," may then be delivered to the

identified implicit subscriber processing agents. Prior to the actual delivery, a runtime

system that supports and manages the virtual processing agents may determine if the

implicit subscriber processing agents have been activated, and may activate the processing

5 agents if the processing agents have not been activated. The event or the event information

may then be delivered to the activated processing agents where the event or the event

information may be further processed. Similarly, when the event publication is received at

3c

WO 2016/007399 PCT/US2015/039170

the queue, one or more processing agents that have explicitly subscribed to receive the

published event might also be identified and activated if needed. The published event may

then be delivered to the explicit subscriber processing agents for processing.

[0017] Based on the received event or event information, an implicit subscriber

5 processing agent might decide that further events are needed for processing and may in

turn submit explicit subscriptions to receive those events when they are published in the

queue. Depending on the configurations of the processing agent, events specified in the

explicit subscription may include past events that have already occurred and published in

the queue. In such a scenario, since the events published in the queue might have been

10 persisted or stored, the queue may retrieve and deliver those subscribed past events to the

processing agent. The queue might further deliver subscribed events to the processing

agent as more events are published in the queue.

[0018] According to further aspects, events in the queue may be mapped to or

abstracted into one or more virtual streams, and each of the virtual streams might include a

15 subset of events that are published in the queue. The event publication and event

subscription performed by the processing agent, and/or other entities, may be directed to

the virtual streams rather than the queue. Each of the virtual streams may be defined by the

events to be published therein and/or by the type of events that a processing agent is

interested in receiving. As such, the virtual streams might be dynamic, and the existence of

20 the virtual streams might depend on the events to be published and/or events to be

delivered. Additional details regarding these and other aspects of the technologies

presented herein will be provided below with regard to FIGURES 1-6.

[0019] While the subject matter described herein is presented in the general context of

program modules that execute in conjunction with the execution of an operating system

25 and application programs on a computer system, those skilled in the art will recognize that

other implementations may be performed in combination with other types of program

modules. Generally, program modules include routines, programs, components, data

structures, and other types of structures that perform particular tasks or implement

particular abstract data types. Moreover, those skilled in the art will appreciate that the

30 subject matter described herein may be practiced with other computer system

configurations, including hand-held devices, multiprocessor systems, microprocessor

based or programmable consumer electronics, minicomputers, mainframe computers, and

the like.

[0020] In the following detailed description, references are made to the accompanying

4

WO 2016/007399 PCT/US2015/039170

drawings that form a part hereof, and which are shown by way of illustration, specific

aspects or examples. Referring now to the drawings, in which like numerals represent like

elements throughout the several figures, aspects of a computing system and methodology

for subscribing, receiving and processing events will be described.

5 [0021] Turning now to FIGURE 1, details will be provided regarding a computer

system and several components included therein according to aspects presented herein. In

particular, FIGURE 1 shows aspects of a stream processing system 100 for event delivery

and stream processing utilizing virtual processing agents. As shown in FIGURE 1, the

stream processing system 100 might include a runtime system 108 that supports and

10 facilitates the communication among various entities in the stream processing system 100,

including, but not limited to, virtual processing agents 102A-102N (which may be referred

to herein individually as a virtual processing agent 102 or collectively as the virtual

processing agents 102), a queue system 104, a client computing device 116, and a server

computing device 118.

15 [0022] The runtime system 108 might include a group of distributed servers (not

shown in FIGURE 1) that may be configured to execute a runtime base layer 122 to

collectively provide and support "virtualized distributed components" (which may also be

referred to herein as "virtual components"). As used herein, "components" refers to

software components such as software objects or other kinds of individually addressable

20 isolated entities, such as distributed objects, agents, actors and the like. A virtualized

distributed component supported by the runtime system 108 has an existence that is

independent of the lifetime of any of its in-memory instantiations, and thus independent of

the lifetime of any particular server in the runtime system 108. If there is no in-memory

instance of a virtual component, a message sent to the component automatically causes a

25 new instance to be created on an available server by the runtime base layer 122, which

may be any available server in the runtime system 108. As such, a virtual component is

always addressable by an identity of the virtual component for interaction and/or operation

independent of whether the virtual component is activated in the system or not.

[0023] The runtime base layer 122 may also be configured to manage virtual

30 component activation and deactivation. The runtime base layer 122 may be further

configured to manage communications to virtual components transparent to a program that

uses the virtual component. To achieve this, the runtime base layer 122 may maintain

information that indicates one or more server locations for any activated instance of the

virtual component, send one or more communications to an activated virtual component

5

WO 2016/007399 PCT/US2015/039170

instance, or preserve communications to a virtual component that is in a deactivated state

until an instance of the virtual component is activated into an activation for receiving the

communications thereto. The runtime base layer 122 thus might give a developer a virtual

"component space" that allows invoking any possible virtual component in the system as

5 if it were activated, i.e., present in memory.

[0024] If a server on which a virtual component is activated crashes, the virtual

component may be recovered by reactivating another activation of the virtual component

on another server in the runtime system 108. As such, virtual components do not need to

be supervised and/or explicitly recreated by an application that is developed based on the

10 runtime base layer 122.

[0025] The virtualization of components is based upon a level of indirection that maps

from virtual components to physical instantiations/activations that are currently running.

This level of indirection may provide the runtime base layer 122 with the opportunity to

handle many problems that would otherwise need to be addressed by the application

15 developer, such as virtual component placement and load balancing, deactivation of

unused virtual components, and virtual component recovery after server failures. Thus, the

virtual components provided by the runtime base layer 122 may simplify the programming

model while allowing the runtime flexibility in balancing load and transparently

recovering from failures. More details on runtime base layer 122 can be found in co

20 pending U.S. Patent Application No. 14/228,129, filed on March 26, 2014, and entitled

"Virtualized Components in Computing Systems."

[0026] According to aspects of technologies presented herein, the virtual processing

agents 102 in the stream processing system 100 may be constructed as virtual components

provided and supported by the runtime base layer 122 of the runtime system 108. Based

25 on such a construction, the virtual processing agents 102 may be always addressable for

interaction and/or operation independent of whether the virtual processing agents 102 are

activated or not. The virtual processing agents 102 may be recovered after failure of a

server on which the virtual processing agent 102 was activated by reactivating the virtual

processing agent 102 on another server in the runtime system 108.

30 [0027] In some aspects, the virtual processing agents 102 may each be configured to

implement certain actions and may collectively provide functionality for a large-scale

software application. For example, in a computer game application, a virtual processing

agent 102 may be created for and configured to manage each game in the game

application. A virtual processing agent 102 may also be created for each map that hosts a

6

WO 2016/007399 PCT/US2015/039170

game in the game application. Separate virtual processing agents 102 may further be

created and configured to manage individual players who participate in various games of

the game application. Configurations of a virtual processing agent 102, including the

actions to be performed by the virtual processing agent 102, the input and output of the

5 virtual processing agent 102, and/or other configurations, may be specified through a

declarative definition of the virtual processing agent 102 or may be obtained

programmatically.

[0028] In order to provide a coherent system for stream processing, the various virtual

processing agents 102 in the stream processing system 100 might need to communicate

10 with each other. For example, a message may be communicated from one virtual

processing agent 102 to another to update the status of the virtual processing agents 102,

to activate the other virtual processing agent 102, and/or to trigger certain actions to be

performed by the other virtual processing agent 102. According to some aspects described

herein, the message from a virtual processing agent 102 intended to be communicated to

15 other virtual processing agents 102 and/or another entity in a system may be published as

an event 112 in a queue 106 implemented by the queue system 104.

[0029] The queue system 104 may include one or more servers implementing a

queue 106 for receiving and persisting event publications from various entities in the

stream processing system 100. It should be understood that the servers in the queue

20 system 104 and the runtime system 108 may include the same or different servers, and the

servers in the queue system 104 and the runtime system 108 may be web servers,

application servers, network appliances, dedicated computer hardware devices, personal

computers ("PC"), or any combination of these and/or other computing devices known in

the art. The servers may be connected through a network (not shown in FIGURE 1), that

25 may be a local-area network ("LAN"), a wide-area network ("WAN"), the Internet, or any

other networking topology known in the art that connects computing devices.

