日本語

(54) 発明の名称 : 立体映像表示装置

(57) Abstract: Disclosed is a stereo graphic video display apparatus capable of accurately predicting the actual amount of crosstalk and correcting the crosstalk. The stereo graphic video display apparatus, which switches between images corresponding to a plurality of perspective directions at each time and displays the images on a display unit, is provided with a computing unit for calculating the crosstalk amount of a first image which is the image to be corrected and corresponds to one perspective direction. The calculation is performed using the characteristic data of the display unit, pixel values of the first image, and pixel values of a second image, which is an image which should be displayed at an earlier time than the first image and corresponds to a perspective direction different from that of the first image. A correction unit uses the calculated crosstalk amount to correct the first image.

(58) 要約: 実際のクロストーク量を精度よく予測してクロストークの補正を行うことが可能な立体映像表示装置を提供する。複数の視点方向に対応する画像を時間ごとに切り替え表示部に表示する立体映像表示装置において、計算部は、補正処理の対象となる一つの視点方向に対応する第1画像のクロストーク量を、第1画像の画面数値と、第1画像よりも過去の時間に表示すべき画像である、第1画像とは異なる視点方向に対応する第2画像の画面数値と、表示部の特性データを用いて計算する。補正部は、計算されたクロストーク量を用いて、第1画像を補正する。
明細書
発明の名称：立体映像表示装置
技術分野
本発明は、クロストークの補正を行う立体映像表示装置に関する。
背景技術
右眼用画像と、左眼用画像を一定時間ごとに切り替えて表示し、視聴者が装着したシャツ眼鏡を、その表示の切り替えに同期させて開放、閉鎖されることにより、視聴者に立体映像を提示する立体映像表示装置がある。
このような立体映像表示装置では、左右映像間のクロストーク量を軽減させるために、補正を加えた各画像を視聴者に提示する。
例えば、特許文献1では、立体映像表示装置は、予め設定された係数を用いた補正式によって、右眼用画像の左眼への混入輝度を計算する。該右眼用画像の次に表示される左眼用画像から、該混入輝度を差し引く。該左眼用画像を視聴者に提示する（左眼用画像の右眼への混入の場合も同様）。
先行技術文献
特許文献
特許文献1：特表2009—507401号公報
発明の概要
発明が解決しようとする課題
上述した立体映像表示装置では、上記係数のみを用いた補正式によって混入輝度を予測して、画像の補正を行う。このため、予測した混入輝度と実際の混入輝度とが異なる場合があり、実際のクロストーク量を精度よく予測してクロストークの補正を行うことができないという課題がある。
本発明では、実際のクロストーク量を精度よく予測してクロストークの補正を行うことが可能な立体映像表示装置を提供することを目的とする。
課題を解決するための手段
上記課題を解決するために、本発明の一態様に係る立体映像表示装置は、
補正処理の対象となる一の視点方向に対応する第1画像のクロストーク量を、前記第1画像の画素値と、前記第1画像よりも過去の時刻に表示すべき画像であって、前記第1画像とは異なる視点方向に対応する第2画像の画素値と、前記表示部の特性データとを用いて計算する計算部と、計算された前記クロストーク量を用いて、前記第1画像を補正する補正部とを備えることを特徴とする。

発明の効果

本発明により、実際のクロストーク量を精度よく予測してクロストークの補正を行うことが可能な立体映像表示装置を提供することができる。

図面の簡単な説明

[0009] [図1]第1の実施の形態に係る立体映像表示装置1の外観を表す図
[図2]液晶パネルの一画素についての透過率の時間変化を表す図
[図3]一画素におけるクロストーク量を示す一例図
[図4]立体映像表示装置1を含む立体映像表示システムの構成を表すブロック図
[図5]立体映像表示装置1の処理を表すフローチャート
[図6]処理対象のn番目の原画像に対する第1算出部101aの処理を表すフローチャート
[図7]処理対象のn番目の原画像に対する第2算出部101bの処理を表すフローチャート
[図8]処理対象のn番目の原画像に対するクロストーク算出部101cの処理を表すフローチャート
[図9]処理対象のn番目の原画像に対する補正部104の処理を表すフローチャート
[図10]第2の実施の形態に係る立体映像表示装置1を含む立体映像表示システムの構成を表すブロック図
[図11]E2(x, y, c)への変換テーブルを表す一例図
[図12]第4の実施の形態に係る立体映像表示装置200を含む立体映像表示
システムの構成を表すブロック図

発明を実施するための形態

[001] 以下、本発明の実施の形態について図面を参照して説明する。

[0012] 本願明細書と各図において、既出の図に関して前述したものと同様の要素には同一の符号を付して詳細な説明は適宜省略する。

[0013] （第1の実施の形態）

図1は、第1の実施の形態に係る立体映像表示装置1の外観を表す図である。例えば、立体映像表示装置1は、テレビ受像機であってよい。立体映像表示装置1は、視聴者に立体映像を知覚させるために、互いに視差を付けた右眼用画像と左眼用画像を交互に切り替えて表示部105に表示する。ここに、右眼用画像とは、視聴者の右眼に提示する画像をいう。左眼用画像とは、視聴者の左眼に提示する画像をいう。

