wo 2013/0327277 A1 [N N0 00000 0 0O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2013/032727 Al

(51

eay)

(22)

(25)
(26)
(30)

1

(72)
(73)

74

7 March 2013 (07.03.2013) WIPOIPCT
International Patent Classification: (81)
GO6F 9/54 (2006.01)

International Application Number:
PCT/US2012/051203

International Filing Date:
16 August 2012 (16.08.2012)

Filing Language: English
Publication Language: English
Priority Data:

13/224,198 1 September 2011 (01.09.2011) US

Applicant (for all designated States except US): QUAL-
COMM Incorporated [US/US]; Attn: International IP
Administration, 5775 Morchouse Drive, San Diego, CA
92121 (US).

Inventors; and

Inventors/Applicants (for US only): GARGASH, Nor-
man S. [US/US]; 5775 Morehouse Drive, San Diego, CA
92121 (US). VIJAYARAJAN, Vinod [IN/US]; 5775
Morehouse Drive, San Diego, CA 92121 (US).

Agent:. COLE, Nicholas Albert; 5775 Morchouse Drive,
San Diego, CA 92121 (US).

(84)

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, T™M,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant'’s entitlement to apply for and be granted a
patent (Rule 4.17(i1))

as to the applicant's entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

[Continued on next page]

(54) Title: METHOD AND SYSTEM FOR MANAGING PARALLEL RESOURCE REQUESTS IN A PORTABLE COMPUTING

DEVICE
CPUA 104
2 ol BUS 207
0 CLENT2 CLENT/ RESOURCE PROXY 2074 RESOURCE POWER MANAGER 107
%1
™ %) 25
f
REQUEST
20 235
2%8 i
g [— REQUEST
%7 - 256
%7
(JHREDL) " ISR
W THREADZ [| CONTEXT \ 2% B 5
16 SWITCH 266 N /
- % 261
v 7 R
/ REQUEST
28 L7t

(57) Abstract: A method and system for managing par-
allel resource requests in a portable computing device
("PCD") are described. The system and method includes
generating a first request (252) from a first client, the
first request issued in the context of a first execution
thread. The first request may be forwarded to a resource
(255). The resource may acknowledge the first request
and initiate asynchronous processing. The resource may
process the first request (256)while allowing the first
client to continue processing (260) in the first execution
thread. The resource may signal completion of the pro-
cessing of the first request (264) and may receive a
second request (268). The second request causes com-
pletion of the processing of the first request (270). The
completion of the processing of the first request may in-
clude updating a local representation of the resource to
a new state and invoking any -- registered callbacks.
The resource may become available to service the-
second request, and may process the second request.

WO 2013/032727 A1 WK 00TV VAT 0N 0

Published:
— with international search report (Art. 21(3))

WO 2013/032727 PCT/US2012/051203

METHOD AND SYSTEM FOR MANAGING PARALLEL
RESOURCE REQUESTS IN A PORTABLE COMPUTING DEVICE

DESCRIPTION OF THE RELATED ART

[0001] Portable computing devices (“PCDs”) are becoming increasingly popular.
These devices may include cellular telephones, portable/personal digital assistants
(“PDAS”), portable game consoles, portable navigation units, palmtop computers, and
other portable electronic devices.

[0002] PCDs may run various types of software for providing various functions and
features. For example, PCDs may run entertainment software which may provide
functions such as watching videos and playing video games. PCDs may also support
other types of software such as business software or writing software, such as
spreadsheets, e-mail, and/or word processing software.

[0003] Usually, the software described above running on a PCD requires actions from
various hardware elements that are linked together. The interactions between the
software and hardware elements can be controlled by an overall operational framework
that can be thought of as a linked node structure. In some instances, the interaction
between these elements occurs synchronously, where a request for a particular resource
suspends operation of an element until the request is acknowledged and granted. In
other instances, the interaction between these elements occurs asynchronously, where a
request for a particular resource does not suspend the operation of the element while the
request is processed.

[0004] However, it would be desirable for the requesting element to be able to
determine whether the resource is allowed to continue operation while the request is

processed.

SUMMARY

[0005] A method and system for managing parallel resource requests in a portable
computing device are described. In an embodiment, the method and system includes
generating a first request from a first client, the first request issued in the context of a
first execution thread. The first request may be forwarded to a resource. The resource
may acknowledge the first request and initiate asynchronous processing. The resource
may process the first request while allowing the first client to continue processing in the

first execution thread. The resource may signal completion of the processing of the first

1

WO 2013/032727 PCT/US2012/051203

request and may receive a second request. The second request causes completion of the
processing of the first request. The completion of the processing of the first request may
include updating a local representation of the resource to a new state and invoking any
registered callbacks. The resource may become available to service the second request,

and may process the second request.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] In the figures, like reference numerals refer to like parts throughout the various
views unless otherwise indicated. For reference numerals with letter character
designations such as “102A” or “102B”, the letter character designations may
differentiate two like parts or elements present in the same figure. Letter character
designations for reference numerals may be omitted when it is intended that a reference
numeral to encompass all parts having the same reference numeral in all figures.

[0007] FIG. 1 is a functional block diagram illustrating exemplary elements of a
system for managing parallel resource requests in a portable computing device (“PCD”);
[0008] FIG. 2 is a functional block diagram illustrating an example operating
environment for the method and system for managing parallel resource requests in a
portable computing device;

[0009] FIG. 3 is a diagram illustrating a synchronous thread running on a single
resource;

[0010] FIG. 4 is a diagram showing the operation of an embodiment of the method
and system for managing parallel resource requests in a portable computing device;
[0011] FIG. 5 is a timeline diagram showing the operation of an embodiment of the
method and system for managing parallel resource requests in a portable computing
device;

[0012] FIGS. 6A and 6B collectively illustrate a flowchart describing the operation of
an embodiment of the method and system for managing parallel resource requests in a
portable computing device;
[0013] FIG. 7A is a diagram of a first aspect of a node architecture that manages
resources of a portable computing device of FIG. 1;
[0014] FIG. 7B is a general diagram of a second aspect of the node architecture that
manages resources of a portable computing device of FIG. 1;
[0015] FIG. 7C is specific diagram of a second aspect of the node architecture that

manages resources of a portable computing device of FIG. 1;

2

WO 2013/032727 PCT/US2012/051203

[0016] FIG. 7D is a flowchart illustrating a method for creating a node architecture for
managing resource(s) of a portable computing device;

[0017] FIG. 7E is a continuation flowchart of FIG. 7D illustrating a method for creating
a node architecture for managing resource(s) of a portable computing device;

[0018] FIG. 8 is a flowchart illustrating a sub-method or a routine of FIG. 7D for
receiving node structure data in a software architecture in a portable computing device;
[0019] FIG. 9 is a flowchart illustrating a sub-method or a routine of FIGS. 7D-7E for
creating a node in a software architecture for a portable computing device;

[0020] FIG. 10 is a flowchart illustrating a sub-method or a routine of FIG. 9 for
creating a client in a software architecture of a portable computing device; and

[0021] FIG. 11 is a flow chart illustrating a method for creating a client request against

a resource in a software architecture for a portable computing device.

DETAILED DESCRIPTION

[0022] The word “exemplary” is used herein to mean “serving as an example, instance,
or illustration.” Any aspect described herein as “exemplary” is not necessarily to be
construed as preferred or advantageous over other aspects.

[0023] In this description, the term “application” may also include files having
executable content, such as: object code, scripts, byte code, markup language files, and
patches. In addition, an “application” referred to herein, may also include files that are
not executable in nature, such as documents that may need to be opened or other data
files that need to be accessed.

[0024] The term “content” may also include files having executable content, such as:
object code, scripts, byte code, markup language files, and patches. In addition,
"content" referred to herein, may also include files that are not executable in nature, such
as documents that may need to be opened or other data files that need to be accessed.

EE Y

[0025] Asused in this description, the terms “component,” “database,” “module,”
“system,” and the like are intended to refer to a computer-related entity, either hardware,
firmware, a combination of hardware and software, software, or software in execution.
For example, a component may be, but is not limited to being, a process running on a
processor, a processor, an object, an executable, a thread of execution, a program, and/or
a computer. By way of illustration, both an application running on a computing device

and the computing device may be a component. One or more components may reside

within a process and/or thread of execution, and a component may be localized on one

3

WO 2013/032727 PCT/US2012/051203

computer and/or distributed between two or more computers. In addition, these
components may execute from various computer readable media having various data
structures stored thereon. The components may communicate by way of local and/or
remote processes such as in accordance with a signal having one or more data packets
(e.g., data from one component interacting with another component in a local system,
distributed system, and/or across a network such as the Internet with other systems by
way of the signal).

2% ¢

[0026] In this description, the terms “communication device,” “wireless device,”

2% ¢

“wireless telephone,” “wireless communication device,” and “wireless handset” are used
interchangeably. With the advent of third generation (“3G”) and fourth generation
(“4G”) wireless technology, greater bandwidth availability has enabled more portable
computing devices with a greater variety of wireless capabilities.

[0027] In this description, the term “portable computing device” (“PCD”) is used to
describe any device operating on a limited capacity power supply, such as a battery.
Although battery operated PCDs have been in use for decades, technological advances
in rechargeable batteries coupled with the advent of third generation (“3G”) and fourth
generation (“4G”) wireless technology, have enabled numerous PCDs with multiple
capabilities. Therefore, a PCD may be a cellular telephone, a satellite telephone, a
pager, a personal digital assistant (“PDA”), a smartphone, a navigation device, a
smartbook or reader, a media player, a combination of the aforementioned devices, and a
laptop computer with a wireless connection, among others.

[0028] FIG. 1 is a functional block diagram of an exemplary, non-limiting aspect of a
PCD 100 in the form of a wireless telephone for implementing methods and systems for
managing parallel resource requests in a portable computing device. As shown, the
PCD 100 includes an on-chip system 102 that has a multi-core, central processing unit
(“CPU”) 110A, a graphics processor 110B, and an analog signal processor 126. These
processors 110A, 110B, 126 may be coupled together on one or more system busses or
another interconnect architecture, as know to those skilled in the art.

[0029] The CPU 110A may comprise a zeroth core 222, a first core 224, and an Nth
core 226 as understood by one of ordinary skill in the art. In an alternative embodiment,
instead of using a CPU 110A and a graphics processor 110B, one or more digital signal
processors (“DSPs”) may also be employed as understood by one of ordinary skill in the

art. Further, two or more multi-core processors may also be used.

WO 2013/032727 PCT/US2012/051203

[0030] The PCD 100 may comprise internal chip bus (“ICB”) driver modules 103 that
are executed by processors 110. One of ordinary skill in the art will recognize that each
ICB driver module 103 may comprise one or more software modules that may be
divided into various parts and executed by different processors 110, 126 without
departing from this disclosure.

[0031] There may be two types of ICB driver modules 103: an upper layer (“UL”)
type 103A; and a lower layer (“LL”) type 103B. Generally, the UL ICB driver types
103A will usually be executed by one or more processors 110, 126 that may support the
various application modules 105. The LL ICB driver types 103B will usually be
executed by one hardware element referred to as the resource power manager 107.

[0032] The resource power manager 107 running the LL ICB driver 103B will be
generally responsible for applying and setting bandwidth values. These bandwidth
values will be applied by the resource power manager 107 to one or more buses and/or
switch fabrics described below in connection with FIG. 2. The resource power manager
107 is generally responsible for setting the clock speeds for switch fabrics and buses as
well as the clock speeds for the slaves. Slaves are generally hardware components that
support requests from master processors 110 running application programs 105.

[0033] The ICB drivers 103A, B in combination with the resource power manager 107
allow for the dynamic creation of master-slave pairs at runtime for hardware
components that may exist within similar switch fabrics and/or across different switch
fabrics. The ICB drivers 103A, B and resource power manager 107 may calculate and
adjusts bandwidths for switch fabrics and buses on-the-fly or in real-time.