[0030] The event 112 to be published in the queue 106 might include various

information associated with an event that has occurred or been observed at the event

sending entity which might be a virtual processing agent 102, a client computing

30 device 116, a server computing device 118, and/or potentially other entities in the stream

processing system 100. The information contained in an event 112 may include, but is not

limited to, an identification of the entity where the event originated, the time of the event,

the location of the event, identifications of entities involved in the event, and/or other

information that might be used to describe the event. The event 112 may be published in

7

WO 2016/007399 PCT/US2015/039170

the queue 106 by sending an event publication 110 through the runtime system 108. The

event publication 110 may include all the information contained in the corresponding

event 112 with additional information such as an indication that the event is for

publication, data specifying where and when the event 112 should be published, and the

5 like. In further aspects, the queue system 104 may also persist or store the published

events 112 in the queue 106 or in other storage locations that are accessible to the queue

system 104 and/or to the runtime system 108.

[0031] In order to receive events for processing from other virtual processing

agents 102 and/or other event originating entities in the stream processing system 100, a

10 virtual processing agent 102 may send one or more event subscriptions 114 to subscribe to

receive events that are published in the queue 106. Such a virtual processing agent 102

may be referred to herein as an "explicit subscriber processing agent 102" or an "explicit

subscriber 102" of those events. By way of example, and not limitation, an event

subscription 114 may contain data that specifies the type or the content of the events that

15 the subscribing virtual processing agent 102 is interested in receiving. The event

subscription 114 may also specify a time period during which the subscribed events should

occur. The event subscription 114 might further specify one or more predicates or rules

that may be utilized to filter events to be delivered to the virtual processing agent 102. It

should be understood that various other data describing the events that a virtual processing

20 agent 102 is interested in receiving may also be included in the event subscription 114.

[0032] As will be discussed in more detail below, the runtime system 108 may also be

configured to execute a stream processing layer 124, which may be referred to herein as

the "stream processing layer 124," or the "runtime stream processing layer 124." The

runtime stream processing layer 124 may be configured to manage event communications

25 among the entities in the stream processing system 100, including, but not limited to,

managing event publications 110 in the queue 106, coordinating the delivery of events 112

to virtual processing agents 102 and/or other event subscribers, receiving and processing

event subscriptions 114, and potentially other operations.

[0033] The runtime stream processing layer 124 might receive the event

30 subscriptions 114 from one or more explicit subscriber processing agents 102, and send

subscribed events 112 to the corresponding explicit subscriber processing agents 102 when

the subscribed events 112 are published in the queue 106. According to further aspects, the

runtime stream processing layer 124 may further send a published event 112 or event

information contained in the event 112 to one or more virtual processing agents 102 that

8

WO 2016/007399 PCT/US2015/039170

have not explicitly subscribed to the events 112, but might be interested in receiving the

information contained in the published events 112, which are referred to herein as

"implicit subscriber processing agents 102" or "implicit subscriber 102" of the published

events 112.

5 [0034] An implicit subscriber processing agent 102 may be identified through

examining configurations or settings of the virtual processing agent 102, such as the

actions to be performed by the virtual processing agent 102, the input and output of the

virtual processing agent 102, the status of the virtual processing agent 102, and/or other

configurations of the virtual processing agent 102. For example, a virtual processing

10 agent 102 might be identified as an implicit subscriber processing agent 102 if the actions

to be performed by the virtual processing agent 102 involve an object or an entity that

initiated, is mentioned, or otherwise is associated with the published event 112. A virtual

processing agent 102 might also be identified as an implicit subscriber processing

agent 102 if data included in the published event 112 is consumed or processed by the

15 virtual processing agent 102. It should be understood that these examples are merely

illustrative, and should not be construed as limiting. Other ways of identifying the implicit

subscriber processing agent 102 may also be utilized.

[0035] Once the runtime stream processing layer 124 has identified the implicit

subscriber processing agents 102, the event 112 may be delivered to the implicit

20 subscriber processing agents 102 through the runtime base layer 122. As discussed above,

the virtual processing agents 102 in the stream processing system 100 may be

implemented as virtual components supported by the runtime base layer 122 of the

runtime system 108. From the perspective of the runtime stream processing layer 124, the

virtual processing agents 102 might be always addressable for the delivery of the

25 events 112 independent of whether the virtual processing agents 102 are activated in the

system or not. The runtime stream processing layer 124 thus may pass the event 112 to the

runtime base layer 122 for delivery.

[0036] Upon receiving the event 112, the runtime base layer 122 may determine

whether the implicit subscriber processing agents 102 have been activated or not, that is,

30 whether the implicit subscriber processing agents 102 have been loaded into the memory

and are ready for operation. If the implicit subscriber processing agents 102 have not been

activated, the runtime base layer 122 may activate the implicit subscriber processing

agents 102 and then deliver the event 112 to the activated implicit subscriber processing

agents 102. Similarly, when delivering events 112 to explicit subscriber processing

9

WO 2016/007399 PCT/US2015/039170

agents 102, the runtime base layer 122 might also determine if the explicit subscriber

processing agents 102 are activated, and activate the explicit subscriber processing

agents 102, if necessary, before the delivery of the events 112.

[0037] Depending on the implementation of the virtual processing agents 102 and the

5 status of the virtual processing agents 102 when activated, some of the activated implicit

subscriber processing agents 102 might not be configured to accept and process the

event 112 yet. For example, the implicit subscriber processing agent 102 might not have

an event handler constructed yet upon activation. In such a scenario, event information

including some or all of the data contained in the event 112 may be rearranged and

10 delivered to the implicit subscriber processing agent 102 in a format that is acceptable to

the implicit subscriber processing agent 102. In other scenarios, it may be sufficient to

send event information indicating the occurrence of the event 112 to the virtual processing

agent 102 without sending detailed data contained in the event 112.

[0038] Based on the received event 112 or the event information, some implicit

15 subscriber processing agents 102 might decide to submit one or more event

subscriptions 114 to the runtime stream processing layer 124 to receive more events

published in the queue 106 for processing. As briefly mentioned above, events contained

in the explicit event subscriptions 114 submitted by the implicit subscriber processing

agent 102 might include past events that have been published in the queue 106 before the

20 event subscriptions 114 are received and processed. The runtime stream processing

layer 124 may retrieve the past events from the queue or other storage where the

corresponding events are persisted, and deliver the retrieved events to the implicit

subscriber processing agent 102. It should be noted that when the implicit subscriber

processing agent 102 submits the event subscription 114, the implicit subscriber

25 processing agent 102 might turn into an explicit subscriber processing agent 102 for the

subscribed events and may be handled in a manner similar to that described above for

handling the explicit subscriber processing agent 102.

[0039] It should be further understood that while the above has primarily described

that the virtual processing agent 102 may send event publications 110, submit event

30 subscriptions 114, and/or receive events 112, various other entities in the stream

processing system 100 may also perform these operations. For example, a user of a

computer game application might be interested in receiving information regarding a game,

such as the leader board information of the game. The user may send an event

subscription 114 to the runtime system 108 to obtain such information through a client

10

WO 2016/007399 PCT/US2015/039170

computing device 116, which might be a personal computer ("PC"), a laptop, a notebook,

a personal digital assistant ("PDA"), a game console, a set-top box, an e-reader, a

consumer electronics device, a smartphone, a tablet computing device, a server computer,

or any other computing device capable of communicating with the runtime system 108.