[0014] 視聴者は液晶シャッタ眼鏡2を装着して、表示部105からの映像を視聴する。図1(a)において、立体映像表示装置1は、右眼用画像を右シャッタ部2Rが開放された液晶シャッタ眼鏡2を通して、視聴者の右眼（不図示）に提示する。

[0015] 図1(b)において、立体映像表示装置1は、左眼用画像を左シャッタ部2Lが開放された液晶シャッタ眼鏡2を通して、視聴者の左眼（不図示）に提示する。

[0016] 液晶シャッタ眼鏡2は、右眼用画像と左眼用画像の表示の切り替えに同期させて左右のシャッタ部2LとRを交互に開放、閉鎖する。これにより、立体映像表示装置1は、立体映像を視聴者に知覚させる。表示部105は、液晶ディスプレイであってよく、バックライト及び液晶パネルを含む。

[0017] 図2は、液晶パネルの一画素についての透過率の時間変化を表す図である。横軸は時間tを表し、縦軸は液晶パネルの透過率LCDを表す。図2には、表示部105に(n_2)番目に表示される右眼用画像と、(n_1)番目に表示される右眼用画像と、n番目に表示される右眼用画像と、各々の画素は、応答速度の特性を有するため、設定さ
れたある透過率に達するまでの時間を要する。また、該画像の表示終了時刻
（例えば、n番目に表示される右眼用画像については時刻T）においても、
設定された透過率に達しない場合がある。
[0018] 実線は、(n−1)番目に提示する画像の到達値へと予測する。立体映像表示装置1は、予測
したクロストーク量から補正画像を生成し、表示する。なお、液晶シャツタ
眼鏡2の特性データを用いるか否かは任意である。
[0019] 図から明らかのように、ある時刻における画像の画素値の違いにより、後
の画像の画素値を同じに設定した場合でも、液晶パネルの透過率の到達値が
異なる。到達値とは、液晶パネルの一画素における、一画素の表示が終
了する時点の透過率をいう。図2における例では、(n−2)番目の右眼用
画像の画素値が異なることにより、(n−1)番目の左眼用画像の画素値を
同じに設定した場合であっても、その到達値が、b1やc1といったよう
に異なる。
[0020] さらに、n番目の右眼用画像の画素値が255（透過率1）に設定された場
合、(n−1)番目の左眼用画像の到達値が異なるので、n番目の右眼用画像
の到達値も、b2やc2といったように異なる。これが、クロストークを
生じさせる一因となる。
[0021] 本実施の形態における立体映像表示装置1は、n番目のどちらか一方の眼
に提示する画像のクロストーク量を、液晶パネルの応答特性を含む、表示部
の特性データ及び液晶シャツタ眼鏡2の特性データと、(n−1)番目の他
方の眼に提示する画像の到達値から予測する。立体映像表示装置1は、予測
したクロストーク量から補正画像を生成し、表示する。なお、液晶シャツタ
眼鏡2の特性データを用いるか否かは任意である。
図3は、一画像の一画素におけるクロストーク量を示す一例図である。簡単のため、図3では、液晶パネルの応答特性のみから求まるクロストーク量を示す。横軸は時間tを表し、縦軸は液晶パネルの透過率LCDを表している。実線、破線、点線とも、同じ画素値が設定された場合の液晶パネルの透過率の時間変化である。しかし、実線と破線では、一つ前の画像の到達値がp1、q1と異なるために、図に示した画像の到達値p2、q2が異なる。実線をケース1の液晶パネルの透過率の時間変化、破線をケース2の液晶パネルの透過率の時間変化とする。

点線（理想線）は、応答速度が無限大（応答時間が0）である理想的な液晶パネルの透過率の時間変化である。理想的な液晶パネルでは、設定した画素値に時間0で応答して到達値aに達するため、クロストークは発生しない。

本実施の形態において、一画像の一画素におけるクロストークの程度を表すクロストーク量は、実際の応答速度を考慮した液晶パネルの透過率の時間積分と理想的な液晶パネルの透過率の時間積分との差（例えば、ケース1の場合のクロストーク量は横線部、ケース2の場合のクロストーク量は射線部）を含む。

図4は、立体映像表示装置1を含む立体映像表示システムの構成を表すブロック図である。立体映像表示装置1は、画像生成部99と、シャツタ眼鏡制御部90と、計算部101と、補正部104と、表示部105を含む。

画像生成部99は、放送電波等の映像信号から右眼用画像と左眼用画像を生成する。画像生成部99は、右眼用画像と左眼用画像を交互に繰り返して出力する。例えば、n番目に出力される画像が、右眼用画像の場合、（n-1）番目の画像と（n+1）番目の画像は左眼用画像となる。画像の各画素は、画素値の情報を含む。シャツタ眼鏡制御部90は、該出力と同期させて、液晶シャツタ眼鏡2の開閉を制御する。

計算部101は、クロストーク量を計算する。クロストーク算出部101は、第1算出部101aと、第2算出部101bと、クロストーク算出部1
01cとを含む。以下、本実施の形態では、画像生成部99から入力された画像を原画像と呼ぶこととする。本実施の形態では、画像生成部99からn番目に入力された左右どちらか一方の眼に提示するための原画像を処理の対象として述べる。