[0034] In a particular aspect, one or more of the method steps described herein may
implemented by executable instructions and parameters stored in the memory 112 that
include the ICB drivers 103A, B. These instructions that form the ICB drivers 103A, B
may be executed by the CPU 110A, the analog signal processor 126, and the resource
power manager 107. Further, the processors 110A, 126, the resource power manager
107, the memory 112, the instructions stored therein, or a combination thereof may serve
as a means for performing one or more of the method steps described herein.

[0035] As illustrated in FIG. 1, a display controller 128 and a touchscreen controller
130 are coupled to the multicore CPU 110A. A touchscreen display 132 external to the
on-chip system 102 is coupled to the display controller 128 and the touchscreen

controller 130.

WO 2013/032727 PCT/US2012/051203

[0036] FIG. 1 also illustrates a video coder/decoder (“codec’) 134, e.g., a phase-
alternating line (“PAL”) encoder, a sequential couleur avec memoire (“SECAM”)
encoder, a national television system(s) committee (“NTSC”) encoder or any other type
of video encoder 134 coupled to the multicore CPU 110A. A video amplifier 136 is
coupled to the video encoder 134 and the touchscreen display 132. A video port 138 is
coupled to the video amplifier 136. A universal serial bus (““USB”) controller 140 is
coupled to the CPU 110A. Also, a USB port 142 is coupled to the USB controller 140.
A subscriber identity module (SIM) card 146 may also be coupled to the CPU 110A.
Further, as shown in FIG. 1, a digital camera 148 may be coupled to the CPU 110A. In
an exemplary aspect, the digital camera 148 is a charge-coupled device (“CCD”’) camera
or a complementary metal-oxide semiconductor (“CMOS”) camera.

[0037] As further illustrated in FIG. 1, a stereo audio CODEC 150 may be coupled to
the analog signal processor 126. Moreover, an audio amplifier 152 may be coupled to
the stereo audio CODEC 150. In an exemplary aspect, a first stereo speaker 154 and a
second stereo speaker 156 are coupled to the audio amplifier 152. FIG. 1 shows that a
microphone amplifier 158 may be also coupled to the stereo audio CODEC 150.
Additionally, a microphone 160 may be coupled to the microphone amplifier 158. In a
particular aspect, a frequency modulation (“FM”) radio tuner 162 may be coupled to the
stereo audio CODEC 150. Also, an FM antenna 164 is coupled to the FM radio tuner
162. Further, stereo headphones 166 may be coupled to the stereo audio CODEC 150.

[0038] FIG. 1 further indicates that a radio frequency (“RF”) transceiver 168 may be
coupled to the analog signal processor 126. An RF switch 170 may be coupled to the
RF transceiver 168 and an RF antenna 172. As shown in FIG. 1, a keypad 174 may be
coupled to the analog signal processor 126. Also, a mono headset with a microphone
176 may be coupled to the analog signal processor 126. Further, a vibrator device 178
may be coupled to the analog signal processor 126. FIG. 1 also shows that a power
supply 180, for example a battery, is coupled to the on-chip system 102. In a particular
aspect, the power supply 180 includes a rechargeable DC battery or a DC power supply
that is derived from an alternating current (“AC”) to DC transformer that is connected to
an AC power source.

[0039] Asdepicted in FIG. 1, the touchscreen display 132, the video port 138, the
USB port 142, the camera 148, the first sterco speaker 154, the second stereo speaker
156, the microphone 160, the FM antenna 164, the stereo headphones 166, the RF

WO 2013/032727 PCT/US2012/051203

switch 170, the RF antenna 172, the keypad 174, the mono headset 176, the vibrator
178, and the power supply 180 are external to the on-chip system 322.

[0040] FIG. 2 is a functional block diagram illustrating an example operating
environment 200 for the method and system for managing parallel resource requests in a
portable computing device. The operating environment 200 includes two processors,
which, in this example, can be the CPU 110A and the resource power manager 107. A
resource, which in this embodiment can be a system bus 207, is managed by the
resource power manager 107. Another resource, which in this embodiment can be a
resource proxy 207A for the system bus 207 is located on and managed by the CPU
110A. A resource proxy is defined as a local representation of a remote resource, whose
state mirrors that of the remote resource.

[0041] In another embodiment, the resource proxy 207A may be substituted by a
framework that serves as an interface between clients and resources, implemented as a
library of functions on the CPU 110A. An example of such a framework is described
below.

[0042] As described above, the CPU 110A comprises a Oth core 222, a first core 224
and an Nth core 226. However, the CPU 110A can also be a single core processor,
where the CPU 110A would be the only processor. In the description to follow, while
the CPU 110A comprises a plurality of cores, the CPU 110A will be referred to as a
singular processor. Similarly, the resource power manager 107 may comprise one or
more cores.

[0043] Each core on the CPU 110A may run one or more threads. A thread is a unit
of execution on the processor and only one thread may be active at any given point in
time on a given core. Clients are created and requests are issued in the context of one or
more threads. In the below discussion, the terms client (or clients) and thread (or
threads) are used interchangeably. When a client issues a request, it means that a client
executing in the context of an active thread issued a request. Likewise, a client is said to
be synchronous in the sense that it waits for a response to a request before proceeding,
meaning that the thread in which the client issued a request is suspended until a response
is received. Note that multiple clients can be created in the context of a single thread,
but for the purposes of this description, only one client is active in a given thread at a
given point in time.

[0044] In the example shown in FIG. 2, a first client 201 and a second client 202 are

cach running on the Oth core 222. A third client 204 is shown as running on the first

7

WO 2013/032727 PCT/US2012/051203

core 224 and an Nth client 206 is shown as running on the Nth core 226. However, the
coupling of the clients to the various cores is arbitrary and shown in FIG. 2 for
illustrative purposes only. In an embodiment in which the CPU 110A is a single core
processor, all of the clients would be running on the CPU 110A. Further, in the
description to follow, any of the operative interactions between the clients and the
various cores within the CPU 110A can also be described as occurring directly between
the CPU 110A and the respective clients.

[0045] The CPU 110A is shown coupled to the system bus 207 by a dotted line 211
via the resource proxy 207A, while the system bus 207 is shown as coupled to the
resource power manager 107 through a solid line 212. This connection topology is to
indicate that the resource power manager 107 manages the system bus 207, while the
CPU 110A has logical access to the system bus 207 via the resource proxy 207A, but
does not actively manage it.

[0046] The resource proxy 207A is also shown as including a flag 213, which
represents the state of a condition variable. A condition variable expresses or represents
a certain condition that may or may not be true at a given point in time. The condition
variable can be signaled to indicate that the condition expressed is currently true, and
can be waited upon until the condition is true. In this example, the condition variable
expressed by the flag 213 refers to whether a given request to the bus 207 was serviced
or not. When the request is serviced, the condition variable is signaled (CV/S) (or the
flag 213 is set) to indicate this state. Until then, the condition variable is not signaled
(CV/NS). The operation of the flag 213 will be described in greater detail below.

[0047] Generally, the method and system for managing parallel resource requests in a
portable computing device will be described using an example of any one of the clients
201, 202, 204 and 206 making a request of a resource, in this example, the system bus
207. Since the CPU 110A does not actively manage the system bus 207, it forwards the
client request via the resource proxy 207A to the processor that manages the system bus
207. In this example, the processor that manages the system bus 207 is the resource
power manager 107. Accordingly, a request from, for example, client 201 is sent from
the CPU 110A to the resource power manager 107, as indicated by line 208. When the
request is serviced, a reply, in the form of an interrupt is sent from the resource power
manager 107 to the CPU 110A, as indicated by reference numeral 209. The interrupt
sent from the resource power manager 107 to the CPU 110A is handled by an interrupt

service routine (ISR) on the CPU 110A. The ISR will signal the condition of the

8

WO 2013/032727 PCT/US2012/051203

variable flag 213, causing it to change state from “condition variable-not signaled”
(CV/NS) to “condition variable-signaled” (CV/S). The effect of the interrupt will be
described in greater detail below.

[0048] The operation of the method and system for managing parallel resource
requests in a portable computing device will be described further with reference to
FIGS. 3, 4, 5 and 6.

[0049] FIG. 3 is a diagram illustrating a client running on a processor, in this example,
the CPU 110A. At 216, the client is running and issues a resource request, which is
forwarded by the resource proxy 207A on the CPU 110A to the resource power manager
107, as indicated by reference numeral 217. The request can be for any resource that is
managed by the resource power manager 107. At point 215, the client ceases to run (or
is suspended or blocked) on the CPU 110A, while the request is processed by the
resource power manager 107, as indicated by reference numeral 218. Once the request
is processed by the resource power manager 107, an acknowledgment (for example, in
the form of an interrupt) is sent from the resource power manager 107 to the CPU 110A,
as indicated by reference numeral 219, whereby at point 220 the client resumes running
on the CPU 110A as shown by reference numeral 221. Such a request is referred to as a
synchronous request because the client thread 216 running on the CPU 110A suspends
at point 215 while the request is processed by the resource power manager 107, and does
not resume until point 220 when the acknowledgment 219 is received by the CPU 110A.
However, there are some instances in which it is desirable for the client to perform some
other work during the time it is waiting for the request to be processed. It is also
possible that the client does not need to wait for the acknowledgement from the resource
power manager 107 and can simply continue running. Such a request may be called a
“fire-and-forget” request. An example of a fire-and-forget request would be a request in
which the client is turning off a resource. The client (and by extension, the thread the
client is running in) does not have to wait until this action is complete before continuing.
An example of such a methodology is described in FIG. 4.

[0050] FIG. 4 is a diagram showing the operation of an embodiment of the method
and system for managing parallel resource requests in a portable computing device. In
FIG. 4, a first thread 231 is begun in the CPU 110A. At point 232, a request from a
client in this thread is forwarded by the resource proxy 207A, from the CPU 110A to the
resource power manager 107. In an embodiment, the request can be from, for example,

the first client 201 requesting a certain amount of bandwidth on the system bus 207. For

9

WO 2013/032727 PCT/US2012/051203

example, the system bus 207 may be operating at a bandwidth of 100 megabits per
second (MB/s), but the client 201 would like it to operate at 200 MB/s. Therefore, the
request indicated by reference numeral 234 is a request to the resource power manager
107, which manages the system bus 207, for additional bandwidth on the system bus 207
to allow the first client 201 to operate at the higher bandwidth.

[0051] At point 232, the request is forwarded from the resource proxy 207A on the
CPU 110A to the resource power manager 107. However, since the first client 201
doesn’t have to wait until the available bandwidth on the system bus 207 is increased to
continue operating (the first client 201 can run at the lower bandwidth until the resource
power manager 107 increases the bandwidth available on system bus 207, at which point
the first client 201 automatically begins to use the higher bandwidth), the first client 201
can indicate this to the resource proxy 207A on CPU 110A, by passing in a preference.

[0052] The preference can be specified by the first client 201 and determines whether
the resource can be forked to allow parallel, or asynchronous, processing. Examples of
preferences include, but are not limited to, ALLOWED, DISALLOWED and
DEFAULT. The preferences ALLOWED and DISALLOWED explicitly allow or
disallow parallel processing as described above. The preference DEFAULT informs the
resource that the client allows the resource to make its own decision on whether to fork
or not, so long as it does not impact client behavior. For example, if the preference
DEFAULT is specified, the resource may choose to fork all requests that turn OFF a
resource or cancel a previously required request. A request to turn OFF a resource or
cancel a previous request usually indicates that the client is not interested in the state of
the resource following such a request and the resource can fork this request and return to
the client immediately. However, if the request were for a specific value and the
preference is DEFAULT, it cannot fork such a request as the client may expect the
resource to be in (at least) this particular state before control returns to the client.