5 [0040] Similarly, a server computing device 118, which may be server computers, web

servers, application servers, network appliances, dedicated computer hardware devices,

PCs, or any combination of these and/or other computing devices known in the art, and

have a game executed thereon, might send an event publication 110 to publish a game start

event 112 in the queue 106. The server computing device 118 might also send one or more

10 event subscriptions 114 in order to receive events 112 that the server computing

device 118 is interested in processing. Other entities in the stream processing system 100

may also be configured to publish, receive, and/or subscribe to the events 112 in a way

similar to that described above.

[0041] It should also be appreciated that while FIGURE 1 primarily discloses the use

15 of the queue 106 for receiving and persisting event publications 110 from various entities

in the stream processing system 100, various other mechanisms may also be utilized in a

similar fashion. In fact, virtually any data structure that can store and hold data for later

processing might be utilized in a similar way to that described above regarding the

queue 106. It is intended that this application include all such data structures for holding

20 and storing the event publications 110.

[0042] Referring now to FIGURE 2, a block diagram showing further aspects of the

queue 106 and the runtime stream processing layer 124 will be described. As briefly

discussed above, the runtime stream processing layer 124 might provide and support

virtual streams for processing event publications 110 and event subscriptions 114. By

25 utilizing virtual streams, event publications 110 and event subscriptions 114 submitted by

virtual processing agents 102, and/or other entities, may be directed to the virtual streams

rather than the queue 106. As a result, the virtual processing agents 102 might not need to

know the existence of the queue 106. FIGURE 2 illustrates various virtual

streams abstracted by the runtime stream processing layer 124 and the interactions among

30 the virtual streams, the queue 106 and the virtual processing agents 102.

[0043] As shown in FIGURE 2, the runtime stream processing layer 124 may include

a virtual stream module 202 for providing and supporting functionality associated with

virtual streams and for maintaining a mapping of the events among the queue 106 and the

virtual streams. The virtual streams provided by the virtual stream module 202 might

11

WO 2016/007399 PCT/US2015/039170

include event publication virtual streams 204A-204C (which may be referred to herein

individually as an event publication virtual stream 204 or collectively as event publication

virtual streams 204) and event subscription virtual streams 206A-206D (which may be

referred to herein individually as an event subscription virtual stream 206 or collectively

5 as event subscription virtual streams 206).

[0044] Each of the event publication virtual streams 204 may be defined by the events

to be published therein, and each of the event subscription virtual streams 206 may be

defined by the events that a subscribing entity is interested in receiving. For example, a

virtual processing agent 102A might send an event publication 110 to the runtime stream

10 processing layer 124 to publish an event 112. The event publication 110 might be sent to

the runtime stream processing layer 124 through an event publication virtual stream 204C.

Prior to the event publication 110 being received at the runtime stream processing

layer 124, the event publication virtual stream 204C might not exist and the arrival of the

event publication 110 may cause the event publication virtual stream 204C to be created.

15 In other words, an event publication 110 or the event contained therein may define and

cause the event publication virtual stream 204 where the event publication 110 is sent to

come into existence. Likewise, other virtual processing agents 102 may also submit event

publications 110 to their corresponding event publication virtual streams 204 to publish

events. After receiving the event publications 110 through the event publication virtual

20 streams 204, the virtual stream module 202 may send the events specified in the event

publications 110 to the queue 106 for publication.

[0045] Similarly, when a virtual processing agent 102P submits an event

subscription 114 indicating the events that the virtual processing agent 102P is interested

in receiving, such an event subscription 114 may define an event subscription virtual

25 stream 206D corresponding to the events specified by the event subscription 114. As a

result, by submitting the event subscription 114, the virtual processing agent 102P is

equivalently subscribing to the event subscription virtual stream 206D defined by the

event subscription 114. It should be understood that a virtual processing agent 102 may

subscribe to multiple event subscription virtual streams 206 by submitting one or multiple

30 event subscriptions 114 to the runtime stream processing layer 124. Once the runtime

stream processing layer 124 has received the event subscription 114, the event

subscription virtual stream 206D may be created and come to existence. Based on the

event subscription 114, the virtual stream module 202 might retrieve events 112 published

12

WO 2016/007399 PCT/US2015/039170

in the queue 106, and push the events 112 into the event subscription virtual stream 206D,

which may then be delivered to the virtual processing agent 102P.

[0046] For example, a virtual processing agent 102A might be configured to process a

game, and may send an event publication 110 to the runtime stream processing layer 124

5 to publish an event 112 that occurred in the game. The submitted event publication 110

may cause a game event stream 204C to be created to receive the event 112 for publishing.

The event 112 received through the game event stream 204C may be further sent to the

queue 106 for publication and storing. In the meantime, the runtime stream processing

layer 124 may have also received an event subscription 114 from the virtual processing

10 agent 102P to subscribe to receive all the kill events in games. Such an event

subscription 114 might have caused a kill event stream 206D be created.

[0047] Upon receiving the event publication 110 in the game event stream 204C, the

virtual stream module 202 might detect that kill events, if there are any, published through

the game event stream 204C should be forwarded to the kill event stream 206D for

15 delivery to the virtual processing agent 102P. The detection may be performed by, for

example, utilizing the mapping of events in the queue 106 and in the virtual streams

maintained by the virtual stream module 202 as discussed above. Subsequently, for each

kill event 112 published through the game event stream 204C, the virtual stream

module 202 may retrieve the kill event 112 from the queue 106 and push it to the kill

20 event stream 206D for delivery to virtual processing agent 102P. It should be appreciated

that the above example is merely illustrative, and various other events 112, event

publications 110, event subscriptions 114 and/or other data may be communicated among

the virtual processing agents 102 and the queue 106 through the virtual streams 204 and

206, and/or the runtime stream processing layer 124.

25 [0048] According to further aspects, the event subscription 114 submitted by a virtual

processing agent 102 may further specify one or more predicates that may be utilized to

further define the corresponding event subscription virtual stream 206. The predicates may

be processed at the proper time by the runtime stream processing layer 124 to refine the

event subscription virtual stream 206, such as to create one or more filters that can be

30 utilized to filter the events pushed to the event subscription virtual stream 206. Utilizing

the predicates, the events sent to the virtual processing agent 102 may be further refined

and thus eliminate the delivery of unneeded events to the virtual processing agent 102.

[0049] As can be seen from the above, the virtual streams 204 and 206 are highly

dynamic and flexible, and may be created whenever needed, thereby significantly

13

WO 2016/007399 PCT/US2015/039170

increasing the scalability of the stream processing system 100. According to further

aspects, the virtual streams 204 and 206 may logically exist all the time, but the system

resources are allocated to them only when there are events in the virtual streams 204 and

206 to process. The virtual streams 204 and 206 may be deactivated by reclaiming their

5 resources when no events are received in the virtual streams 204 and 206 over a certain

period of time. This period of time may be pre-determined or dynamically adjusted

according to the status of the system, such as the usage of the system resources. Such an

implementation may be advantageous in scenarios when virtual streams are built with a

fine granularity. For example, virtual streams in an application system may be constructed

10 on a per-user basis, a per-device basis, and/or a per-session basis. In a large application

system, the number of users, devices and/or session, and thus the number of virtual

streams, may be at the scale of hundreds of millions or even billions. Events associated

with those virtual streams, however, may only occur infrequently and/or in bursts, and at

one moment, only a small portion of the virtual streams may need to be active. In such a

15 system, by allocating resources to virtual streams only when there are events in the virtual

streams 204 and 206 to process may significantly increase the efficiency and the

scalability of the system.

[0050] Furthermore, the virtual stream module 202 may be further configured to

aggregate the communications to and from the virtual processing agents 102 before

20 interacting with the queue 106. For example, the virtual stream module 202 might receive

multiple event publications 110 from multiple virtual processing agents 102. These

multiple event publications 110 may be aggregated through, for example, multiplexing,

and communicated to the queue 106 to publish the multiple events 112 through a single

communication connection. Likewise, multiple event subscriptions 114 received from

25 multiple virtual processing agents 102 may be processed and aggregated, and the events

112 to be sent to the multiple virtual processing agents 102 might be retrieved from the

queue 106 also through a single communication connection with the queue 106.

