(12) STANDARD PATENT (11) Application No. AU 2015288122 B2
(19) AUSTRALIAN PATENT OFFICE

(54) Title
Stream based event processing utilizing virtual streams and processing agents

(61) International Patent Classification(s)
GOG6F 9/54 (2006.01)

(21) Application No: 2015288122 (22) Date of Filing: 2015.07.06
(87) WIPO No: WO16/007399

(30) Priority Data

(31) Number (32) Date (33) Country
14/326,239 2014.07.08 us
(43) Publication Date: 2016.01.14

(44) Accepted Journal Date: 2020.07.23

(71) Applicant(s)
Microsoft Technology Licensing, LLC

(72) Inventor(s)
Somuah, Henry Hooper;Bykov, Sergey;Melamed, Tamir;Rodi, Robert Louis;Cheung,
Felix;Malyuk, Michael William;Hesky, Andrew Alexander;Kliot, Gabriel;Thelin,
Jorgen;Geller, Alan Stuart

(74) Agent/ Attorney
Davies Collison Cave Pty Ltd, Level 15 1 Nicholson Street, MELBOURNE, VIC, 3000, AU

(56) Related Art
US 6829770 B1
US 2009/0228563 A1

wo 2016/007399 A1 |[IN I NPF V0 00O R0 O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2016/007399 A1l

(51

eay)

(22)

(25)
(26)
(30)

1

(72

14 January 2016 (14.01.2016) WIPOI|PCT
International Patent Classification:
GO6F 9/54 (2006.01)
International Application Number:
PCT/US2015/039170

International Filing Date:
6 July 2015 (06.07.2015)

Filing Language: English
Publication Language: English
Priority Data:

14/326,239 8 July 2014 (08.07.2014) US

Applicant: MICROSOFT TECHNOLOGY LICENS-
ING, LLC [US/US]; One Microsoft Way, Redmond,
Washington 98052-6399 (US).

Inventors: SOMUAH, Henry Hooper; c/o Microsoft
Technology Licensing, LLC, LCA - International Patents
(8/1172), One Microsoft Way, Redmond, Washington
98052-6399 (US). BYKOYV, Sergey; c¢/o Microsoft Tech-
nology Licensing, LLC, LCA - International Patents
(8/1172), One Microsoft Way, Redmond, Washington
98052-6399 (US). MELAMED, Tamir; c/o Microsoft
Technology Licensing, LLC, LCA - International Patents
(8/1172), One Microsoft Way, Redmond, Washington
98052-6399 (US). RODI, Robert Louis; c/o Microsoft
Technology Licensing, LLC, LCA - International Patents
(8/1172), One Microsoft Way, Redmond, Washington
98052-6399 (US). CHEUNG, Felix; c¢/o Microsoft Tech-
nology Licensing, LLC, LCA - International Patents

(8D

(84)

(8/1172), One Microsoft Way, Redmond, Washington
98052-6399 (US). MALYUK, Michael William; ¢/o0 Mi-
crosoft Technology Licensing, LLC, LCA - International
Patents (8/1172), One Microsoft Way, Redmond, Washing-
ton 98052-6399 (US). HESKY, Andrew Alexander; c/o
Microsoft Technology Licensing, LLC, LCA - Internation-
al Patents (8/1172), One Microsoft Way, Redmond, Wash-
ington 98052-6399 (US). KLIOT, Gabriel; c/o Microsott
Technology Licensing, LLC, LCA - International Patents
(8/1172), One Microsoft Way, Redmond, Washington
98052-6399 (US). THELIN, Jorgen; c¢/o Microsoft Tech-
nology Licensing, LLC, LCA - International Patents
(8/1172), One Microsoft Way, Redmond, Washington
98052-6399 (US). GELLER, Alan Stuart; c/o Microsoft
Technology Licensing, LLC, LCA - International Patents
(8/1172), One Microsoft Way, Redmond, Washington
98052-6399 (US).

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,

[Continued on next page]

(54) Title: STREAM BASED EVENT PROCESSING UTILIZING VIRTUAL STREAMS AND PROCESSING AGENTS

EVENT PUBLICATION
VIRTUAL STREAM

EVENT SUBSCRIPTION
VIRTUAL STREAM

VIRTUAL
STREAM

STREAM MODULE

PROGESSING

-
>
>
o

12 LAYER

EVENT
110 PUBLICATION

N_

7N Y
/102A \
’ \
// 102B- \
\
Q.. ©y
by 2
1020 /

208A \\ /

_____ s

o~

\
\
EVENT Lol
SUBSCRIPTION| /

</
7~ *
114 Y] @
/
\
\
/
f’>\ 10R -,

2088 \

FIG. 2

112
T os\
AY
oX
102Q\
\

i
102P ,
/

(57) Abstract: Technologies are described herein for event delivery and stream processing utilizing virtual processing agents. Upon
receiving an event publication in a queue, a runtime system identifies one or more virtual processing agents that might be interested
in, but have not explicitly subscribed to, the published event. Event information of the published event is then delivered to the iden -
tified virtual processing agents. Prior to the actual delivery, the runtime system further determines if the virtual processing agents
have been activated and activates those processing agents that have not been activated. Based on the received event information,
some of the virtual processing agents might decide to explicitly submit subscriptions to receive more events from the queue. The ex -
plicit subscriptions will trigger the runtime system to deliver the subscribed events to the processing agents, which might include
past events that have been published in the queue before the explicit subscription is received.

WO 2016/007399 A1 |IIWAT 00T 00N AR AR

GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, Declarations under Rule 4.17:
TZ, UG, ZM, ZW), Burasian (AM, AZ, BY, KG, KZ,RU, __ as to applicant’s entitlement to apply for and be granted
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, a patent (Rule 4.17(ii)

DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, ’

LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, — as to the applicant’s entitlement to claim the priority of
SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, the earlier application (Rule 4.17(iii))

GN, GQ, GW,KM, ML, MR, NE, SN, TD, TG). Published:

— with international search report (Art. 21(3))

2015288122 22 Jun 2020

10

15

20

25

30

BACKGROUND
[0001] In a stream processing system, a stream processing unit may communicate with
other processing units to receive events for processing. This may be done through either a
direct communication from one processing unit with another or through a publication-
subscription model where a processing unit subscribes to certain events and receives the
events when they are published.
[0002] As the scale of a stream processing system increases, €.g., where millions of
processing units are involved, it may be impractical to utilize direct communication
techniques between processing units. While the publication-subscription model might
seem feasible, the traditional publication-subscription model requires a processing unit to
explicitly submit event subscriptions before receiving any information related to the
events. This may be a problem because, in some cases, it may be impossible for a
processing unit to predict what events to subscribe to before certain events occur. For
example, a processing unit configured to process events occurring on a map of a game
application does not know which game to subscribe to until a game has started on that
map. In such situations, in order for the processing unit to receive the events it is interested
in, the processing unit has to subscribe to all possible events, which again becomes
impractical and inefficient in a large-scale stream processing system.
[0003] It is desired to address or ameliorate one or more disadvantages or limitations
associated with the prior art, or to at least provide a useful alternative.
SUMMARY

[0003a] In at least one embodiment, the present invention provides a computer-
implemented method for delivering events to a processing agent executing on one or more
servers, the method comprising:

receiving a publication of an event in a queue of events, wherein the event
includes information that describes a player interaction with a game application;

mapping the event to a processing agent of a plurality of different processing
agents, wherein the processing agent has not explicitly subscribed to receive the event;

determining that the processing agent is not activated;

in response to determining that the processing agent is not activated, activating
the processing agent such that the processing agent is available to provide functionality to
the game application;

delivering the event to the processing agent;

2015288122 22 Jun 2020

10

15

20

25

30

receiving a subscription from the processing agent; receiving one or more
additional publications of one or more additional events in the queue of events, the one or
more additional events occurring after the subscription is received from the processing
agent;

delivering, based at least in part on the subscription, the one or more additional
events to the processing agent;

determining that the subscription requests that one or more past events be
delivered, the one or more past events having been published in the queue of events prior
to the receiving the subscription from the processing agent; and

in response to determining that the subscription requests that the one or more past
events be delivered, delivering the one or more past events to the processing agent.
[0003b] In at least another embodiment, the present invention provides a system,
comprising one or more computing devices having instructions that, when executed by one
or more processors, configure the one or more computing devices to:

manage a queue for receiving and persisting publications of events, wherein an
individual event includes information that describes a player interaction with a game
application;

receive a publication of an event in a virtual stream;

forward the publication of the event to the queue;

map the event to a processing agent of a plurality of different processing agents,
wherein the processing agent has not explicitly subscribed to receive the event and the
processing agent is addressable for delivering the event independent of whether the
processing agent is activated or not activated;

determine that the processing agent is not activated;

in response to determining that the processing agent is not activated, activate the
processing agent such that the processing agent is available to provide functionality to the
game application;

deliver the event to the processing agent;

receive an explicit subscription to the virtual stream from the processing agent
after the event is delivered to the processing agent;

receive one or more additional publications of one or more additional events in

the virtual stream after the explicit subscription is received;

2015288122 22 Jun 2020

10

15

20

25

30

forward the one or more additional publications of the one or more additional
events to the queue; deliver, based at least in part on the explicit subscription, the one or
more additional events to the processing agent;
determine that past events have been published in the queue before the explicit
subscription is received;
retrieve the past events that have been published in the queue; and
deliver the past events to the processing agent.
[0003¢c] In at least another embodiment, the present invention provides a system
comprising:
one or more processors; and
one or more computer-readable storage media having computer-executable
instructions stored thereon which, when executed by the one or more processors, cause the
system to:
receive a publication of an event in a queue of events, wherein the event
includes information that describes a player interaction with a game application;
map the event to a processing agent of a plurality of different processing
agents, wherein the processing agent has not explicitly subscribed to receive the event;
determine that the processing agent is not activated;
in response to determining that the processing agent is not activated, activate
the processing agent such that the processing agent is available to provide functionality to
the game application;
deliver the event to the processing agent;
receive a subscription from the processing agent;
receive one or more additional publications of one or more additional events in
the queue of events, the one or more additional events occurring after the subscription is
received from the processing agent;
deliver, based at least in part on the subscription, the one or more additional
events to the processing agent;
determine that the subscription requests that one or more past events be
delivered, the one or more past events having been published in the queue of events prior
to the receiving the subscription from the processing agent; and
in response to determining that the subscription requests that the one or more
past events be delivered, deliver the one or more past events to the processing agent.

