US 20170199702A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2017/0199702 A1l

Asnaashari et al.

43) Pub. Date: Jul. 13, 2017

(54)

(71)

(72)

@

(22)

(60)

SOLID STATE MEMORY FORMATTING

Applicant: Micron Technology, Inc., Boise, ID
(US)

Inventors: Mehdi Asnaashari, Danville, CA (US);
William E. Benson, San Mateo, CA
us)

Appl. No.: 15/460,296

Filed: Mar. 16, 2017

Related U.S. Application Data

Continuation of application No. 13/783,971, filed on
Mar. 4, 2013, now Pat. No. 9,626,287, which is a
division of application No. 12/356,725, filed on Jan.
21, 2009, now Pat. No. 8,392,687.

Publication Classification

(51) Int. CL
GOGF 3/06 (2006.01)
G1IC 16/10 (2006.01)
(52) US.CL
CPC ... GOGF 3/0652 (2013.01); GIIC 16/10
(2013.01); GOGF 3/0608 (2013.01); GO6F
3/064 (2013.01); GOGF 3/0643 (2013.01);
GOGF 3/0659 (2013.01); GOGF 3/0688
(2013.01)
(57) ABSTRACT

The present disclosure includes methods and devices for
solid state drive formatting. One device embodiment
includes control circuitry coupled to a number of memory
arrays, wherein each memory array has multiple physical
blocks of memory cells. The memory arrays are formatted
by the control circuitry that is configured to write system
data to the number of memory arrays, where the system data
ends at a physical block boundary; and write user data to the
number of memory arrays, where the user data starts at a
physical block boundary.

702 720
= ~
703 707 730-7
~ ~ ~
CONTROLLER MEMORY
HoST .
sngSETM INTERFACE .
CONNECTCR « 130N
MEMORY

US 2017/0199702 A1

Jul. 13,2017 Sheet 1 of 5

Patent Application Publication

[oL
AT
N-0eL” HOLYINN?
. VAN - _\/_%Dw
’ 1SOH
AONIA — EITIONING? -
\l\
/061 iy o1
\l\
0zl .

Patent Application Publication Jul. 13,2017 Sheet 2 of 5 US 2017/0199702 A1

N
230

252-0 252-1 252-S
~ o ~
250-0_A LI
250-7 T\ oo

)

_ 240-0

250-R- 1\ ¢ 0o

BLOCK 0

- __ 240-7

BLOCK 1

)

_ 240-M

BLOCK M

Fig. 2

Patent Application Publication Jul. 13,2017 Sheet 3 of 5 US 2017/0199702 A1

330

PARTITION BOOT RECORD h 364
RESERVED h 366
FILE ALLOCATION TABLE 1 368
FILE ALLOCATION TABLE 2 ~ 370
USER DATA h 362

Fig. 3

Patent Application Publication Jul. 13,2017 Sheet 4 of 5 US 2017/0199702 A1

430

PARTITION BOOT RECORD 464
RESERVED 466
PADDING h472
FILE ALLOCATION TABLE 1 468
FILE ALLOCATION TABLE 2 470
474 —~BL0CK BOUNDARY
USER DATA 462

Fig. 4

Patent Application Publication Jul. 13,2017 Sheet 5 of 5 US 2017/0199702 A1

530

PARTITION BOOT RECORD 564
RESERVED 566
PADDING h-576
578 —~BL0CK BOUNDARY
FILE ALLOCATION TABLE 1 . 568
PADDING ~ 580
582 +~BLOCK BOUNDARY
FILE ALLOCATION TABLE 2 570
PADDING h- 584
586 ~BLOCK BOUNDARY —=
USER DATA . 562

Fig. 5

US 2017/0199702 Al

SOLID STATE MEMORY FORMATTING

PRIORITY INFORMATION

[0001] This application is a Continuation of U.S. applica-
tion Ser. No. 13/783,971 filed Mar. 4, 2013, which is a
Divisional of U.S. application Ser. No. 12/356,725 filed Jan.
21, 2009, now U.S. Pat. No. 8,392,687, the specifications of
which are incorporated herein by reference.

TECHNICAL FIELD

[0002] The present disclosure relates generally to semi-
conductor memory devices, methods, and systems, and more
particularly, to solid state drive formatting.

BACKGROUND

[0003] Memory devices are typically provided as internal,
semiconductor, integrated circuits in computers or other
electronic devices. There are many different types of
memory including volatile and non-volatile memory. Vola-
tile memory can require power to maintain its data and
includes random-access memory (RAM), dynamic random
access memory (DRAM), and synchronous dynamic random
access memory (SDRAM), among others. Non-volatile
memory can provide persistent data by retaining stored
information when not powered and can include NAND flash
memory, NOR flash memory, read only memory (ROM),
Electrically Erasable Programmable ROM (EEPROM),
Erasable Programmable ROM (EPROM), and phase change
random access memory (PCRAM), among others.