[0051] It should be appreciated that while the above examples have described that

multiple communications are aggregated and communicated to the queue 106 through a

30 single communication connection, it should be understood that more than one

communication connection may be established between the runtime stream processing

layer 124 and the queue 106 for communication. The number of established

communication connections, however, may be much smaller than the number of

communication requests, such as the event publications 110, and/or the event

14

WO 2016/007399 PCT/US2015/039170

subscriptions 114, from the virtual processing agents 102. The advantage of the

communication aggregation may become more significant as the scale of the stream

processing system 100 increases. For instance, for a stream processing system 100 with

millions of virtual processing agents 102, the communication requests from the virtual

5 processing agents 102 might be at the scale of tens of millions, and it is typically

impractical for a queue 106 to establish such a large number of direct TCP/IP connections

with each of the virtual processing agents 102. Through communication aggregation, the

virtual stream module 202 may reduce the number of direct TCP/IP connections to the

queue 106 to several thousands, thereby substantially reducing the consumption of

10 communication resources.

[0052] It should be further appreciated that while FIGURES 1 and 2 illustrate that one

queue 106 is utilized for publishing and persisting the events 112, multiple queues 106

may be employed. In such implementations, the virtual stream module 202 may be further

configured to manage the multiple queues 106 and maintain a mapping of events among

15 the queues 106 and the various virtual streams 204 and 206. It should also be understood

that other entities in the stream processing system 100, such as the client computing device

and the server computing device, may also publish events via event publications 110,

submit event subscriptions 114, and/or receive events 112 through the virtual streams 204

and 206.

20 [0053] FIGURE 2 further illustrates aspects for organizing and managing virtual

processing agents 102 utilizing processing agent containers 208A-208B (which may be

referred to herein individually as a processing agent container 208 or collectively as the

processing agent containers 208). Each of the processing agent containers 208 might

provide an independent computing environment to the virtual processing agents 102 that is

25 separated and isolated from other processing agent containers 208. Various computing

resources, such as virtual machines, may be allocated to a processing agent container 208

to host the virtual processing agents 102. Each processing agent container 208 may also

scale independently from other processing agent containers 208. It should be understood

that the virtual processing agent 102 that publishes an event 112 and the virtual processing

30 agent 102 that subscribes to and receives the event 112 may be in a same processing agent

container 208 or in two different processing agent containers 208. It should be further

understood that the virtual processing agents 102 may be organized and managed in

various other ways that do not involve the use of the processing agent containers 208.

15

WO 2016/007399 PCT/US2015/039170

[0054] FIGURE 3 is a flow diagram illustrating aspects of one illustrative routine 300

for delivering events to virtual processing agents 102. In some implementations, the

routine 300 is performed by the runtime stream processing layer 124 of the runtime

system 108 described above in regard to FIGURE 1. It should be appreciated, however,

5 that the routine 300 might also be performed by other modules and/or components of the

runtime system 108 or by modules and/or components of other entities in the stream

processing system 100 illustrated in FIGURE 1.

[0055] It should be appreciated that the logical operations described herein with

respect to FIGURE 3 and the other figures are implemented (1) as a sequence of computer

10 implemented acts or program modules running on a computing system and/or (2) as

interconnected machine logic circuits or circuit modules within the computing system. The

implementation is a matter of choice dependent on the performance and other

requirements of the computing system. Accordingly, the logical operations described

herein are referred to variously as states, operations, structural devices, acts, or modules.

15 These states, operations, structural devices, acts and modules may be implemented in

software, in firmware, in special purpose digital logic, and any combination thereof. It

should also be appreciated that more or fewer operations may be performed than shown in

the figures and described herein. These operations may also be performed in a different

order than those described herein. It also should be understood that each of the illustrated

20 methods can be ended at any time and need not be performed in its entirety.

[0056] Some or all operations of the methods, and/or substantially equivalent

operations, can be performed by execution of computer-readable instructions included on

a computer-storage media, as defined below. The term "computer-readable instructions,"

and variants thereof, as used in the description and claims, is used expansively herein to

25 include routines, applications, application modules, program modules, programs,

components, data structures, algorithms, and the like. Computer-readable instructions can

be implemented on various system configurations, including single-processor or

multiprocessor systems, minicomputers, mainframe computers, personal computers, hand

held computing devices, microprocessor-based, programmable consumer electronics,

30 combinations thereof, and the like.

[0057] The routine 300 begins at operation 302 where the stream processing layer 124

of the runtime system 108 might receive an event publication 110 in a corresponding event

publication virtual stream 204. As discussed above, the event publication virtual

stream 204 may be dynamically created based on the received event publication 110. The

16

WO 2016/007399 PCT/US2015/039170

routine 300 then proceeds to operation 304 where the runtime stream processing layer 124

sends the event 112 specified in the event publication 110 to the queue 106 for

publication. The runtime stream processing layer 124 may further instruct the queue 106

to persist or store the event 112 in the queue 106 so that the event 112 may be retrieved

5 later. In some implementations, the event 112 may also be persisted or stored in a storage

device that is accessible to the queue 106 and/or to the runtime stream processing

layer 124.

[0058] From operation 304, the routine 300 proceeds to operation 306 where the

runtime stream processing layer 124 might retrieve the event 112 from the queue 106, and

10 the routine 300 further proceeds to operation 308 where implicit subscriber processing

agents 102 based on the event 112 may be identified. As noted above, an implicit

subscriber processing agent 102 is a virtual processing agent 102 that has not explicitly

subscribed to the event 112, but might be interested in receiving the information contained

in the published event 112. The implicit subscriber processing agent 102 may be identified

15 through examining configurations or settings of the virtual processing agent 102, such as

the actions to be performed by the virtual processing agent 102, the input and output of the

virtual processing agent 102, the status of the virtual processing agent 102, and/or other

configurations of the virtual processing agent 102. For example, a virtual processing

agent 102 might be identified as an implicit subscriber processing agent 102 if the actions

20 to be performed by the virtual processing agent 102 involve an object or an entity that

initiated, is mentioned, or otherwise is associated with the published event 112. A virtual

processing agent 102 might also be identified as an implicit subscriber processing

agent 102 if data included in the published event 112 is consumed or processed by the

virtual processing agent 102.

25 [0059] In some implementations, the runtime stream processing layer 124 might

maintain an implicit activation table that maps different types of events or the

corresponding event subscription virtual streams 206 to one or more implicit subscriber

processing agents 102. An example implicit activation table is shown in FIGURE 6 and

will be described later. The implicit activation table might be pre-generated and looked up

30 by the runtime stream processing layer 124 when needed. The implicit activation table

might also be realized through a function or a module executing in the runtime stream

processing layer 124 that may output one or more implicit subscriber processing

agents 102 for a given event or event information. It should be noted that the implicit

activation table may be implemented in other ways by following the same principles

17

WO 2016/007399 PCT/US2015/039170

described above.

[0060] From operation 308, the routine 300 proceeds to operation 310, where the

implicit subscriber processing agents 102 identified in operation 308 may be informed of

the event 112, for example, by sending the event 112 or event information of the event 112

5 to the implicit subscriber processing agents 102. As mentioned above, the event

information may contain information contained within or associated with the event 112.

Depending on the nature of the implicit subscriber processing agents 102, the event

information sent to some implicit subscriber processing agents 102 may contain a portion

or all of the data contained in the event 112. For other implicit subscriber processing

10 agents 102, the event information may only contain an indication of the existence of the

event 112. As will be discussed in detail with regard to FIGURE 4, based on the received

event 112 or the event information, the implicit subscriber processing agents 102 may

decide whether to subscribe to receive more events and/or to perform further operations.