[0004] It should be further appreciated that the above-described subject matter may

2015288122 22 Jun 2020

10

15

20

25

30

also be implemented as a computer-controlled apparatus, a computer process, a computing
system, or as an article of manufacture such as a computer-readable storage medium.
[0005] This Summary is provided to introduce a selection of concepts in a simplified
form that are further described below in the Detailed Description. This Summary is not
intended to identify key features or essential features of the claimed subject matter, nor is
it intended that this Summary be used to limit the scope of the claimed subject matter.
Furthermore, the claimed subject matter is not limited to implementations that solve any or
all disadvantages noted in any part of this disclosure.
BRIEF DESCRIPTION OF THE DRAWINGS

[0006] FIGURE 1 is a computer system diagram providing an overview
description of one mechanism disclosed herein for stream processing utilizing virtual

processing agents;

[0007] FIGURE 2 is a block diagram showing aspects of a queue and virtual
streams;
[0008] FIGURE 3 is a flow diagram showing further aspects of one illustrative

process for delivering events to virtual processing agents;
[0009] FIGURE 4 is a flow diagram showing aspects of one illustrative process for
event subscription and processing by a virtual processing agent;
[0010] FIGURES 5A-5D illustrate operations by example virtual processing
agents in response to events published in a queue at different points in time; and
[0011] FIGURE 6 is a computer architecture diagram showing an illustrative
computer hardware architecture for a computing system capable of implementing the
technologies presented herein.

DETAILED DESCRIPTION
[0012] Technologies are described herein for event delivery and stream processing
utilizing virtual processing agents. One or more virtual processing agents might be created
and configured to receive and process stream events. A mechanism, such as a queue,
might be utilized and/or configured to receive event publications from various entities in a
stream processing system. The published events might also be persisted or stored for later
retrieval and delivery when needed. Upon receiving an event publication, a runtime
system might identify one or more virtual processing agents that might be interested in
receiving the published events, but have not explicitly subscribed to the published event.
Event information of the published event may then be delivered to the identified virtual

processing agents. Prior to the actual delivery of the event or event information, the

3a

2015288122 22 Jun 2020

10

15

20

25

30

runtime system may further determine if the virtual processing agents have been activated,
and the runtime system may activate the processing agents if the processing agents have
not been activated. The event or event information contained therein may then be
delivered to the activated processing agents.

[0013] Based on the received event or event information, the virtual processing agents
might decide to explicitly submit subscriptions to receive more events from the queue. The
explicit subscriptions might then trigger the subscribed events to be delivered to the
processing agents, which might include past events that have been published in the queue
before the explicit subscription is submitted. By utilizing the techniques described herein,
a virtual processing agent may be able to subscribe, receive and process events that the
processing agent might not otherwise know about before the event is published in the
queue. By utilizing virtual processing agents to subscribe, receive and process events, the
scalability, reliability and flexibility of computing resources may be improved.

[0014] Technologies are described herein for event delivery and stream processing
utilizing virtual processing agents. In technologies disclosed herein, one or more virtual
processing agents, which may be referred to herein as “processing agents” or “PAs,” may
be employed as processing units for stream processing. These virtual processing agents
might execute on one or more servers, and may be addressable for operations and
interactions independent of whether the processing agents are activated or not activated.
Each of the virtual processing agents may be configured to publish, receive, and/or process
various events. Events may be published in a queue, and may further be persisted or stored
in the queue for later retrieval.

[0015] Once a publication of an event is received in the queue, one or more processing
agents may be identified to receive the published events. The identified processing agents
may include processing agents that have not explicitly subscribed to receive the published
event, referred to herein as “implicit subscriber processing agents” or “implicit
subscribers.” The identification of an implicit subscriber may be performed based on the
settings or configurations of the virtual processing agent, including, but not limited to, the
actions to be performed by the virtual processing agent, the input and output of the virtual
processing agent, the status of the virtual processing agent, and potentially other
configurations of the virtual processing agent. The configurations of the virtual processing
agent may be derived from a declarative definition of the processing agent, or obtained
programmatically.

[0016] The published event or the information contained within or associated with the

3b

2015288122 22 Jun 2020

published event, referred to herein as “event information,” may then be delivered to the
identified implicit subscriber processing agents. Prior to the actual delivery, a runtime
system that supports and manages the virtual processing agents may determine if the
implicit subscriber processing agents have been activated, and may activate the processing
agents if the processing agents have not been activated. The event or the event information
may then be delivered to the activated processing agents where the event or the event

information may be further processed. Similarly, when the event publication is received at

3¢

10

15

20

25

30

WO 2016/007399 PCT/US2015/039170

the queue, one or more processing agents that have explicitly subscribed to receive the
published event might also be identified and activated if needed. The published event may
then be delivered to the explicit subscriber processing agents for processing.

[0017] Based on the received event or event information, an implicit subscriber
processing agent might decide that further events are needed for processing and may in
turn submit explicit subscriptions to receive those events when they are published in the
queue. Depending on the configurations of the processing agent, events specified in the
explicit subscription may include past events that have already occurred and published in
the queue. In such a scenario, since the events published in the queue might have been
persisted or stored, the queue may retrieve and deliver those subscribed past events to the
processing agent. The queue might further deliver subscribed events to the processing
agent as more events are published in the queue.

[0018] According to further aspects, events in the queue may be mapped to or
abstracted into one or more virtual streams, and each of the virtual streams might include a
subset of events that are published in the queue. The event publication and event
subscription performed by the processing agent, and/or other entities, may be directed to
the virtual streams rather than the queue. Each of the virtual streams may be defined by the
events to be published therein and/or by the type of events that a processing agent is
interested in receiving. As such, the virtual streams might be dynamic, and the existence of
the virtual streams might depend on the events to be published and/or events to be
delivered. Additional details regarding these and other aspects of the technologies
presented herein will be provided below with regard to FIGURES 1-6.

[0019] While the subject matter described herein is presented in the general context of
program modules that execute in conjunction with the execution of an operating system
and application programs on a computer system, those skilled in the art will recognize that
other implementations may be performed in combination with other types of program
modules. Generally, program modules include routines, programs, components, data
structures, and other types of structures that perform particular tasks or implement
particular abstract data types. Moreover, those skilled in the art will appreciate that the
subject matter described herein may be practiced with other computer system
configurations, including hand-held devices, multiprocessor systems, microprocessor-
based or programmable consumer electronics, minicomputers, mainframe computers, and
the like.

[0020] In the following detailed description, references are made to the accompanying

10

15

20

25

30

WO 2016/007399 PCT/US2015/039170

drawings that form a part hereof, and which are shown by way of illustration, specific
aspects or examples. Referring now to the drawings, in which like numerals represent like
clements throughout the several figures, aspects of a computing system and methodology
for subscribing, receiving and processing events will be described.

[0021] Turning now to FIGURE 1, details will be provided regarding a computer
system and several components included therein according to aspects presented herein. In
particular, FIGURE 1 shows aspects of a stream processing system 100 for event delivery
and stream processing utilizing virtual processing agents. As shown in FIGURE 1, the
stream processing system 100 might include a runtime system 108 that supports and
facilitates the communication among various entities in the stream processing system 100,
including, but not limited to, virtual processing agents 102A-102N (which may be referred
to herein individually as a virtual processing agent 102 or collectively as the virtual
processing agents 102), a queue system 104, a client computing device 116, and a server
computing device 118.

[0022] The runtime system 108 might include a group of distributed servers (not
shown in FIGURE 1) that may be configured to execute a runtime base layer 122 to
collectively provide and support “virtualized distributed components” (which may also be
referred to herein as “virtual components”). As used herein, “components” refers to
software components such as software objects or other kinds of individually addressable
isolated entities, such as distributed objects, agents, actors and the like. A virtualized
distributed component supported by the runtime system 108 has an existence that is
independent of the lifetime of any of its in-memory instantiations, and thus independent of
the lifetime of any particular server in the runtime system 108. If there is no in-memory
instance of a virtual component, a message sent to the component automatically causes a
new instance to be created on an available server by the runtime base layer 122, which
may be any available server in the runtime system 108. As such, a virtual component is
always addressable by an identity of the virtual component for interaction and/or operation
independent of whether the virtual component is activated in the system or not.

[0023] The runtime base layer 122 may also be configured to manage virtual
component activation and deactivation. The runtime base layer 122 may be further
configured to manage communications to virtual components transparent to a program that
uses the virtual component. To achieve this, the runtime base layer 122 may maintain
information that indicates one or more server locations for any activated instance of the

virtual component, send one or more communications to an activated virtual component

10

15

20

25

30

WO 2016/007399 PCT/US2015/039170

instance, or preserve communications to a virtual component that is in a deactivated state
until an instance of the virtual component is activated into an activation for receiving the
communications thereto. The runtime base layer 122 thus might give a developer a virtual
“component space” that allows invoking any possible virtual component in the system as
if it were activated, i.e., present in memory.

[0024] If a server on which a virtual component is activated crashes, the virtual
component may be recovered by reactivating another activation of the virtual component
on another server in the runtime system 108. As such, virtual components do not need to
be supervised and/or explicitly recreated by an application that is developed based on the
runtime base layer 122.

[0025] The virtualization of components is based upon a level of indirection that maps
from virtual components to physical instantiations/activations that are currently running.
This level of indirection may provide the runtime base layer 122 with the opportunity to
handle many problems that would otherwise need to be addressed by the application
developer, such as virtual component placement and load balancing, deactivation of
unused virtual components, and virtual component recovery after server failures. Thus, the
virtual components provided by the runtime base layer 122 may simplify the programming
model while allowing the runtime flexibility in balancing load and transparently
recovering from failures. More details on runtime base layer 122 can be found in co-
pending U.S. Patent Application No. 14/228,129, filed on March 26, 2014, and entitled
“Virtualized Components in Computing Systems.”

[0026] According to aspects of technologies presented herein, the virtual processing
agents 102 in the stream processing system 100 may be constructed as virtual components
provided and supported by the runtime base layer 122 of the runtime system 108. Based
on such a construction, the virtual processing agents 102 may be always addressable for
interaction and/or operation independent of whether the virtual processing agents 102 are
activated or not. The virtual processing agents 102 may be recovered after failure of a
server on which the virtual processing agent 102 was activated by reactivating the virtual
processing agent 102 on another server in the runtime system 108.

[0027] In some aspects, the virtual processing agents 102 may each be configured to
implement certain actions and may collectively provide functionality for a large-scale
software application. For example, in a computer game application, a virtual processing
agent 102 may be created for and configured to manage each game in the game

application. A virtual processing agent 102 may also be created for each map that hosts a

10

15

20

25

30

WO 2016/007399 PCT/US2015/039170

game in the game application. Separate virtual processing agents 102 may further be
created and configured to manage individual players who participate in various games of
the game application. Configurations of a virtual processing agent 102, including the
actions to be performed by the virtual processing agent 102, the input and output of the
virtual processing agent 102, and/or other configurations, may be specified through a
declarative definition of the wvirtual processing agent 102 or may be obtained
programmatically.