[0053] The preference is used by the resource proxy 207A on the CPU 110A to
forward the request to the resource power manager 107 in an asynchronous fashion, such
that the first client 201 or the thread it is running in is not suspended while the request is
serviced. In such an instance, the CPU 110A continues to be available to execute the
thread begun at 231 and operate as indicated by reference numeral 237. When a
resource request is thus issued but not yet serviced or the request was issued and
serviced, but the new state not yet acknowledged by the resource proxy 207A on CPU

110A or visible to clients (i.c. if a client were to query the state of the resource, it would

10

WO 2013/032727 PCT/US2012/051203

still “see” the old state), the request and resource are marked “forked.” The terminology
“forked” refers to a condition in which the resource is in an incoherent state, in the sense
that the last request to the resource was issued, but is not yet serviced or if serviced, the
resources’ local representation, as maintained by the resource proxy 207A, is not yet
updated to the new state. The resource proxy 207A may also register a callback to be
invoked after the request is actually serviced. In this callback, the resource proxy 207A
can choose to perform other actions that depend on the resource being in the new
(requested) state. For example, it is possible that a clock resource (not shown) should be
set to a new value after the bandwidth of the system bus 207 is increased. In such a
case, the resource proxy 207A will issue the request to the clock resource (not shown) in
the callback, thus ensuring that the request to the clock resource (not shown) is executed
only after the request to the system bus 207 is serviced. Simultaneously therewith, the
resource power manager 107 processes the request as indicated by reference numeral
235 and sends an acknowledgment to the CPU 110A, indicated at reference numeral
236. The acknowledgement 236 corresponds to an interrupt communicated over
connection 209 (as shown in FIG. 2). The interrupt service routine (ISR) that
handles/services this interrupt on the CPU 110A sets the condition variable associated
with the flag 213 to the “signaled” status, i.e., CV/S. This action indicates that the
subject resource is now “joinable.” The terminology “joinable” refers to a condition in
which the resource, ¢.g., the system bus 207, has serviced the request, has moved to a
new state and has indicated this new state to the resource proxy 207A on the requesting
processor. When a subsequent request of the system bus 207 is issued by one of the
clients 201, 202, 204 and 206 on the CPU 110A, the resource is “joined”. The
terminology “joined” refers to an action in which the resource proxy 207A updates the
local representation of the resource (in this example, the system bus 207) to the new
state, thus rendering the resource coherent and able to service the new request. The
resource proxy 207A will also execute any callbacks it has registered at a fork, as
described above. It will then handle the new request.

[0054] As further shown in FIG. 4, a second client executing in the thread indicated at
reference numeral 241, or the same client 201 executing in a new thread, makes a new
request to the system bus 207, at point 242. So, at point 242, the resource (in this
example, the system bus 207 and its local resource proxy 207A) is “‘joined,” which is
possible because the condition variable associated with the flag 213 is set (CV/S) and

marks the resource “joinable,” as described above. If at point 242, when the second

11

WO 2013/032727 PCT/US2012/051203

request arrives at the resource proxy 207A, the system bus 207 is not yet “joinable,” the
request and the thread it is executing in will block until the interrupt from the resource
power manager 107 marks the resource as “joinable.” Processing in this new thread
then continues as indicated by reference numeral 244.

[0055] FIG. 5 is a timeline diagram showing the operation of an embodiment of the
method and system for managing parallel resource requests in a portable computing
device. At time t0, the first client 201, running on CPU 110A, begins work as illustrated
using reference numeral 251. At time t1, the first client 201 issues a request for a
remote resource, such as the system bus 207, via a local resource proxy 207A, as
indicated at reference numeral 252. The request is received at the local resource proxy
207A and begins being performed on the CPU 110A as illustrated using reference
numeral 254. At time t2, the resource proxy 207A forwards the request to the second
processor (the resource power manager 107), as illustrated using reference numeral 255.
When the request is received by the resource power manager 107, the resource power
manager 107 begins executing and processing the request as illustrated using reference
numeral 256. In accordance with an embodiment of the method and system for
managing parallel resource requests in a portable computing device, assuming that the
first client 201 allowed ‘forking” of the request, at time t3, the resource proxy 207A
processes the request in an asynchronous fashion (i.e., by issuing the request to the
remote processor (the resource power manager 107), but not waiting until the request is
serviced and acknowledged) and returns to the first client 201, as indicated using
reference numeral 257. The first client 201 now continues work as indicated using
reference numeral 260. As shown in the timeline, the work performed by the first client
201 during the period indicated at 260 occurs in parallel with the work performed by the
resource power manager 107 during the time period indicated by 256. The point 258 at
which the request is returned by the resource proxy 207A to the first client 201 is
referred to as the "fork" point. The fork point indicates that at point 258, the resource or
request forks to allow parallel processing simultaneously in the resource power manager
107 and in the client 201.

[0056] At time t4, a context switch to a second thread occurs as indicated using
reference numeral 266. At time t5, the resource power manager 107 send an interrupt,
as indicated using reference numeral 261, to the resource proxy 207A on CPU 110A.
The interrupt service routine (ISR) that handles this interrupt in the CPU 110A sets the
condition variable flag 213 (FIG. 2) to the “signaled” (CV/S) status as indicated using

12

WO 2013/032727 PCT/US2012/051203

reference numeral 264. At point 265, the system bus 207 is considered to be “joinable”
and available to process subsequent requests.

[0057] At time t7 the second client 202, executing in the second thread on CPU 110A,
issues a request to the system bus 207 via the resource proxy 207A as indicated using
reference numeral 268. The request 268 can be considered to be a “subsequent” request
from the perspective of the system bus 207. When the subsequent request is received,
the resource proxy 207A checks and determines that the system bus 207 is in a joinable
state and can be “joined.” At point 270, the system bus 207 is joined in the context of
the second thread. This means that the system bus 207 is considered “joinable” at point
265, but is “joined” at point 270, in order to process the subsequent request 268 in the
second thread from the second client 202. The resource (in this example, the system bus
207) thus can be in one of three states — forked, joinable, and joined. From the point the
resource is forked, it is considered to be in an incoherent state, meaning that the request
was received but not yet processed or if processed, the local representation of the
resource 1s not yet updated with the actual (new) resource state. In such a state, the
resource cannot process subsequent requests. Therefore, the resource is “joined,” i.e.,
rendered coherent at point 270, before it can process the subsequent request 268. The
time period indicated at 271 illustrates the time during which the subsequent request 268
from second client 202 is processed by the resource proxy 207A. Note that this request
may also “fork,” repeating the sequence described above.

[0058] It should be mentioned that the subsequent request need not come from a
different client, but, in an embodiment, can also come from the first client 201 in the
form of a subsequent request. Importantly, any client of the system bus 207 can initiate
the subsequent request and consequently “join” at time t7. The previous request which
was issued in the context of the first client 201 (and in this embodiment, in a different
thread) is thus “completed” (in the sense of updating the local resource representation
(the resource proxy 207A) to the new state and thus making the resource (the system bus
207) coherent again) during the processing of the subsequent request, which may, as
mentioned above, come from any client on any thread on the CPU 110A. This occurs
with no additional management and any request to the system bus 207 can bring the
resource back to availability and action at point 270.

[0059] FIGS. 6A and 6B collectively illustrate a flowchart describing the operation of
an embodiment of the method and system for managing parallel resource requests in a

portable computing device. In block 603 a request for a resource is received. In the

13

WO 2013/032727 PCT/US2012/051203

example above, the request is received by the resource proxy 207A. However, the
request can be received by another entity. In this embodiment, the first client 201 makes
a request for the system bus 207 that is managed by a remote processor, such as the
resource power manager 107. In the example described, the request is made via a local
resource proxy 207A on CPU 110A.

[0060] In block 604 it is determined whether the first client 201 that issued the request
wishes this request to complete synchronously or whether the first client 201 allows the
resource proxy 207A to “fork” this request and return immediately to the first client 201.
If the first client 201 has disallowed forking and desires the resource request to be
completed synchronously, in block 606, the resource proxy 207A forwards the request to
the resource power manager 107, blocks the processing thread, and waits until the
resource power manager 107 services the request.

[0061] In block 608, if the first client 201 has allowed the request to fork, the resource
proxy 207A forwards the request to the resource power manager 107 and returns to the
client immediately, without waiting for the request to be serviced.

[0062] In block 612, control returns to the first client 201 and the thread continues to
run, despite the request having not yet been serviced by the resource power manager
107. The resource is marked forked and needs to be joined before it can service any
subsequent request.

[0063] In block 614, the resource power manager 107 completes processing of the
request and sends an interrupt to the CPU 110A indicating this. The interrupt service
routine (ISR) on CPU 110A, which handles this interrupt, signals the condition variable,
flag 213 set to (CV/S), causing the resource to be set into the ‘joinable’ state. The step
described in block 614 may occur in series as illustrated, in parallel, or at any time after
the step described in block 612 and before the step described in block 628.

[0064] In block 618, a subsequent request is initiated. The subsequent request may be
initiated in the same thread or in a second thread. In addition, the subsequent request
may be initiated by the same client or by a different client. In this example, the
subsequent request is initiated by a different client, i.e., the second client 202 in a
different thread.

[0065] In another embodiment, the subsequent request may be initiated from the same
thread as the first request. Since the processing in the initial thread was not blocked by
the first request, the initial thread may do other work and then place a subsequent

request on the resource. For example, a thread may issue a request to turn off a remote

14

WO 2013/032727 PCT/US2012/051203

resource, which is forked by the local resource proxy. After a period of time, the thread
(or more specifically, a client in the thread) may want to turn on the resource. In such a
case, the subsequent request is initiated in the same thread.
[0066] In block 620, the subsequent request is received at the resource proxy 207A.
[0067] In block 624, it is determined whether the resource (the system bus 207) is
joinable. If it is determined in block 624 that the resource is not joinable, then the
process proceeds to block 626 where the thread waits until the resource is joinable. If it
is determined in block 624 that the resource is joinable, or after the resource becomes
joinable in block 626, the process proceeds to block 628 where the resource is “joined,”
the resource proxy 207A completes any pending processing from the previous forked
request and updates the local representation of the resource to the new state. In this
manner, the resource is moved to the ‘joined’ state. The resource now begins to process
the second request.
[0068] An alternative to the implicit join that ensues when a subsequent request
arrives on a resource in the “forked” or “joinable” state is known as an “explicit join.”
As described above, a forked resource joins implicitly whenever a subsequent request to
the resource arrives at the resource proxy (or the framework). However, there may be
instances when a client wishes to explicitly join the resource without issuing a
subsequent request. In such a case, a means by which a forked resource may be joined
and rendered coherent is referred to as an “explicit join.” Such an explicit join operation
will await the condition variable being signaled, update the local resource representation
to mirror the new resource state and return to client. The client will be suspended until
this call returns.
[0069] An alternative to “forked” requests to remote resources is forked ‘local’
resources/requests. In the example above, it is assumed that the request is serviced
remotely and that the client (or caller) wishes to perform other operations on the
requesting processor or perhaps yield to other clients or other threads to perform other
operations, while its request is serviced. This need not always be the case. Consider a
scenario where a request is serviced by another thread on the CPU 110A. In such a case,
the client issues a request to this resource which is picked up by the other thread
(whenever it is scheduled by the operating system), serviced and an acknowledgement
returned to the calling thread. It is possible to apply the method and system above to

this scenario by replacing the remote processor with this request processing thread.

15

WO 2013/032727 PCT/US2012/051203

[0070] An alternative to the “join” is referred to as the “cager join” state. In the

embodiment discussed above, forked resources are joined implicitly when a subsequent
request arrives at the resource (or its proxy) or explicitly when a client requests it. In
another embodiment, there can be multiple worker threads created for the express
purpose of joining a ‘joinable’ resource, independent of a subsequent request or an
explicit join. In such a scenario, the ISR that receives notice of completion from the
remote processor will not only signal the condition variable and mark the resource
“joinable,” but will also put the join action (the join callback) as a work item on a queue.
The worker threads that are waiting on the queue will see this work item, pick it up and
execute it in their contexts; ensuring that the join action is performed and the resource
set to the ‘joined’ state as soon as possible.