[0061] From operation 310, the routine 300 proceeds to operation 312, where the

15 runtime stream processing layer 124 might receive event subscriptions 114 from one or

more of the implicit subscriber processing agents 102 to subscribe to the corresponding

event subscription virtual streams 206. The routine 300 then proceeds to operation 314

where the runtime stream processing layer 124 may determine whether events specified in

the explicit event subscriptions 114 include past events that have already occurred and

20 been published in the queue 106. If it is determined that the explicit event

subscriptions 114 include past events, the routine 300 proceeds to operation 316 where the

runtime stream processing layer 124 may retrieve the past events from the queue 106

and/or other storage devices that store the past events, and deliver the retrieved past events

to the corresponding virtual processing agents 102.

25 [0062] From operation 316, or if it is determined at operation 314 that the explicit

event subscriptions 114 do not include past events, the routine 300 proceeds to

operation 318, where the runtime stream processing layer 124 may update the explicit

subscriptions it maintains and/or perform other operations based on the received explicit

event subscriptions 114, such as updating mapping of events in the event publication

30 virtual streams 204, the event subscription virtual streams 206, and the queue 106.

[0063] From operation 306, the routine 300 may also proceed to operation 320. At

operation 320, the runtime stream processing layer 124 may identify one or more explicit

subscriber processing agents 102 based on the event subscriptions 114 previously

submitted by the virtual processing agents 102. The routine 300 may further proceed to

18

WO 2016/007399 PCT/US2015/039170

operation 322 where the event 112 may be delivered to the explicit subscriber processing

agents 102. From operation 318 or operation 322, the routine 300 proceeds to operation

324 where it may be determined whether the runtime stream processing layer 124 needs to

deliver more events. If the runtime stream processing layer 124 needs to deliver more

5 events, the routine 300 returns to operation 302 to receive more event publications 110 for

processing and delivery. Otherwise, the routine 300 proceeds to operation 326, where the

routine 300 ends.

[0064] It should appreciated that in the above-described event delivery process, when

delivering the event 112 to explicit subscriber processing agents 102 and/or when sending

10 event 112 or event information to the implicit subscriber processing agents 102, the

runtime base layer 122 may first determine whether the corresponding processing

agents 102 have been activated. If there are any processing agents 102 that have not been

activated, the runtime base layer 122 may activate the processing agents 102, and then

deliver the event 112 or the event information to the activated processing agents 102.

15 [0065] In this regard, a processing agent 102, such as the implicit subscriber

processing agent 102, may be activated dynamically including allocating system resources

upon arrival of a first event 112 in a stream 206 that the processing agent 102 is

responsible for processing of. Thus, system resources, such as memory and CPU, may not

need to be allocated to the processing agent 102 before the first event 112 arrives.

20 Likewise, when the processing agent 102 becomes idle for a given period of time, for

example, because no events 112 are received for processing from the streams 206 that the

processing agent 102 is subscribed to, the processing agent 102 may be transparently

deactivated to reclaim its system resources. The given period of time for deactivating the

processing agent 102 may be pre-determined or dynamically adjusted according to the

25 status of the system, such as the usage of the system resources.

[0066] FIGURE 4 is a flow diagram illustrating aspects of one illustrative routine 400

for event processing and subscription. In some implementations, the routine 400 is

performed by the virtual processing agent 102 described above in regard to FIGURES 1

and 2. It should be appreciated, however, that the routine 400 might also be performed by

30 other entities in the stream processing system 100 illustrated in FIGURE 1.

[0067] The routine 400 begins at operation 402 where an implicit subscriber

processing agent 102 might receive an event 112 or event information of the event 112

from the runtime stream processing layer 124, and further process the received event 112

or event information. From operation 402, the routine 400 further proceeds to operation

19

WO 2016/007399 PCT/US2015/039170

404 where the implicit subscriber processing agent 102 may determine whether it needs to

subscribe to more events 112 based on the received event 112 or event information. If it is

determined that the implicit subscriber processing agent 102 needs to subscribe to more

events, the routine proceeds to operation 406 where the implicit subscriber processing

5 agent 102 may identify one or more event subscription virtual streams 206 from which the

implicit subscriber processing agents 102 are interested in receiving events. At operation

408, the implicit subscriber processing agent 102 may subscribe to the identified event

subscription virtual streams 206 through submitting event subscriptions 114 to the runtime

stream processing layer 124. By submitting the event subscriptions 114, the implicit

10 subscriber processing agent 102 may turn into an explicit subscriber processing agent 102

with respect to the submitted event subscriptions 114.

[0068] From operation 408, the routine 400 proceeds to operation 410 where the

explicit subscriber processing agent 102 might receive the subscribed events that are

published in the queue 106. As discussed above, if the event subscription 114 submitted at

15 operation 408 specify past events, the events received at operation 410 might include those

past events. The routine 400 then proceeds to operation 412 where the received events

may be processed. The routine 400 further proceeds to operation 414 where it may be

determined if the explicit subscriber processing agent 102 needs more events to process. If

it is determined that more events are needed, the routine 400 returns back to operation 410

20 where the explicit subscriber processing agent 102 may receive more events 112 for

processing. If it is determined at operation 414 that no more events are needed, or if it is

determined at operation 404 that the implicit subscriber processing agent 102 does not

need to subscribe to more events, the routine 400 proceeds to operation 416 where the

routine 400 ends.

25 [0069] FIGURES 5A-5D illustrate operations by example virtual processing

agents 102 in response to events 112 published in the queue 106 at different points in time,

according to one or more aspects presented herein. As illustrated in FIGURE 5A, the

stream processing layer 124 of the runtime system 108 may maintain or otherwise

generate an implicit activation table 506 that maps different types of events 112 or their

30 corresponding event subscription virtual streams 206 to implicit subscriber processing

agents 102. According to the example implicit activation table 506 shown in FIGURE 5A,

map processing agents, game processing agents, leader board processing agents, and/or

elite player processing agents may be identified as implicit subscriber processing

agents 102 of a game stream 504. Similarly, for a player stream 520, the potential implicit

20

WO 2016/007399 PCT/US2015/039170

subscriber processing agents 102 might include player processing agents, game processing

agents, and/or elite player processing agents. Based on the implicit activation table 506,

the runtime stream processing layer 124 may identify and activate one or more implicit

subscriber processing agents 102 as events 112 are received and published in the

5 queue 106.

[0070] At time To, a game start event 502 is published in the queue 106, for example,

through an event publication virtual stream 204. Data contained in the game start event

502 indicates that game X started on map H with players A-F currently in the game X. The

runtime stream processing layer 124 may retrieve the game start event 502 from the

10 queue 106, and identify implicit subscriber processing agents 102 of a game stream 504

that corresponds to the game start event 502. Based on the implicit activation table 506,

the runtime stream processing layer 124 may determine that the implicit subscriber

processing agents 102 of the game stream 504 may include the map processing agent 508

for calculating the number of kills on map G, the map processing agent 510 for calculating

15 the number of kills on map H, and the elite play processing agent 512 for calculating the

number of kills for elite players C, M and S. The runtime stream processing layer 124 may

then generate game start event information 514 based on the game start event 502 and

push it to the game stream 504 for delivery to the identified implicit subscriber processing

agents 508, 510 and 512.

20 [0071] At time Ti as shown in FIGURE 5B, the game start event information 514

might have been delivered to and processed by the implicit subscriber processing agents

508, 510 and 512. At processing agent 508, it might be determined that the map H

associated with the game X indicated in the game start event information 514 is different

from the map G that the map processing agent 508 is interested in. As a result, the

25 processing agent 508 might do nothing with respect to the received game start event

information 514. At map processing agent 510, however, it may be determined that the

map H contained in the game start event information 514 is what the map processing agent

510 is interested in, and thus the map processing agent 510 may then send a subscription

520 to subscribe to a game X kill stream 530 to receive all kill events in game X.