[0028] In order to provide a coherent system for stream processing, the various virtual
processing agents 102 in the stream processing system 100 might need to communicate
with each other. For example, a message may be communicated from one virtual
processing agent 102 to another to update the status of the virtual processing agents 102,
to activate the other virtual processing agent 102, and/or to trigger certain actions to be
performed by the other virtual processing agent 102. According to some aspects described
herein, the message from a virtual processing agent 102 intended to be communicated to
other virtual processing agents 102 and/or another entity in a system may be published as
an event 112 in a queue 106 implemented by the queue system 104.

[0029] The queue system 104 may include one or more servers implementing a
queue 106 for receiving and persisting event publications from various entities in the
stream processing system 100. It should be understood that the servers in the queue
system 104 and the runtime system 108 may include the same or different servers, and the
servers in the queue system 104 and the runtime system 108 may be web servers,
application servers, network appliances, dedicated computer hardware devices, personal
computers (“PC”), or any combination of these and/or other computing devices known in
the art. The servers may be connected through a network (not shown in FIGURE 1), that
may be a local-area network (“LAN”), a wide-area network (“WAN”), the Internet, or any
other networking topology known in the art that connects computing devices.

[0030] The event 112 to be published in the queue 106 might include various
information associated with an event that has occurred or been observed at the event
sending entity which might be a virtual processing agent 102, a client computing
device 116, a server computing device 118, and/or potentially other entities in the stream
processing system 100. The information contained in an event 112 may include, but is not
limited to, an identification of the entity where the event originated, the time of the event,
the location of the event, identifications of entitics involved in the event, and/or other

information that might be used to describe the event. The event 112 may be published in

10

15

20

25

30

WO 2016/007399 PCT/US2015/039170

the queue 106 by sending an event publication 110 through the runtime system 108. The
event publication 110 may include all the information contained in the corresponding
event 112 with additional information such as an indication that the event is for
publication, data specifying where and when the event 112 should be published, and the
like. In further aspects, the queue system 104 may also persist or store the published
events 112 in the queue 106 or in other storage locations that are accessible to the queue
system 104 and/or to the runtime system 108.

[0031] In order to receive events for processing from other virtual processing
agents 102 and/or other event originating entities in the stream processing system 100, a
virtual processing agent 102 may send one or more event subscriptions 114 to subscribe to
receive events that are published in the queue 106. Such a virtual processing agent 102
may be referred to herein as an “explicit subscriber processing agent 102” or an “explicit
subscriber 102” of those events. By way of example, and not limitation, an event
subscription 114 may contain data that specifies the type or the content of the events that
the subscribing virtual processing agent 102 is interested in receiving. The event
subscription 114 may also specify a time period during which the subscribed events should
occur. The event subscription 114 might further specify one or more predicates or rules
that may be utilized to filter events to be delivered to the virtual processing agent 102. It
should be understood that various other data describing the events that a virtual processing
agent 102 is interested in receiving may also be included in the event subscription 114.
[0032] As will be discussed in more detail below, the runtime system 108 may also be
configured to execute a stream processing layer 124, which may be referred to herein as
the “stream processing layer 124,” or the “runtime stream processing layer 124.” The
runtime stream processing layer 124 may be configured to manage event communications
among the entities in the stream processing system 100, including, but not limited to,
managing event publications 110 in the queue 106, coordinating the delivery of events 112
to virtual processing agents 102 and/or other event subscribers, receiving and processing
event subscriptions 114, and potentially other operations.

[0033] The runtime stream processing layer 124 might receive the event
subscriptions 114 from one or more explicit subscriber processing agents 102, and send
subscribed events 112 to the corresponding explicit subscriber processing agents 102 when
the subscribed events 112 are published in the queue 106. According to further aspects, the
runtime stream processing layer 124 may further send a published event 112 or event

information contained in the event 112 to one or more virtual processing agents 102 that

10

15

20

25

30

WO 2016/007399 PCT/US2015/039170

have not explicitly subscribed to the events 112, but might be interested in receiving the
information contained in the published events 112, which are referred to herein as
“implicit subscriber processing agents 102” or “implicit subscriber 102” of the published
events 112.

[0034] An implicit subscriber processing agent 102 may be identified through
examining configurations or settings of the virtual processing agent 102, such as the
actions to be performed by the virtual processing agent 102, the input and output of the
virtual processing agent 102, the status of the virtual processing agent 102, and/or other
configurations of the virtual processing agent 102. For example, a virtual processing
agent 102 might be identified as an implicit subscriber processing agent 102 if the actions
to be performed by the virtual processing agent 102 involve an object or an entity that
initiated, is mentioned, or otherwise is associated with the published event 112. A virtual
processing agent 102 might also be identified as an implicit subscriber processing
agent 102 if data included in the published event 112 is consumed or processed by the
virtual processing agent 102. It should be understood that these examples are merely
illustrative, and should not be construed as limiting. Other ways of identifying the implicit
subscriber processing agent 102 may also be utilized.

[0035] Once the runtime stream processing layer 124 has identified the implicit
subscriber processing agents 102, the event 112 may be delivered to the implicit
subscriber processing agents 102 through the runtime base layer 122. As discussed above,
the wvirtual processing agents 102 in the stream processing system 100 may be
implemented as virtual components supported by the runtime base layer 122 of the
runtime system 108. From the perspective of the runtime stream processing layer 124, the
virtual processing agents 102 might be always addressable for the delivery of the
events 112 independent of whether the virtual processing agents 102 are activated in the
system or not. The runtime stream processing layer 124 thus may pass the event 112 to the
runtime base layer 122 for delivery.

[0036] Upon receiving the event 112, the runtime base layer 122 may determine
whether the implicit subscriber processing agents 102 have been activated or not, that is,
whether the implicit subscriber processing agents 102 have been loaded into the memory
and are ready for operation. If the implicit subscriber processing agents 102 have not been
activated, the runtime base layer 122 may activate the implicit subscriber processing
agents 102 and then deliver the event 112 to the activated implicit subscriber processing

agents 102. Similarly, when delivering events 112 to explicit subscriber processing

10

15

20

25

30

WO 2016/007399 PCT/US2015/039170

agents 102, the runtime base layer 122 might also determine if the explicit subscriber
processing agents 102 are activated, and activate the explicit subscriber processing
agents 102, if necessary, before the delivery of the events 112.

[0037] Depending on the implementation of the virtual processing agents 102 and the
status of the virtual processing agents 102 when activated, some of the activated implicit
subscriber processing agents 102 might not be configured to accept and process the
event 112 yet. For example, the implicit subscriber processing agent 102 might not have
an event handler constructed yet upon activation. In such a scenario, event information
including some or all of the data contained in the event 112 may be rearranged and
delivered to the implicit subscriber processing agent 102 in a format that is acceptable to
the implicit subscriber processing agent 102. In other scenarios, it may be sufficient to
send event information indicating the occurrence of the event 112 to the virtual processing
agent 102 without sending detailed data contained in the event 112.

[0038] Based on the received event 112 or the event information, some implicit
subscriber processing agents 102 might decide to submit one or more event
subscriptions 114 to the runtime stream processing layer 124 to receive more events
published in the queue 106 for processing. As briefly mentioned above, events contained
in the explicit event subscriptions 114 submitted by the implicit subscriber processing
agent 102 might include past events that have been published in the queue 106 before the
event subscriptions 114 are received and processed. The runtime stream processing
layer 124 may retrieve the past events from the queue or other storage where the
corresponding events are persisted, and deliver the retrieved events to the implicit
subscriber processing agent 102. It should be noted that when the implicit subscriber
processing agent 102 submits the event subscription 114, the implicit subscriber
processing agent 102 might turn into an explicit subscriber processing agent 102 for the
subscribed events and may be handled in a manner similar to that described above for
handling the explicit subscriber processing agent 102.

[0039] It should be further understood that while the above has primarily described
that the virtual processing agent 102 may send event publications 110, submit event
subscriptions 114, and/or receive events 112, various other entities in the stream
processing system 100 may also perform these operations. For example, a user of a
computer game application might be interested in receiving information regarding a game,
such as the leader board information of the game. The user may send an event

subscription 114 to the runtime system 108 to obtain such information through a client

10

10

15

20

25

30

WO 2016/007399 PCT/US2015/039170

computing device 116, which might be a personal computer (“PC”), a laptop, a notebook,
a personal digital assistant (“PDA”), a game console, a set-top box, an e-reader, a
consumer electronics device, a smartphone, a tablet computing device, a server computer,
or any other computing device capable of communicating with the runtime system 108.
[0040] Similarly, a server computing device 118, which may be server computers, web
servers, application servers, network appliances, dedicated computer hardware devices,
PCs, or any combination of these and/or other computing devices known in the art, and
have a game executed thereon, might send an event publication 110 to publish a game start
event 112 in the queue 106. The server computing device 118 might also send one or more
event subscriptions 114 in order to receive events 112 that the server computing
device 118 is interested in processing. Other entities in the stream processing system 100
may also be configured to publish, receive, and/or subscribe to the events 112 in a way
similar to that described above.

[0041] It should also be appreciated that while FIGURE 1 primarily discloses the use
of the queue 106 for receiving and persisting event publications 110 from various entities
in the stream processing system 100, various other mechanisms may also be utilized in a
similar fashion. In fact, virtually any data structure that can store and hold data for later
processing might be utilized in a similar way to that described above regarding the
queue 106. It is intended that this application include all such data structures for holding
and storing the event publications 110.

[0042] Referring now to FIGURE 2, a block diagram showing further aspects of the
queue 106 and the runtime stream processing layer 124 will be described. As briefly
discussed above, the runtime stream processing layer 124 might provide and support
virtual streams for processing event publications 110 and event subscriptions 114. By
utilizing virtual streams, event publications 110 and event subscriptions 114 submitted by
virtual processing agents 102, and/or other entities, may be directed to the virtual streams
rather than the queue 106. As a result, the virtual processing agents 102 might not need to
know the existence of the queue 106. FIGURE 2 illustrates various virtual
streams abstracted by the runtime stream processing layer 124 and the interactions among
the virtual streams, the queue 106 and the virtual processing agents 102.

[0043] As shown in FIGURE 2, the runtime stream processing layer 124 may include
a virtual stream module 202 for providing and supporting functionality associated with
virtual streams and for maintaining a mapping of the events among the queue 106 and the

virtual streams. The virtual streams provided by the virtual stream module 202 might

11

10

15

20

25

30

WO 2016/007399 PCT/US2015/039170

include event publication virtual streams 204A-204C (which may be referred to herein
individually as an event publication virtual stream 204 or collectively as event publication
virtual streams 204) and event subscription virtual streams 206A-206D (which may be
referred to herein individually as an event subscription virtual stream 206 or collectively
as event subscription virtual streams 206).

