(54) Title: REMOVABLE SYSTEM AND METHOD FOR DENTURES AND SURGICAL GUIDES

(57) Abstract: A removable system and method for helping position and stabilize implant supported dentures during the healing process after surgery is provided, wherein a removable system comprises a soft tissue supported provisional denture structure configured to help position and stabilize the provisional denture during the transfer of the implant positions to the provisional denture. In the surgical process of providing implant-supported dentures, immediately after the implants are surgically implanted, adhesive is applied to the underside of the provisional denture, and implant connectors are seated on the implants. The provisional denture is seated in the patient's mouth wherein the soft tissue supported provisional denture structure helps stabilize and position the denture. The implant connectors adhere to the adhesive and transfer the implant positions to the provisional denture.
Title: Removable System and Method for Dentures and Surgical Guides

Field of Invention

[0001] The present invention relates to implant-supported dentures. More particularly, the present invention relates to a removable system and method for dentures during the healing process after surgery for such implant-supported dentures.

Background of the Invention

[0002] In the field of dentures, one difficulty faced by dental surgeons is when a patient does not possess sufficient teeth in the jaw, but has enough bone in the jaw to support implants. A regular denture rests on the gums, and is not supported by implants. In some instances, an implant-supported denture is used, which is a type of denture that is supported by and attached to the implants. An implant-supported denture has special attachments that affix onto attachments on the implants.

[0003] Implant-supported dentures usually are made for the lower jaw because regular dentures tend to be less stable there. Usually, a regular denture made to fit an upper jaw is quite stable on its own and does not need the extra support offered by implants. However, a patient can receive an implant-supported denture in either the upper or lower jaw. In some instances, an implant-supported denture is utilized because the bone and tissue structure of the patient is not well-suited to stably retain a non-implant-supported denture.

[0004] In some instances, surgery is required for bone reduction where the denture system will not suitably fit on the patient’s jaw and gums. Unfortunately, it can be difficult to accurately reduce a patient’s bone, for example, by using a convention denture baseplate as a trimming guide, as it prohibits access to the area needing reduction. Traditionally, a medical
professional would grind the patient’s bone, then test fit the denture system in an iterative process of grinding and test fitting.

Furthermore, the fitting of a conventional implant-supported denture is often difficult and inaccurate due to the need to fit the denture quickly because the patient is experiencing post-operation pain. For example, a conventional implant-supported denture may be fitted immediately following the implant surgery. In some instances, this fitting involves trimming along the border of the denture for hygienic reasons, for example, so food will not be trapped behind the denture base. Conventional implant-supported dentures often must be trimmed by grinding or cutting wherein the medical professional must test fit the denture repeatedly during the grinding or cutting process, prolonging the fitting and in some instances, exacerbating patient pain. Medical professionals fitting a conventional implant-supported denture also risk overtrimming the denture during the grinding or cutting process. Similar difficulties confront a medical professional performing a conventional bone reduction procedure. The procedure is often inaccurate and risks overtrimming due to the necessity of repeated trial fitting of the denture system or conventional denture baseplate.

Summary of the Invention

[0005] In accordance with various aspects of the present invention, a removable system and method for helping position and stabilize implant supported dentures during the healing process after surgery is provided. In accordance with an exemplary embodiment, a removable system comprises a soft tissue supported provisional denture structure configured to help position and stabilize the provisional denture during the transfer of the implant positions to the provisional denture. In the surgical process of providing implant-supported dentures, immediately after the implants are surgically implanted, adhesive is applied to the underside of the provisional denture, and implant connectors are seated on the implants. The provisional denture is seated in the patient’s mouth wherein the soft tissue supported
provisional denture structure helps stabilize and position the denture. The implant connectors adhere to the adhesive and transfer the implant positions to the provisional denture. In some example embodiments, said adhesive is a polymer.

[0006] In an exemplary embodiment, the provisional denture comprises a soft tissue supported structure attached to the provisional denture by connectors. The soft tissue supported structure of the provisional denture is configured to be cut or broken off by way of the connectors at the location of coupling, allowing for the provisional denture to be trimmed down along its border and thus be ready to stay in the patient’s mouth as a provisional implant supported denture. In accordance with an exemplary embodiment, the pattern and shape of the connectors at the location of the coupling is designed to conform to the individual patient’s anatomy to facilitate rapid trimming by the medical professional and accurate fitting to the individual patient’s anatomy. As a result, patient discomfort can be minimized.