30 [0072] Similarly, the elite player processing agent 512 might determine that game X

includes one of the elite players that it is processing, and thus might submit a subscription

524 to subscribe to a game X player C kill stream 532 to receive all kill events by player C

in game X. It should be noted that while the game start event information 504 is being

delivered to and processed at the processing agents 508, 510 and 512, there might be more

21

WO 2016/007399 PCT/US2015/039170

events published in the queue 106, such as the kill event 514 by player C, the reward event

516 to reward player A, and the kill event 518 by player F.

[0073] At time T2 as shown in FIGURE 5C, the runtime stream processing layer 124

may process the event subscriptions submitted by the map processing agent 510 and elite

5 player processing agent 512. Since the subscription 522 requests all the kill events since

the beginning of game X, the runtime stream processing layer 124 may determine that

such a subscription includes past kill events 514 and 518 that are published before the

subscription 522 is received. Likewise, the runtime stream processing layer 124 may also

determine that the subscription 524 includes past kill event 514. Accordingly, the runtime

10 stream processing layer 124 may retrieve the kill events 514 and 518 from the queue 106,

send the kill events 514 and 518 to map processing agent 510 through the game X kill

stream 530 and send the kill event 514 to the elite player processing agent 512 through the

game X player C kill stream 532.

[0074] As shown in FIGURE 5D, at time T3, a new kill event 528 is published in the

15 queue 106. The runtime stream processing layer 124 may retrieve the event 528 from the

queue 106 and determine that this new kill event 528 belongs to the game X kill stream

530. The kill event 528 may then be pushed to the game X kill stream 530 and delivered to

the map processing agent 510. The runtime stream processing layer 124 may continue to

process and deliver more events as they are published in the queue 106 in a similar

20 manner.

[0075] It can be seen from the above, by allowing an implicit subscriber processing

agent 102 to receive information on events that it has not subscribed to, the stream

processing agents 102 may be automatically activated based on events flowing through the

system thereby supporting very granular stream processing units thus significantly

25 simplifying the programming model. Furthermore, by reducing the definition of streams to

the semantics of the events that are delivered over them, processing agents 102 may not

need to be aware of the stream-topology and can instead focus on the specific events they

wish to process, which further simplifies the programming model. In addition, by utilizing

the technologies presented herein, ad-hoc definition of complex event detection and

30 aggregation logic may be dynamically applied to the system without having to recompile

or re-deploy the topology.

[0076] FIGURE 6 shows an example computer architecture for a computing device

600 capable of storing and executing the components shown in FIGURE 1. The computer

architecture shown in FIGURE 6 illustrates a conventional server computer, workstation,

22

WO 2016/007399 PCT/US2015/039170

desktop computer, laptop, tablet, phablet, network appliance, personal digital assistant

("PDA"), e-reader, digital cellular phone, or other computing device, and may be utilized

to execute any of the software components presented herein. For example, the computer

architecture shown in FIGURE 6 may be utilized to execute any of the software

5 components described above.

[0077] The computing device 600 includes a baseboard 602, or "motherboard," which

is a printed circuit board to which a multitude of components or devices may be connected

by way of a system bus or other electrical communication paths. In one illustrative aspect,

one or more central processing units ("CPUs") 604 operate in conjunction with a

10 chipset 606. The CPUs 604 may be standard programmable processors that perform

arithmetic and logical operations necessary for the operation of the computing device 600.

[0078] The CPUs 604 perform operations by transitioning from one discrete, physical

state to the next through the manipulation of switching elements that differentiate between

and change these states. Switching elements may generally include electronic circuits that

15 maintain one of two binary states, such as flip-flops, and electronic circuits that provide an

output state based on the logical combination of the states of one or more other switching

elements, such as logic gates. These basic switching elements may be combined to create

more complex logic circuits, including registers, adders-subtractors, arithmetic logic units,

floating-point units, and the like.

20 [0079] The chipset 606 provides an interface between the CPUs 604 and the remainder

of the components and devices on the baseboard 602. The chipset 606 may provide an

interface to a RAM 608, used as the main memory in the computing device 600. The

chipset 606 may further provide an interface to a computer-readable storage medium such

as a read-only memory ("ROM") 610 or non-volatile RAM ("NVRAM") for storing basic

25 routines that help to startup the computing device 600 and to transfer information between

the various components and devices. The ROM 610 or NVRAM may also store other

software components necessary for the operation of the computing device 600 in

accordance with the aspects described herein.

[0080] The computing device 600 may operate in a networked environment using

30 logical connections to remote computing devices and computer systems through a

network, such as the local area network 620. The chipset 606 may include functionality for

providing network connectivity through a network interface controller (NIC) 612, such as

a gigabit Ethernet adapter. The NIC 612 is capable of connecting the computing device

600 to other computing devices over the network 620. It should be appreciated that

23

WO 2016/007399 PCT/US2015/039170

multiple NICs 612 may be present in the computing device 600, connecting the computer

to other types of networks and remote computer systems. The local area network 620

allows the computing device 600 to communicate with remote services and servers, such

as a remote computer 650.

5 [0081] The computing device 600 may be connected to a mass storage device 616 that

provides non-volatile storage for the computing device. The mass storage device 616 may

store system programs, application programs, other program modules, and data, which

have been described in greater detail herein. The mass storage device 616 may be

connected to the computing device 600 through a storage controller 614 connected to the

10 chipset 606. The mass storage device 616 may consist of one or more physical storage

units. The storage controller 614 may interface with the physical storage units through a

serial attached SCSI ("SAS") interface, a serial advanced technology attachment

("SATA") interface, a fiber channel ("FC") interface, or other type of interface for

physically connecting and transferring data between computers and physical storage units.

15 It should also be appreciated that the mass storage device 616, other storage media and the

storage controller 614 may include MultiMediaCard (MMC) components, eMMC

components, Secure Digital (SD) components, PCI Express components, or the like.

[0082] The computing device 600 may store data on the mass storage device 616 by

transforming the physical state of the physical storage units to reflect the information

20 being stored. The specific transformation of physical state may depend on various factors,

in different implementations of this description. Examples of such factors may include, but

are not limited to, the technology used to implement the physical storage units, whether

the mass storage device 616 is characterized as primary or secondary storage, and the like.

[0083] For example, the computing device 600 may store information to the mass

25 storage device 616 by issuing instructions through the storage controller 614 to alter the

magnetic characteristics of a particular location within a magnetic disk drive unit, the

reflective or refractive characteristics of a particular location in an optical storage unit, or

the electrical characteristics of a particular capacitor, transistor, or other discrete

component in a solid-state storage unit. Other transformations of physical media are

30 possible without departing from the scope and spirit of the present description, with the

foregoing examples provided only to facilitate this description. The computing device 600

may further read information from the mass storage device 616 by detecting the physical

states or characteristics of one or more particular locations within the physical storage

units.

24

WO 2016/007399 PCT/US2015/039170

[0084] In addition to the mass storage device 616 described above, the computing

device 600 may have access to other computer-readable storage media to store and retrieve

information, such as program modules, data structures, or other data. Thus, although the

runtime system 108 and other modules are depicted as data and software stored in the

5 mass storage device 616, it should be appreciated that the runtime system 108 and/or other

modules may be stored, at least in part, in other computer-readable storage media of the

device 600. Although the description of computer-readable media contained herein refers

to a mass storage device, such as a solid state drive, a hard disk or CD-ROM drive, it

should be appreciated by those skilled in the art that computer-readable media can be any

10 available computer storage media or communication media that can be accessed by the

computing device 600.

[0085] Communication media includes computer readable instructions, data structures,

program modules, or other data in a modulated data signal such as a carrier wave or other

transport mechanism and includes any delivery media. The term "modulated data signal"

15 means a signal that has one or more of its characteristics changed or set in a manner as to

encode information in the signal. By way of example, and not limitation, communication

media includes wired media such as a wired network or direct-wired connection, and

wireless media such as acoustic, RF, infrared and other wireless media. Combinations of

the any of the above should also be included within the scope of computer-readable media.