第1算出部101aは、処理対象のn番目の原画像に対して、画素ごとに、応答速度が無限大（応答時間が0）である液晶パネル含む表示部105を用いた場合の、第1の輝度の評価値を算出する。第2算出部101bは、処理対象のn番目の原画像に対して、画素ごとに、(n-1)番目の補正画像の画素値と、液晶パネルの応答速度を考慮した場合の、第2の輝度の評価値を算出する。(n-1)番目の補正画像とは、後述する補正部により(n-1)番目の原画像が補正された画像をいう。

クロストーク算出部101cは、第1の輝度の評価値と第2の輝度の評価値との差からクロストーク量を計算する。補正部104は、画素ごとに、クロストーク量と処理対象のn番目の原画像の画素値とから補正画像を生成する。補正部104は、補正画像を表示部105に出力するとともに、第2算出部にフィードバックする。

第1算出部101aと、第2算出部101bと、クロストーク算出部101cと、補正部104とは、中央演算処理装置（CPU）によって実現される。

図5は、立体映像表示装置1の処理を表すフローチャートである。

第1算出部101aと第2算出部101bには、原画像生成部99から、同じ原画像が入力される（S501）。さらに第2算出部101bには、補正部104から(n-1)番目の補正画像が入力される。第1算出部101aは、原画像の画素値と、液晶パネルの応答速度を考慮せず、バックライトの特性データと、液晶シャッタ眼鏡2の特性データとから、画素ごとに第1の輝度の評価値を算出する（S502）。第2算出部101bは、原画像の画素値と、液晶パネルの応答速度と、バックライトの特性データと、液晶シャッタ眼鏡2の特性データと、(n-1)番目の補正画像の画素値とから、
画素ごとに第2の輝度の評価値を算出する（S 5 0 3）。

クロストーク算出部101cは、第1の輝度の評価値と第2の輝度の評価値から、画素ごとのクロストーク量を計算する（S 5 0 4）。補正部104は、クロストーク量を用いて、原画像の各画素を補正し、補正画像を生成する（S 5 0 5）。補正部104は、補正画像を表示部105に出力し、第2算出部101bにフィードバックする（S 5 0 6）。この補正画像は、第2算出部が（n + 1）番目の原画像から第2の輝度の評価値を算出するのに用いられる。

以下に、立体映像表示装置1について、詳細に述べる。

第1算出部101aと第2算出部101bには、原画像生成部99から、同じn番目の原画像が入力される。原画像は、横方向の画素数がW[pixel]、縦方向の画素数がH[pixel]である。ピクセル座標系における、一の画素の位置を（x, y）と定義する。一の画素は、赤（R）、緑（G）、青（B）の三原色を含む。本実施の形態では、三原色を整数値で表している。本実施の形態では、青（B）はc = 0、緑（G）はc = 1、赤（R）はc = 2としている。以後、n番目に入力された原画像の各画素の画素値をI_n(x, y, c)とする。

シャッタ眼鏡制御部90は、表示部105の表示に合わせて、液晶シャッタ眼鏡2の左右のシャッタ部2L、Rの開放、閉鎖を制御する。すなわち、表示部105が右眼に提示するための補正画像を表示している間、シャッタ眼鏡制御部90は、液晶シャッタ眼鏡2の右シャッタ部2Rを開放させ、左シャッタ部2Lを閉鎖させる。左右反対の場合も同様である。

シャッタ眼鏡制御部90は、立体映像表示装置1内に備えられ、同期信号を液晶シャッタ眼鏡2に備えられた受信器に有線もしくは無線で送信し、液晶シャッタ眼鏡2を制御してもよい。

第1算出部101aは、バックライト及び液晶シャッタ眼鏡2の特性データをあらかじめ記憶している。バックライトの特性データには、例えば、バックライト105aの発光輝度B(x, y, t)等がある。液晶シャッタ眼
鏡2の特性データには、例えば、液晶シャツタ眼鏡2の透過率G(t)（右シャツタ部2Rの透過率をG_R(t)と左シャツタ部2Lの透過率をG_L(t)とする）等がある。

ここで、時刻tについては、n番目の補正画像の表示を表示部105が開始する時刻をt = 0とし、(n + 1)番目の補正画像の表示を表示部105が開始する時刻をt = T_{MAX}として定義している。

B(x, y, t)は、時刻tにおける、位置(x, y)の画素に対するパックライト105aの発光輝度を表す関数である。B(x, y, t)は、理論関数として定められてもよいし、実験によって定められてもよい。本実施の形態では、実験によってあらかじめ定められたパックライト105aの発光輝度B_L(x, y, t)をB(x, y, t)として用いている。B_L(x, y, t)は、0 < = B_L(x, y, t) < = 1となるように正規化されている。ここで、「左辺 < = 右辺」は、「左辺は右辺以下」であることを示す。

G_R(t)は、ある時刻tにおける液晶シャツタ眼鏡2の右シャツタ部2Rの透過率を表す。G_L(t)は、ある時刻tにおける液晶シャツタ眼鏡2の右シャツタ部2Lの透過率を表す。G_R(t)及びG_L(t)は、理論関数として定められてもよいし、実験によって定められてもよい。本実施の形態では、実験によってあらかじめ定められたG_R(t)及びG_L(t)を用いている。

G_R(t)及びG_L(t)は、各々0 < = G_R(t) < = 1、0 < = G_L(t) < = 1となるように正規化されている。

第1算出部101aは、処理対象のn番目の原画像の各画素について、式1により、応答速度が無限大（応答時間が0）である液晶パネル含む表示部105を用いた場合の、画素の輝度の評価値を示す、第1の輝度の評価値E_{1}(x, y, c)を算出する。