[0004] Memory devices can be combined together to form
a solid state drive (SSD). A solid state drive can include
non-volatile memory, e.g., NAND flash memory and NOR
flash memory, and/or can include volatile memory, e.g.,
DRAM and SRAM, among various other types of non-
volatile and volatile memory.

[0005] An SSD can be used to replace hard disk drives as
the main storage device for a computer, as the solid state
drive can have advantages over hard drives in terms of
performance, size, weight, ruggedness, operating tempera-
ture range, and power consumption. For example, SSDs can
have superior performance when compared to magnetic disk
drives due to their lack of moving parts, which may ame-
liorate seek time, latency, and other electro-mechanical
delays associated with magnetic disk drives. SSD manufac-
turers can use non-volatile flash memory to create flash
SSDs that may not use an internal battery supply, thus
allowing the drive to be more versatile and compact.
[0006] An SSD can include a number of memory devices,
e.g., a number of memory chips (as used herein, “a number
of” something can refer to one or more of such things, e.g.,
a number of memory devices can refer to one or more
memory devices). As one of ordinary skill in the art will
appreciate, a memory chip can include a number of dies.
Each die can include a number of memory arrays and
peripheral circuitry thereon. The memory arrays can include
a number of memory cells organized into a number of
physical blocks, and the physical blocks can be organized
into a number of pages.

[0007] For some storage applications, SSDs can be used as
a replacement or compliment to hard (disk) drives. In these
instances, SSDs are placed in an environment that was
designed to accommodate a hard drive’s functions. Due to
the differences in granularity or quantization of the smallest

Jul. 13,2017

erasable unit between SSDs and hard drives (e.g., a 512 byte
sector for hard drives versus a 128 k or 256 k block in
SSDs), an SSD that is used as a replacement for or compli-
ment to a hard drive in a computing device may not operate
at peak performance levels.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] FIG. 1 is a functional block diagram of an elec-
tronic memory system that can be operated in accordance
with one or more embodiments of the present disclosure.
[0009] FIG. 2 illustrates a diagram of a portion of a
memory array in accordance with one or more embodiments
of the present disclosure.

[0010] FIG. 3 illustrates a diagram of a file system for a
number of memory arrays in accordance with one or more
embodiments of the present disclosure.

[0011] FIG. 4 illustrates a diagram of a file system for a
number of memory arrays having user data aligned at a
block boundary in accordance with one or more embodi-
ments of the present disclosure.

[0012] FIG. 5 illustrates a diagram of a file system for a
number of memory arrays with the file allocation tables and
user data aligned at a block boundary in accordance with one
or more embodiments of the present disclosure.

DETAILED DESCRIPTION

[0013] The present disclosure includes methods and
devices for solid state drive formatting. One device embodi-
ment includes control circuitry coupled to a number of
memory arrays, wherein each memory array has multiple
physical blocks of memory cells. The memory arrays can be
formatted by the control circuitry that is configured to write
system data to the number of memory arrays such that the
system data ends at a physical block boundary and to write
user data to the number of memory arrays such that the user
data starts at a physical block boundary.

[0014] In the following detailed description of the present
disclosure, reference is made to the accompanying drawings
that form a part hereof, and in which is shown by way of
illustration how one or more embodiments of the disclosure
may be practiced. These embodiments are described in
sufficient detail to enable those of ordinary skill in the art to
practice the embodiments of this disclosure, and it is to be
understood that other embodiments may be utilized and that
process, electrical, and/or structural changes may be made
without departing from the scope of the present disclosure.
As used herein, the designators “N,” “M,” “R,” and “S,”
particularly with respect to reference numerals in the draw-
ings, indicates that a number of the particular feature so
designated can be included with one or more embodiments
of the present disclosure.

[0015] The figures herein follow a numbering convention
in which the first digit or digits correspond to the drawing
figure number and the remaining digits identify an element
or component in the drawing. Similar elements or compo-
nents between different figures may be identified by the use
of similar digits. For example, 130 may reference element
“30” in FIG. 1, and a similar element may be referenced as
230 in FIG. 2. As will be appreciated, elements shown in the
various embodiments herein can be added, exchanged, and/
or eliminated so as to provide a number of additional
embodiments of the present disclosure. In addition, as will
be appreciated, the proportion and the relative scale of the

US 2017/0199702 Al

elements provided in the figures are intended to illustrate the
embodiments of the present invention, and should not be
taken in a limiting sense.