20 [0086] By way of example, and not limitation, computer storage media may include

volatile and non-volatile, removable and non-removable media implemented in any

method or technology for storage of information such as computer-readable instructions,

data structures, program modules or other data. For example, computer media includes,

but is not limited to, RAM, ROM, EPROM, EEPROM, flash memory or other solid state

25 memory technology, CD-ROM, digital versatile disks ("DVD"), HD-DVD, BLU-RAY, or

other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other

magnetic storage devices, or any other medium that can be used to store the desired

information and which can be accessed by the computing device 600. For purposes of the

claims, the phrase "computer storage medium," "computer-readable storage medium," and

30 variations thereof, does not include waves or signals per se and/or communication media.

[0087] The mass storage device 616 may store an operating system 622 utilized to

control the operation of the computing device 600. According to one aspect, the operating

system comprises the LINUX operating system. According to another aspect, the

operating system comprises the WINDOWS@ operating system from MICROSOFT

25

WO 2016/007399 PCT/US2015/039170

Corporation. According to further aspects, the operating system may comprise the UNIX,

Android, Windows Phone or iOS operating systems. It should be appreciated that other

operating systems may also be utilized. The mass storage device 616 may store other

system or application programs and data utilized by the computing device 600, such as the

5 runtime system 108 and/or any of the other software components and data described

above. The mass storage device 616 might also store other programs and data not

specifically identified herein.

[0088] In one aspect, the mass storage device 616 or other computer-readable storage

media is encoded with computer-executable instructions which, when loaded into the

10 computing device 600, transform the computer from a general-purpose computing system

into a special-purpose computer capable of implementing the aspects described herein.

These computer-executable instructions transform the computing device 600 by specifying

how the CPUs 604 transition between states, as described above. According to one aspect,

the computing device 600 has access to computer-readable storage media storing

15 computer-executable instructions which, when executed by the computing device 600,

perform the various routines described above with regard to FIGURES 3 and 4. The

computing device 600 might also include computer-readable storage media for performing

any of the other computer-implemented operations described herein.

[0089] The computing device 600 may also include one or more input/output

20 controllers 617 for receiving and processing input from an input device 619. The input

device 619 may include a number of input devices, such as a keyboard, a mouse, a

microphone, a headset, a touchpad, a touch screen, an electronic stylus, or any other type

of input device. Similarly, the input/output controller 617 may provide output to a display,

such as a computer monitor, a flat-panel display, a digital projector, a printer, a plotter, or

25 other type of output device. It will be appreciated that the computing device 600 may not

include all of the components shown in FIGURE 6, may include other components that are

not explicitly shown in FIGURE 6, or may utilize an architecture completely different than

that shown in FIGURE 6.

[0090] The disclosure presented herein may be considered in view of the following

30 clauses.

[0091] Clause 1: A computer-implemented method for delivering events, the method

comprising: receiving a publication of an event; identifying a processing agent for

receiving information associated with the event based on configurations of the processing

agent, wherein the processing agent does not explicitly subscribe to receive the event;

26

WO 2016/007399 PCT/US2015/039170

determining if the processing agent is activated; in response to determining that the

processing agent is not activated, activating the processing agent; delivering the

information associated with the event to the processing agent; receiving a subscription to

one or more events from the processing agent; and delivering the one or more events to the

5 processing agent.

[0092] Clause 2: The method of clause 1, further comprising: determining if the

subscription specifies one or more past events to be delivered; and in response to

determining that the subscription specifies one or more past events to be delivered,

delivering the one or more past events to the processing agent.

10 [0093] Clause 3: The method of clauses 1-2, wherein receiving the publication of the

event in the queue comprises: receiving a request to publish the event in a queue;

activating a virtual stream corresponding to the event; and publishing the event in the

queue through the virtual stream.

[0094] Clause 4: The method of clauses 1-3, wherein the subscription to one or more

15 events defines a virtual stream, and the subscription is a subscription to the virtual stream

corresponding to the one or more events.

[0095] Clause 5: The method of clauses 1-4, wherein activating the processing agent

comprises allocating system resources to the processing agent, and wherein the

subscription to the virtual stream activates the virtual stream and causes system resources

20 to be allocated to the virtual stream.

[0096] Clause 6: The method of clauses 1-5, further comprising: deactivating the

virtual stream when no events are received in the virtual stream over a certain period of

time by reclaiming the system resources allocated to the virtual stream; and deactivating

the processing agent the processing agent becomes idle for a given period of time by

25 reclaiming the system resources allocated to the processing agent.

[0097] Clause 7: The method of clauses 1-6, wherein the configuration of the

processing agent is obtained programmatically or determined from a declarative definition

of the processing agent.

[0098] Clause 8: The method of clauses 1-7, wherein the processing agent is

30 addressable for delivering the event independent of whether the processing agent is

activated or not activated.

[0099] Clause 9: A computer-readable storage medium having computer-executable

instructions stored thereon which, when executed by a computer, cause the computer to:

determine a processing agent for receiving an event that is published in a queue and that

27

WO 2016/007399 PCT/US2015/039170

the processing agent does not explicitly subscribe to, wherein the event is published in the

queue through a first virtual stream corresponding to the event; determine if the processing

agent is activated; in response to determining that the processing agent is not activated,

activate the processing agent; cause event information of the event to be delivered to the

5 processing agent; process an explicit subscription to a second virtual stream defined by the

explicit subscription, wherein the explicit subscription is submitted by the processing

agent in response to the event information delivered to the processing agent; and cause

events in the second virtual stream to be delivered to the processing agent.

[00100] Clause 10: The computer-readable storage medium of clause 9, wherein events

10 published in the queue are persisted.

[00101] Clause 11: The computer-readable storage medium of clauses 9-10, comprising

further computer executable instructions which, when executed by the computer, cause the

computer to: determine if the second virtual stream includes past events published in the

queue; and in response to determining that the second virtual stream includes past events

15 published in the queue, cause the past events to be pushed to the second virtual stream and

delivered to the processing agent.

[00102] Clause 12: The computer-readable storage medium of clauses 9-11, comprising

further computer executable instructions which, when executed by the computer, cause the

computer to: deactivate the second virtual stream when no events are received in the

20 second virtual stream over a certain period of time by reclaiming the system resources

allocated to the virtual stream; and deactivate the processing agent when the processing

agent becomes idle for a given period of time by reclaiming the system resources allocated

to the processing agent.

[00103] Clause 13: The computer-readable storage medium of clauses 9-12, wherein

25 activating the processing agent comprises allocating system resources to the processing

agent, and wherein the subscription to the second virtual stream activates the second

virtual stream and causes system resources to be allocated to the second virtual stream.

[00104] Clause 14: The computer-readable storage medium of clauses 9-13, wherein

the processing agent is addressable for delivering the event independent of whether the

30 processing agent is activated or not activated.

[00105] Clause 15: The computer-readable storage medium of clauses 9-14, wherein

the processing agent is obtained programmatically or determined based on a declarative

definition of the processing agent.

[00106] Clause 16: A system, comprising one or more computing devices executing a

28

WO 2016/007399 PCT/US2015/039170

runtime that is configured to: manage a queue for receiving and persisting publications of

events; receive a publication of an event in a first virtual stream and forward the

publication of the event to the queue; identify a processing agent for delivering event

information of the event based on a configuration of the processing agent, wherein the

5 processing agent does not explicitly subscribe to receive the event and is addressable for

delivering the event information independent of whether the processing agent is activated

or not activated; determine if the processing agent is activated; in response to determining

that the processing agent is not activated, activate the processing agent; deliver the event

information to the processing agent; receive an explicit subscription to events in a second

10 virtual stream from the processing agent after the event information is delivered to the

processing agent; determine whether the explicit subscription specifies past events

published in the queue before the explicit subscription is received; in response to

determining that the explicit subscription specifies past events, retrieve a past event from

the past events published in the queue and push the past events to the second virtual

15 streams, and deliver the events in the second virtual stream to the processing agent.