[0044] Each of the event publication virtual streams 204 may be defined by the events
to be published therein, and each of the event subscription virtual streams 206 may be
defined by the events that a subscribing entity is interested in receiving. For example, a
virtual processing agent 102A might send an event publication 110 to the runtime stream
processing layer 124 to publish an event 112. The event publication 110 might be sent to
the runtime stream processing layer 124 through an event publication virtual stream 204C.
Prior to the event publication 110 being received at the runtime stream processing
layer 124, the event publication virtual stream 204C might not exist and the arrival of the
event publication 110 may cause the event publication virtual stream 204C to be created.
In other words, an event publication 110 or the event contained therein may define and
cause the event publication virtual stream 204 where the event publication 110 is sent to
come into existence. Likewise, other virtual processing agents 102 may also submit event
publications 110 to their corresponding event publication virtual streams 204 to publish
events. After receiving the event publications 110 through the event publication virtual
streams 204, the virtual stream module 202 may send the events specified in the event
publications 110 to the queue 106 for publication.

[0045] Similarly, when a wvirtual processing agent 102P submits an event
subscription 114 indicating the events that the virtual processing agent 102P is interested
in receiving, such an event subscription 114 may define an event subscription virtual
stream 206D corresponding to the events specified by the event subscription 114. As a
result, by submitting the event subscription 114, the virtual processing agent 102P is
equivalently subscribing to the event subscription virtual stream 206D defined by the
event subscription 114. It should be understood that a virtual processing agent 102 may
subscribe to multiple event subscription virtual streams 206 by submitting one or multiple
event subscriptions 114 to the runtime stream processing layer 124. Once the runtime
stream processing layer 124 has received the event subscription 114, the event
subscription virtual stream 206D may be created and come to existence. Based on the

event subscription 114, the virtual stream module 202 might retrieve events 112 published

12

10

15

20

25

30

WO 2016/007399 PCT/US2015/039170

in the queue 106, and push the events 112 into the event subscription virtual stream 206D,
which may then be delivered to the virtual processing agent 102P.

[0046] For example, a virtual processing agent 102A might be configured to process a
game, and may send an event publication 110 to the runtime stream processing layer 124
to publish an event 112 that occurred in the game. The submitted event publication 110
may cause a game event stream 204C to be created to receive the event 112 for publishing.
The event 112 received through the game event stream 204C may be further sent to the
queue 106 for publication and storing. In the meantime, the runtime stream processing
layer 124 may have also received an event subscription 114 from the virtual processing
agent 102P to subscribe to receive all the kill events in games. Such an event
subscription 114 might have caused a kill event stream 206D be created.

[0047] Upon receiving the event publication 110 in the game event stream 204C, the
virtual stream module 202 might detect that kill events, if there are any, published through
the game event stream 204C should be forwarded to the kill event stream 206D for
delivery to the virtual processing agent 102P. The detection may be performed by, for
example, utilizing the mapping of events in the queue 106 and in the virtual streams
maintained by the virtual stream module 202 as discussed above. Subsequently, for each
kill event 112 published through the game event stream 204C, the virtual stream
module 202 may retrieve the kill event 112 from the queue 106 and push it to the kill
event stream 206D for delivery to virtual processing agent 102P. It should be appreciated
that the above example is merely illustrative, and various other events 112, event
publications 110, event subscriptions 114 and/or other data may be communicated among
the virtual processing agents 102 and the queue 106 through the virtual streams 204 and
206, and/or the runtime stream processing layer 124.

[0048] According to further aspects, the event subscription 114 submitted by a virtual
processing agent 102 may further specify one or more predicates that may be utilized to
further define the corresponding event subscription virtual stream 206. The predicates may
be processed at the proper time by the runtime stream processing layer 124 to refine the
event subscription virtual stream 206, such as to create one or more filters that can be
utilized to filter the events pushed to the event subscription virtual stream 206. Utilizing
the predicates, the events sent to the virtual processing agent 102 may be further refined
and thus eliminate the delivery of unneeded events to the virtual processing agent 102.
[0049] As can be seen from the above, the virtual streams 204 and 206 are highly

dynamic and flexible, and may be created whenever needed, thereby significantly

13

10

15

20

25

30

WO 2016/007399 PCT/US2015/039170

increasing the scalability of the stream processing system 100. According to further
aspects, the virtual streams 204 and 206 may logically exist all the time, but the system
resources are allocated to them only when there are events in the virtual streams 204 and
206 to process. The virtual streams 204 and 206 may be deactivated by reclaiming their
resources when no events are received in the virtual streams 204 and 206 over a certain
period of time. This period of time may be pre-determined or dynamically adjusted
according to the status of the system, such as the usage of the system resources. Such an
implementation may be advantageous in scenarios when virtual streams are built with a
fine granularity. For example, virtual streams in an application system may be constructed
on a per-user basis, a per-device basis, and/or a per-session basis. In a large application
system, the number of users, devices and/or session, and thus the number of virtual
streams, may be at the scale of hundreds of millions or even billions. Events associated
with those virtual streams, however, may only occur infrequently and/or in bursts, and at
one moment, only a small portion of the virtual streams may need to be active. In such a
system, by allocating resources to virtual streams only when there are events in the virtual
streams 204 and 206 to process may significantly increase the efficiency and the
scalability of the system.

[0050] Furthermore, the virtual stream module 202 may be further configured to
aggregate the communications to and from the virtual processing agents 102 before
interacting with the queue 106. For example, the virtual stream module 202 might receive
multiple event publications 110 from multiple virtual processing agents 102. These
multiple event publications 110 may be aggregated through, for example, multiplexing,
and communicated to the queue 106 to publish the multiple events 112 through a single
communication connection. Likewise, multiple event subscriptions 114 received from
multiple virtual processing agents 102 may be processed and aggregated, and the events
112 to be sent to the multiple virtual processing agents 102 might be retrieved from the
queue 106 also through a single communication connection with the queue 106.

[0051] It should be appreciated that while the above examples have described that
multiple communications are aggregated and communicated to the queue 106 through a
single communication connection, it should be understood that more than one
communication connection may be established between the runtime stream processing
layer 124 and the queue 106 for communication. The number of established
communication connections, however, may be much smaller than the number of

communication requests, such as the event publications 110, and/or the event

14

10

15

20

25

30

WO 2016/007399 PCT/US2015/039170

subscriptions 114, from the virtual processing agents 102. The advantage of the
communication aggregation may become more significant as the scale of the stream
processing system 100 increases. For instance, for a stream processing system 100 with
millions of virtual processing agents 102, the communication requests from the virtual
processing agents 102 might be at the scale of tens of millions, and it is typically
impractical for a queue 106 to establish such a large number of direct TCP/IP connections
with each of the virtual processing agents 102. Through communication aggregation, the
virtual stream module 202 may reduce the number of direct TCP/IP connections to the
queue 106 to several thousands, thereby substantially reducing the consumption of
communication resources.

[0052] It should be further appreciated that while FIGURES 1 and 2 illustrate that one
queue 106 is utilized for publishing and persisting the events 112, multiple queues 106
may be employed. In such implementations, the virtual stream module 202 may be further
configured to manage the multiple queues 106 and maintain a mapping of events among
the queues 106 and the various virtual streams 204 and 206. It should also be understood
that other entities in the stream processing system 100, such as the client computing device
and the server computing device, may also publish events via event publications 110,
submit event subscriptions 114, and/or receive events 112 through the virtual streams 204
and 206.

[0053] FIGURE 2 further illustrates aspects for organizing and managing virtual
processing agents 102 utilizing processing agent containers 208A-208B (which may be
referred to herein individually as a processing agent container 208 or collectively as the
processing agent containers 208). Each of the processing agent containers 208 might
provide an independent computing environment to the virtual processing agents 102 that is
separated and isolated from other processing agent containers 208. Various computing
resources, such as virtual machines, may be allocated to a processing agent container 208
to host the virtual processing agents 102. Each processing agent container 208 may also
scale independently from other processing agent containers 208. It should be understood
that the virtual processing agent 102 that publishes an event 112 and the virtual processing
agent 102 that subscribes to and receives the event 112 may be in a same processing agent
container 208 or in two different processing agent containers 208. It should be further
understood that the virtual processing agents 102 may be organized and managed in

various other ways that do not involve the use of the processing agent containers 208.

15

10

15

20

25

30

WO 2016/007399 PCT/US2015/039170

[0054] FIGURE 3 is a flow diagram illustrating aspects of one illustrative routine 300
for delivering events to virtual processing agents 102. In some implementations, the
routine 300 is performed by the runtime stream processing layer 124 of the runtime
system 108 described above in regard to FIGURE 1. It should be appreciated, however,
that the routine 300 might also be performed by other modules and/or components of the
runtime system 108 or by modules and/or components of other entities in the stream
processing system 100 illustrated in FIGURE 1.

[0055] It should be appreciated that the logical operations described herein with
respect to FIGURE 3 and the other figures are implemented (1) as a sequence of computer
implemented acts or program modules running on a computing system and/or (2) as
interconnected machine logic circuits or circuit modules within the computing system. The
implementation is a matter of choice dependent on the performance and other
requirements of the computing system. Accordingly, the logical operations described
herein are referred to variously as states, operations, structural devices, acts, or modules.
These states, operations, structural devices, acts and modules may be implemented in
software, in firmware, in special purpose digital logic, and any combination thereof. It
should also be appreciated that more or fewer operations may be performed than shown in
the figures and described herein. These operations may also be performed in a different
order than those described herein. It also should be understood that each of the illustrated
methods can be ended at any time and need not be performed in its entirety.

[0056] Some or all operations of the methods, and/or substantially equivalent
operations, can be performed by execution of computer-readable instructions included on
a computer-storage media, as defined below. The term “computer-readable instructions,”
and variants thereof, as used in the description and claims, is used expansively herein to
include routines, applications, application modules, program modules, programs,
components, data structures, algorithms, and the like. Computer-readable instructions can
be implemented on various system configurations, including single-processor or
multiprocessor systems, minicomputers, mainframe computers, personal computers, hand-
held computing devices, microprocessor-based, programmable consumer electronics,
combinations thereof, and the like.

[0057] The routine 300 begins at operation 302 where the stream processing layer 124
of the runtime system 108 might receive an event publication 110 in a corresponding event
publication virtual stream 204. As discussed above, the event publication virtual

stream 204 may be dynamically created based on the received event publication 110. The

16

10

15

20

25

30

WO 2016/007399 PCT/US2015/039170

routine 300 then proceeds to operation 304 where the runtime stream processing layer 124
sends the event 112 specified in the event publication 110 to the queue 106 for
publication. The runtime stream processing layer 124 may further instruct the queue 106
to persist or store the event 112 in the queue 106 so that the event 112 may be retrieved
later. In some implementations, the event 112 may also be persisted or stored in a storage
device that is accessible to the queue 106 and/or to the runtime stream processing
layer 124.