[0016] FIG. 1 is a functional block diagram of an elec-
tronic memory system 120 that can be operated in accor-
dance with one or more embodiments of the present disclo-
sure. In the embodiment illustrated in FIG. 1, the memory
system 120 can be a solid state drive (SSD), for example. As
illustrated in FIG. 1, the system 120 can include a memory
controller 101, a host interface connector 103, and a number
of memory arrays 130-1, . . ., 130-N, e.g., a number of solid
state memory arrays, such as a number of flash arrays, for
instance.

[0017] The interface 103 can be used to communicate
information between the memory system 120 and another
device such as a host system 102. Host system 102 can
include a memory access device, e.g., a processor. One of
ordinary skill in the art will appreciate that “a processor” can
intend one or more processors, such as a parallel processing
system, coprocessors, etc. Examples of host systems include
laptop computers, personal computers, digital cameras, digi-
tal recording and playback devices, PDAs, memory card
readers, interface hubs, and the like. For one or more
embodiments, the interface 103 can be in the form of a
standardized interface. For example, the host interface con-
nector 103 can be a serial advanced technology attachment
(SATA), peripheral component interconnect express (PCle),
or a universal serial bus (USB), among other connectors and
interfaces. In general, however, interface 103 can provide an
interface for passing control, address, data, and other signals
between the memory system 120 and a host system 102
having compatible receptors for the interface 103.

[0018] The memory controller 101 can communicate with
the arrays 130-1, . . ., 130-N to sense, program, and erase
data, among other operations. Memory controller 101 can
have circuitry that may be one or more integrated circuits
and/or discrete components. For one or more embodiments,
the circuitry in memory controller 101 may include control
circuitry for controlling access across a number of memory
arrays and/or for providing a translation layer between an
external host and the memory system 120. Thus, a memory
controller could selectively couple an 1/O connection (not
shown in FIG. 1) of a memory array to receive the appro-
priate signal at the appropriate 1/O connection at the appro-
priate time. Similarly, the communication protocol between
a host 102 and the memory system 120 may be different than
what is required for access of a memory array, such as arrays
130-1 to 130-N. Memory controller 101 could then translate
the commands received from a host, e.g., 102, into the
appropriate commands to achieve the desired access to a
memory array.

[0019] Memory arrays 130-1, . . ., 130-N can be arrays of
non-volatile memory cells, which can be flash memory cells
with a NAND architecture, for example. In a NAND archi-
tecture, the control gates of memory cells of a “row” can be
coupled with a word line, while the drain regions of the
memory cells of a “column” can be coupled to bit lines. The
source regions of the memory cells can be coupled to source
lines. As will be appreciated by those of ordinary skill in the
art, the manner of connection of the memory cells to the bit
lines and source lines depends on whether the array is a
NAND architecture, a NOR architecture, an AND architec-
ture, or some other memory array architecture.

Jul. 13,2017

[0020] The embodiment of FIG. 1 can include additional
circuitry that is not illustrated so as not to obscure embodi-
ments of the present disclosure. For example, the memory
system 120 can include address circuitry to latch address
signals provided over I/O connections through 1/O circuitry.
Address signals can be received and decoded by a row
decoder and a column decoder to access the memory 130-1,
... 130-N. It will be appreciated by those skilled in the art
that the number of address input connections depends on the
density and architecture of the memory 130-1, . . ., 130-N,
and that the number of addresses increases with both
increased numbers of memory cells and increased numbers
of memory blocks and arrays.

[0021] FIG. 2 illustrates a diagram of a portion of a
memory array 230 in accordance with one or more embodi-
ments of the present disclosure. Although not shown in FIG.
2, one of ordinary skill in the art will appreciate that the
memory array 230 can be located on a particular semicon-
ductor die along with various peripheral circuitry associated
with the operation thereof.

[0022] As shown in FIG. 2, array 230 has a number of
physical blocks 240-0 (BLOCK 0), 240-1 (BLOCK 1), . . .
, 240-M (BLOCK M) of memory cells. In the example
shown in FIG. 1, the indicator “M” is used to indicate that
the array 230 can include a number of physical blocks. The
memory cells can be single level cells and/or multilevel
cells. As an example, the number of physical blocks in array
230 may be 128 blocks, 512 blocks, or 1,024 blocks, but
embodiments are not limited to a particular multiple of 128
or to any particular number of physical blocks in an array
230. Further, embodiments are not limited to the type of
memory used in the array, e.g., non-volatile, volatile, etc. In
the embodiment illustrated in FIG. 2, the memory array 230
can be, for example, a NAND flash memory array 230.
[0023] In this example, each physical block 240-0, 240-1,
. .., 240-M includes memory cells which can be erased
together as a unit, e.g., the cells in each physical block can
be erased in a substantially simultaneous manner. For
instance, the cells in each physical block can be erased
together in a single operation. Each physical block, e.g.,
240-0, 240-1, . . ., 240-M, contains a number of physical
rows, e.g., 250-0, 250-1, . . . , 250-R, of memory cells
coupled to an access line, e.g., a word line. The indicator “R”
is used to indicate that a physical block, e.g., 240-0, 240-1,
..., -M, can include a number of rows. In some embodi-
ments, the number of rows, e.g., word lines, in each physical
block can be 32, but embodiments are not limited to a