[0007] In accordance with one example embodiment of the provisional denture system, the provisional denture system may further comprise a bar structure interfaced between the implants and the denture, provisional or final, in order to provide enhanced rigidity and stability to the denture, provisional or final. In accordance with one example embodiment, the denture is installed without the bar structure, until such time as the patient has healed from the surgery sufficiently that the inflammation or swelling of the patient’s soft tissue has receded sufficiently to allow the bar structure to fit beneath the denture.

In accordance with other exemplary embodiments, an alternative application for the cut or break away removable feature is with a surgical bone reduction guide when bone reduction is needed. In such an embodiment, a cut or break away section can be configured within a denture baseplate, and then can be removed by cutting or breaking away one or more connectors to create an access opening to grind the bone. In accordance with an exemplary
embodiment, the pattern and shape of the connectors is designed to conform to the individual patient’s anatomy to facilitate rapid and accurate grinding of the bone. In accordance with an exemplary embodiment, a medical professional may elect to not break away the one or more connectors to create an access opening to grind the bone, and may instead elect to repeatedly test fit the denture baseplate while grinding the bone. In accordance with an exemplary embodiment, the baseplate may be transparent in order to permit easy comparison of the bone to the baseplate during the grinding process.

Brief Description of the Drawings

[0008] A more complete understanding of the present invention may be derived by referring to the detailed description and claims when considered in connection with the Figures, where like reference numbers refer to similar elements throughout the Figures, and:

[0009] FIG. 1 is a perspective view of a provisional denture having a soft tissue supported structure in accordance with an exemplary embodiment of the present invention;

[0010] FIG. 2 is a perspective view of a final denture after removal of the soft tissue supported structure in accordance with an exemplary embodiment of the present invention;

[0011] FIG. 3 is a perspective view of a surgical bone reduction guide in accordance with an exemplary embodiment of the present invention;

[0012] FIG. 4 is a perspective view of a surgical bone reduction guide having removed a connected portion in accordance with an exemplary embodiment of the present invention;

[0013] FIG. 5 is a side view of exemplary connector interfaces for coupling the soft tissue supported structure of the provisional denture or for coupling the cut or break away section within an exemplary bone reduction guide in accordance with an exemplary embodiment of the present invention; and

FIG. 6 is a flow chart illustrating an exemplary process for denture treatment with implant-supported dentures in accordance with an exemplary embodiment of the present invention.
Detailed Description of Exemplary Embodiments of the Invention

[0014] The present invention may be described herein in terms of various components and operating or surgical steps. It should be appreciated that such components and steps may be realized by any number of structural materials and components configured to perform the specified functions. For example, the present invention may employ various tools, devices and instruments, which may carry out a variety of functions under the control of one or more control systems, microprocessors or other control devices, or are manually operated by the surgeon. In addition, the present invention may be practiced in any number of dental contexts and the exemplary embodiments relating to a removable system and method for dentures during the healing process after surgery for implant-supported dentures are merely a few of the exemplary applications for the invention. For example, the principles, features and methods discussed may be applied to any orthodontic or dental treatment application.

[0015] In accordance with various aspects of the present invention, a removable system and method for helping position and stabilize implant supported dentures during the healing process after surgery is provided. In accordance with an exemplary embodiment, a removable system comprises a soft tissue supported provisional denture configured to help position and stabilize the implant supported denture during the transfer of the implant positions. In the surgical process of providing implant supported dentures, immediately after the implants are placed, the provisional denture is seated on the implants, wherein the implant positions may be transferred to the provisional denture.

[0016] In an exemplary embodiment, the provisional denture comprises a soft tissue supported structure attached to the provisional denture by connectors. The soft tissue supported structure of the provisional denture is configured to be cut or broken off by way of the connectors at the location of coupling, allowing for the provisional denture to be trimmed
down along its border and thus be ready to stay in the patient’s mouth as a provisional implant supported denture during the healing period.

