Dec. 10, 1968

H. E. KLUKSDAHL

3,415,737

REFORMING A SULFUR-FREE NAPHTHA WITH A PLATINUM-RHENIUM CATALYST

Filed May 19, 1967

FIG. 1

FIG. 2

INVENTOR
HARRIS E. KLUKSDAHL

BY C. J. Jenkins

ATTORNEYS
ABSTRACT OF THE DISCLOSURE

Reforming a sulfur-free naphtha in the presence of hydrogen with a catalyst composition of a porous solid catalyst support and 0.1 to 3 weight percent platinum and 0.01 to 5 weight percent rhenium, and the novel supported platinum-rhenium catalyst.

Prior art

Catalytic reforming is well known in the petroleum industry and refers to the treatment of naphtha fractions to improve the octane rating. The more important hydrocarbon reactions occurring during reforming operation employing catalysts comprising hydrogenation-promoting metal components include dehydrogenation of naphthenes to aromatics, dehydrocyclization of normal paraffins to napthenes and aromatics, isomerization of normal paraffins to isoparaffins, and hydrocracking of relatively long-chained paraffins. Hydrocracking reactions which produce high yields of light gaseous hydrocarbons, e.g., methane and ethane, are to be particularly avoided during reforming as this decreases the yield of gasoline boiling products. Furthermore, since hydrocracking is an endothermic process, as contrasted to reforming which, in general, is exothermic, hydrocracking reactions which result in the production of high yields of light gaseous products are generally accompanied by severe temperature excursions which can result in temperature runaways in a reforming operation.

Because of the demand for high octane gasoline for use as motor fuels, etc., extensive research is being devoted to the development of improved reforming catalysts and catalytic reforming processes. Catalysts for successful reforming processes must possess good selectivity, i.e., be able to produce high yields of high octane number gasoline products and accordingly, low yields of light gaseous hydrocarbons or carbonaceous by-products. In general, high octane number gasoline products can be obtained from a given feed by using more severe conditions of high temperature or low space velocity; however, the gasoline yield generally suffers accordingly as the octane number of the product is increased. Catalysts are thus often rated on the yield-octane number selectivity; i.e., compared on the basis of gasoline yield obtainable at the desired product octane number. The catalysts should also possess good activity in order that the temperature required to produce a certain quality product need not be too high. Apart from good selectivity and activity, it is also necessary that catalysts possess good stability in order that the activity and selectivity characteristics can be retained during prolonged periods of operation.

Catalysts comprising platinum, for example, platinum supported on alumina, are well known and widely used for reforming of naphthas and gasoline boiling range materials in order to produce high octane number gasolines. Platinum catalysts are highly selective toward the production of high octane aromatics and highly active for the several reactions that occur during reforming. However, platinum catalysts are also very expensive because of the high cost of platinum and will probably become even more expensive as a result of the restricted availability of the metal. These economic factors have led the petroleum industry to seek less expensive substitutes for platinum and to investigate catalytic promoters to use with the platinum catalysts to increase their activity, stability, and in particular the gasoline yield-octane number selectivity, thereby making platinum catalysts more economical for reforming operations.

Rhenium has been proposed in the prior art for use in catalytic reforming as a substitute for more common catalytic components such as platinum. However, rhenium has been found to be extremely poor for reforming. Thus, rhenium alone supported on charcoal or alumina was found to possess only limited reforming activity and to require excessively large concentrations of the metal, above 5 weight percent, to obtain good activity. Rhenium has also been suggested for use with palladium for reforming; thus a catalyst comprising palladium and rhenium impregnated on alumina, which catalyst was presulfided, was shown to have better initial reforming activity than a presulfided palladium-alumina catalyst when used to reform a sulfur-containing naphtha. However, the activity of the palladium-rhenium presulfided catalyst decreased significantly after only limited use.

I prepared a catalyst comprising platinum and rhenium with alumina, but when tested for the reforming of a naphtha fraction, the catalyst caused excessive hydrocracking. The production of large amounts of light gases, such as methane and ethane, was significantly higher than the production of light gases with a catalyst comprising platinum alone on alumina. In other words, the platinum-rhenium catalytic composition was found to be less selective for the production of high octane gasoline products than a platinum-alumina catalyst. Also, upon introduction of the naphtha fraction to the reaction zone, a severe exotherm was observed in the catalyst bed. I also prepared a catalyst comprising platinum and rhenium on alumina, sulfided said catalyst, and tested it for the reforming of a sulfur-containing feed. The catalyst exhibited poor selectivity and activity. The yield of high octane products was low, thus making the reforming process unattactive economically. Thus, although rhenium has been suggested for use with noble metals such as palladium, it was found that such combination was not satisfactory under the above conditions.