particular number of rows 250-0, 250-1, . . . , 250-R per
physical block.
[0024] As one of ordinary skill in the art will appreciate,

each row 250-0, 250-1, . . ., 250-R can store one or more
pages of data. A page refers to a unit of programming and/or
reading, e.g., a number of cells that are programmed and/or
read together or as a functional group of memory cells. In the
embodiment shown in FIG. 1, each row 250-0, 250-1, . . .,
250-R stores one page of data. However, embodiments of
the present disclosure are not so limited. For instance, in
some embodiments of the present disclosure, each row can
store multiple pages of data. For example, each cell in a row
can contribute a bit towards an upper page of data, and can
contribute a bit towards a lower page of data. In one or more
embodiments, a memory array can include multiple physical
blocks of memory cells and each physical block can be
organized into multiple pages.

US 2017/0199702 Al

[0025] In one or more embodiments of the present disclo-
sure, and as shown in FIG. 2, a row, such as row 250-0, can
store data in accordance with a number of physical sectors
252-0, 252-1, . . ., 252-S. The indicator “S” is used to
indicate that a row, e.g., 250-0, 250-1, . . . , 250-R, can
include a number of physical sectors. Each physical sector
252-0, 252-1, . . ., 252-S can store data corresponding to a
logical sector and can include overhead information, such as
error correction code (ECC) information and logical block
address (LBA) information, as well as user data. As one of
ordinary skill in the art will appreciate, logical block
addressing is a scheme often used by a host for identifying
a logical sector of information. As an example, a logical
sector of data can be a number of bytes of data, e.g., 256
bytes, 512 bytes, or 1,024 bytes. Embodiments are not
limited to these examples.

[0026] It is noted that other configurations for the physical
blocks 240-0, 240-1, . . . , 240-M, rows 250-0, 250-1, . . .,
250-R, sectors 252-0, 252-1, . . ., 252-S, and pages are
possible. For example, the rows 250-0, 250-1, . . . , 250-R
of the physical blocks 240-0, 240-1, . . ., 240-M can each
store data corresponding to a single logical sector which can
include, for example, more or less than 512 bytes of data.

[0027] FIG. 3 illustrates a diagram of a file system for a
number of memory arrays 330 in accordance with one or
more embodiments of the present disclosure. In one or more
embodiments, a number of physical blocks can be used to
store system data and a number of physical blocks can be
used to store user data. In the embodiment illustrated in FIG.
3, the system data can include a partition boot record (PBR)
364, reserved data 366, a first file allocation table 368, and
a second file allocation table 370. System data can include
data that relates to the structure and operation of file system
for a number of memory arrays 330. As an example, file
allocation tables, e.g., 368 and 370, can contain file alloca-
tion data that centralizes the information about which areas
of memory arrays, e.g., 330, have data stored, are free or
possibly unusable, and where data is stored in the memory
array. In various embodiments, two file allocation tables can
be used with one of the file allocation tables acting as a
backup for a potential failure of one of the file allocation
tables. The reserved data 366, for example, can include data
containing information about the memory arrays and can be
used by the memory arrays to enable the operation of the
memory arrays.

[0028] In the embodiment illustrated in FIG. 3, user data
can be, e.g., data received from a host device, such as host
102 shown in FIG. 1. The user data 362 can be written, read,
and erased a number of times.

[0029] Inone or more embodiments, a host device, such as
host 102, and/or control circuitry in a controller, such as
controller 101, for example, can communicate commands to
amemory array such that data is written to the memory array
in a desired manner. The commands from the host device
and/or control circuitry can be configured to write data at the
beginning of a page for the data that is associated with each
command. Also, in one or more embodiments, commands
from the host device and/or control circuitry can be config-
ured to write data at a first page of a physical block, e.g.,
physical block boundary, when writing data to an erased
block. In one or more embodiments, a formatted memory
device can use the command from the host device and/or
control circuitry to write data to the first memory cell of a

Jul. 13,2017

page, e.g., page boundary, of a memory array and/or by
writing data to the beginning of an empty, e.g., erased, page.
[0030] In one or more embodiments, formatting the
memory arrays can include writing PBR data, where the
PBR can allocate space in the memory arrays for the system
and user data. The PBR data structures can be constructed
and/or configured such that user and system data starts at the
beginning of a physical block. When a write command is
received by the memory arrays, the PBR causes the com-
mand to write data at the next available location in the
memory array corresponding to the modulus, which is
calculated to ensure each modulus increment in the memory
array is at the beginning of a physical block and/or page.