[0017] For example, with reference to an exemplary embodiment illustrated in FIG. 1, a soft tissue supported provisional denture 5 includes a remaining portion (in this example, the top portion further illustrated in the lower jaw provisional denture of FIG. 2) comprising denture materials with denture teeth, coupled or attached to a soft tissue supported structure 6 by one or more connectors 7. Provisional denture 5 can made with any conventional dental structure or material used in implant-supported denture applications currently or hereafter devised. Provisional denture 5 can be made with any manufacturing process suitable for an intended structure or material, such as, a CAD/CAM denture fabrication process, or a traditional denture fabrication processes, or any process currently or hereinafter devised. For example, in accordance with various exemplary embodiments, provisional denture 5 can be made with processes described in U.S. Application No. 12/939,141, entitled System and Processes for Optimization of Dentures, and in U.S. Application No. 12/939,138, entitled System and Processes for Anatomical Features in Dentures.

[0018] Soft tissue supported structure 6 is configured to temporarily facilitate alignment of provisional denture 5 onto the gums and jawbone of the patient, for example, to help position and stabilize the provisional denture during the transfer of the implant positions to the provisional denture prior to connection of the provisional denture to the implants. Soft tissue supported structure 6 is configured to facilitate alignment and position. The soft tissue supported structure is configured to be cut or broken off by way of the connectors 7 at the location of coupling, allowing for the provisional denture to be quickly trimmed down along its border and thus be ready to stay in the patient’s mouth as a provisional implant supported denture. In accordance with an exemplary embodiment, the pattern and shape of the connectors at the location of the coupling is designed to conform to the individual patient’s
anatomy to facilitate rapid trimming by the medical professional and accurate fitting to the individual patient’s anatomy. Furthermore, the open space between connectors 7 can permit the medical professional to view the alignment of provisional denture 5 and soft tissue supported structure 6 with respect to the patient’s gums and jawbone.

[0019] One or more connectors 7 can comprise a thin or narrow portion or may comprise a wide or thick portion. In some embodiments, a provisional denture 5 having a soft tissue supported structure 6 may comprise one or more connectors 7 of differing dimensions and spacing.

[0020] In the process of implant-supported dentures, immediately after the implants are surgically implanted, a provisional denture (FIG. 1) is seated on the implants. The implant positions need to be transferred to the provisional denture. The initial seating and transfer of the implant positions can be readily facilitated with the soft tissue supported provisional denture 5, wherein the soft tissue supported structure 6 enables movement of the provisional denture to the desired position and further stabilizes the denture during the transfer to the implant positions.

[0021] After the transfer of the implant positions is finished, the soft tissue supported structure 6 of the provisional denture connected by the connectors 7 will be trimmed, cut, or broken off. Such cutting or breaking away can be done manually be flexing the soft tissue supported structure at the connection to connectors 7, or by using any knife, scalpel, saw, grinding wheel, sandpaper, or other tool adaptably suited to such trimming, cutting, or breaking. After trimming, cutting, or breaking away the removable tissue supported structure 6 of the provisional denture the provisional denture with the trimmed down border 8 (FIG. 2) is ready to stay in the patient’s mouth as a provisional implant supported denture 9 during the healing period.
To further facilitate the cutting or breaking away of soft tissue supported structure, in accordance with an exemplary embodiment, one or more connectors 7 (FIG. 1) or connectors 1 (FIG. 3) can include an interface configured to facilitate easier separation from the remaining portion of provisional denture 5. For example, with reference to FIG. 5, one or more connectors can comprise a snap connection 10, a break line 11, or any other perforations configured to facilitate the cutting or breaking away functions.

With reference to FIG. 2, after cutting or breaking away the removable tissue supported structure 6 of the provisional denture, the remaining portion of provisional denture 5 will include a trimmed down border 8 suitable to remain in the patient’s mouth as a completed provisional implant supported denture 9 during the healing period. The trimming down of border 8 can be conducted by any conventional procedure for trimming or smoothing dentures.