It came as a surprising discovery that when certain conditions of operations are followed and/or the catalyst
subjected to certain pretreatments, a catalyst comprising platinum and rhenium supported on alumina possesses high activity, and, particularly, good selectivity and stability, for the reforming of sulfur-free feeds. It was especially unexpected to find that a supported platinum-rhenium catalyst would initially show undesirable hydrocracking, and then after reforming is continued the hydrocracking becomes negligible. In fact after the initial period the catalyst comprising platinum and rhenium on alumina is so far superior to a catalyst comprising platinum alone on alumina that the initial poor reforming, which results in the production of high yields of light gaseous hydrocarbons, can be tolerated for the time needed to reduce the excessive hydrocracking activity of the catalyst. It is possible to get longer run lengths with higher yields of high octane products with the platinum-rhenium supported catalyst than with a platinum catalyst without rhenium.

Summary of the invention

In accordance with the present invention an improved reforming process can be conducted in the presence of catalysts comprising platinum and rhenium incorporated on solids. Rhenium in small concentrations, less than about 5 weight percent, is effective as a promoter for platinum reforming catalysts, measurably lowering the yield decline rate, i.e., increasing the stability of the catalyst, when sulfur is excluded from the feedstock. Thus, in accordance with the present invention reforming of a sulfur-free naphtha fraction is accomplished by contacting said fraction at reforming conditions and in the presence of hydrogen with a catalyst comprising a porous solid catalyst support having disposed thereon in intimate admixture 0.01 to 3 weight percent platinum and 0.01 to 5 weight percent rhenium. Also, in accordance with the present invention, a novel catalytic composition of matter has been discovered comprising a porous solid catalyst carrier having disposed thereon in intimate admixture 0.01 to 3 weight percent platinum and 0.01 to 5 weight percent rhenium. The novel catalyst of the present invention is found to be highly active and stable for the reforming of naphtha and gasoline boiling-range hydrocarbons, and, in fact, is superior to commercial reforming catalysts containing platinum but no rhenium.

Brief description of the drawings

The present invention may be better understood and will be further explained hereinafter with reference to the graphs in FIGURES 1 and 2, which show, for comparison purposes, data from simulated life tests indicating the reforming activity and stability of a conventional catalyst comprising platinum on an alumina support, and a catalyst comprising platinum and rhenium on an alumina support. The conditions of operation were more severe than normally used in a reforming operation in order to simulate the response of the catalysts to much longer tests (life tests). The graph in FIGURE 1 shows the average catalyst temperatures as a function of length of test or hours on-stream required to maintain a 100-octane (F-1 clear) product for each of the two catalysts. The graph in FIGURE 2 shows as a function of the time on-stream, the yield of C5+ liquid product, or gasoline having a 100-octane rating produced during reforming with each of the two catalysts. From FIGURE 2 it is seen that the process using the platinum-rhenium catalyst yields significantly higher amounts of 100-octane gasoline product than the process using the platinum catalyst. The catalyst temperatures and C5+ liquid product volume percents used to make the comparisons in the graphs were obtained only after the hydrocracking activity of the platinum-rhenium catalyst had subsided to that of the platinum catalyst. Thus, the catalysts had been on-stream for several hours before making the comparison shown in the graphs of FIGURES 1 and 2.

It is not fully understood why rhenium promotes platinum-containing catalysts for the reforming of naphtha. While not intending to limit the scope of the present invention or be bound by any theoretical explanation, there is evidence indicating that rhenium forms an alloy with the platinum and that this alloy phase is responsible for the improved performance of the platinum-rhenium catalyst over a conventional platinum catalyst. X-ray and electron diffraction studies of the metallic phases present in catalysts comprising various concentrations of platinum and rhenium supported on alumina indicate platinum-rhenium phase changes remarkably similar to that observed in bulk platinum-rhenium alloy systems, i.e., systems with no support present. Thus, reference to a phase diagram of the bulk platinum-rhenium alloy system (see, for example, Hansen, M., and Anderko, K., "Constitution of Binary Alloys," McGraw-Hill (1958)) shows that for concentrations of rhenium from 0 to about 40 atomic weight percent and at temperatures below at least 1750°C, only one platinum-rhenium phase exists, that of the face center cubic (f.c.c.) crystal structure for platinum. Above 40 atomic percent rhenium, the hexagonal close pack (h.c.p.) structure can also be observed. Studies conducted with samples of catalysts comprising platinum alone on alumina, rhenium alone on alumina, and various concentrations of platinum and rhenium on alumina showed that for concentrations of rhenium on the catalyst of less than about 50 atomic weight percent, the h.c.p. rhenium structure was not present, or, at least, could not be detected; only the f.c.c. platinum structure existed. At higher concentrations of rhenium on the catalyst, i.e., above about 50 atomic weight percent rhenium, the h.c.p. rhenium structure could be observed. The platinum-rhenium catalyst samples used to investigate the crystal structure of the metals were prepared by heating the catalysts to elevated temperatures, for example 850°C, in either wet or dry hydrogen to reduce the metals to the metallic state.