[0031] In one or more embodiments, formatting includes
using system data and/or metadata for the memory arrays to
determine the location of the system data and user data in the
memory arrays. In one or more embodiments, system data
and/or metadata can include physical parameters, such as
memory array size, page size, block size, file system type,
media type, and memory cell type, among other parameters.
The storage space, e.g., sectors, that is available to store user
data can be quantitized to allocation units. An allocation
unit, e.g., cluster, can include a number of sectors. The
number of sectors in an allocation unit can be specified by
the system data and/or metadata for the memory arrays. For
example, a sector in the memory arrays can be comprised of
512 bytes and an allocation unit can have 8 sectors resulting
in an allocation unit with 4096 bytes. Therefore, in this
example, successive allocation units each containing 4096
bytes can be addressed by the host by adding 8 to the
previous allocation unit’s logical address.

[0032] In one or more embodiments, the minimum quan-
tity of sectors for a write operation, which is the number of
sectors in a page, e.g. page size, and/or the minimum
quantity of pages for an erase operation, which is the number
of pages in a block, e.g., block size, can be used along with
the allocation unit, as defined by the memory array metadata
and/or system data, to determine the modulus for the
memory arrays. The modulus can be used to format the
memory array to determine the starting location for the
components of the system data and the user data.

[0033] For example, an SSD can have 4, 8, or 16 sectors
in a page, where a sector can be 512 bytes, and an SSD can
have 128, 256, or 512 pages per physical block, therefore
physical block sizes are 131072 bytes, 262144 bytes, and
524288 bytes. Embodiments of the present disclosure are
not limited to this example and sectors, pages, and physical
blocks can be comprised of any number of bytes.

[0034] In one or more embodiments, formatting the
memory arrays can include using the page size, block size,
and allocation unit to determine the modulus to use when
determining the starting location for the components of the
system data and the user data. During formatting the host
can use knowledge of the SSD’s organization of the memory
arrays, in particular those requirements that affect the mini-
mum size of a write or erase operation, as well as the host’s
knowledge of metadata structures of the chosen file system,
such as the size of FAT1 and FAT?2, for example, employed
to determine the format, e.g., the location of the components
of the system data and the user data, for the memory arrays.
For example, the starting location for the PBR, reserved
data, FAT1, FAT2, and user data can be defined using the
modulus and the metadata and/or system data for the

US 2017/0199702 Al

memory arrays. This formatting will align each of these
portions at the beginning of a physical block.

[0035] Once the device has been formatted, host requests
to read or write user data will be aligned with the modulus
and the allocation unit. For example, FAT type file systems
will most commonly organize the allocation units into
groups of 512 byte sectors in increasing powers of 2, starting
with a 1:1 allocation unit to logical block mapping for small
capacity devices, up to 64 sectors per allocation unit. For
example, in the case of 64 sectors per allocation unit, the
accesses by host will be seen to be at addresses that are
modulus 64, with fixed offset added to the address that
depends on the size of the preceding or interlaced system,
e.g., metadata, entries.

[0036] When the SSD receives a write command that is
not aligned to a page boundary, those sectors in the page that
precede the sector indicated by the starting logical block of
the write command are copied to the page being accessed by
the write command, resulting in extra overhead, and also
more writes to the memory arrays, as the old location of
those sectors will also need to be erased. A formatted SSD
can increase performance and prolongs the life of the SSD
by minimizing the extra writes incurred by a non-aligned
format.

[0037] In one or more embodiments, a format which
results in the least amount of extra overhead and/or extra
read/write operations that the device must perform when
new data is written by host is desired.

[0038] In one or more embodiments, a host that has no
knowledge of the SSD’s page size and/or erase block size,
e.g. metadata and/or system data, can format the memory
arrays based on the fact that memory array capacities can be
quantized to powers of 2. Memory arrays can be formatted
by aligning the logical addresses of the components of the
system data and the user data, e.g., allocation units, based on
powers of 2. In one or more embodiments that align system
data and allocation units based on powers of 2, the memory
array translation of the logical address received in a host
command cannot add an additional offset to the received
logical address, or if an offset is used, the additional offset
must also be a power of 2.