[0071] As mentioned above, in an alternative embodiment, the interface between the
client and the resource may be a framework, instead of a resource proxy. The design
and structure of such a framework is discussed below.

[0072] FIGS. 7A-10 as described below are provided to describe how the node
architecture of FIG. 2 is established and maintained. FIG. 7A is a diagram of a first
aspect of a software architecture 500A for establishing and maintaining the node
architecture that is illustrated in FIG. 4.

[0073] FIG. 7A is a diagram comprising functional blocks which represent software or
hardware (or both). FIG. 7A illustrates an architecture or framework manager 440 that
is coupled to a plurality of hardware and software elements, such as, but not limited to:
the ICB driver module 103; the central processing unit 110, also referred to generally as
the first hardware element (hardware element #1); a clock 442 for the CPU 110, also
referred to generally as the second hardware element (hardware element #2); a bus
arbiter or scheduler 422, also referred to generally as the third hardware element
(hardware element #3); a bus program A - 444A, also referred to generally as the first
software element (software element #1); a bus program B - 444B, also referred to
generally as the second software element (software element #2); a clock program AHB,
referred to generally as the third software element (software element #3); an action or
function monitored by a software element generally indicated as a keypress 448; and a
legacy element 450 comprising a software element or a hardware element or both.

[0074] An example of a legacy software element may include, but is not limited to, a
Dynamic Environment Manager (DEM). This is a software module that handles

interprocessor notification of processor sleep events. For example, a first processor A

16

WO 2013/032727 PCT/US2012/051203

uses the DEM to receive a notification that a second processor B has gone idle/come
back from idle. On newer hardware, this software functionality has been subsumed into
the route processor module (RPM) subsystem/communication protocol. Other legacy
software elements exist and are included within the scope of the invention.

[0075] An example of a legacy hardware element may include, but is not limited to, an
AMBA (Advanced Microcontroller Bus Architecture) High-performance Bus (AHB).
On older PCDs 100. The AHB may comprise the primary system bus, whereas on
newer PCDs 100, the system bus fabric 107 is completely different and the AHB bus is
only used for special applications to communicate with modules that have not yet been
updated to communicate via the new system bus fabric. Other legacy hardware elements
exist and are included within the scope of the invention.

[0076] The framework manager 440 may comprise a library of computer instructions
that manages data structures, such as nodes which communicate with each of the
aforementioned hardware and software elements. The framework manager 440 may be
responsible for creating one or more resources that may form nodes 602, 622, 642, and
646 as illustrated on the right side of the dashed line A of FIG. 7A.

[0077] The framework manager 440 may communicate directly with each ICB driver
module 103 residing on a CPU 110. Each node 602, 622, 642, and 646 on the right side
of FIG. 7A is a representation or model of each software or hardware element on the left
hand side of the dashed line A of FIG. 7A. For the remainder of this disclosure, a
general or non-specific node will be designated with reference numeral 601 as illustrated
in FIG. 7B.

[0078] As noted previously, each exemplary node 602, 622, 642, and 646 of FIG. 7A
may comprise one or more resources. A resource may comprise a software element or
hardware element or both. For example, a first node 602 comprises a single resource
that generally corresponds with the first hardware element or central processing unit
110. With the software architecture described in this disclosure, each resource of a node
601 may be provided with a unique name comprising one or more alphanumeric
characters. In the exemplary embodiment illustrated in FIG. 7A, the resource of the first
node 602 has been assigned the resource name of “core/cpu.” This exemplary resource
name generally corresponds to conventional file naming structures known to one of
ordinary skill in the art. However, as recognized by one of ordinary skill the art, other
types of resource names containing any other combination of alpha-numeric characters

and/or symbols are well within the scope of the invention.

17

WO 2013/032727 PCT/US2012/051203

[0079] In the exemplary embodiment of FIG. 7A, the second node 622 comprises a
plurality of resources. Specifically, in this particular exemplary embodiment, the second
node 622 has a first resource comprising a single hardware element corresponding to the
bus arbiter or scheduler 422. The second resource of the second node 622 comprises a
software element generally corresponding to the first software element of the bus
program A 444A. The third resource of the second node 622 comprises another
software element generally corresponding to the second software element of the bus
program B 444B. One of ordinary skill the art recognizes that any combination and any
number of resources and resource types for a given node 601 are well within the scope
of the invention.

[0080] In addition to creating nodes 601, the framework manager 440 may also create or
instantiate markers 650. A marker may comprise one or more legacy elements, such as a
hardware element or software element (or both as well as a plurality of these elements),
that do not easily map themselves or are not readily compatible with the software
architecture managed by the framework manager 440. A marker 650 can support a
resource of a node 601 meaning that a resource of a node 601 may be dependent on a
marker 650. One example of a marker 650 may include a string driver. A string driver
may not easily fit within the architecture described in connection with FIG. 7A. A
marker 650 may be referenced by a node 601 and its dependency array data collected in
block 1125 of FIG. 8.

[0081] FIG. 7A also illustrates a first client 648 that generally corresponds to an action
or function of the two software elements 448, 450. In the exemplary embodiment
illustrated in FIG. 7A, the first client 648 generally corresponds to a keypress action that
may occur within a particular application program module 105 supported by the portable
computing device 100. However, one of ordinary skill in the art recognizes that other
actions and/or functions of software elements besides keypresses are well within the
scope of the invention. Further details about client requests 648 and their respective
creation will be described below in connection with FIG. 10.

[0082] FIG. 7A also illustrates relationships between particular architectural elements.
For example, FIG. 7A illustrates a relationship between the client 648 and the first node
602. Specifically, the first client 648 may generate a client request 675A, illustrated
with dashed lines, which is managed or handled by the first node 602 that comprises the

resource “/core/cpu.” Typically, there are a predetermined or set number of types of

18

WO 2013/032727 PCT/US2012/051203

client requests 675. Client requests 675 will be described in further detail below in
connection with FIG. 10.
[0083] Other relationships displayed in FIG. 7A include dependencies illustrated with
dashed lines 680. Dependencies are relationships between respective resources of
another node 601. A dependency relationship usually indicates that a first resource (A)
is reliant upon a second resource (B) that may provide the first resource (A) with
information. This information may be a result of an operation performed by a second
resource (B) or it may simply comprise status information that is needed by the first
resource (A) or any combination thereof. The first resource (A) and second resource (B)
may be part of the same node 601 or they may be part of different nodes 601.
[0084] In FIG. 7A, the first node 602 is dependent upon the second node 622 as
indicated by the dependency arrow 680B which originates with the first node 602 and
extends to the second at 622. FIG. 7A also illustrates that the first node 602 is also
dependent upon the third node 642 as illustrated by the dependency arrow 680A. FIG.
7A also illustrates that the second node 622 is dependent upon the fourth node 646 as
illustrated by the dependency arrow 680C. One of ordinary skill in the art recognizes
that the dependencies 680 illustrated with the dashed arrows of FIG. 7A are only
exemplary in nature and that other combinations of dependencies between respective
nodes 601 are within the scope of the invention.
[0085] The architecture or framework manager 440 is responsible for maintaining the
relationships described above, that include, but are not limited to the client requests 675
and the dependencies 680 illustrated in FIG. 7A. The framework manager 440 will try to
instantiate or create as many nodes 601 as it can as long as the dependencies 680 for any
given node 601 are complete. A dependency 680 is complete when a resource which
supports a dependency is in existence or is in a ready state for handling information that
relates to the dependency 680.
[0086] For example, the first node 602 comprising the single resource ““/core/cpu’” may
not be created or established by the framework manager 440 if the third node 642
comprising the single resource ““/clk/cpu” has not been created because of the
dependency relationship 680A that exists between the first node 602 and the third node
642. Once the third node 642 has been created by the framework manager 440, then the
framework manager 440 may create the second node 602 because of the dependency

relationship 680A.

19

WO 2013/032727 PCT/US2012/051203

[0087] If the framework manager 440 is unable to create or instantiate a particular node
601 because one or more of its dependencies 680 are incomplete, the framework
manager 440 will continue running or executing steps corresponding to those nodes 601
that were created successfully by the framework manager 440. The framework manger
440 will usually skip over a call for a particular node 601 which may not exist due to
incomplete dependencies in which dependent resources have not been created and return
messages to that call which reflect that incomplete status.

[0088] In a multicore environment, such as illustrated in FIG. 1, the framework manager
440 may create or instantiate nodes 601 on separate cores, like the Oth, first and Nth
cores 222, 224, and 226 of FIG. 1. Nodes 601 may generally be created in a multicore
environment on separate cores and in parallel as long as the nodes 601 are not dependent
on one another and if all of a particular node’s corresponding dependencies, as described
below, are complete.

[0089] FIG. 7B is a general diagram of a second aspect of the software architecture
500B1 for a system that manages resources of a PCD 100 of FIG. 1. In this general
diagram, the one or more resources of each node 601 have not been provided with
unique names. The node or resource graph 500B1 of FIG. 7B comprises only the nodes
601, markers 650, clients 648, events 690, and query functions 695 supported by the
architecture or framework manager 440. Each node 601 has been illustrated with an
oval shape and arrows 680 with specific directions which represent respective
dependencies between resources within a node 601.

[0090] Calls within the node architecture illustrated in FIGS. 7A-B may be made to an
alias, or an actual resource name of a resource within a node 601. According to one
exemplary embodiment, there is not a way to make a client request 675 against a marker
650 since there is no interface between clients 648 and markers 650 so this generally
means information exchanged with markers 650 usually originates from a node 601 or
resource and not a client 648.

[0091] For example, the first node 601A of FIG. 7B has a dependency arrow 680A to
indicate that the first node 601A is dependent upon the two resources (resources #2 and
#3) of the second node 601B. Similarly, the first node 601A has a dependency arrow
680B to indicate that the first node 601A is also dependent upon the first marker 650
which typically comprises a legacy element of hardware or software or a combination

thereof.

20

WO 2013/032727 PCT/US2012/051203

[0092] FIG. 7B also illustrates how a client 648 of the first node 601 A may issue a

client request 675 to the first node 601A. After these client requests 675 are issued, the
second node 601B may trigger an event 690 or provide a response to a query 695, in
which messages corresponding to the event 690 and the query 695 flow back to the
client 648.

[0093] FIG. 7C is a specific diagram of a second aspect of the software architecture
500B2 for a system that manages resources of a PCD 100 of FIG. 1. FIG. 7C illustrates
a node or resource graph 500B2 that comprises only the nodes 601 with specific, yet
exemplary resource names, as well as clients 648, events 690, and query functions 695
corresponding to those of FIG. 7A. Each node 601 has been illustrated with an oval
shape and arrows 680 with specific directions which represent respective dependencies
between resources within a node 601.

[0094] For example, the first node 602 has a dependency arrow 680B to indicate that the
first node 602 is dependent upon the three resources of the second node 622. Similarly,
the third resource ““/bus/ahb/sysB/” comprising the second software element 444B and
generally designated with the reference letter “C” in FIG. 7C has a dependency arrow
680C that indicates this third resource (C) is dependent upon the single “/clk/sys/ahb”
resource of the fourth node 646.

[0095] FIG. 7C also illustrates the output data from nodes 601 which may comprise one
or more events 690 or query functions 695. A query function 695 is similar to an event
690. The query function 695 may have a query handle that may or may not be unique.
The query function is generally not externally identified and generally it does not have a
state. The query function 695 may be used to determine the state of a particular resource
of a node 601. The query function 695 and the events 690 may have relationships with
an established client 648 and these relationships are represented by directional arrows
697 to indicate that information from respective event 690 and query function 695 are
passed to a particular client 648. FIG. 7C also illustrates how the second node 622 of
FIG. 7C is dependent upon the first marker 650 via dependency arrow 680D.