[0058] From operation 304, the routine 300 proceeds to operation 306 where the
runtime stream processing layer 124 might retrieve the event 112 from the queue 106, and
the routine 300 further proceeds to operation 308 where implicit subscriber processing
agents 102 based on the event 112 may be identified. As noted above, an implicit
subscriber processing agent 102 is a virtual processing agent 102 that has not explicitly
subscribed to the event 112, but might be interested in receiving the information contained
in the published event 112. The implicit subscriber processing agent 102 may be identified
through examining configurations or settings of the virtual processing agent 102, such as
the actions to be performed by the virtual processing agent 102, the input and output of the
virtual processing agent 102, the status of the virtual processing agent 102, and/or other
configurations of the virtual processing agent 102. For example, a virtual processing
agent 102 might be identified as an implicit subscriber processing agent 102 if the actions
to be performed by the virtual processing agent 102 involve an object or an entity that
initiated, is mentioned, or otherwise is associated with the published event 112. A virtual
processing agent 102 might also be identified as an implicit subscriber processing
agent 102 if data included in the published event 112 is consumed or processed by the
virtual processing agent 102.

[0059] In some implementations, the runtime stream processing layer 124 might
maintain an implicit activation table that maps different types of events or the
corresponding event subscription virtual streams 206 to one or more implicit subscriber
processing agents 102. An example implicit activation table is shown in FIGURE 6 and
will be described later. The implicit activation table might be pre-generated and looked up
by the runtime stream processing layer 124 when needed. The implicit activation table
might also be realized through a function or a module executing in the runtime stream
processing layer 124 that may output one or more implicit subscriber processing
agents 102 for a given event or event information. It should be noted that the implicit

activation table may be implemented in other ways by following the same principles

17

10

15

20

25

30

WO 2016/007399 PCT/US2015/039170

described above.

[0060] From operation 308, the routine 300 proceeds to operation 310, where the
implicit subscriber processing agents 102 identified in operation 308 may be informed of
the event 112, for example, by sending the event 112 or event information of the event 112
to the implicit subscriber processing agents 102. As mentioned above, the event
information may contain information contained within or associated with the event 112.
Depending on the nature of the implicit subscriber processing agents 102, the event
information sent to some implicit subscriber processing agents 102 may contain a portion
or all of the data contained in the event 112. For other implicit subscriber processing
agents 102, the event information may only contain an indication of the existence of the
event 112. As will be discussed in detail with regard to FIGURE 4, based on the received
event 112 or the event information, the implicit subscriber processing agents 102 may
decide whether to subscribe to receive more events and/or to perform further operations.
[0061] From operation 310, the routine 300 proceeds to operation 312, where the
runtime stream processing layer 124 might receive event subscriptions 114 from one or
more of the implicit subscriber processing agents 102 to subscribe to the corresponding
event subscription virtual streams 206. The routine 300 then proceeds to operation 314
where the runtime stream processing layer 124 may determine whether events specified in
the explicit event subscriptions 114 include past events that have already occurred and
been published in the queue 106. If it is determined that the explicit event
subscriptions 114 include past events, the routine 300 proceeds to operation 316 where the
runtime stream processing layer 124 may retrieve the past events from the queue 106
and/or other storage devices that store the past events, and deliver the retrieved past events
to the corresponding virtual processing agents 102.

[0062] From operation 316, or if it is determined at operation 314 that the explicit
event subscriptions 114 do not include past events, the routine 300 proceeds to
operation 318, where the runtime stream processing layer 124 may update the explicit
subscriptions it maintains and/or perform other operations based on the received explicit
event subscriptions 114, such as updating mapping of events in the event publication
virtual streams 204, the event subscription virtual streams 206, and the queue 106.

[0063] From operation 306, the routine 300 may also proceed to operation 320. At
operation 320, the runtime stream processing layer 124 may identify one or more explicit
subscriber processing agents 102 based on the event subscriptions 114 previously

submitted by the virtual processing agents 102. The routine 300 may further proceed to

18

10

15

20

25

30

WO 2016/007399 PCT/US2015/039170

operation 322 where the event 112 may be delivered to the explicit subscriber processing
agents 102. From operation 318 or operation 322, the routine 300 proceeds to operation
324 where it may be determined whether the runtime stream processing layer 124 needs to
deliver more events. If the runtime stream processing layer 124 needs to deliver more
events, the routine 300 returns to operation 302 to receive more event publications 110 for
processing and delivery. Otherwise, the routine 300 proceeds to operation 326, where the
routine 300 ends.

[0064] It should appreciated that in the above-described event delivery process, when
delivering the event 112 to explicit subscriber processing agents 102 and/or when sending
event 112 or event information to the implicit subscriber processing agents 102, the
runtime base layer 122 may first determine whether the corresponding processing
agents 102 have been activated. If there are any processing agents 102 that have not been
activated, the runtime base layer 122 may activate the processing agents 102, and then
deliver the event 112 or the event information to the activated processing agents 102.
[0065] In this regard, a processing agent 102, such as the implicit subscriber
processing agent 102, may be activated dynamically including allocating system resources
upon arrival of a first event 112 in a stream 206 that the processing agent 102 is
responsible for processing of. Thus, system resources, such as memory and CPU, may not
need to be allocated to the processing agent 102 before the first event 112 arrives.
Likewise, when the processing agent 102 becomes idle for a given period of time, for
example, because no events 112 are received for processing from the streams 206 that the
processing agent 102 is subscribed to, the processing agent 102 may be transparently
deactivated to reclaim its system resources. The given period of time for deactivating the
processing agent 102 may be pre-determined or dynamically adjusted according to the
status of the system, such as the usage of the system resources.

[0066] FIGURE 4 is a flow diagram illustrating aspects of one illustrative routine 400
for event processing and subscription. In some implementations, the routine 400 is
performed by the virtual processing agent 102 described above in regard to FIGURES 1
and 2. It should be appreciated, however, that the routine 400 might also be performed by
other entities in the stream processing system 100 illustrated in FIGURE 1.

[0067] The routine 400 begins at operation 402 where an implicit subscriber
processing agent 102 might receive an event 112 or event information of the event 112
from the runtime stream processing layer 124, and further process the received event 112

or event information. From operation 402, the routine 400 further proceeds to operation

19

10

15

20

25

30

WO 2016/007399 PCT/US2015/039170

404 where the implicit subscriber processing agent 102 may determine whether it needs to
subscribe to more events 112 based on the received event 112 or event information. If it is
determined that the implicit subscriber processing agent 102 needs to subscribe to more
events, the routine proceeds to operation 406 where the implicit subscriber processing
agent 102 may identify one or more event subscription virtual streams 206 from which the
implicit subscriber processing agents 102 are interested in receiving events. At operation
408, the implicit subscriber processing agent 102 may subscribe to the identified event
subscription virtual streams 206 through submitting event subscriptions 114 to the runtime
stream processing layer 124. By submitting the event subscriptions 114, the implicit
subscriber processing agent 102 may turn into an explicit subscriber processing agent 102
with respect to the submitted event subscriptions 114.

[0068] From operation 408, the routine 400 proceeds to operation 410 where the
explicit subscriber processing agent 102 might receive the subscribed events that are
published in the queue 106. As discussed above, if the event subscription 114 submitted at
operation 408 specify past events, the events received at operation 410 might include those
past events. The routine 400 then proceeds to operation 412 where the received events
may be processed. The routine 400 further proceeds to operation 414 where it may be
determined if the explicit subscriber processing agent 102 needs more events to process. If
it is determined that more events are needed, the routine 400 returns back to operation 410
where the explicit subscriber processing agent 102 may receive more events 112 for
processing. If it is determined at operation 414 that no more events are needed, or if it is
determined at operation 404 that the implicit subscriber processing agent 102 does not
need to subscribe to more events, the routine 400 proceeds to operation 416 where the
routine 400 ends.

[0069] FIGURES 5A-5D illustrate operations by example virtual processing
agents 102 in response to events 112 published in the queue 106 at different points in time,
according to one or more aspects presented herein. As illustrated in FIGURE 5A, the
stream processing layer 124 of the runtime system 108 may maintain or otherwise
generate an implicit activation table 506 that maps different types of events 112 or their
corresponding event subscription virtual streams 206 to implicit subscriber processing
agents 102. According to the example implicit activation table 506 shown in FIGURE 5A,
map processing agents, game processing agents, leader board processing agents, and/or
elite player processing agents may be identified as implicit subscriber processing

agents 102 of a game stream 504. Similarly, for a player stream 520, the potential implicit

20

10

15

20

25

30

WO 2016/007399 PCT/US2015/039170

subscriber processing agents 102 might include player processing agents, game processing
agents, and/or elite player processing agents. Based on the implicit activation table 506,
the runtime stream processing layer 124 may identify and activate one or more implicit
subscriber processing agents 102 as events 112 are received and published in the
queue 106.

[0070] At time To, a game start event 502 is published in the queue 106, for example,
through an event publication virtual stream 204. Data contained in the game start event
502 indicates that game X started on map H with players A-F currently in the game X. The
runtime stream processing layer 124 may retrieve the game start event 502 from the
queue 106, and identify implicit subscriber processing agents 102 of a game stream 504
that corresponds to the game start event 502. Based on the implicit activation table 506,
the runtime stream processing layer 124 may determine that the implicit subscriber
processing agents 102 of the game stream 504 may include the map processing agent 508
for calculating the number of kills on map G, the map processing agent 510 for calculating
the number of kills on map H, and the elite play processing agent 512 for calculating the
number of kills for elite players C, M and S. The runtime stream processing layer 124 may
then generate game start event information 514 based on the game start event 502 and
push it to the game stream 504 for delivery to the identified implicit subscriber processing
agents 508, 510 and 512.

[0071] At time Ti as shown in FIGURE 5B, the game start event information 514
might have been delivered to and processed by the implicit subscriber processing agents
508, 510 and 512. At processing agent 508, it might be determined that the map H
associated with the game X indicated in the game start event information 514 is different
from the map G that the map processing agent 508 is interested in. As a result, the
processing agent 508 might do nothing with respect to the received game start event
information 514. At map processing agent 510, however, it may be determined that the
map H contained in the game start event information 514 is what the map processing agent
510 is interested in, and thus the map processing agent 510 may then send a subscription
520 to subscribe to a game X kill stream 530 to receive all kill events in game X.

[0072] Similarly, the elite player processing agent 512 might determine that game X
includes one of the elite players that it is processing, and thus might submit a subscription
524 to subscribe to a game X player C kill stream 532 to receive all kill events by player C
in game X. It should be noted that while the game start event information 504 is being

delivered to and processed at the processing agents 508, 510 and 512, there might be more

21

10

15

20

25

30

WO 2016/007399 PCT/US2015/039170

events published in the queue 106, such as the kill event 514 by player C, the reward event
516 to reward player A, and the kill event 518 by player F.