[0039] Formatting memory arrays by writing data in
accordance with embodiments of the present disclosure can
reduce the amount of operating overhead associated with
writing new data on the memory arrays. Overhead can refer
to a number of additional memory cells that have to copied
or moved in addition to the memory cells addressed by the
write command due to the non alignment of the write
command address with respect to the flash (page or block)
address, due to the difference in size of the smallest write-
able or erasable unit between the hard drive and SSD. The
reduction in overhead can be based at least partially on the
lack of a need to move partially written pages to write a new
data string on a page because formatting the memory array
will cause data to be written to the beginning of an empty,
e.g., erased, page.

[0040] Also, logical and/or physical blocks and/or pages
can be used more efficiently when memory arrays are
formatted. A format that aligns allocation units and system
data to logical page boundaries and/or logical block bound-
aries, e.g., erase block, can cause the logical address of host
write commands to coincide with the boundaries of the
physical blocks or pages. Formatting can cause data to be
written to the beginning of an empty, e.g., erased, physical

Jul. 13,2017

block, e.g., at the boundary of the physical block. The data
in physical blocks and/or pages can be erased and rewritten
less often in a formatted memory array because the logical
address of the host write command will start at the beginning
of the logical and/or physical page and/or block, which does
not require moving or copying those sectors in the page
and/or physical block that precedes the logical address
indicated in the write command as in the case of an
unaligned format.

[0041] Inone or more embodiments, formatting a memory
array can complement wear leveling that can be imple-
mented to control the wear rate on the memory arrays (e.g.
130-1 . . .130-N in FIG. 1). As one of ordinary skill in the
art will appreciate, wear leveling can increase the life of a
solid state memory array since a solid state memory array
can experience failure after a number of program and/or
erase cycles.

[0042] In various embodiments, wear leveling can include
dynamic wear leveling to minimize the amount of valid
blocks moved to reclaim a block. Dynamic wear leveling
can include a technique called garbage collection in which
blocks with a number of invalid pages (i.e., pages with data
that has been re-written to a different page and/or is no
longer needed on the invalid pages) are reclaimed by erasing
the block. Static wear leveling includes writing static data to
blocks that have high erase counts to prolong the life of the
block.

[0043] In one or more embodiments, a number of blocks
can be designated as spare blocks to reduce the amount of
write amplification associated with writing data in the
memory array. A spare block can be a block in a memory
array that can be designated as a block where data can not
be written. Write amplification is a process that occurs when
writing data to solid state memory arrays. When randomly
writing data in a memory array, the memory array scans for
free space in the array. Free space in a memory array can be
individual cells, pages, and/or blocks of memory cells that
are not programmed. If there is enough free space to write
the data, then the data is written to the free space in the
memory array. If there is not enough free space in one
location, the data in the memory array is rearranged by
erasing, moving, and rewriting the data that is already
present in the memory array to a new location leaving free
space for the new data that is to be written in the memory
array. The rearranging of old data in the memory array can
be called write amplification because the amount of writing
the memory arrays has to do in order to write new data is
amplified based upon the amount of free space in the
memory array and the size of the new data that is to be
written on the memory array. Write amplification can be
reduced by increasing the amount of space on a memory
array that is designated as free space (i.e., where static data
will not be written), thus allowing for less amplification of
the amount of data that has to be written because less data
will have to be rearranged.

[0044] Inone or more embodiments, formatting a memory
array can be used to reduce the amount of write amplifica-
tion and also reduce the amount of designated free space
needed to control write amplification to desired levels.
Formatted memory arrays are filled with data in an efficient
manner, starting at the boundaries of physical block and
pages, therefore a data string in a formatted memory array
will not start in the middle of a physical block and/or page,

US 2017/0199702 Al

thus decreasing the chance that the data string will need to
be rewritten to another location to free up space in the
memory array for new data.

[0045] FIG. 4 illustrates a diagram of a file system for a
number of memory arrays 430 having user data aligned at a
block boundary in accordance with one or more embodi-
ments of the present disclosure. In FIG. 4, the file system for
a number of memory arrays 430 includes a partition boot
record 464, reserved data 466, a first file allocation table 468
(FILE ALLOCATION TABLE 1), and a second file alloca-
tion table 470 (FILE ALLOCATION TABLE 2). In the
embodiment illustrated in FIG. 4, the reserved portion 466
and first file allocation table 468 are separated by padding
472. Padding 472 can be a number of memory cells that are
not used to store system data or user data, e.g., the cells of
padding 472 can remain in an erased state. The padding 472
can be located within memory arrays 430 such that the
second file allocation table 470 ends at a block boundary,
e.g., 474. Also, the padding 472 can be located within
memory arrays 430 such that user data 462 starts at a block
boundary, e.g., 474. The user data 462 can be aligned with
a block boundary and the user data can be started at a
physical block boundary in the memory arrays 430.