[数1]

\[E_1(x, y, c) = \int_0^{T_{MAX}} B(x, y, t) \times L_q(x, y, t, c) \times G(t) \, dt \quad \cdots \text{(式1)} \]

L_n(x, y, c, t)は、ある時刻tにおける、処理対象のn番目の原画
像の位置 \((x, y)\) の画素の各色 \(c\) に対する液晶パネル \(105b\) の透過率を表す関数である。第1算出部 \(101a\) は、\(I_n(x, y, c)\) をガンマ変換により変換した関数 \(Y_n(x, y, c)\) を \(L_n(x, y, c, t)\) として用いる。
\(Y_n(x, y, c)\) は、\(0 < Y_n(x, y, c) < 1\) となるように正規化されている。

第1算出部に入力された原画像が右眼用の場合、液晶シャツタ眼鏡2の透過率 \(G(t)\) は、右シャツタ部2\(R\)の透過率 \(G_R(t)\) を用いる。左眼用の場合、左シャツタ部2\(L\)の透過率 \(G_L(t)\) を用いる。

第1算出部 \(101a\) は、計算結果である \(E, (x, y, c)\) をクロストーク算出部 \(101c\) に出力する。

図6は、処理対象の\(n\)番目の原画像に対する第1算出部 \(101a\) の処理を表すフローチャートである。

第1算出部 \(101a\) は、\(y\)に0を代入し、\(y\)の初期化を行う \(S\(601\)\)。
\(x\)に0を代入し、\(x\)の初期化を行う \(S\(602\)\)。
\(c\)に0を代入し、\(c\)の初期化を行う \(S\(603\)\)。式1を用いて、\(E, (x, y, c)\)を計算する \(S\(604\)\)。
\(c\)が2未満であるか否かを判定する \(S\(605\)\)。
\(c\)が2未満であると判定した場合、\(c + 1\)を\(c\)に代入し \(S\(608\)\)、ステップ \(S\(604\) に遷移する。

\(c\)が2未満でないと判定した場合、第1算出部 \(101a\) は、\(x\)がW未満であるか否かを判定する \(S\(606\)\)。
\(x\)がW未満であると判定した場合、\(x + 1\)を\(x\)に代入し \(S\(609\)\)、ステップ \(S\(603\) に遷移する。
\(x\)がW未満でないと判定した場合、第1算出部 \(101a\) は、\(y\)がH未満であるか否かを判定する \(S\(607\)\)。
\(y\)がH未満であると判定した場合、\(y + 1\)を\(y\)に代入し \(S\(610\)\)、ステップ \(S\(602\) に遷移する。
\(y\)がH未満でないと判定した場合は、処理を終了する。

第2算出部 \(101b\) には、 \((n - 1)\)番目の補正画像が、補正部 \(104\)からさらに入力される。補正部 \(104\)の処理ついては後述する。第2算出部 \(101b\) は、処理対象の\(n\)番目の原画像の各画素について、式2により第2の
輝度の評価値 \(E_2(x, y, c) \) を算出する。

[数2]
\[
E_2(x, y, c) = \int_0^{T_{\text{MAX}}} B(x, y, t) \times L_n(x, y, t, c) \times G(t) \, dt \quad \cdots \quad \text{(式2)}
\]

第2算出部 101 b では、液晶パネルの透過率 \(L_n(x, y, c, t) \) に用いる関数が、第1算出部 101 a の場合と異なる。第2算出部 101 b では、液晶パネル 105 b の応答速度を考慮に入れた関数を \(L_n(x, y, c, t) \) に用いる。具体的には、\(L(x, y, c, t) \) は式3を用いて表される。

[数3]
\[
L_n(x, y, c, t) = \text{LCD}(L_s n(x, y, c), Y_n(x, y, c, t)) \quad (0 \leq t \leq T_{\text{MAX}}) \quad \cdots \quad \text{(式3)}
\]

LCD \((L_s n(x, y, c), Y_n(x, y, c, t)) \) は、以下のように定義する。処理対象の \(n \) 番目の原画像の、位置 \((x, y) \) 、色 \(c \) の画素の表示を表し、部 105 が開始する時点における、液晶パネルの該画素に対応する位置の透過率を \(L_s n(x, y, c) \) とする。LCD \((L_s n(x, y, c), Y_n(x, y, c, t)) \) は、この状態から、設定された透過率 \(Y_n(\chi, y, c) \) に応答する際の、時刻 \(t \) における液晶パネルの該画素に対応する位置の透過率を表す。

[051]

LCD \((L_s n(x, y, c), Y_n(\chi, y, c, t)) \) は、使用する液晶パネルの応答速度に合わせて設定されるモデル関数である。LCD \((L_s n(x, y, c), Y_n(\chi, y, c, t)) \) は、\(0 < = \text{LCD}(L_s n(x, y, c), Y_n(\chi, y, c, t)) < 1 \) となるように正規化されている。

ここで、\(L_s n(x, y, c) \) は、式 4 で表わされる。

[数4]
\[
L_s n(x, y, c) = \text{LCD}(L_{s-1}(x, y, c), U_{n-1}(x, y, c), T_{\text{MAX}}) \quad \cdots \quad \text{(式4)}
\]