[0096] The node or resource graphs S00B of FIG. 7B-7C represent relationships that
exist in memory and which are managed by the framework manager 440 and related data
structures that may comprise the nodes 601. The node or resource graph 500B can be
automatically generated by the framework manager 440 as a useful tool for identifying
relationships between respective elements managed by the framework manager 440 and

for troubleshooting by a software team.

21

WO 2013/032727 PCT/US2012/051203

[0097] FIG. 7D is a flowchart illustrating a method 1000A for creating a software
architecture for managing resource(s) of a PCD 100. Block 1005 is the first routine of
the method or process 1000 for managing resources of a PCD 100. In routine block
1005, a routine may be executed or run by the framework manager 440 for receiving
node structure data. The node structure data may comprise a dependency array that
outlines the dependencies a particular node 601 may have with other nodes 601. Further
details about node structure data and this routine or submethod 705 will be described in
more detail below in connection with FIG. 8.

[0098] Next, in block 1010, the framework manager 440 may review the dependency
data that is part of the node structure data received in block 1005. In decision block
1015, the framework manager 440 may determine if the node structure data defines a
leaf node 601. A leaf node 601 generally means that the node to be created based on the
node structure data does not have any dependencies. If the inquiry to decision block
1015 is positive, meaning that the node structure data for creating the current node does
not have any dependencies, then the framework manager 440 continues to routine block
1025.

[0099] If the inquiry to decision block 1015 is negative, then the “No” branch is
followed to decision block 1020 in which the framework manager determines if all of
the hard dependencies within the node structure data exist. A hard dependency may
comprise one in which a resource cannot exist without it. Meanwhile, a soft dependency
may comprise one in which a resource may use the dependent resource as an optional
step. A soft dependency means that a node 601 or resource of the node 601 which has a
soft dependency may be created or instantiated within the node architecture even when
the soft dependency does not exist. A marker 650 may be referenced as a soft
dependency as described above.

[00100] An example of a soft dependency may comprise an optimization feature that is
not critical to the operation for a resource oriented node 601 containing multiple
resources. The framework manager 440 may create or instantiate a node or a resource
for all hard dependencies that are present even when a soft is dependency is not present
for those nodes or resources which have soft dependencies that are not created. A call
back feature may be used to reference the soft dependency so that when the soft
dependency becomes available to the framework manager 440, the framework manager
440 will inform each callback referencing the soft dependency that the soft dependencies

are now available.

22

WO 2013/032727 PCT/US2012/051203

[00101] If the inquiry to decision block 1020 is negative, then the “No” branch is
followed to block 1027 in which the node structure data is stored by the framework
manager 440 in temporary storage such as memory and the framework manager 440
creates a call back feature associated with this un-instantiated node.

[00102] If the inquiry to decision block 1015 is positive, then the “Yes” branch is
followed to routine 1025 in which a node 601 is created or instantiated based on the
node structure data received in routine block 1005. Further details of routine block 1025
will be described below in connection with FIG. 9. Next, in block 1030, the framework
manager 440 publishes the newly created node 601 using its unique resource name(s) so
that other nodes 601 may send information to or receive information from the newly
created node 601.

[00103] Referring now to FIG. 7E which is a continuation flow chart of FIG. 7D, in block
1035, the framework manager 440 notifies other nodes 601 which are dependent on the
newly created node 601 that the newly created node 601 has been instantiated and is
ready to receive or transmit information. According to one exemplary aspect,
notifications are triggered immediately when a dependent node, like node 601B of FIG.
7B, is created, i.e., the notifications are performed recursively. So if node 601B of FIG.
7B is constructed, node 601A is immediately notified. This notification may allow node
601A to be constructed (since node 601B was node 601A’s final dependency).
Construction of node 601B may cause other nodes 601 to be notified, and so on. Node
601B does not get completed until the final resource dependent on node 601B is
completed.

[00104] A second, slightly more complex, implementation is to put all of the notifications
onto a separate notification queue, and then run through the queue beginning at a single
point in time , i.¢., the notifications are performed iteratively. So when node 601B of
FIG. 7B is constructed, the notification to node 601A is pushed onto a list. Then that list
is executed and node 601A is notified. This causes the notification to other additional
nodes 601 (besides node 601A, not illustrated in FIG. 7B) to be put on the same list, and
that notification is then sent after the notification to node 601A is sent. The notifications
to other nodes 601 (besides the notification to node 601A) does not occur until after all
the work associated with node 601B and node 601A has been completed.

[00105] Logically, these two implementations are equivalent, but they have different
memory consumption properties when implemented. The recursive realization is simple

but can consume an arbitrary amount of stack space, with the stack consumption being a

23

WO 2013/032727 PCT/US2012/051203

function of the depth of the dependency graph. The iterative implementation is slightly
more complex and requires a bit more static memory (the notification list), but stack
usage is constant irrespective of the depth of a dependency graph, such as illustrated in
FIG. 7B.

[00106] Also, notification of node creation in block 1035 is not limited to other nodes. It
may also used internally for alias construction. Any arbitrary element in the system
500A can use the same mechanism to request for notification when a node (or marker)
becomes available, not just other nodes. Both nodes and non-nodes may use the same
notification mechanism.

[00107] In decision block 1040, the framework manager 440 determines if other nodes
601 or soft dependencies are now released for creation or instantiation based on the
creation of the current node 601. Decision block 1040 generally determines whether
resources may be created because certain dependency relationships 680 have been
fulfilled by the current node which has recently undergone creation or instantiation.
[00108] If the inquiry to decision block 1040 is positive, then the “Yes” branch is
followed back to routine block 1025 in which the released node 601 may now be created
or instantiated because of the fulfillment of a dependency by the node 601 that was just
created.

[00109] If the inquiry to decision block 1040 is negative, then the “No” branch is
followed to block 1045 in which the frame work manager 440 may manage
communications between elements of the architecture as illustrated in FIG. 2. Next, in
block 1050, the framework manager 440 may continue to log or record actions taken by
resources by using the resource names associated with a particular resource. Block 1045
may be executed by the framework manager 440 after any action taken by the
framework manager 440 or any of the elements managed by the framework manager
440, such as the resources, nodes 601, clients 648, events 695, and query functions 697.
Block 1045 shows another aspect of the node architecture in which the framework
manager 440 may maintain a running log of activity that lists actions performed by each
element according to their unique identifier or name provided by the authors who
created a particular element, such as a resource of a node 601.

[00110] Compared to the prior art, this logging of activity in block 1050 that lists unique
names assigned to each resource of a system is unique and may provide significant
advantages such as used in debugging and error troubleshooting. Another unique aspect

of the node architecture 500A is that separate teams may work on different hardware

24

WO 2013/032727 PCT/US2012/051203

and/or software elements independently of one another in which each team will be able
to use resource names that are unique and easy to track without the need for creating
tables to translate less meaningful and usually confusing resource names assigned by
other teams and/or the original equipment manufacturer (OEM).

[00111] Next, in decision block 1055, the framework manager 440 determines if a log of
activity recorded by the framework manager 440 has been requested. If the inquiry to
decision block 1055 is negative, then the “No” branch is followed to the end of the
process in which the process returns back to routine 1005. If the inquiry to decision
block 1055 is positive, then the “Yes” branch is followed to block 1060 in which the
framework manager 440 sends the activity log comprising meaningful resource names
and respective actions performed by the resource names to an output device, such as a
printer or a display screen and/or both. The process then returns to routine block 1005
described above.

[00112] FIG. 8 is a flowchart illustrating a sub-method or a routine 1005 of FIG. 7D for
receiving node structure data in a software architecture of a PCD 100. Block 1105 is the
first step in the sub method or routine 1005 of FIG. 7D. In block 1105, the framework
manager 440 may receive a unique name for a software or hardware element, such as the
CPU 110 and the clock 442 of FIG. 7D. As discussed previously, a node 601 must
reference at least one resource. Each resource has a unique name in the system 500A.
Each element within the system S500A may be identified with a unique name. Each
element has a unique name from a character perspective. In other words, generally,
there are no two elements within the system 500A which have the same name.
According to exemplary aspects of the system, resources of nodes 601 may generally
have unique names across the system, but it is not required that client or event names be
unique, though they may be unique as desired.

[00113] For convenience, a conventional tree file naming structure or file naming
“metaphor” that employs forward slash “/”” characters for creating unique names may be
employed, such as, but not limited to, “/core/cpu” for CPU 110 and ““/clk/cpu” for clock
442. However, as recognized by one of ordinary skill the art, other types of resource
names containing any other combination of alpha- numeric characters and/or symbols
are well within the scope of the invention.

[00114] Next, in block 1110, the framework manager 440 may receive data for one or
more driver functions associated with one or more resources of the node 601 being

created. A driver function generally comprises the action to be completed by one or

25

WO 2013/032727 PCT/US2012/051203

more resources for a particular node 601. For example, in FIGS. 7A-7B, the driver
function for the resource /core/cpu of node 602 may request the amount of bus
bandwidth and the CPU clock frequency it requires in order to provide the requested
amount of processing that has been requested. These requests would be made via
clients, (such as clients 201, 202, 204 and 206 in FIG. 2) of the resources in nodes 642
and node 622. The driver function for /clk/cpu in node 642 would usually be
responsible for actually setting the physical clock frequency in accordance with the
request it received from the /core/cpu resource of node 602.

[00115] In block 1115, the framework manager 440 may receive node attribute data. The
node attribute data generally comprises data that defines the node policies such as
security (can the node be accessed via user space applications), remotability (can the
node be accessed from other processors in the system) and accessibility (can the
resource support multiple concurrent clients). The framework manager 440 may also
define attributes that allow a resource to override default framework behavior, such as
request evaluation or logging policy.

[00116] Subsequently, in block 1120, the framework manager 440 may receive
customized user data for the particular node 601 being created. The user data may
comprise a void “star” field as understood by one of ordinary skill in the art with respect
to the “C” programming language. User data is also known to one of ordinary skill in
the art as a “trust me” field. Exemplary customized user data may include, but is not
limited to, tables such as frequency tables, register maps, etc. The user data received in
block 1120 is not referenced by the system 500A, but allows for customization of a
resource if the customization is not recognized or fully supported by the framework
manager 440. This user data structure is a base class in the “C” programming language
intended to be extended for particular or specific uses.

[00117] One of ordinary skill the art recognizes that other kinds of data structures for
extending specific uses of a particular class are within the scope of the invention. For
example, in the programming language of “C++” (C-plus-plus), an equivalent structure
may comprise the key word “public” which would become an extension mechanism for
a resource within a node 601.

[00118] Next, in block 1125, the framework manager 440 may receive dependency array
data. The dependency array data may comprise the unique and specific names of one or
more resources 601 on which the node 601 being created is dependent. For example, if

the first node 602 of FIG. 7C was being created, then in this block 1125, the dependency

26

WO 2013/032727 PCT/US2012/051203

array data may comprise the resource names of the three resources of the second node
622 and the single resource name of the third node 642 on which the first node 602 is
dependent.

[00119] Subsequently, in block 1130, the framework manager 440 may receive resource
array data. The resource array data may comprise parameters for the current node being
created, such as parameters relevant to the first node 602 of FIGS. 7B-7C if this first
node 602 was being created. The resource array data may comprise one or more of the
following data: the names of other resources; unit; maximum value; resource attributes;
plug-in data; and any customized resource data similar to the customize user data of
block 1120. The plug-in data generally identifies functions retrieved from a software
library and usually lists the client types that may be supported by the particular node or
plurality of nodes being created. The plugin data also allows for customization of client
creation and destruction. After block 1130, the process returns to block 1010 of FIG.
7D.

[00120] In FIG. 8, the attribute data block 1115, customize user data block 1120, and the
dependency array data block 1125 have been illustrated with dashed lines to indicate
that these particular steps are optional and not required for any given node 601.
Meanwhile the unique name block 11035, a driver function block 1110, and resource
array data block 1130 have been illustrated with solid lines to indicate that these steps of
routine 1005 are generally mandatory for creating a node 601.