[0073] At time T2 as shown in FIGURE 5C, the runtime stream processing layer 124
may process the event subscriptions submitted by the map processing agent 510 and elite
player processing agent 512. Since the subscription 522 requests all the kill events since
the beginning of game X, the runtime stream processing layer 124 may determine that
such a subscription includes past kill events 514 and 518 that are published before the
subscription 522 is received. Likewise, the runtime stream processing layer 124 may also
determine that the subscription 524 includes past kill event 514. Accordingly, the runtime
stream processing layer 124 may retrieve the kill events 514 and 518 from the queue 106,
send the kill events 514 and 518 to map processing agent 510 through the game X kill
stream 530 and send the kill event 514 to the elite player processing agent 512 through the
game X player C kill stream 532.

[0074] As shown in FIGURE 5D, at time T3, a new kill event 528 is published in the
queue 106. The runtime stream processing layer 124 may retrieve the event 528 from the
queue 106 and determine that this new kill event 528 belongs to the game X kill stream
530. The kill event 528 may then be pushed to the game X kill stream 530 and delivered to
the map processing agent 510. The runtime stream processing layer 124 may continue to
process and deliver more events as they are published in the queue 106 in a similar
manner.

[0075] It can be seen from the above, by allowing an implicit subscriber processing
agent 102 to receive information on events that it has not subscribed to, the stream
processing agents 102 may be automatically activated based on events flowing through the
system thereby supporting very granular stream processing units thus significantly
simplifying the programming model. Furthermore, by reducing the definition of streams to
the semantics of the events that are delivered over them, processing agents 102 may not
need to be aware of the stream-topology and can instead focus on the specific events they
wish to process, which further simplifies the programming model. In addition, by utilizing
the technologies presented herein, ad-hoc definition of complex event detection and
aggregation logic may be dynamically applied to the system without having to recompile
or re-deploy the topology.

[0076] FIGURE 6 shows an example computer architecture for a computing device
600 capable of storing and executing the components shown in FIGURE 1. The computer

architecture shown in FIGURE 6 illustrates a conventional server computer, workstation,

22

10

15

20

25

30

WO 2016/007399 PCT/US2015/039170

desktop computer, laptop, tablet, phablet, network appliance, personal digital assistant
(“PDA”), e-reader, digital cellular phone, or other computing device, and may be utilized
to execute any of the software components presented herein. For example, the computer
architecture shown in FIGURE 6 may be utilized to execute any of the software
components described above.

[0077] The computing device 600 includes a baseboard 602, or “motherboard,” which
is a printed circuit board to which a multitude of components or devices may be connected
by way of a system bus or other electrical communication paths. In one illustrative aspect,
one or more central processing units (“CPUs”) 604 operate in conjunction with a
chipset 606. The CPUs 604 may be standard programmable processors that perform
arithmetic and logical operations necessary for the operation of the computing device 600.
[0078] The CPUs 604 perform operations by transitioning from one discrete, physical
state to the next through the manipulation of switching elements that differentiate between
and change these states. Switching elements may generally include electronic circuits that
maintain one of two binary states, such as flip-flops, and electronic circuits that provide an
output state based on the logical combination of the states of one or more other switching
clements, such as logic gates. These basic switching elements may be combined to create
more complex logic circuits, including registers, adders-subtractors, arithmetic logic units,
floating-point units, and the like.

[0079] The chipset 606 provides an interface between the CPUs 604 and the remainder
of the components and devices on the baseboard 602. The chipset 606 may provide an
interface to a RAM 608, used as the main memory in the computing device 600. The
chipset 606 may further provide an interface to a computer-readable storage medium such
as a read-only memory (“ROM”) 610 or non-volatile RAM (“NVRAM?”) for storing basic
routines that help to startup the computing device 600 and to transfer information between
the various components and devices. The ROM 610 or NVRAM may also store other
software components necessary for the operation of the computing device 600 in
accordance with the aspects described herein.

[0080] The computing device 600 may operate in a networked environment using
logical connections to remote computing devices and computer systems through a
network, such as the local area network 620. The chipset 606 may include functionality for
providing network connectivity through a network interface controller (NIC) 612, such as
a gigabit Ethernet adapter. The NIC 612 is capable of connecting the computing device
600 to other computing devices over the network 620. It should be appreciated that

23

10

15

20

25

30

WO 2016/007399 PCT/US2015/039170

multiple NICs 612 may be present in the computing device 600, connecting the computer
to other types of networks and remote computer systems. The local area network 620
allows the computing device 600 to communicate with remote services and servers, such
as a remote computer 650.

[0081] The computing device 600 may be connected to a mass storage device 616 that
provides non-volatile storage for the computing device. The mass storage device 616 may
store system programs, application programs, other program modules, and data, which
have been described in greater detail herein. The mass storage device 616 may be
connected to the computing device 600 through a storage controller 614 connected to the
chipset 606. The mass storage device 616 may consist of one or more physical storage
units. The storage controller 614 may interface with the physical storage units through a
serial attached SCSI (“SAS”) interface, a serial advanced technology attachment
(“SATA”) interface, a fiber channel (“FC”) interface, or other type of interface for
physically connecting and transferring data between computers and physical storage units.
It should also be appreciated that the mass storage device 616, other storage media and the
storage controller 614 may include MultiMediaCard (MMC) components, eMMC
components, Secure Digital (SD) components, PCI Express components, or the like.
[0082] The computing device 600 may store data on the mass storage device 616 by
transforming the physical state of the physical storage units to reflect the information
being stored. The specific transformation of physical state may depend on various factors,
in different implementations of this description. Examples of such factors may include, but
are not limited to, the technology used to implement the physical storage units, whether
the mass storage device 616 is characterized as primary or secondary storage, and the like.
[0083] For example, the computing device 600 may store information to the mass
storage device 616 by issuing instructions through the storage controller 614 to alter the
magnetic characteristics of a particular location within a magnetic disk drive unit, the
reflective or refractive characteristics of a particular location in an optical storage unit, or
the electrical characteristics of a particular capacitor, transistor, or other discrete
component in a solid-state storage unit. Other transformations of physical media are
possible without departing from the scope and spirit of the present description, with the
foregoing examples provided only to facilitate this description. The computing device 600
may further read information from the mass storage device 616 by detecting the physical
states or characteristics of one or more particular locations within the physical storage

units.

24

10

15

20

25

30

WO 2016/007399 PCT/US2015/039170

[0084] In addition to the mass storage device 616 described above, the computing
device 600 may have access to other computer-readable storage media to store and retrieve
information, such as program modules, data structures, or other data. Thus, although the
runtime system 108 and other modules are depicted as data and software stored in the
mass storage device 616, it should be appreciated that the runtime system 108 and/or other
modules may be stored, at least in part, in other computer-readable storage media of the
device 600. Although the description of computer-readable media contained herein refers
to a mass storage device, such as a solid state drive, a hard disk or CD-ROM drive, it
should be appreciated by those skilled in the art that computer-readable media can be any
available computer storage media or communication media that can be accessed by the
computing device 600.

[0085] Communication media includes computer readable instructions, data structures,
program modules, or other data in a modulated data signal such as a carrier wave or other
transport mechanism and includes any delivery media. The term “modulated data signal”
means a signal that has one or more of its characteristics changed or set in a manner as to
encode information in the signal. By way of example, and not limitation, communication
media includes wired media such as a wired network or direct-wired connection, and
wireless media such as acoustic, RF, infrared and other wireless media. Combinations of
the any of the above should also be included within the scope of computer-readable media.
[0086] By way of example, and not limitation, computer storage media may include
volatile and non-volatile, removable and non-removable media implemented in any
method or technology for storage of information such as computer-readable instructions,
data structures, program modules or other data. For example, computer media includes,
but is not limited to, RAM, ROM, EPROM, EEPROM, flash memory or other solid state
memory technology, CD-ROM, digital versatile disks (“DVD”), HD-DVD, BLU-RAY, or
other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other
magnetic storage devices, or any other medium that can be used to store the desired
information and which can be accessed by the computing device 600. For purposes of the

2% &<

claims, the phrase “computer storage medium,” “computer-readable storage medium,” and
variations thereof, does not include waves or signals per se and/or communication media.

[0087] The mass storage device 616 may store an operating system 622 utilized to
control the operation of the computing device 600. According to one aspect, the operating
system comprises the LINUX operating system. According to another aspect, the

operating system comprises the WINDOWS® operating system from MICROSOFT

25

10

15

20

25

30

WO 2016/007399 PCT/US2015/039170

Corporation. According to further aspects, the operating system may comprise the UNIX,
Android, Windows Phone or i0S operating systems. It should be appreciated that other
operating systems may also be utilized. The mass storage device 616 may store other
system or application programs and data utilized by the computing device 600, such as the
runtime system 108 and/or any of the other software components and data described
above. The mass storage device 616 might also store other programs and data not
specifically identified herein.

[0088] In one aspect, the mass storage device 616 or other computer-readable storage
media is encoded with computer-executable instructions which, when loaded into the
computing device 600, transform the computer from a general-purpose computing system
into a special-purpose computer capable of implementing the aspects described herein.
These computer-executable instructions transform the computing device 600 by specifying
how the CPUs 604 transition between states, as described above. According to one aspect,
the computing device 600 has access to computer-readable storage media storing
computer-executable instructions which, when executed by the computing device 600,
perform the various routines described above with regard to FIGURES 3 and 4. The
computing device 600 might also include computer-readable storage media for performing
any of the other computer-implemented operations described herein.

[0089] The computing device 600 may also include one or more input/output
controllers 617 for receiving and processing input from an input device 619. The input
device 619 may include a number of input devices, such as a keyboard, a mouse, a
microphone, a headset, a touchpad, a touch screen, an electronic stylus, or any other type
of input device. Similarly, the input/output controller 617 may provide output to a display,
such as a computer monitor, a flat-panel display, a digital projector, a printer, a plotter, or
other type of output device. It will be appreciated that the computing device 600 may not
include all of the components shown in FIGURE 6, may include other components that are
not explicitly shown in FIGURE 6, or may utilize an architecture completely different than
that shown in FIGURE 6.

[0090] The disclosure presented herein may be considered in view of the following
clauses.

[0091] Clause 1: A computer-implemented method for delivering events, the method
comprising: receiving a publication of an event; identifying a processing agent for
receiving information associated with the event based on configurations of the processing

agent, wherein the processing agent does not explicitly subscribe to receive the event;

26

10

15

20

25

30

WO 2016/007399 PCT/US2015/039170

determining if the processing agent is activated; in response to determining that the
processing agent is not activated, activating the processing agent; delivering the
information associated with the event to the processing agent; receiving a subscription to
one or more events from the processing agent; and delivering the one or more events to the
processing agent.