It is also known from studies with bulk platinum-rhenium decreases the lattice spacing of the f.c.c. platinum unit cell. The decrease in lattice spacing as rhenium is added to platinum under conditions to form an alloy can be observed from the increase in the angle of diffraction, 2θ, using CuKα radiation, from the (311) plane of the f.c.c. platinum structure. Increasing the rhenium concentration in platinum-alumina catalysts also produces an increase in the diffraction angle, 2θ, from the (311) plane of the f.c.c. platinum structure. The addition of rhenium to the platinum-rhenium catalyst causes a large enough shift with the expected direction in magnitude in the diffraction angle, 2θ, to strongly indicate formation of an alloy.

Additional evidence favoring the theory of alloy formation for platinum-rhenium supported catalysts is the observation that the size of the f.c.c. platinum particle size decreases as rhenium is added to platinum-alumina catalysts. The f.c.c. platinum particle size, as determined by electron diffraction investigations of catalyst samples reduced in hydrogen at a constant temperature, decreases as rhenium is added until about the equiatomic platinum-rhenium composition is reached. The metal particle size is related to how easily the metal sinter; i.e., the smaller the particles, the less the metals have to sinter. The ease of sintering is in turn related to the melting point of the metals; i.e., the higher the melting point of the metals, the more difficult it is for sintering to occur. Thus, the decrease in size of the f.c.c. particles as rhenium is added to platinum-alumina catalysts is believed to be due to the increase in melting point of the alloy formed. This observation is consistent with the chemistry of bulk platinum-rhenium alloy systems which show a higher melting point of rhenium to platinum increases the melting point of the f.c.c. crystals.
The porous solid catalyst or support which is employed in the preparation of the platinum-rhenium catalyst of the present invention can include a large number of materials upon which the catalytically active amounts of platinum and rhenium can be disposed. The porous solid carrier can be, for example, silicon carbide, charcoal, or carbon. Preferably, the porous solid catalyst is an inorganic oxide. A high surface area inorganic oxide carrier is particularly preferred, e.g., inorganic oxide having a surface area of 50-700 m²/gm. The carrier can be a natural or a synthetically produced inorganic oxide or combination of inorganic oxides. Typical acidic inorganic oxide supports which can be used are the naturally occurring aluminum silicates, particularly when acid treated to increase the activity, and the synthetically-produced cracking supports, such as silica-alumina, silica-zirconia, silica-alumina-zirconia, silica-magnesia, silica-alumina-magnesia, and crystalline zeolitic aluminosilicates. Generally, however, reforming processes are preferably conducted in the presence of catalytically low cracking activity, i.e., catalysts of limited acidity. Hence, preferred carriers are inorganic oxides such as magnesia and alumina.

A particularly preferred catalytic carrier for purposes of this invention is alumina. Any of the forms of alumina suitable as a support for reforming catalysts can be used. Furthermore, alumina can be prepared by a variety of methods satisfactory for the purposes of this invention.

The preparation of alumina for use in reforming catalysts is well known in the prior art.

The novel reforming catalyst comprises the desired porous solid catalyst support and disposed thereon in intimate admixture catalytically active amounts of platinum and rhenium. The catalyst proposed for use in the present invention preferably comprises platinum in amounts of from about 0.01 to 3 weight percent and more preferably from about 0.2 to 1 weight percent based on the finished catalyst. Concentrations of platinum below about 0.01 weight percent are too low for satisfactory reforming operations, while on the other hand concentrations of platinum above about 3 weight percent are generally unsatisfactory because they produce excessive cracking. Furthermore, due to the high cost of platinum, the amount which can be used is somewhat restricted. The concentration of rhenium in the final catalyst composition is preferably from 0.01 to 5 weight percent and more preferably 0.1 to 2 weight percent. Higher concentrations of rhenium could be advantageously used but the cost of rhenium limits the amount incorporated on the catalyst.