[0046] In one or more embodiments, the system data and
the user data that is written to the solid state drive can be
aligned with the physical structure of the solid state drive.
That is, data is written at the beginning of a physical block
when writing to an erased block and data is written at the
beginning of a page when writing to an erased page. Also,
in some embodiments, data will not be written to a partially
written page and the data will be written to the next available
erased page.

[0047] In one or more embodiments, various physical
parameters associated with the memory arrays in a solid
state drive can be stored in memory, such as random access
memory (RAM), among other memory types, on the solid
state drive and can be communicated to control circuitry in
the solid state drive via the memory on the solid state drive.
In one or more embodiments, the various physical param-
eters can be communicated from a host device, which
received the physical parameters from the memory on the
solid state drive. The physical parameters can include
memory array size, page size, block size, file system type,
media type and memory cell type, among other parameters.
[0048] In one or more embodiments, once the physical
parameters are known by the control circuitry or by the host
device, a modulus for writing data to the memory arrays can
be calculated by the control circuitry or the host device. The
modulus can be the minimum incremental number of
memory cells used when writing data. The modulus can be
calculated based on the total number of memory cells, the
block size, the page size, and the memory cell type of the
memory arrays.

[0049] In one or more embodiments, each portion of the
solid state drive can be aligned with the physical parameters
of the solid state drive. In various embodiments, padding,
e.g., padding 472, can be provided in between each portion
of data on the solid state drive. The padding can be a number
of cells that remain unused, e.g., cells left in an erased state
and are not used to write data. In some embodiments,
padding can be provided between reserved data and the file
allocation table of the solid state drive. For instance, in the
embodiment illustrated in FIG. 4, padding 472 is provided
between reserved data 466 and file allocation table 468.

Jul. 13,2017

Padding can be located such that the file allocation tables
end at a block boundary, e.g., 474, thus aligning the start of
the user data to the beginning of the block following the
block boundary where the file allocation table ends.

[0050] In one or more embodiments, padding can be
provided between the reserved data and the first file alloca-
tion table causing the start of the first file allocation table to
be aligned with a block boundary. In various embodiments,
padding can be provided between the first file allocation
table and the second file allocation table causing the second
file allocation table to be aligned with a block boundary. In
various embodiments, padding can be provided between the
second file allocation table and the user data causing the user
data to be aligned with a block boundary. In one or more
embodiments, padding can be used, e.g., located, in various
other locations within the memory arrays such that a portion
of data on the solid state drive aligns with a block boundary.
[0051] FIG. 5 illustrates a diagram of a file system for a
number of memory arrays 530 with the file allocation tables
and user data aligned at a block boundary that can be
operated in accordance with one or more embodiments of
the present disclosure. In FIG. 5, the file system for a number
of memory arrays 530 has a partition boot record 564,
reserved data 566, a first file allocation table 568 (FILE
ALLOCATION TABLE 1), and a second file allocation table
570 (FILE ALLOCATION TABLE 2). The reserved data
566 and the first file allocation table 568 are separated by
padding 576. Padding 576 can be padding such as padding
472 described in connection with FIG. 4. For instance,
padding 576 can be a number of memory cells that are not
used to store data, e.g., data is not written to or read from the
cells. The memory cells that are part of padding 576 end at
block boundary 578 such that the first file allocation table
568 starts at a block boundary 578. The file allocation data
that is written in the first file allocation table 568 can be
aligned with the beginning of the block following boundary
578, as illustrated in FIG. 5.

[0052] In FIG. 5, the first file allocation table 568 and the
second file allocation table 570 are separated by padding
580. The memory cells that are part of padding 580 end at
block boundary 582 such that the second file allocation table
570 starts at block boundary 582.

[0053] In FIG. 5, the second file allocation table 570 and
the user data 562 are separated by padding 584. The memory
cells that are part of padding 584 are located such that user
data 562 starts at block boundary 586. The user data 562 can
be aligned with a block boundary and the user data can be
started at a physical block boundary in the memory arrays
530.

Conclusion

[0054] The present disclosure includes methods and
devices for solid state drive formatting. One device embodi-
ment includes control circuitry coupled to a number of
memory arrays, wherein each memory array has multiple
physical blocks of memory cells. The memory arrays are
formatted by the control circuitry that is configured to write
system data to the number of memory arrays, where the
system data ends at a physical block boundary; and write
user data to the number of memory arrays, where the user
data starts at a physical block boundary.