[0092] Clause 2: The method of clause 1, further comprising: determining if the
subscription specifies one or more past events to be delivered; and in response to
determining that the subscription specifies one or more past events to be delivered,
delivering the one or more past events to the processing agent.

[0093] Clause 3: The method of clauses 1-2, wherein receiving the publication of the
event in the queue comprises: receiving a request to publish the event in a queue;
activating a virtual stream corresponding to the event; and publishing the event in the
queue through the virtual stream.

[0094] Clause 4: The method of clauses 1-3, wherein the subscription to one or more
events defines a virtual stream, and the subscription is a subscription to the virtual stream
corresponding to the one or more events.

[0095] Clause 5: The method of clauses 1-4, wherein activating the processing agent
comprises allocating system resources to the processing agent, and wherein the
subscription to the virtual stream activates the virtual stream and causes system resources
to be allocated to the virtual stream.

[0096] Clause 6: The method of clauses 1-5, further comprising: deactivating the
virtual stream when no events are received in the virtual stream over a certain period of
time by reclaiming the system resources allocated to the virtual stream; and deactivating
the processing agent the processing agent becomes idle for a given period of time by
reclaiming the system resources allocated to the processing agent.

[0097] Clause 7: The method of clauses 1-6, wherein the configuration of the
processing agent is obtained programmatically or determined from a declarative definition
of the processing agent.

[0098] Clause 8: The method of clauses 1-7, wherein the processing agent is
addressable for delivering the event independent of whether the processing agent is
activated or not activated.

[0099] Clause 9: A computer-readable storage medium having computer-executable
instructions stored thereon which, when executed by a computer, cause the computer to:

determine a processing agent for receiving an event that is published in a queue and that

27

10

15

20

25

30

WO 2016/007399 PCT/US2015/039170

the processing agent does not explicitly subscribe to, wherein the event is published in the
queue through a first virtual stream corresponding to the event; determine if the processing
agent is activated; in response to determining that the processing agent is not activated,
activate the processing agent; cause event information of the event to be delivered to the
processing agent; process an explicit subscription to a second virtual stream defined by the
explicit subscription, wherein the explicit subscription is submitted by the processing
agent in response to the event information delivered to the processing agent; and cause
events in the second virtual stream to be delivered to the processing agent.

[00100] Clause 10: The computer-readable storage medium of clause 9, wherein events
published in the queue are persisted.

[00101] Clause 11: The computer-readable storage medium of clauses 9-10, comprising
further computer executable instructions which, when executed by the computer, cause the
computer to: determine if the second virtual stream includes past events published in the
queue; and in response to determining that the second virtual stream includes past events
published in the queue, cause the past events to be pushed to the second virtual stream and
delivered to the processing agent.

[00102] Clause 12: The computer-readable storage medium of clauses 9-11, comprising
further computer executable instructions which, when executed by the computer, cause the
computer to: deactivate the second virtual stream when no events are received in the
second virtual stream over a certain period of time by reclaiming the system resources
allocated to the virtual stream; and deactivate the processing agent when the processing
agent becomes idle for a given period of time by reclaiming the system resources allocated
to the processing agent.

[00103] Clause 13: The computer-readable storage medium of clauses 9-12, wherein
activating the processing agent comprises allocating system resources to the processing
agent, and wherein the subscription to the second virtual stream activates the second
virtual stream and causes system resources to be allocated to the second virtual stream.
[00104] Clause 14: The computer-readable storage medium of clauses 9-13, wherein
the processing agent is addressable for delivering the event independent of whether the
processing agent is activated or not activated.

[00105] Clause 15: The computer-readable storage medium of clauses 9-14, wherein
the processing agent is obtained programmatically or determined based on a declarative
definition of the processing agent.

[00106] Clause 16: A system, comprising one or more computing devices executing a

28

10

15

20

25

30

WO 2016/007399 PCT/US2015/039170

runtime that is configured to: manage a queue for receiving and persisting publications of
events; receive a publication of an event in a first virtual stream and forward the
publication of the event to the queue; identify a processing agent for delivering event
information of the event based on a configuration of the processing agent, wherein the
processing agent does not explicitly subscribe to receive the event and is addressable for
delivering the event information independent of whether the processing agent is activated
or not activated; determine if the processing agent is activated; in response to determining
that the processing agent is not activated, activate the processing agent; deliver the event
information to the processing agent; receive an explicit subscription to events in a second
virtual stream from the processing agent after the event information is delivered to the
processing agent; determine whether the explicit subscription specifies past events
published in the queue before the explicit subscription is received; in response to
determining that the explicit subscription specifies past events, retrieve a past event from
the past events published in the queue and push the past events to the second virtual
streams, and deliver the events in the second virtual stream to the processing agent.
[00107] Clause 17: The system of clause 16, wherein activating the processing agent
comprises allocating system resources to the processing agent, and wherein the
subscription to the second virtual stream activates the second virtual stream and causes
system resources to be allocated to the second virtual stream.

[00108] Clause 18: The system of clauses 16-17, further comprising a plurality of
servers executing one or more processing agents, wherein the runtime is further configured
to recover a processing agent after failure of one server on which the processing agent was
activated by reactivating the processing agent on another server.

[00109] Clause 19: The system of clauses 16-18, wherein the configuration of the
processing agent is obtained programmatically or determined from a declarative definition
of the processing agent.

[00110] Clause 20: The system of clauses 16-19, wherein the runtime is further
configured to: deactivate the second virtual stream when no events are received in the
second virtual stream over a certain period of time by reclaiming the system resources
allocated to the virtual stream; and deactivate the processing agent when the processing
agent becomes idle for a given period of time by reclaiming the system resources allocated
to the processing agent.

[00111] Based on the foregoing, it should be appreciated that concepts and technologies

for subscribing, receiving and processing events are presented herein. Although the subject

29

2015288122 22 Jun 2020

—
<o

15

20

matter presented herein has been described in language specific to computer structural
features, methodological acts, and computer readable media, it is to be understood that the
invention defined in the appended claims is not necessarily limited to the specific features,
acts, or media described herein. Rather, the specific features, acts and mediums are
disclosed as example forms of implementing the claims.

[00112] The subject matter described above is provided by way of illustration only
and should not be construed as limiting. Various modifications and changes may be made
to the subject matter described herein without following the example aspects and
applications illustrated and described, and without departing from the true spirit and scope
of the present invention, which is set forth in the following claims.

[00113] Throughout this specification and the claims which follow, unless the
context requires otherwise, the word "comprise", and variations such as "comprises" and
"comprising", will be understood to imply the inclusion of a stated integer or step or group
of integers or steps but not the exclusion of any other integer or step or group of integers
or steps.

[00114] The reference in this specification to any prior publication (or information
derived from it), or to any matter which is known, is not, and should not be taken as an
acknowledgment or admission or any form of suggestion that that prior publication (or
information derived from it) or known matter forms part of the common general

knowledge in the field of endeavour to which this specification relates.

30

2015288122 22 Jun 2020

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A computer-implemented method for delivering events to a processing
agent executing on one or more servers, the method comprising:

receiving a publication of an event in a queue of events, wherein the event includes
information that describes a player interaction with a game application;

mapping the event to a processing agent of a plurality of different processing
agents, wherein the processing agent has not explicitly subscribed to receive the event;

determining that the processing agent is not activated;

in response to determining that the processing agent is not activated, activating the
processing agent such that the processing agent is available to provide functionality to the
game application;

delivering the event to the processing agent;

receiving a subscription from the processing agent;

receiving one or more additional publications of one or more additional events in
the queue of events, the one or more additional events occurring after the subscription is
received from the processing agent;

delivering, based at least in part on the subscription, the one or more additional
events to the processing agent;

determining that the subscription requests that one or more past events be
delivered, the one or more past events having been published in the queue of events prior
to the receiving the subscription from the processing agent; and

in response to determining that the subscription requests that the one or more past
events be delivered, delivering the one or more past events to the processing agent.

2. The method of claim 1, wherein receiving the publication of the event in
the queue of events comprises:

receiving a request to publish the event in the queue of events;

activating a virtual stream corresponding to the event; and

publishing the event in the queue of events through the virtual stream.

3. The method of claim 2, wherein the subscription defines the virtual stream.

4. The method of claim 3, wherein activating the processing agent comprises
allocating system resources to the processing agent.

5. The method of claim 1, wherein a configuration of the processing agent is

obtained programmatically or determined from a declarative definition of the processing

agent.

31

2015288122 22 Jun 2020

10

15

20

25

30

6. The method of claim 1, wherein the processing agent is addressable for
delivering the event independent of whether the processing agent is activated or not
activated.

7. The method of claim 1, wherein the processing agent is configured to
receive a particular type of event and the subscription requests all events of the particular
type of event that are published in the queue of events including the event, the one or more
additional events, and the one or more past events.

8. The method of claim 1, further comprising using an activation table to map
the event to the processing agent.

9. The method of claim 1, wherein the processing agent is configured to
receive different events that occur within an individual session of the game application.

10. The method of claim 1, wherein the processing agent is configured to
receive different events caused by an individual player participating in a session of the
game application.

11. The method of claim 1, wherein the processing agent is configured to
receive different events caused by an individual device participating in a session of the
game application.

12. A system, comprising one or more computing devices having instructions
that, when executed by one or more processors, configure the one or more computing
devices to:

manage a queue for receiving and persisting publications of events, wherein an
individual event includes information that describes a player interaction with a game
application;

receive a publication of an event in a virtual stream;

forward the publication of the event to the queue;

map the event to a processing agent of a plurality of different processing agents,
wherein the processing agent has not explicitly subscribed to receive the event and the
processing agent is addressable for delivering the event independent of whether the
processing agent is activated or not activated;

determine that the processing agent is not activated;

in response to determining that the processing agent is not activated, activate the
processing agent such that the processing agent is available to provide functionality to the
game application;

deliver the event to the processing agent;

32

2015288122 22 Jun 2020

10

15

receive an explicit subscription to the virtual stream from the processing agent
after the event is delivered to the processing agent;

receive one or more additional publications of one or more additional events in
the virtual stream after the explicit subscription is received;

forward the one or more additional publications of the one or more additional
events to the queue; deliver, based at least in part on the explicit subscription, the one or
more additional events to the processing agent;

determine that past events have been published in the queue before the explicit
subscription is received;

retrieve the past events that have been published in the queue; and

deliver the past events to the processing agent.

13. The system of claim 12, wherein activating the processing agent comprises
allocating system resources to the processing agent.

14. The system of claim 12, wherein the instructions further configure the one
or more computing devices to:

deactivate the virtual stream when no events are received in the virtual stream over
a certain period of time by reclaiming system resources allocated to the virtual stream; and

deactivate the processing agent when the processing agent becomes idle for a given
period of time by reclaiming system resources allocated to the processing agent.

15. The system of claim 12, wherein the processing agent is configured to
receive a particular type of event and the explicit subscription requests all events of the
particular type that are published in the queue including the event, the one or more
additional events, and the past events.