[00121] FIG. 9 is a flowchart illustrating a sub-method or a routine 1025 of FIG. 7D for
creating a node in a software architecture for a PCD 100. Routine block 1205 is the first
routine in the sub-method or routine 1025 for instantiating or creating a node 601
according to one exemplary embodiment. In routine block 1205, one or more clients
648 that are associated with the node 601 being instantiated are created in this step.
Further details about routine block 1205 will be described in further detail below in
connection with FIG. 10.

[00122] In block 1210, the framework manager may create or instantiate the one or more
resources corresponding to the node structure data of block 705. Next, in block 1215,
the framework manager 440 may activate the driver functions received in routine block
1110 of routine block 1005. According to one exemplary aspect, the driver functions
may be activated using the maximum values received in the resource array data block
1130 of routine block 1005. According to another, preferred, exemplary aspect, each

driver function may be activated with an optional, initial value that is passed along with

27

WO 2013/032727 PCT/US2012/051203

the node structure data from routine 1005. If initial data is not provided, the driver
function is initialized at 0 — the minimum value. The driver function is also usually
activated in manner such that it is known that it is being initialized. This enables the
resource to perform any operations that are specific to initialization, but do not need to
be performed during normal or routine operation. The process then returns to step 1030
of FIG. 7D.

[00123] FIG. 10 is a flowchart illustrating a sub-method or a routine 1205 of FIG. 9 for
creating a client 648 in a software architecture of a PCD 100. Block 1305 is the first
step of routine block 1205 in which a client 648 of one or more resources 601 is created.
In block 1205, the framework manager 440 receives a name assigned to the client 648
being created. Similar to resource names, the name for a client 648 may comprise any
type of alphanumeric and/or symbols.

[00124] Next, in block 1310, customized user data may be received by the framework
manager 440 if there are any particular customizations for this client 648 being created.
Block 1310 has been illustrated with dashed lines to indicate that the step is optional.
The customized user data of block 1310 is similar to the customized user data discussed
above in connection with the creation of resources for nodes 601.

[00125] In block 1315, the framework manager 440 receives the client type category
assigned to the particular client being created. The client type category as of this writing
may comprise one of four types: (a) required, (b) impulse, (c¢) vector, and (d)
isochronous. The client type category list may be expanded depending upon the
resources being managed by the system 101 and upon the application programs relying
upon the resources of the nodes 601.

[00126] The required category generally corresponds with the processing of a scalar
value that is passed from the required client 648 to a particular resource 601. For
example, a required request may comprise a certain number of millions of instructions
per second (MIPs). Meanwhile, the impulse category generally corresponds with the
processing of a request to complete some activity within a certain period of time without
any designation of a start time or stop time.

[00127] An isochronous category generally corresponds with a request for an action that
is typically reoccurring and has a well-defined start time and a well-defined end time. A
vector category generally corresponds with an array of data that usually is part of

multiple actions that are required in series or in parallel.

28

WO 2013/032727 PCT/US2012/051203

[00128] Subsequently, in block 1320, the framework manager 440 receives data that
indicates whether the client 648 has been designated as synchronous or asynchronous.
A synchronous client 648 is one that typically requires the framework manager 440 to
lock a resource of a node 601 until the resource 601 returns data and an indication that
the resource 601 has finished completing the requested task from the synchronous client
648.

[00129] On the other hand, an asynchronous client 648 may be handled by one or more
threads in parallel which are accessed by the framework manager 440. The framework
manager 440 may create a callback to a thread and may return a value when the callback
has been executed by a respective thread.

[00130] After block 1320, in decision block 1325, the framework manager 440
determines if the resource identified by the client 645 are available. If the inquiry to
decision block 1325 is negative, then the “No” branch is followed to block 1330 in
which a null value or message is returned to a user indicating that the client 648 cannot
be created at this time.

[00131] If the inquiry to decision block 1325 is positive, then the “Yes” branch is
followed to decision block 1335 in which the framework manager 440 determines if
cach resource identified by the client 648 supports the client type provided in block
1310. If the inquiry to decision block 1335 is negative, then the “No” branch is
followed back to block 1330 in which a null value or message is returned indicating that
the client 648 cannot be created at this time.

[00132] If the inquiry to decision block 1335 is positive, then the “Yes” branch is
followed to block 1340 in which the framework manager 440 creates or instantiates the
client 648 in memory. Next, in block 1345, if any customized user data is received in
block 1310, such as optional arguments, then these optional arguments may be mapped
with their respective resources and particular nodes 601. Next, in block 1350, the newly
created client 645 is coupled to its corresponding one or more resources in an idle state
or on requested state as illustrated in FIG. 10C described above. The process then
returns to block 1210 of FIG. 12.

[00133] FIG. 11 is a flow chart illustrating a method 1400 for creating a client request
675 against a resource 601 in a software architecture for a PCD 100. The method 1400
is generally executed after client creation and node creation as described above in

connection with FIGS. 7D-E and FIG. 10.

29

WO 2013/032727 PCT/US2012/051203

[00134] Block 1405 is the first step in the method 1400 for creating a client request 675
against the resource 601. This method 1400 will describe how the following three types
of requests 675 are handled by the framework manager 440: (a) required, (b) impulse,
and (c) vector. As the names of the requests 675 mentioned above suggest, client
requests 675 generally correspond with client types that were created and described
above.

[00135] In block 1405, the framework manager 440 may receive the data associated with
a particular client request 675 such as one of the three mentioned above: (a) required, (b)
impulse, and (c¢) vector. The data associated with a required request generally comprises
a scalar value that is passed from the required client 648 to a particular resource 601.
For example, a required request may comprise a certain number of millions of
instructions per second (MIPs). Meanwhile, an impulse request comprises a request to
complete some activity within a certain period of time without any designation of a start
time or stop time. Data for a vector request generally comprises an array of multiple
actions that are required to be completed in series or in parallel. A vector request may
comprise an arbitrary length of values. A vector request usually has a size value and an
array of values. Each resource of a node 601 may be extended to have a pointer field in
order to support a vector request. In the “C” programming language, the pointer field is
supported by the union function as understood by one of ordinary skill in the art.
[00136] Next, in block 1410, the framework manager 440 issues the request through the
client 648 that was created by the method described above in connection with FIG. 10.
Subsequently, in block 1415, the framework manager 440 double buffers the request
data being passed through the client if the request is a required type or a vector type. If
the request is an impulse type, then block 1415 is skipped by the framework manager
440.

[00137] For required requests, in this block 1415, values from a prior request are
maintained in memory so that the framework manager 440 can determine if there is any
difference between the previous requested values in the current set of requested values.
For vector requests, prior requests are usually not maintained in memory, although a
resource of a node 601 may maintain it as desired for a particular implementation.
Therefore, block 1415 is optional for vector types of requests.

[00138] In block 1420, the framework manager 440 calculates the delta or difference
between the previous set of requested values in the current set of requested values. In

decision block 1425, the framework manager determines if the current set of requested

30

WO 2013/032727 PCT/US2012/051203

values is identical to the previous set of requested values. In other words, the
framework manager 440 determines if a difference exists between the current set of
requested values and the previous set of requested values. If there is no difference
between the current set and previous set of requested values, then the “Yes” branch is
followed (which skips blocks 1430 through block 1470) to block 1475 in which the
process ends.

[00139] If the inquiry to decision block 1425 is negative, meaning that the set of
requested values are different relative to the set of pre-previous requested values, then
the “No” branch is followed to decision block 1430.

[00140] In decision block 1430, the framework manager 440 determines if the current
request is an asynchronous request. If the inquiry to decision block 1430 is negative,
then the “No” branch is followed to block 1440 in which the resource 601 corresponding
to the client request 675 is locked by the framework manager 440. If the inquiry to
decision block 1430 is positive, meaning that the current request is asynchronous request
type, then the “Yes” branch is followed to block 1435 in which the request may be
pushed onto another thread and may be executed by another core if a multicore system,
like that of FIG. 1, is currently managed by the framework manager 440. Block 1435
has been illustrated with dashed lines to indicate that this step may be optional if the
PCD 100 is a single core central processing system.

[00141] Subsequently, in block 1440, the resources 601 corresponding to the request 675
is locked by the framework manager 440. Next, in block 1445, the resource 601
executes the update function which generally corresponds to the plug-in data of the
resource array data received in block 1130 of FIG. 8. The update function generally
comprises a function responsible for the new resource state in light of a new client
request. The update function compares its previous state with the requested state in the
client request. If the requested state is greater than the previous state, then the update
function will perform the client request. However, if the requested state is equal to or
less than the current state and which the resource is operating at, then the client request
will not be performed in order to increase the efficiency since the old state achieves or
satisfies the requested state. An update function takes a new request from the client and
aggregates it with all the other active requests to determine the new state for the
resource.

[00142] As an example, multiple clients may be requesting a bus clock frequency. The

update function for the bus clock would usually take the maximum of all the client

31

WO 2013/032727 PCT/US2012/051203

requests and use that as the new desired state for the bus clock. It is not the case that all
resources will use the same update function, although there are some update functions
that will be used by multiple resources. Some common update functions are to take the
maximum of client requests, to take the minimum of client requests and to sum the client
request. Or resources may define their own custom update function if their resource
needs to aggregate requests in some unique way.

[00143] Next, in block 1450, the framework manager 440 passes the data to the resource
corresponding to the client 648 so that the resource may execute the driver function
which is specific to the resource of a node 601. A driver function applies the resource
state as computed by the update function. This may entail updating hardware settings,
issuing requests to dependent resources, calling legacy functions or some combination of
the above.

[00144] In the previous example, the update function computed the requested bus clock
frequency. The driver function may receive that requested frequency and it may update
the clock frequency control HW to run at that frequency. Note that sometimes it is not
possible for the driver function to meet the exact requested state that update function has
computed. In this case, the driver function may choose the frequency that best meets the
request. For example, the bus clock HW may only be able to run at 128 MHz and 160
MHz, but the requested state might be 150 MHz. In this case, the driver function should
run at 160 MHz, as that exceeds the requested state.

[00145] Next, in block 1455, the framework 440 receives state control from the resource
which has executed the driver function in block 1450. Subsequently, in block 1460, if
defined against the resource, events 690 may be triggered so that data is passed back to
the client 648 which corresponds to the event 690. Events may be processed in another
thread. This may minimize the amount of time spent with the resources locked and
allows for parallel operation in a multicore system as illustrated in FIG. 1. One or more
events 690 may be defined against a resource in a manner similar to how a request may
be defined against a resource as described in this method 1400. In other words, the
event creation process may largely parallel the client creation process. One thing that is
different with the events is that it is possible to define events that only get triggered
when certain thresholds are crossed.

[00146] This defining of events that only get triggered based on thresholds allows for
notification of when a resource is getting oversubscribed (it has more concurrent users

than it can support) which is indicative of a system overloading condition, or when a

32

WO 2013/032727 PCT/US2012/051203

resource goes low/off, which may allow other things to be shut off, restore functionality
that was disabled when the system became oversubcescribed, etc. Because the event
registration may be done with thresholds, it reduces the amount of work the system has
to do on event notification to only happen when there is something really necessary. It is
also possible to register for an event on every state change.

[00147] Next, in optional block 1465, if the request being processed is a vector request,
then this optional block 1465 is usually performed. Optional block 1465 generally
comprises a check or determination to assess whether the vector pointer is still
positioned on the same data that the user passed into the vector. If the inquiry to this
optional block 1465 is positive, meaning that the pointer is still pointing to the same data
which was passed by the user into the vector, then the pointer is cleared out so that
references to old data is not maintained. This optional block 1465 is generally
performed to account for the double buffering block 1415 described above when a
vector request is being processed, compared to an impulse request and a required
request.