[0055] Although specific embodiments have been illus-
trated and described herein, those of ordinary skill in the art
will appreciate that an arrangement calculated to achieve the

US 2017/0199702 Al

same results can be substituted for the specific embodiments
shown. This disclosure is intended to cover adaptations or
variations of one or more embodiments of the present
disclosure. It is to be understood that the above description
has been made in an illustrative fashion, and not a restrictive
one. Combination of the above embodiments, and other
embodiments not specifically described herein will be appar-
ent to those of skill in the art upon reviewing the above
description. The scope of the one or more embodiments of
the present disclosure includes other applications in which
the above structures and methods are used. Therefore, the
scope of one or more embodiments of the present disclosure
should be determined with reference to the appended claims,
along with the full range of equivalents to which such claims
are entitled.

[0056] In the foregoing Detailed Description, some fea-
tures are grouped together in a single embodiment for the
purpose of streamlining the disclosure. This method of
disclosure is not to be interpreted as reflecting an intention
that the disclosed embodiments of the present disclosure
have to use more features than are expressly recited in each
claim. Rather, as the following claims reflect, inventive
subject matter lies in less than all features of a single
disclosed embodiment. Thus, the following claims are
hereby incorporated into the Detailed Description, with each
claim standing on its own as a separate embodiment.

1.-20. (canceled)

21. An apparatus, comprising:

a memory device; and

a controller coupled to the memory device configured to:

write system data to the memory device, where the
system data ends at a physical block boundary of a
first block by including a padding of memory cell in
the system data.

22. The apparatus of claim 21, wherein the memory
device includes a portion for system data and a portion for
user data.

23. The apparatus of claim 21, wherein the padding of
memory cells separates a first portion of the system data
from a second portion of the system data such that the
system data ends at the physical block boundary of the first
block.

24. The apparatus of claim 21, wherein the controller is
configured to write user data to the memory device such that
the user data starts at a physical block boundary of a second
block.

25. The apparatus of claim 24, wherein the control cir-
cuitry formats the memory device by writing the system data
so that the system data includes a file allocation table that
ends at the physical block boundary of the first block.

26. The apparatus of claim 21, wherein the control cir-
cuitry formats the memory device by writing the system data
that includes a first file allocation table and a second file
allocation table so that the padding of memory cells is
between the first file allocation table and the second file
allocation table and causes the second file allocation table to
end at the physical block boundary of the first block.

27. The apparatus of claim 21, wherein the control cir-
cuitry formats the memory device by writing the system data
that includes reserved data and a file allocation table so that
the padding of memory cells is between reserved data and
the file allocation table and causes the file allocation table to
end at the physical block boundary of the first block.

Jul. 13,2017

28. The apparatus of claim 21, wherein the control cir-
cuitry formats the memory device by writing the system data
that reserved data, a first file allocation table, and a second
file allocation table so that the padding of memory cells is
between reserved data and the first file allocation table and
causes the second file allocation table to end at the physical
block boundary of the first block.

29. An apparatus, comprising:

a memory device; and

a controller coupled to the memory device configured to:

write system data to the memory device, wherein a first
file allocation table of the system data starts at a
physical block boundary of a first block by including
a first padding of memory cells between a first
portion of the system data and the first file allocation
table.

30. The apparatus of claim 29, the first padding of
memory cells is between reserved data and the first file
allocation table.

31. The apparatus of claim 29, wherein the controller is
configured to write a second file allocation table to the
memory device such that the second file allocation table
starts at a physical block boundary of a second block by
including a second padding of memory cells between the
first file allocation table and the second file allocation table.

32. The apparatus of claim 29, wherein the controller is
configured to write a second file allocation table to the
memory device such that the second file allocation table
ends at a physical block boundary of a second block.

33. The apparatus of claim 29, wherein the controller is
configured to write user data to the number of memory
device such that the user data starts at a physical block
boundary of a third block by including a third padding of
memory cells.

34. The apparatus of claim 33, wherein the third padding
of data is between the second file allocation table and the
user data.

35. An apparatus, comprising:

a memory device; and

a controller coupled to the memory device configured to:

write user data to the memory device such that the user
data starts at a physical block boundary of a first
block by writing system data to the memory device,
wherein the system data includes a padding memory
cells that causes the user data to start at the physical
block boundary of the first block.

36. The apparatus of claim 35, wherein the padding of
memory cells is located at a physical block boundary of a
second block in system data.

37. The apparatus of claim 35, wherein the padding of
memory cells is located between reserved data and a first file
allocation table.

38. The apparatus of claim 35, wherein the padding of
memory cells is located between a first file allocation table
and a second file allocation table.

39. The apparatus of claim 35, wherein the padding of
memory cells is located between a second file allocation
table and the user data.

40. The apparatus of claim 35, wherein the controller is
configured to write system data to the memory device such
that the system data ends at the physical block boundary of
the first block.