16. The system of claim 12, wherein the instructions further configure the one
or more computing devices to use an activation table to map the event to the processing
agent.

17. A system, comprising:

one or more processors; and

one or more computer-readable storage media having computer-executable
instructions stored thereon which, when executed by the one or more processors, cause the
system to:

receive a publication of an event in a queue of events, wherein the event
includes information that describes a player interaction with a game application;

map the event to a processing agent of a plurality of different processing

33

2015288122 22 Jun 2020

agents, wherein the processing agent has not explicitly subscribed to receive the
event;
determine that the processing agent is not activated;
in response to determining that the processing agent is not activated,
activate the processing agent such that the processing agent is available to provide
functionality to the game application;
deliver the event to the processing agent;
receive a subscription from the processing agent;
receive one or more additional publications of one or more additional
events in the queue of events, the one or more additional events occurring after the
subscription is received from the processing agent;
deliver, based at least in part on the subscription, the one or more additional
events to the processing agent;
determine that the subscription requests that one or more past events be
delivered, the one or more past events having been published in the queue of
events prior to the receiving the subscription from the processing agent; and
in response to determining that the subscription requests that the one or
more past events be delivered, deliver the one or more past events to the processing
agent.
18. The system of claim 17, wherein the processing agent is responsible for
processing different events that occur within an individual session of the game application.
19. The system of claim 17, wherein the processing agent is responsible for
processing different events caused by an individual player participating in a session of the
game application.
20. The system of claim 17, wherein the processing agent is responsible for
processing different events caused by an individual device participating in a session of the

game application.

34

PCT/US2015/039170

WO 2016/007399

1/8

801
8Ll
| IW3LSAS INILNNY I" N
_ _ 30I1A3A
—~_ YIAVT ISVE INILNNY Zl1 _ oLl an \._\v ONILNDINOD
R N -~ YIAYIS
NS_ N\\ < (’ _
|
NOILYOI18Nd | | NOILdI¥OsSENns ~
“ HIAVY] \\ INIAS A Nang LIN3IAT |
ONISSIOOYd NYIHLS . —
Y2 M / / / VoV | _ 301A3Q
/ / A W \ /
Be— {MIITIII.IIII .LITFIII_ ONILNANOD
IN3ID
4 u 4 A 'BE
IN3OV IN3OV INIOV IN3LSAS IN3INDO \
ONISSID0Nd ONISSI00Hd | | ONISSID0Yd oLl
IVNLYIA IVNLYIA IVALYIA o 43N v
NZOL azol vZ0l f
f 901

1401

/ 001

PCT/US2015/039170

WO 2016/007399

2/8

(

¢ Old

NzZ

;ST T T \ /- T T = \
/ \ depe / V802
yzZ0L \
/ / azol e /X
/ \ / \
\ 4701 /\ «\ e 0Z01 \
/
// / 4% \ g2c0l e /
ocos e / L P \ /
\ /
\ 5201 zo_E_momm:m \ veol »
o __L IN3AT N
I \
~d IN3aAT \ NoILvorand Lot
il _ \ TE Y
| Y
| d00e 20T b0z
\ _ ((!
\ A/ ¥ v V \\ ¥IAVT 7
................ - — LI e ONISS300dd
O@ON (\J lllllllllllllllll .AII MI_DDO_\/_ _>_<mm|_|w
momesmnennmeneen VIS TR | o SRR N
9902 — YL €1 vnLlyIA 77Ty 8r0c
\n....................................A' ./
4 » \
Y90¢ ~ INIAT v¥0c
INVIYLS TYNLYIA chl NVIYLS TVNLYIA
NOILdINOSENS LNIAT v NOILYDIT9Nd LNIA3
3IN3INO

901

WO 2016/007399 PCT/US2015/039170

3/8

EVENT DELIVERY PROCESS

. (START)
\ v

RECEIVE A PUBLICATION OF AN
EVENT IN AN EVENT 302
PUBLICATION VIRTUAL STREAM —\’

v

FIG. 3 SEND THE EVENT TO THE QUEUE ™~ 304
RETRIEVE THE EVENT FROM THE
QUEUE —\}06
v 1 320
IDENTIFY IMPLICIT IDENTIFY EXPLICIT
SUBSCRIBER PA OF THE [~ 308 SUBSCRIBER PA OF THE
EVENT EVENT
INFORM THE IMPLICIT DELIVER THE EVENT TO
IMPLICIT SUBSCRIBERS OF THE 3]0 THE EXPLICIT
SUBSCRIPTION/ EVENT SUBSCRIBERS
ACTIVATION _l 2
EXPLICIT 322
SUBSCRIPTION RECEIVE EXPLICIT
SUBSCRIPTION TO VIRTUAL ,\3_‘/12
STREAMS FROM IMPLICIT
SUBSCRIBERS

YES

DELIVER MOR
EVENTS?

XPLICIT SUBSCRIPTION
CLUDES PAST EVENTS2

(END)

DELIVER PAST EVENTS "\3/16 1 226

v

UPDATE EXPLICIT
SUBSCRIPTION LIST ’\3/18

WO 2016/007399 PCT/US2015/039170

4/8

40 EVENT PROCESSING AND
0\ SUBSCRIPTION
(START)

RECEIVE AND PROCESS EVENT
INFORMATION T N_402

EED TO SUBSCRIB

TO MORE EVENTS? 404

IDENTIFY INTERESTED VIRTUAL

STREAMS [\406

'

SUBSCRIBE TO THE IDENTIFIED
INTERESTED VIRTUAL STREAMS| \408

l 410

RECEIVE SUBSCRIBED EVENTS [€&—

|

PROCESS RECEIVED EVENTS [

| 412

NEED MORE
EVENTS?

Fic.4 C oo DN

PCT/US2015/039170

WO 2016/007399

5/8

VG Old

cLs

Vd d3AVd 31113

Ve
{S ‘N O} SHAAVId 90 Vd JNYD nvadls TN— oz
31173 ¥O4 STIM ALYVIND VD - ~ :ﬂ /LNIAT "IAVd
Vd ¥3AV1d 3L73 N v MEAYId
\
H dVIA NO ST 31LVINOIVO - / Vd N3AVId 3113
vd dvI R
ots \ \ vd @yvod 43ava
\ NVYIULS
O dVIN NO ST ILYINDTVD - \ Vd IS /INIATINVD TN yog
vd dvIN N WY
NN \ 142 vd dVIN
O4NI INIAZ (Vd) LNIOV ONISSIOON _\,_,,wm_m_w__mmk._umﬁS
LHVLS IANVO
X\
S N\
H3IAVYT ONISSIDOHd A
y5 Y NVIHLS FNLLNNY I 3
L] AVIHLS INVO N
I e AN
0
)
IN3AZ
LHVIS TAVO
. Nom\/
0\ [Fnano IN3AZ ol = JNIL
LHVIS TAVO

[4~V SH3IAV1d HLIM
H dVIN NO SLYVLIS X ANVD]

PCT/US2015/039170

WO 2016/007399

6/8

X JNVO
NI O d3AV1d A9 SLIN3IAT
111X O1 39190s49Ns -
O "3AVId 31173 3ANTONI
X JNVO NI SH3IAVd
JH1 1VHL INIWY313a -
«Od4NI LN3IAT
1YV1S FNVO, IAIFOTY -

a9 old

[

X JNVO
NI O d3AVd A9

X FAVO NI SINIAT
171X O1 39190s4nsS -

H dvIA = X JINVO NI dVIN
JHL 1VH1 ININY313a -

«O4NI LN3AF
1YVv1S JNVO, IAIFOTY -

\

«LN3IAT
1YV1S FNVO, FHONOI -

O dVIN # X JAVO NI dVIN

3H1 1VH1 ININY313ad -
«OdNI LNIAF
1YV1S NV, JAIFOTY -

\G/% \6 e
/ 0LS \
\ 805

X JAVO NI

SINIAT TTIM TV SINIAT TTIM TV
OL NOILdIFOsSaNs OL NOILdIFOsSdNsS \/\ ¢cs
_ vmm _
| |
cg — 0¢ _
sllm- llllllllllllllllllllllll . ml/\- lllllllllllllll < lllllll - -
“... AVIHLS T11IM ' ..." ANVIHLS !
dIAVI ONISSIOOHd 47 o ¥IAYId X INVD__/ VoI X ANYD, S
, AVYIHLS FNILNNY
vcl
3N3AND INIAT |V HIAVIA| LN3IAL ININT
m? 1A advnmad 1M 14V1S FNVYDO

[4 93AVId AG TN]

[Ge Go [l

(

[D¥IAVId AG TIM] <09

Ll =3NIL

WO 2016/007399 PCT/US2015/039170

7/8
504 514 516 518 526
D) 2))
TIME = T2 GAME START KILL REWARD KILL PLAYER F
- EVENT EVENT PLAYER A EVENT LEAVE
J e - 2
518\ KILL L~
514 106
514 EVENT KILL —
. EVENT
_ KILL 7 124
EVENT | H
— A~ \ 5
Y cAMEXRL LT T EANE X BLAVER G 7
e e ¥ N o KL STREAM A
\)
) [4
/
508 \ _
510
(™) () Oal
- RECEIVE SUBSCRIBED - RECEIVE SUBSCRIBED
KILL EVENTS PUBLISHED KILL EVENT PUBLISHED
F I G . 5C BEFORE EXPLICIT BEFORE EXPLICIT
SUBSCRIPTION IS RECEIVED SUBSCRIPTION IS RECEIVED
gKILL BY PLAYER B]
504 51}4 516 518 527
TIME = T3 GAME START KILL REWARD KILL PLAYER F KILL
EVENT EVENT PLAYER A EVENT LEAVE EVENT
” {
< 528 g;

526 “
-\' E\K/:éll_lT 124
/ rJ

YA
e sso. ... 532
{TGANE XKLL ST GAME X BLAYER G 7y~
e STREAML VTN ‘o KLLSTREAM Y
\

- RECEIVE SUBSCRIBED
KILL EVENT 3

WO 2016/007399 PCT/US2015/039170

8/8
620
LOCAL AREA ,| REMOTE 650
NETWORK COMPUTER /
600‘\
619
(
l / INPUT
DEVICE
612 —"1| NETWORK |
INTERFACE INPUT/ _
CONTROLLER OUTPUT ~—""617
CONTROLLER

602/ — ¢ CHIPSET ¢ 17606
{1 1 !

STORAGE
CPUE) || RAM [[ROM Il coNTROLLER
7 i { I
))) T
604 608 610 l 614 616
Vg
TORAGE DEVICE
2\ STORAG c
OPERATING RUNTIME _LOS

SYSTEM SYSTEM

FIG. 6

	Bibliographic Page
	Abstract
	Description
	Claims
	Drawings