An alternative application for the cut or break away removable system is the bone reduction guide (FIGS. 3 and 4). If bone reduction is needed, a cut or break away section 2 in a denture baseplate 3 can be removed by cutting or breaking away the connectors 1 to create an access hole 4 to grind the bone. In some embodiments, access hole 4 is designed to conform to the individual patient’s anatomy in order to facilitate accurate and rapid bone grinding.

In some instances of implant supported dentures, surgery is required for bone reduction where the denture will not suitably fit on the patients jaw and gums. In accordance with another exemplary embodiment, the cut or break away removable feature utilized with soft tissue supported structure 6 and connectors 7 (FIGS. 1 and 2) can also be implemented with a surgical bone reduction guide when bone reduction is needed. In an embodiment, a cut or break away section can be configured within a denture baseplate, and then can be removed by cutting or breaking away one or more connectors to create an access opening to grind the
bone. For example, with reference to FIG. 3, a bone reduction guide can comprise a denture baseplate 3 having a cut or break away removable portion 2 within a denture baseplate 3. Cut or break away portion 2 is suitably configured in size based on the portion of bone that will be ground down, and is connected to denture baseplate 3 through one of more connectors 1. If bone reduction is needed, cut or break away section 2 can be removed by cutting or breaking away the connectors 1 to create an access opening 4 to grind the bone.

[0026] In accordance with an exemplary embodiment, the pattern and shape of the connectors is designed to conform to the individual patient’s anatomy to facilitate rapid and accurate grinding of the bone. In accordance with an exemplary embodiment, a medical professional may elect to not break away the one or more connectors to create an access opening to grind the bone, and may instead elect to repeatedly test fit the denture baseplate while grinding the bone. In accordance with an exemplary embodiment, the baseplate may be transparent in order to permit easy comparison of the bone to the baseplate during the grinding process.

[0027] Benefits, other advantages, and solutions to problems have been described herein with regard to specific embodiments. However, the benefits, advantages, solutions to problems, and any element(s) that may cause any benefit, advantage, or solution to occur or become more pronounced are not to be construed as critical, required, or essential features or elements of any or all the claims or the invention. The scope of the present invention is accordingly to be limited by nothing other than the appended claims, in which reference to an element in the singular is not intended to mean “one and only one” unless explicitly so stated, but rather “one or more.” All structural, chemical, and functional equivalents to the elements of the above-described exemplary embodiments that are known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the present claims.
Claims

1. A removable denture system for facilitating positioning and stabilization of implant-supported provisional dentures, said removable system comprising:

 an implant supported provisional denture that is positioned onto the implants;

5 a soft tissue supported structure attached to said provisional denture; and

 one or more connectors configured to attach said soft tissue supported structure to said provisional denture such that said soft tissue supported structure is configured to be cut or broken off by way of said connectors at a location of attachment, allowing for said provisional denture to be trimmed down along a border and thus be ready to stay in the patient’s mouth as a provisional implant supported denture during the healing process.

2. A removable denture system of claim 1 wherein said connectors are break line connectors.

3. A removable denture system of claim 1 wherein said connectors are snap connectors.

4. A removable denture system of claim 1 further comprising a bar structure interfaced between implants and said provisional denture.

5. A removable denture system of claim 1 wherein said connectors are spaced and shaped to conform to an individual patient’s anatomy.

6. A removable denture system of claim 1 wherein provisional denture is defined and manufactured using CAD/CAM technology.

7. A method for facilitating position and stabilization of implant-supported provisional dentures, said method comprising:

 providing a provisional denture having a soft tissue supported structure attached to the provisional denture by connectors;

 aligning and positioning said provisional denture onto implants;
breaking away said soft tissue supported structure by separating at the location of said connectors to provide a remaining portion of provisional denture;

trimming and smoothing down said remaining portion of provisional denture to provide a completed implant-supported provisional dentures used during the healing process of the implants.

8. The method of claim 7 wherein said provisional denture is defined and manufactured using CAD/CAM technology.

9. A bone reduction guide for facilitating bone reduction of a patient’s jaw, said bone reduction guide comprising:

a denture baseplate having a removable portion within, said removable portion connected to said denture baseplate through one or more connectors, wherein if bone reduction is needed, removable portion can be removed by cutting or breaking away said connectors to create an access opening to grind the bone within the jaw.