[00107] Clause 17: The system of clause 16, wherein activating the processing agent

comprises allocating system resources to the processing agent, and wherein the

subscription to the second virtual stream activates the second virtual stream and causes

system resources to be allocated to the second virtual stream.

20 [00108] Clause 18: The system of clauses 16-17, further comprising a plurality of

servers executing one or more processing agents, wherein the runtime is further configured

to recover a processing agent after failure of one server on which the processing agent was

activated by reactivating the processing agent on another server.

[00109] Clause 19: The system of clauses 16-18, wherein the configuration of the

25 processing agent is obtained programmatically or determined from a declarative definition

of the processing agent.

[00110] Clause 20: The system of clauses 16-19, wherein the runtime is further

configured to: deactivate the second virtual stream when no events are received in the

second virtual stream over a certain period of time by reclaiming the system resources

30 allocated to the virtual stream; and deactivate the processing agent when the processing

agent becomes idle for a given period of time by reclaiming the system resources allocated

to the processing agent.

[00111] Based on the foregoing, it should be appreciated that concepts and technologies

for subscribing, receiving and processing events are presented herein. Although the subject

29

matter presented herein has been described in language specific to computer structural

features, methodological acts, and computer readable media, it is to be understood that the

invention defined in the appended claims is not necessarily limited to the specific features,

acts, or media described herein. Rather, the specific features, acts and mediums are

5 disclosed as example forms of implementing the claims.

[00112] The subject matter described above is provided by way of illustration only

and should not be construed as limiting. Various modifications and changes may be made

to the subject matter described herein without following the example aspects and

applications illustrated and described, and without departing from the true spirit and scope

10 of the present invention, which is set forth in the following claims.

[00113] Throughout this specification and the claims which follow, unless the

context requires otherwise, the word "comprise", and variations such as "comprises" and

"comprising", will be understood to imply the inclusion of a stated integer or step or group

of integers or steps but not the exclusion of any other integer or step or group of integers

15 or steps.

[00114] The reference in this specification to any prior publication (or information

derived from it), or to any matter which is known, is not, and should not be taken as an

acknowledgment or admission or any form of suggestion that that prior publication (or

information derived from it) or known matter forms part of the common general

20 knowledge in the field of endeavour to which this specification relates.

30

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A computer-implemented method for delivering events to a processing

agent executing on one or more servers, the method comprising:

receiving a publication of an event in a queue of events, wherein the event includes

information that describes a player interaction with a game application;

mapping the event to a processing agent of a plurality of different processing

agents, wherein the processing agent has not explicitly subscribed to receive the event;

determining that the processing agent is not activated;

in response to determining that the processing agent is not activated, activating the

processing agent such that the processing agent is available to provide functionality to the

game application;

delivering the event to the processing agent;

receiving a subscription from the processing agent;

receiving one or more additional publications of one or more additional events in

the queue of events, the one or more additional events occurring after the subscription is

received from the processing agent;

delivering, based at least in part on the subscription, the one or more additional

events to the processing agent;

determining that the subscription requests that one or more past events be

delivered, the one or more past events having been published in the queue of events prior

to the receiving the subscription from the processing agent; and

in response to determining that the subscription requests that the one or more past

events be delivered, delivering the one or more past events to the processing agent.

2. The method of claim 1, wherein receiving the publication of the event in

the queue of events comprises:

receiving a request to publish the event in the queue of events;

activating a virtual stream corresponding to the event; and

publishing the event in the queue of events through the virtual stream.

3. The method of claim 2, wherein the subscription defines the virtual stream.

4. The method of claim 3, wherein activating the processing agent comprises

allocating system resources to the processing agent.

5. The method of claim 1, wherein a configuration of the processing agent is

obtained programmatically or determined from a declarative definition of the processing

agent.

31

6. The method of claim 1, wherein the processing agent is addressable for

delivering the event independent of whether the processing agent is activated or not

activated.

7. The method of claim 1, wherein the processing agent is configured to

5 receive a particular type of event and the subscription requests all events of the particular

type of event that are published in the queue of events including the event, the one or more

additional events, and the one or more past events.

8. The method of claim 1, further comprising using an activation table to map

the event to the processing agent.

10 9. The method of claim 1, wherein the processing agent is configured to

receive different events that occur within an individual session of the game application.

10. The method of claim 1, wherein the processing agent is configured to

receive different events caused by an individual player participating in a session of the

game application.

15 11. The method of claim 1, wherein the processing agent is configured to

receive different events caused by an individual device participating in a session of the

game application.

12. A system, comprising one or more computing devices having instructions

that, when executed by one or more processors, configure the one or more computing

20 devices to:

manage a queue for receiving and persisting publications of events, wherein an

individual event includes information that describes a player interaction with a game

application;

receive a publication of an event in a virtual stream;

25 forward the publication of the event to the queue;

map the event to a processing agent of a plurality of different processing agents,

wherein the processing agent has not explicitly subscribed to receive the event and the

processing agent is addressable for delivering the event independent of whether the

processing agent is activated or not activated;

30 determine that the processing agent is not activated;

in response to determining that the processing agent is not activated, activate the

processing agent such that the processing agent is available to provide functionality to the

game application;

deliver the event to the processing agent;

32

receive an explicit subscription to the virtual stream from the processing agent

after the event is delivered to the processing agent;

receive one or more additional publications of one or more additional events in

the virtual stream after the explicit subscription is received;

5 forward the one or more additional publications of the one or more additional

events to the queue; deliver, based at least in part on the explicit subscription, the one or

more additional events to the processing agent;

determine that past events have been published in the queue before the explicit

subscription is received;

10 retrieve the past events that have been published in the queue; and

deliver the past events to the processing agent.

13. The system of claim 12, wherein activating the processing agent comprises

allocating system resources to the processing agent.

14. The system of claim 12, wherein the instructions further configure the one

15 or more computing devices to:

deactivate the virtual stream when no events are received in the virtual stream over

a certain period of time by reclaiming system resources allocated to the virtual stream; and

deactivate the processing agent when the processing agent becomes idle for a given

period of time by reclaiming system resources allocated to the processing agent.

15. The system of claim 12, wherein the processing agent is configured to

receive a particular type of event and the explicit subscription requests all events of the

particular type that are published in the queue including the event, the one or more

additional events, and the past events.

16. The system of claim 12, wherein the instructions further configure the one

or more computing devices to use an activation table to map the event to the processing

agent.

17. A system, comprising:

one or more processors; and

one or more computer-readable storage media having computer-executable

instructions stored thereon which, when executed by the one or more processors, cause the

system to:

receive a publication of an event in a queue of events, wherein the event

includes information that describes a player interaction with a game application;

map the event to a processing agent of a plurality of different processing

33

agents, wherein the processing agent has not explicitly subscribed to receive the

event;

determine that the processing agent is not activated;

in response to determining that the processing agent is not activated,

activate the processing agent such that the processing agent is available to provide

functionality to the game application;

deliver the event to the processing agent;

receive a subscription from the processing agent;

receive one or more additional publications of one or more additional

events in the queue of events, the one or more additional events occurring after the

subscription is received from the processing agent;

deliver, based at least in part on the subscription, the one or more additional

events to the processing agent;

determine that the subscription requests that one or more past events be

delivered, the one or more past events having been published in the queue of

events prior to the receiving the subscription from the processing agent; and

in response to determining that the subscription requests that the one or

more past events be delivered, deliver the one or more past events to the processing

agent.

18. The system of claim 17, wherein the processing agent is responsible for

processing different events that occur within an individual session of the game application.

19. The system of claim 17, wherein the processing agent is responsible for

processing different events caused by an individual player participating in a session of the

game application.

20. The system of claim 17, wherein the processing agent is responsible for

processing different events caused by an individual device participating in a session of the

game application.

34

	Bibliographic Page
	Abstract
	Description
	Claims
	Drawings