\(U_{n-1}(x, y, c) \) は、後述する補正部 104 が決定した \((n - 1) \) 番目の補正画像の、位置 \((x, y) \) 、色 \(c \) の画素値 \(O_{n-1}(x, y, c) \) をガンマ変換により変換した透過率である。

[055] すなわち、上記のように定義した \(L_s n(x, y, c) \) は、\((n - 1) \) 番目
の補正画像の、位置 \((x, y)\)、色\(c\)の画素の表示が終了する時点における、液晶パネルの該画素に対応する位置の透過率であると言い換えることもできる。この値が、\((n - 1)\)番目の到達値であり、図2における\(b_1\)、\(c_1\)等に対応する。

第2算出部101bは、計算結果である\(E_2(x, y, c)\)をクロストーク算出部101cに出力する。

図7は、処理対象の\(n\)番目の原画像に対する第2算出部101bの処理を表すフローチャートである。

第2算出部101bは、\(y\)に0を代入し、\(y\)の初期化を行う（S701）。\(x\)に0を代入し、\(x\)の初期化を行う（S702）。\(c\)に0を代入し、\(c\)の初期化を行う（S703）。式2を用いて、\(E_2(x, y, c)\)を計算する（S704）。\(c\)が2未満であるか否かを判定する（S705）。\(c\)が2未満であると判定した場合、\(c + 1\)を\(c\)に代入し（S708）、ステップS704に遷移する。

\(c\)が2未満でないと判定した場合、第2算出部101bは、\(x\)が\(W\)未満であるか否かを判定する（S706）。\(x\)が\(W\)未満であると判定した場合、\(x + 1\)を\(x\)に代入し（S709）、ステップS703に遷移する。\(x\)が\(W\)未満でないと判定した場合、第2算出部101bは、\(y\)が\(H\)未満であるか否かを判定する（S707）。\(y\)が\(H\)未満であると判定した場合、\(y + 1\)を\(y\)に代入し（S710）、ステップS702に遷移する。\(y\)が\(H\)未満でないと判定した場合は、処理を終了する。

クロストーク算出部101cは、第1算出部101aが算出した\(E_1(x, y, c)\)と第2算出部101bが算出した\(E_2(x, y, c)\)を用い、各画素について、式5によりクロストーク量\(D(x, y, c)\)を計算する。

\[D(x, y, c) = |E_1(x, y, c) - E_2(x, y, c)| \quad \ldots \text{（式5）}\]

クロストーク算出部101cは、計算したクロストーク量\(D(x, y, c)\)を補正部104に出力する。
図8は、処理対象のn番目の原画像に対するクロストーク算出部101cの処理を表すフローチャートである。

クロストーク算出部101cは、yに0を代入し、yの初期化を行う（S801）。xに0を代入し、xの初期化を行う（S802）。cに0を代入し、cの初期化を行う（S803）。式5を用いてD（x,y,c）を計算する（S804）。cが2未満であるか否かを判定する（S805）。cが2未満であると判定した場合、c+1をcに代入し（S808）、ステップS804に遷移する。

cが2未満でないと判定した場合、クロストーク算出部101cは、xがW未満であるか否かを判定する（S806）。xがW未満であると判定した場合、x+1をxに代入し（S809）、ステップS803に遷移する。xがW未満でないと判定した場合、クロストーク算出部101cは、yがH未満であるか否かを判定する（S807）。yがH未満であると判定した場合、y+1をyに代入し（S810）、ステップS802に遷移する。yがH未満でないと判定した場合は、処理を終了する。

補正部104は、処理対象のn番目の原画像の各画素の画素値I_n（x,y,c）と、（n-1）番目の原画像の各画素の画素値I_n-1（x,y,c）と、クロストーク量D（x,y,c）に依存する重み関数d{D（x,y,c）}とを用いて、式6により、処理対象のn番目の原画像の画素値を補正した新たな画素値O_n（x,y,c）を算出する。補正部104は、決定したO_n（x,y,c）を用いて、処理対象のn番目の原画像を補正した補正画像を生成する。

[数6]

O_n（x,y,c）=I_n（x,y,c）+d{D（x,y,c）}×I_n-1（x,y,c）

d（D（x,y,c））は、0<d（D（x,y,c））=1となるように正規化されている。d（D（x,y,c））は、例えば、一次関数であっても、ステップ関数であってもよい。

このため、補正部104は、（n-1）番目の原画像の画素値を内部に記
憶していることが望ましい。補正部104は、算出した$O_n(x, y, c)$を第2算出部101bにフィードバックする。補正部104は、算出した$O_n(x, y, c)$を表示部105に出力する。表示部105は、補正画像を表示する。

[0068] 図9は、処理対象のn番目の原画像に対する補正部104の処理を表すフローチャートである。

[0069] 補正部104は、yに0を代入し、yの初期化を行う(S901)。xに0を代入し、xの初期化を行う(S902)。cに0を代入し、cの初期化を行う(S903)。式6を用いて$O_n(x, y, c)$を計算する(S904)。cが2未満であるか否かを判定する(S905)。cが2未満であると判定した場合、$c + 1$をcに代入し(S908)、ステップS904に遷移する。