[00148] Subsequently, in block 1470, the framework 440 unlocks the requested resource
so that other client requests 648 may be handled by the current but now released
requested resource of a particular node 601. The process then returns to the first block
1405 for receiving the next client request.

[00149] In view of the disclosure above, one of ordinary skill in programming is able to
write computer code or identify appropriate hardware and/or circuits to implement the
disclosed invention without difficulty based on the flow charts and associated
description in this specification, for example. Therefore, disclosure of a particular set of
program code instructions or detailed hardware devices is not considered necessary for
an adequate understanding of how to make and use the invention. The inventive
functionality of the claimed computer implemented processes is explained in more detail
in the above description and in conjunction with the FIGS. which may illustrate various
process flows.

[00150] In one or more exemplary aspects, the functions described may be implemented
in hardware, software, firmware, or any combination thereof. If implemented in
software, the functions may be stored on or transmitted as one or more instructions or
code on a computer-readable medium. Computer-readable media include both computer
storage media and communication media including any medium that facilitates transfer

of a computer program from one place to another. A storage media may be any

33

WO 2013/032727 PCT/US2012/051203

available media that may be accessed by a computer. By way of example, and not
limitation, such computer-readable media may comprise RAM, ROM, EEPROM, CD-
ROM or other optical disk storage, magnetic disk storage or other magnetic storage
devices, or any other medium that may be used to carry or store desired program code in
the form of instructions or data structures and that may be accessed by a computer.

[00151] Also, any connection is properly termed a computer-readable medium. For
example, if the software is transmitted from a website, server, or other remote source
using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (“DSL”), or
wireless technologies such as infrared, radio, and microwave, then the coaxial cable,
fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and
microwave are included in the definition of medium.

[00152] Disk and disc, as used herein, includes compact disc (“CD”), laser disc, optical
disc, digital versatile disc (“DVD?”), floppy disk and blu-ray disc where disks usually
reproduce data magnetically, while discs reproduce data optically with lasers.
Combinations of the above should also be included within the scope of computer-
readable media.

[00153] Although selected aspects have been illustrated and described in detail, it will be
understood that various substitutions and alterations may be made therein without
departing from the spirit and scope of the present invention, as defined by the following

claims.

34

WO 2013/032727 PCT/US2012/051203

CLAIMS

What 1s claimed is:

1. A method for managing parallel resource requests in a portable computing device,
comprising:

generating a first request from a first client, the first request issued in the context
of a first execution thread;

forwarding the first request to a resource;

acknowledging the first request by the resource and initiating asynchronous
processing;

processing the first request in the resource while allowing the first client to
continue processing in the first execution thread;

signaling, by the resource, completion of the processing of the first request;

receiving in the resource a second request, the second request causing
completion of the processing of the first request, the completion of the processing of the
first request including updating a local representation of the resource to a new state and
invoking any registered callbacks, the resource becoming available to service the second
request; and

processing the second request in the resource.

2. The method of claim 1, wherein the second request originates in the first client.

3. The method of claim 1, wherein the second request originates in a second client.

4. The method of claim 1, wherein the first request is forwarded to the resource via a

resource proxy.
5. The method of claim 1, wherein acknowledging the first request further comprises
allowing the first client to continue processing in the first execution thread before the

resource processes the first request.

6. The method of claim 1, wherein signaling, by the resource, completion of the

processing of the first request makes the resource joinable.

35

WO 2013/032727 PCT/US2012/051203

7. The method of claim 1, wherein the local representation of the resource comprises

any of a resource proxy and an execution framework.

8. The method of claim 1, wherein acknowledging the first request by the resource and
initiating asynchronous processing places the resource in an incoherent state and the
second request causes the resource to return to a coherent state and be available to

process the second request.

9. The method of claim 1, wherein the resource is made available without receiving the

second request.

10. The method of claim 1, wherein the second request is issued in the context of the

first execution thread.

11. The method of claim 1, wherein the second request is issued in the context of a

second execution thread.

12. A computer system for managing parallel resource requests in a portable computing
device, the system comprising:
a processor operable for:

generating a first request from a first client, the first request issued in the
context of a first execution thread;

forwarding the first request to a resource;

acknowledging the first request by the resource and initiating
asynchronous processing;

processing the first request in the resource while allowing the first client
to continue processing in the first execution thread;

signaling, by the resource, completion of the processing of the first
request;

receiving in the resource a second request, the second request causing
completion of the processing of the first request, the completion of the processing of the
first request including updating a local representation of the resource to a new state and
invoking any registered callbacks, the resource becoming available to service the second

request; and

36

WO 2013/032727 PCT/US2012/051203

processing the second request in the resource.

13. The system of claim 12, wherein the second request originates in the first client.

14. The system of claim 12, wherein the second request originates in a second client.

15. The system of claim 12, wherein the first request is forwarded to the resource via a

resource proxy.

16. The system of claim 12, wherein acknowledging the first request further comprises
allowing the first client to continue processing in the first execution thread before the

resource processes the first request.

17. The system of claim 12, wherein signaling, by the resource, completion of the

processing of the first request makes the resource joinable.

18. The system of claim 12, wherein the local representation of the resource comprises

any of a resource proxy and an execution framework.

19. The system of claim 12, wherein acknowledging the first request by the resource
and initiating asynchronous processing places the resource in an incoherent state and the
second request causes the resource to return to a coherent state and be available to

process the second request.

20. The system of claim 12, wherein the resource is made available without receiving

the second request.

21. The system of claim 12, wherein the second request is issued in the context of the

first execution thread.

22. The system of claim 12, wherein the second request is issued in the context of a

second execution thread.

37

WO 2013/032727 PCT/US2012/051203

23. A computer system for managing parallel resource requests in a portable computing
device, the system comprising:

means for generating a first request from a first client, the first request issued in
the context of a first execution thread;

means for forwarding the first request to a resource;

means for acknowledging the first request by the resource and initiating
asynchronous processing;

means for processing the first request in the resource while allowing the first
client to continue processing in the first execution thread,

means for signaling, by the resource, completion of the processing of the first
request;

means for receiving in the resource a second request, the second request causing
completion of the processing of the first request, the completion of the processing of the
first request including updating a local representation of the resource to a new state and
invoking any registered callbacks, the resource becoming available to service the second
request; and

means for processing the second request in the resource.

24. The system of claim 23, wherein the second request originates in the first client.

25. The system of claim 23, wherein the second request originates in a second client.

26. The system of claim 23, further comprising means for forwarding the first request to

the resource via a resource proxy.
27. The system of claim 23, wherein the means for acknowledging the first request
further comprises means for allowing the first client to continue processing in the first

execution thread before the resource processes the first request.

28. The method of claim 23, wherein signaling, by the resource, completion of the

processing of the first request makes the resource joinable.

38

WO 2013/032727 PCT/US2012/051203

29. The system of claim 23, wherein the local representation of the resource comprises

any of a resource proxy and an execution framework.

30. The system of claim 23, wherein the means for acknowledging the first request by
the resource and initiating asynchronous processing places the resource in an incoherent
state and the second request causes the resource to return to a coherent state and be

available to process the second request.

31. The system of claim 23, wherein the resource is made available without receiving

the second request.

32. The system of claim 23, wherein the second request is issued in the context of the

first execution thread.

33. The system of claim 23, wherein the second request is issued in the context of a

second execution thread.

34. A computer program product comprising a computer usable medium having a
computer readable program code embodied therein, said computer readable program
code adapted to be executed to implement a method for managing parallel resource
requests in a portable computing device, said method comprising:

generating a first request from a first client, the first request issued in the context
of a first execution thread;

forwarding the first request to a resource;

acknowledging the first request by the resource and initiating asynchronous
processing;

processing the first request in the resource while allowing the first client to
continue processing in the first execution thread;

signaling, by the resource, completion of the processing of the first request;

receiving in the resource a second request, the second request causing
completion of the processing of the first request, the completion of the processing of the
first request including updating a local representation of the resource to a new state and
invoking any registered callbacks, the resource becoming available to service the second

request; and

39

WO 2013/032727 PCT/US2012/051203

processing the second request in the resource.

35. The computer program product of claim 34, wherein the second request originates

in the first client.

36. The computer program product of claim 34, wherein the second request originates

in a second client.

37. The computer program product of claim 34, wherein the first request is forwarded to

the resource via a resource proxy.

38. The computer program product of claim 34, wherein acknowledging the first
request further comprises allowing the first client to continue processing in the first

execution thread before the resource processes the first request.

39. The computer program product of claim 34, wherein signaling, by the resource,

completion of the processing of the first request makes the resource joinable.

40. The computer program product of claim 34, wherein the local representation of the

resource comprises any of a resource proxy and an execution framework.

41. The computer program product of claim 34, wherein acknowledging the first
request by the resource and initiating asynchronous processing places the resource in an
incoherent state and the second request causes the resource to return to a coherent state

and be available to process the second request.

42. The computer program product of claim 34, wherein the resource is made available

without receiving the second request.

43. The computer program product of claim 34, wherein the second request is issued in

the context of the first execution thread.

44. The computer program product of claim 34, wherein the second request is issued in

the context of a second execution thread.

40

WO 2013/032727

PCT/US2012/051203
1715
10\0\
10501~ APPLICATION POMR | 180
— MODULE 1 SUPPLY
O 132
1% LR o "
o L8 T USB/
CONTROLLER CONTROLLER il
138 | 1% TS I
\ |\ CNROLER [= R A1
VIDEO || VIDEQ | 134 18T CPU
\ 103A1\ 110A~ /107148
156 SSPTEEEKEE% 152 00 | 24~ oo L reoRee Y7
L /) | CRORVER 7N il o
STERED A00 \
180 | SpEMER [T AMPLFER 10542 L e
\ / B N C3 DRVER
| [MICROPHONE APPLICETION
MCROPHONE AIPLFER WODULED | ”Q eS| 1038 172
X7 7] WL PROCESSOR
198 T Frrmag STEREQ ooNAL |103A2 UL
164 TUER ano PROCESSOR | L_ICBIRER
i A
16{ 150" = TRANSCENER 1~ SWITCH
174\168 1\70
STERED -
HEADPHONES (EYPAD
/
1ONO
166 HEADSET WiTH |- 170
MICROPHONE
veRiR 178

FIG. 1

PCT/US2012/051203

WO 2013/032727

00¢

102
/
SNg LI
304N0SHY ~d Y10
U é
AXO¥d 30HN0STY
7 PISNAO SINOL—€12 N IN3TD N-907
60
OO N
07z ¢ INIMD
| — 107
M0l
¥ee ¢ INJIND /NON
MIOVNYIN ¥3MOd % EL U NS
304N0S M e v0l) NdJ
\ N 1ol N
10}

GlL/C

WO 2013/032727 PCT/US2012/051203

3/15
CLIENT RESOURCE
CPU 110A POWER MANAGER 107
THREAD 1
216 217
/ -
215 REQUEST
f218
ACKNOWLEDGEMENT Y

72l ,
‘ ;221 2o

FIG. 3

WO 2013/032727 PCT/US2012/051203

4/15
CLIENT RESOURCE
CPU 110A POWER MANAGER 107
THREAD 1
231 24
/ .
232 REQUEST
Wy 2%
JOINABLE v
20 7
21 2%
THREAD 2
U~
21421
o
v

FIG. 4

WO 2013/032727

202
CLIENT 2

201
CLIENT 1

515

CPU 110A
BUS 207

RESOURCE PROXY 207A RESOURCE POWER MANAGER 107

PCT/US2012/051203

207
THREAD1 /

251~

252 954
/

260

REQUEST

255

/

t4

5 THREAD 2
t6

CONTEXT '\
SWiTCH 206

{7

~ 7

258\
t3
257

REQUEST

f256

210

/ REQUEST
268

FIG. 5

WO 2013/032727

B0~

FORWARD REQUEST TO
RESOURCE, BLOCK THREAD
AND AWAIT
ACKNOWLEDGEMENT

6/15

START METHOD FOR
MANAGING PARALLEL
RESOURCE REQUESTS

Y

PCT/US2012/051203

600

RECEIVE CLIENT REQUEST
FOR ARESOURCE

[~~603

FORKING
ALLOWED?