10. A bone reduction guide of claim 9 wherein said connectors are break line connectors.

11. A bone reduction guide of claim 9 wherein said connectors are snap connectors.

12. A bone reduction guide of claim 9 wherein said bone reduction guide is transparent.

13. A bone reduction guide of claim 9 wherein said connectors are spaced and shaped to conform to an individual patient’s anatomy.

14. A bone reduction guide of claim 9 wherein said guide is defined and manufactured using CAD/CAM technology.
Provide a provisional denture having a soft tissue supported structure attached to the provisional denture by connectors

Align and position said provisional denture onto implants

Break away said soft tissue supported structure by separating at the location of said connectors to provide a remaining portion of provisional denture

Trim and smooth down said remaining portion of provisional denture to provide a completed implant-supported provisional dentures used during the healing process of the implants

FIG. 6
INTERNATIONAL SEARCH REPORT

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. □ Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. □ Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. □ Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

This application contains the following inventions or groups of inventions which are not so linked as to form a single general inventive concept under PCT Rule 13.1. In order for all inventions to be examined, the appropriate additional examination fees must be paid.

Group I: Claims 1-8, directed to a removable denture system and a method of facilitating and stabilization of dentures.

Group II: Claims 9-14 directed to a bone reduction guide.

---See Supplemental Sheet---

1. □ As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2. □ As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of additional fees.

3. □ As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. □ No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims, it is covered by claims Nos. 1-8

Remark on Protest

□ The additional search fees were accompanied by the applicant’s protest and, where applicable, the payment of a protest fee.

□ The additional search fees were accompanied by the applicant’s protest but the applicable protest fee was not paid within the time limit specified in the invitation.

□ No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (2)) (July 2009)
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

- **IPC(8) - A61C 8/00 (2014.01)**
- **USPC - 433/173**

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

USPC: 433/173

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

USPC: 433/171, 172, 177, 199.1
- IPC: A61C13/00, 13/08, 13/12, 13/225 (keyword limited; terms below)

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

- PatBase; Google Patents; Google
- Search Terms Used: denture%, implant, support*, soft tissue, gum%, remov*, detach*, break*, fragile, tear*, separating, temporary, gingiva, provisional, connect*, attach*, coupl*, post, abutment, anchor*

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>US 3,241,238 A (KERSTEN) 22 March 1966 (22.03.1966) fig 1, col 2, In 40-52, col 2, In 53-56, col 3, In 71 to col 4, In 7</td>
<td>1-8</td>
</tr>
<tr>
<td>Y</td>
<td>WO 2012/041329 A1 (FISKER) 05 April 2012 (05.04.2012) fig 4A, abstract, pg 29, In 21-26</td>
<td>1-8</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier application or patent but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

Date of the actual completion of the international search

30 June 2014 (30.06.2014)

Date of mailing of the international search report

25 JUL 2014

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450
Facsimile No. 571-273-3201

Authorized officer:

Lee W. Young
PCT Helpdesk: 571-272-4300
PCT OSP: 571-272-7774

Form PCT/ISA/210 (second sheet) (July 2009)
Continuation of Box III: Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

The inventions listed as Groups I-II do not relate to a single general inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons:

The invention of Group I includes the special technical feature of an implant supported provisional denture that is positioned onto the implants; a soft tissue supported structure attached to said provisional denture, not required by Group II.

The invention of Group II includes the special technical feature of a denture baseplate having a removable portion within, not required by Group I.

Groups I-II share the common technical feature of a removable portion connected by a connector, which can be cut or broken off. However, this shared common technical feature does not represent a contribution over prior art as being anticipated by US 3,241,238 A (KERSTEN). Kersken teaches a removable portion (16) connected by a connector (34), which can be cut or broken off, separating the removable portion (fig 2, col 3, In 70 to col 3, In 3).

As the common technical features were known in the art at the time of the invention, these cannot be considered special technical feature that would otherwise unify the groups.

Therefore, Groups I-II lack unity under PCT Rule 13 because they do not share a same or corresponding special technical feature.