[0070] cが2未満でないと判定した場合、補正部104は、xがW未満であるか否かを判定する(S906)。xがW未満であると判定した場合、$x + 1$をxに代入し(S909)、ステップS903に遷移する。xがW未満でないと判定した場合、補正部104は、yがH未満であるか否かを判定する(S907)。yがH未満であると判定した場合、$y + 1$をyに代入し(S910)、ステップS902に遷移する。yがH未満でないと判定した場合は、処理を終了する。

[0071] 以上述べたとおり、立体映像表示装置1は、実際のクロストーク量を精度よく予測してクロストークの補正を行うことができる。

[0072] 本実施の形態では、視聴者が装着した液晶シャツダ眼鏡2を通じて、視聴者が立体映像を知覚する場合の例について述べたが、本発明は、これに限定されず、他の時間分割方式の立体映像表示装置にも適用できる例。例えば、互いに偏光方向の異なる、一方の眼用の画像と他方の眼用の画像を表示部105が切り替えて表示し、装着した偏光眼鏡を通して視聴者が視聴する方式の立体映像装置がある。

[0073] この場合、第1算出部101a、第2算出部101bは、$G_R(t)$とG_L
(t)とを用いずにE,(x,y,c)及びE2(x,y,c)を算出する。
これにより、立体映像表示装置1は上記の場合と同様の処理を行うことが可能である。そして、図4におけるシャツタ時制御部90は不要となる。

【0074】表示部105は、プラズマディスプレイであってもよい。この場合は、第1算出部101a、第2算出部101bは、B(x,y,t)とL(x,y,c,t)を用いずに、各画素の残光の時間変化の関数を用いて、E,(x,y,c)及びE2(x,y,c)を算出する。これにより、立体映像表示装置1は上記の場合と同様の処理を行うことが可能である。

【0075】（第2の実施の形態）

図10は、第2の実施の形態に係る立体映像表示装置10を含む立体映像表示システムの構成を表すブロック図である。

【0076】第1の実施の形態に係る立体映像表示装置1に対して、格納部106をさらに備える。立体映像表示装置10では、第2算出部101bは、補正部104が生成した(n-1)番目の補正画像を用いずに、(n-1)番目の原画像の画素値I_{n-1}(x,y,c)を用いて第2の輝度の評価値E2(x,y,c)を算出する。

【0077】格納部106は、(n-1)番目の原画像の画素値I_{n-1}(x,y,c)を格納する。第2算出部101bは、式3及び式7により、E2(x,y,c)を算出する。

【数7】

\[Ls_n(x,y,c)=LCD(Ls_{n-1}(x,y,c),Y_{n-1}(x,y,c),T_{MAX}) \cdots(式7) \]

【0078】これにより、処理にかかる時間コストを低減させることが可能となる。

【0079】（第3の実施の形態）

第3の実施の形態に係る立体映像表示装置100（不図示）は、第2の実施の形態に係る立体映像表示装置10と同様の構成であるが、格納部106に格納される内容が異なる。

【0080】格納部106は、原画像生成部99から入力されたn番目の原画像の画素値I(x,y,c)と、後述する参照画像の画素値R(x,y,c)と、第
2の輝度の評価値$E_2(x, y, c)$とをあらかじめ対応付けた変換テーブルを格納する。

図11は、$E_2(x, y, c)$への変換テーブルを表す一例図である。参照画像の画素値$R(x, y, c)$とは、例えば、$(n-1)$番目の原画像の画素値$I_{n-1}(x, y, c)$である。この場合、第2算出部101bは、入力されたn番目の原画像の画素値$I_n(x, y, c)$と、$(n-1)$番目の原画像の画素値$I_{n-1}(x, y, c)$とから、変換テーブルを用いて、対応する第2の輝度の評価値$E_2(x, y, c)$を検索し抽出する。

例えば、$I_n(x, y, c)$が1で、$R(x, y, c)(I_{n-1}(x, y, c))$が5の場合、第2算出部101bは、変換テーブルを用いて5を$E_2(x, y, c)$の値として抽出する。

これにより、立体映像表示装置100は、$E_2(x, y, c)$を算出する必要がないため、処理コストを低減することができる。

（第5の実施の形態）

図12は、第5の実施の形態に係る立体映像表示装置200を含む立体映像表示システムの構成を表すブロック図である。

立体映像表示装置200における格納部106は、第3の実施の形態の場合と同様の変換テーブルを用いるが、参照画像の画素値$R(x, y, c)$力で、補正部104により決定された$(n-1)$番目の補正画像の画素値O_{n-1}である点が異なる。この場合、第2算出部101bは、入力されたn番目の原画像の画素値$I_n(x, y, c)$と、$(n-1)$番目の補正画像の画素値$O_{n-1}(x, y, c)$とから、変換テーブルを用いて、対応する第2の輝度の評価値$E_2(x, y, c)$を検索し抽出する。

これにより、立体映像表示装置200は、$E_2(x, y, c)$を算出する必要がないため、処理コストを低減することができる。

符号の説明

101算出部
101a第1算出部
101b 第2算出部
101c クロストーク算出部
104 補正部
105 表示部
請求の範囲

[請求項1] 複数の視点方向に対応する画像を時間ごとに切り替えて表示部に表示する立体映像表示装置において、
補正処理の対象となる一の視点方向に対応する第1画像のクロストーク量を、前記第1画像の画素値と、前記第2画像よりも過去の時刻に表示すべき画像であって、前記第1画像とは異なる視点方向に対応する第2画像の画素値と、前記表示部の特性データとを用いて計算する計算部と、
計算された前記クロストーク量を用いて、前記第1画像を補正する補正部と
を備えることを特徴とする立体映像表示装置。