YES

604

RESOURCE PROXY FORWARDS
REQUEST TO RESOURCE AND
RETURNS TO CLIENT

608

CONTROL RETURNS TO CI:iENT. THREAD CONTINUES

TO RUN ALTHOUGH REQUEST IS NOT YET PROCESSED |™~g19

BY RESOURCE. RESOURCE IS FORKED

Y

RESOURCE COMPLETES PROCESSING OF REQUEST AND SENDS
INTERRUPT TO PROCESSOR, WHICH SIGNALS CONDITION VARIABLE ™~~414
CAUSING RESOURCE TO BE SET TO *JOINABLE" STATE

Y

SUBSEQUENT REQUEST INITIATED

618

Y

GOTO STEP
622, FIG. 6B

FIG. 6A

WO 2013/032727 PCT/US2012/051203

7115
600
'/
FROM STEP
518, FIG. 64
|60

THE SUBSEQUENT REQUEST IS
RECEIVED BY THE RESOURCE PROXY

; RESOURCE JOINABLE?

YES

WAIT FORRESOURCE TO

BECOME JOINABLE 624

THE RESOURCE ISJOINED, THE | 628
RESOURCE PROXY COMPLETES
PENDING PROCESSING AND UPDATES
LOCAL STATE

WO 2013/032727

500A

CPU
(HARDWARE ELEMENT #1)

442~

CLOCK FOR CPU
(HARDWARE ELEMENT #2)

422~

BUS ARBITER
(HARDWARE ELEMENT #3)

A4A~_

BUS PROGRAM A
(SOFTWARE ELEMENT #1)

4448~

BUS PROGRAM B
(SOFTWARE ELEMENT #2)

CLOCK PROGRAM AHB
(SOFTWARE ELEMENT #3)

448~

ACTION /FUNCTION OF
SOFTWARE ELEMENTS
(KEYPRESS EVENTS, ETC)

450~

LEGACY ELEMENT(S)
(SW OR HW OR BOTH)

1
\
1
]
1

1
[}
|
]
[}

1]
]
]

PCT/US2012/051203
8/15
6;18
A O7oA CLIENT #1
(KEYPRESS)
CLIENT 5
REQUEST 602
103 v/
\ NODE #1
(HARDWARE ELEMENT #1)
ICB DRIVER RESOURCE NAME:
MODULE [Corelcpu
ol [B 62
\ N Y /
NODE #2
3 RESOURCES: HW #3
ARCHITECTURE/ SW#1, SW#2
FRAMEWORK RESOURCE NAMES:
MANAGER A) lousfarbiter (HW#3) [
L | B) lbusfahb /SysA (SW#1) | &
\ 1 (C) husfah/SysB (SW #2))
60D Y\ 4 B2 680C~.
e |7 |\ /
) i NODE #3
(HW#2)
MARKER(S) RESOURCE NAME:
(LEGACY ELEMENT(S)) lelkicpu
646
NODE #4
(SW#3)
RESOURCE NAME:
Iclk/Sys/AhD

FIG. 7A

WO 2013/032727

50081

CLIENT #1
(ACTION #1)

9/15

PCT/US2012/051203

MARKER #1

o8 680B~

NODE 601A
RESOURCE #1

90
/

Y

(LEGACY ELEMENT)

NODE 6018
A)RESOURCE #2
B) RESOURCE #3

EVENT #1

QUERY #1

650

™\ 6%
50082
697 o0 VARKER #1
[, CLETH N gy (LEGACY ELEMENT)
580D 520
AA 602 @
NODE 2
6/9\7 - /BUS ARBITER
NODE 1 ©
i ICorelcpu Bus/ahb/Sysh Bus/ahbiSysB
/
EVENT#1 [« |—0680A
642 _—680C
L : 646
NODE 3
Iclkicpu NODE 4
6908 [clk/Sys/ahb
\
EVENT#2 [=— 595
/
QUERY FCN# |«

FIG. 7C

WO 2013/032727 PCT/US2012/051203

1015
100&‘1 (SWRT)
Y
RECEIVE NODE STRUCTURE DATA | [

1005

Y
REVIEW DEPENDENCY DATA WITHIN
NODE STRUCTURE DATA "\ 1010

NODE
STRUCTURE DATA
DEFINE A LEAF
NODE?

1020

ALL HARD
DEPENDENCIES
WITHIN NODE STRUCTURE
DATA EXIST?

YES

f1 027

YES STORE NODE STRUCTURE DATAIN A
TEMPORARY STORAGE AND CREATE

CALL-BACK

A0S

| INSTANTIATE/CREATE NODE BASED ON
NODE STRUCTURE DATA

-l

A0

PUBLISH THE NODE
Y

GOTO STEP
1035, FIG. 7E

FIG. 7D

WO 2013/032727 PCT/US2012/051203

11/15
10008

FROM STEP
1030, FIG. 7D

NOTIFY NODES DEPENDENT ON CURRENT | ~1035
NODE OF CREATION OF CURRENT NODE

OTHER NODES OR SOFT
DEPENDENCIES NOW RELEASED FOR
INSTANTIATION BASED ON
CURRENT NODE CREATION?

Y

GOTO ROUTINE
1025, FIG. 7D

MANAGE COMMUNICATION(S) (EVENTS,
QUERIES, ETC) AMONG EXISTINGNODES ~ [N\1045

Y

CONTINUE TO LOG ACTION(S) TAKEN BY
RESOURCE(S) USING UNIQUE RESOURCE NAME(S) | ™N\1050

NO

REQUEST LOG?
1055

YES

PROVIDE LOG OF ACTION(S) THAT LIST
RESOURCE(S) BY UNIQUE RESOURCE ™\1080
NAME(S) ON ONE OR MORE QUTPUT DEVICE(S)

Y

;/ RETURN TO ROUTINE >

'k 1005, FIG. 7D

FIG. 7E

WO 2013/032727 PCT/US2012/051203

12/15

1005

N

START SUB-METHOD /
ROUTINE FOR RECEIVING
NODE STRUCTURE DATA

Y

RECEIVE UNIQUE NAME FOR SOFTWARE OR
HARDWARE ELEMENT \-1105

Y

RECEIVE DATAFORDRIVERFUNCTION N 10

el } ______________________ 1115
| RECEVECUSTOMZEDUSERDATA | -
| RECEIVE DEPENDENCY ARRAYDATA |~y e

RECEIVE RESOURCE ARRAY DATA _ 10

Y

RETURN TO STEP
1010, FIG. 7D

FIG. 8

WO 2013/032727 PCT/US2012/051203

13/15

1025

START SUB-METHOD /
ROUTINE FOR INSTANTIATING /
CREATING ANODE

Y

CREATE ONE OR MORE DEPENDENCIES ON OTHER
RESOURCE(S) AS CLIENTS N5

Y

CREATE ONE OR MORE RESOURCE(S) FOR CURRENT
NODE N\1210

Y

ACTIVATE DRIVER FUNCTIONS N\1915

Y
RETURN TO STEP
1030, FIG. 7D

FIG. 9

WO 2013/032727

14/15
1205

N

START METHOD
FOR CREATING A CLIENT

Y

RECEIVE UNIQUE CLIENT NAME

o b |

| RECEIVE USER DATA (OPTIONAL ARGS) -

| | ~

______________ oo

RECEIVE CLIENT TYPE (REQUEST TYPE)

Y

IDENTIFY IF CLIENT IS ASYNCHRONOUS OR
SYNCHRONOUS

ARE ONE OR
MORE RESOURCE(S)

AVAILABLE?

YES
1325

RETURN NULL VALUE - CLIENT CANNOT
> BECREATED AT THIS TIME, STORE IN
MEMORY

I r

4330

DOES EACH RESOURCE
SUPPORT CLIENT TYPE?

1335

INSTANTIATE (CREATE)
CLIENT IN MEMORY

\1340

PCT/US2012/051203

y A1

MAP OPTIONAL
ARGUMENT(S) WITH
RESOURCES (USER DATA)

v A0

ADD CLIENT TO RESOURCE
INAN IDLE STATE
(UNREQUESTED STATE)

Y

N RETURN TO STEP
< 1210, FIG. 9 >

FIG. 10

WO 2013/032727

15/15

START METHOD FOR
CREATING AND
MANAGING A
CLIENT REQUEST

Y

RECEIVE CLIENT REQUEST DATA

\

SEND REQUEST THRU CLIENT
(OPTIONAL ARGUMENT(S))

____________ S

|
I DOUBLE BUFFER REQUEST DATA ;’

U ¢ ____________ I
DETERMINE DELTA (DIFFERENCE)
BETWEEN CURRENT REQUEST
DATA AND BUFFERED DATA

1425

IS CURRENT
REQUEST DATA IDENTICAL
TOPREVIOUS
REQUEST?

YES

ASYNCHRONOUS
REQUEST?

" PUSH REQUEST(S) ONTOMULTILE ~ }..-~1435
i CORES IF MULTICORE PCD :

..................... l
1440
| oecmicrarsion |
A
EXECUTE UPDATEFUNCTION 1S
\
EXECUTE DRIVERFUNCTION 140

PCT/US2012/051203

Y

RETURN STATE TO FRAMEWORK

MANAGER (ACTIVE STATE)

Y
|F DEFINED AGAINST A

RESOURCE, TRIGGER
EVENT(S) / QUERIES

.

CLEAR VECTOR POINTER IF
VECTOR REQUEST AND IF
POINTER IN INCORRECT
POSITION

145

UNLOCK ONE OR MORE
RESOURCE(S)

Y

RETURN 1475

11

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2012/051203

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F9/54
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

26 June 2001 (2001-06-26)
abstract

X US 6 253 252 B1 (SCHOFIELD ANDREW [CH])

column 3, Tine 50 - column 4, line 21
column 5, line 33 - last line; figure 2a
column 9, Tine 1 - column 12, line 48

1-44

_/__

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

22 November 2012

Date of mailing of the international search report

18/12/2012

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Ross, Christopher

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2012/051203

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X MENON S ET AL: "OBJECT REPLACEMENT USING
DYNAMIC PROXY UPDATES",

PROCEEDINGS OF THE INTERNATIONAL WORKSHOP
ON CONFIGURABLEDISTRIBUTED SYSTEMS, IEEE
COMPUTER SOCIETY, LOS ALAMITOS, CA, US,

1 January 1994 (1994-01-01), pages 82-91,
XP002004310,

DOI: 10.1109/IWCDS.1994.289933

page 85, right-hand column, line 17 - page
86, right-hand column, line 23

Section 4.3 "Proxy Binding" and section
4.4.1 "Handler Actions":;

page 87

A US 2005/283517 Al (MEDURI SUBBARAO K [US]
ET AL) 22 December 2005 (2005-12-22)
abstract
paragraph [0017] - paragraph [0018];
figure 4

1-44

1-44

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2012/051203
Patent document Publication Patent family Publication
cited in search report date member(s) date

US 6253252 Bl 26-06-2001 EP 0912937 Al 06-05-1999
JP 2000515278 A 14-11-2000
US 6253252 B1 26-06-2001
WO 9802809 Al 22-01-1998
US 2005283517 Al 22-12-2005 US 2005283517 Al 22-12-2005
US 2010100894 Al 22-04-2010

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - claims
	Page 38 - claims
	Page 39 - claims
	Page 40 - claims
	Page 41 - claims
	Page 42 - claims
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - drawings
	Page 55 - drawings
	Page 56 - drawings
	Page 57 - drawings
	Page 58 - wo-search-report
	Page 59 - wo-search-report
	Page 60 - wo-search-report