[請求項2] 前記第2画像は、
前記第1画像の直前の画像である
ことを特徴とする、請求項1記載の立体映像表示装置。

[請求項3] 前記第2画像は、
前記第1画像の直前の画像をさらに前記補正部が補正した補正画像である
ことを特徴とする、請求項2記載の立体映像表示装置。

[請求項4] 前記表示部は、
液晶パネルとバックライトを含む液晶ディスプレイであり、
前記第2画像の画素値は、
前記補正画像の表示を前記表示部が終了する時点の、前記液晶パネルの透過率に対応する画素値である
ことを特徴とする、請求項3記載の立体映像表示装置。

[請求項5] 前記計算部は、
前記第1画像の画素値と、前記バックライトの特性データとから、画素ごとに、第1の輝度の評価値を算出し、
前記第1画像の画素値と、前記第2画像の画素値と、前記バックライ
トの特性データと、前記液晶パネルの特性データから、画素ごとに、第2の輝度の評価値を算出し、
前記第1の輝度の評価値と、前記第2の輝度の評価値との差からクロストーク量を計算する
ことを特徴とする、請求項4記載の立体映像表示装置。

[請求項6] 前記補正部は、
前記クロストーク量に依存する重み関数を、前記第1画像の画素値と
前記第2画像の画素値に乗じることにより、前記第1画像を補正する
ことを特徴とする、請求項5記載の立体映像表示装置。
補正された請求の範囲
[2010年10月22日(22.10.2010) 国際事務局受理]

[請求項1]（補正後）
複数の視点方向に対応する画像を時間ごとに切り替えて表示部に表示する立体映像表示装置において、補正処理の対象となる1の視点方向に対応する第1画像のクロストーク量を、前記第1画像の画素値と、前記第1画像よりも過去の時刻に表示すべき画像であって、前記第1画像と異なる視点方向に対応する第2画像の画素値と、前記表示部の応答特性を含む特性データを用いて算出する算出部と、

計算された前記クロストーク量を用いて、前記第1画像を補正する補正部と、

を備えることを特徴とする立体映像表示装置。

[請求項2]
前記第2画像は、
前記第1画像の直前の画像である
ことを特徴とする、請求項1記載の立体映像表示装置。

[請求項3]
前記第2画像は、
前記第1画像の直前の画像をさらに前記補正部が補正した補正画像である
ことを特徴とする、請求項2記載の立体映像表示装置。

[請求項4]（補正後）
前記表示部は、
液晶パネルを含み、

前記第2画像の画素値は、
前記補正画像の表示を前記表示部が終了する時点の、前記液晶パネルの透過率に対応する画素値である
ことを特徴とする、請求項3記載の立体映像表示装置。

[請求項5]（補正後）
前記表示部は、
バックライトをさらに含み、
前記計算部は、
前記第1画像の画素値と、前記バックライトの特性データとから、画素ごとに、第1の輝度の評価値を算出し、

前記第1画像の画素値と、前記第2画像の画素値と、前記バックライトの特性データと、
前記液晶パネルの特性データとから、画素ごとに、第2の輝度の評価値を算出し、
前記第1の輝度の評価値と、前記第2の輝度の評価値との差からクロストーク量を計算する
ことを特徴とする、請求項4記載の立体映像表示装置。

[請求項6]
前記補正部は、
前記クロストーク量に依存する重み関数を、前記第1画像の画素値と前記第2画像の画素値とに乗じることにより、前記第1画像を補正することを特徴とする。請求項5記載の立体映像表示装置。
第19条（1）の規定に基づく説明書
請求の範囲を次の通り補正します。

請求項1の「前記表示部の特性データ」を「前記表示部の応答特性を含む特性データ」に補正しました。

請求項4の「前記表示部は、液晶パネルとバックライトを含む液晶ディスプレイであり、」を「前記表示部は、液晶パネルを含み、」に補正しました。

請求項4の補正に伴い、請求項5に「前記表示部は、バックライトをさらに含み、」を追記しました。
図1

(a) 105

(b)
[図5]

開始

S501 原画像の入力

S502 第1の輝度の評価値算出

S503 第2の輝度の評価値算出

S504 クロストーク量の計算

S505 補正画像の生成

S506 表示部に出力、第2算出部にフィードバック

終了
開始

\[y \leftarrow 0 \]
\[x \leftarrow 0 \]
\[c \leftarrow 0 \]

\[y \leftarrow y + 1 \]
\[x \leftarrow x + 1 \]
\[c \leftarrow c + 1 \]

\[E_i(x, y, c) \leftarrow \int_{t=0}^{t_{\text{max}}} B(x, y, t) \times L_n(x, y, t, c) \times G(t) dt \]

Yes
\[c < 2 \]
No

Yes
\[x < W \]
No

Yes
\[y < H \]
No

終了
開始

\[y \leftarrow 0 \] S701

\[x \leftarrow 0 \] S702

\[c \leftarrow 0 \] S703

\[E_2(x, y, c) \leftarrow \int_0^{\text{max}} B(x, y, t) \times L_n(x, y, t, c) \times G(t) \ dt \] S704

Yes \[c < 2 \] S705

No

Yes \[x < W \] S706

No

Yes \[y < H \] S707

No

終了
[図8]

開始

S801: \(y \leftarrow 0\)
S802: \(x \leftarrow 0\)
S803: \(c \leftarrow 0\)

\(D(x,y,c) \leftarrow |E_1(x,y,c) - E_2(x,y,c)|\)

S804

S805: \(c < 2\)

S806: \(x < W\)

S807: \(y < H\)

S808: \(c < 2\)

S809: \(x < W\)

S810: \(y < H\)

終了
[図9]

開始

\[y \leftarrow 0 \] S901

\[x \leftarrow 0 \] S902

\[c \leftarrow 0 \] S903

\[y \leftarrow y + 1 \] S910

\[x \leftarrow x + 1 \] S909

\[c \leftarrow c + 1 \] S908

\[O_s(x, y, c) \leftarrow I_s(x, y, c) \times (1 - d(D(x, y, c))) + I_{n+1}(x, y, c) \times d(D(x, y, c)) \] S904

Yes

\[c < 2 \] S905

No

Yes

\[x < W \] S906

No

Yes

\[y < H \] S907

No

終了
[図10]

[図11]

<table>
<thead>
<tr>
<th>$R(x,y,c)$</th>
<th>$I(x,y,c)$</th>
<th>$E_2(x,y,c)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>e1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>e2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>e3</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>e4</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>e5</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>1</td>
<td>255</td>
<td>e255</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>e256</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>e257</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
INTERNATIONAL SEARCH REPORT

International application No. PCT/JP2010/000125

A. CLASSIFICATION OF SUBJECT MATTER
H 0 4N1 3/0 4 (2006.01) i, G02B2 7/22 (2006.01) i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
H04N1 3/00-15/00, G02B2 7/22

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Jitsuyo Shinan Koho 1922-1 996 Jitsuyo Shinan Toroku Koho 1996-2010
Kokai Jitsuyo Shinan Koho 1971-2010 Toroku Jitsuyo Shinan Koho 1994-2010

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>JP 2009-251098 A (Mitsubishi Electric Corp.), 29 October 2009 (29.10.2009), paragraph s [0002] to [0006], [0009] to [0028]; fig. 1 to 4</td>
<td>1-3</td>
</tr>
<tr>
<td>A</td>
<td>JP 8-331600 A (Sanyo Electric Co., Ltd.), 13 December 1996 (13.12.1996), paragraph s [0003] to [0036]; fig. 1 to 3</td>
<td>4-6</td>
</tr>
</tbody>
</table>

"X" Further documents are listed in the continuation of Box C. "See patent family annex.

"A" Special categories of cited documents:
"A" document defining the general state of the art which is not considered to be of particular relevance
"E" earlier application or patent but published on or after the international filing date
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
"O" document referring to an oral disclosure, use, exhibition or other means
"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"&" document member of the same patent family

Date of the actual completion of the international search
15 April 1, 2010 (15.04.10)

Date of mailing of the international search report
27 April 1, 2010 (27.04.10)

Name and mailing address of the ISA/Japanese Patent Office

Authorized officer

Facsimile No.

Telephone No.
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>
A. 発明の属する分野の分類（国際特許分類（IPC））
 Int. Cl. H04N13/04 (2006.01) i , G02B27/22 (2006.01) i

B. 調査を行った分野
 調査を行った最小限資料（国際特許分類（IPC））
 Int. Cl. H04N13/00-15/00 , G02B27/22

最小限資料以外の資料で調査を行った分野に含まれるもの
 日本国実用新案公報 1922-19
 日本国公開実用新案公報 1971-20
 日本国実用新案登録公報 1996-20
 日本国登録実用新案公報 1994-20

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）

C. 関連すると認められる文献

<table>
<thead>
<tr>
<th>引用文献のカテゴリーカー</th>
<th>引用文献名及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求項の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>JP 2009-251098 A(三菱電機株式会社), 2009.10.29.</td>
<td>1-3</td>
</tr>
<tr>
<td>程度ミミミリーなし</td>
<td></td>
<td></td>
</tr>
<tr>
<td>段落 [0003] - [0036] , 図 1-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>程度ミミミリーなし</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

☑ 画像の続きにも文献が掲載されている。 ☐ パテントファミリーに関する別紙を参照。

引用文献のカテゴリーノ

GA 特に関連のある文献ではなく、一般的技術水準を示すもの
IE 国際出願 日前の出願 または特許であるが、国際出願 日後に公表されたもの
EA 優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献（理由を付す）
IB 口頭による開示、使用、展示等における文献
IP 国際出願 日前に、かつ優先権の主張の基礎となる出願

国際調査を完了した日
15.04.2010

国際調査報告の送付日
27.04.2010

国際調査機関の名称及び住所
日本国特許庁 (I SA ／ J P)
郵便番号 1 0 0 - 8 9 1 5
東京都千代田区霞が関三丁目4番3号

特許庁審査官 権限のある職員
長谷川 素直
電話番号 0 3-3 5 8 1-1 1 01 内線 3 5 8 1
国際調査報告

国際出願番号 P C T / J P 2 0 1 0 / 0 0 0 1 2 5

様式 P C T / I S A / 2 1 0 (第 2 ページの続き) (2 0 0 9 年 7 月)