It is preferred that the rhenium to platinum atom ratio be from about 0.2 to about 2.0. More particularly, it is preferred that the atom ratio of rhenium to platinum does not exceed one. Higher ratios (i.e., greater than one) of rhenium to platinum can be used but generally no further significant improvement is obtained.

Although platinum and rhenium can be intimately associated with the porous solid carrier by suitable techniques such as by ion exchange, co-precipitation, etc., the metals are usually associated with the porous solid carrier by impregnation. Furthermore, one of the metals can be associated with the carrier by one procedure, e.g., ion-exchange, and the other metal associated with the carrier by another procedure, e.g., impregnation. As indicated, however, the metals are preferably associated with the carrier by impregnation. The catalyst can be prepared either by compregnation of the two metals or by sequential impregnation. In general, the carrier material is impregnated with an aqueous solution of a decomposable compound of the metal in sufficient concentration to provide the desired quantity of metal in the finished catalyst; the resulting mixture is then heated to remove water. Chloroplatinic acid is generally the preferred source of platinum. Other feasible platinum-containing compounds, e.g., ammonium chloroplatinites and polyamminplatinum salts, can also be used. Rhenium compounds suitable for incorporation onto the carrier include, among others, perrhenic acid and ammonium or potassium perrhenates. It is contemplated in the present invention that incorporation of the metals with the carrier can be accomplished at any particular stage of the catalyst preparation. For example, if the metals are to be incorporated onto an alumina support, the incorporation may take place while the alumina is in the sol or gel form followed by precipitation of the alumina. Alternatively, a previously prepared alumina carrier can be impregnated with a water solution of the metal compounds. Regardless of the method of preparation of the supported platinum-rhenium catalyst, it is desired that the platinum and rhenium be in intimate association with and dispersed throughout the porous solid catalyst support. Following incorporation of the carrier material with platinum and rhenium, the resulting composite is usually dried by heating at a temperature of, for example, no greater than about 500°F and preferably at about 200°F. to 400°F. Thereafter the composite can be calcined at an elevated temperature, e.g., up to about 1200°F, if desired.

The carrier containing platinum and rhenium is preferably heated at an elevated temperature to convert the platinum and rhenium to the metallic state. Preferably the heating is performed in the presence of hydrogen, and more preferably, dry hydrogen. In particular, it is preferred that this pre-reduction be accomplished at a temperature in the range of 600°F to 1300°F, and preferably 600°F to 1000°F.

Reforming with certain of the catalysts of the present invention initially produces an excessive amount of light hydrocarbon gases unless proper pretreatment or startup techniques are utilized. The light hydrocarbon gases are produced as a result of the high hydrocracking activity or metal-cracking activity of the catalyst. It has been found that the hydrocracking activity can be diminished if the catalyst is sulfided prior to contact with naphtha. The presulfiding can be done in situ or ex situ by passing a sulfur-containing gas, for example, H₂S, through the catalyst bed. Other presulfiding treatments are known in the prior art. Also, it has been found that on startup a small amount of sulfur, for example H₂S or dimethylsulfide, is added to the reforming zone effectively reduces the initial hydrocracking activity of the catalyst. The exact form of sulfur used in the sulfiding process is not critical. The sulfur can be introduced into the reaction zone in any convenient manner and at any convenient location. It can be contained in the liquid hydrocarbon feed, the hydrogen, the recycle liquid stream or a recycle gas stream or any combination. After operating the reforming process in the presence of sulfur for a period of time short in comparison with the over-all run length that can be obtained with the novel catalyst, the addition of sulfur must be discontinued in order to realize the full benefits of the present invention such as decreased yield decline rate or improved stability. The period of time required to reduce the initial hydrocracking activity will vary from several hours to several hundred hours depending on the amount of sulfur used, the severity of operation, and the platinum/rhenium ratio. The time required to reduce the initial hydrocracking activity will vary inversely to the amount of sulfur, the severity and the platinum/rhenium ratio.

It has also been found that a small amount of an oxygen of sulfur, such as a sulfate, sulfite, bisulfate, or bisulfite, associated with the catalyst composition imparts beneficial properties to the catalyst, e.g., helps to control the initially high hydrocracking activity. Thus, for example, sulfite associated with a catalyst comprising alumina and catalytically active amounts of platinum and rhenium reduces the yield of light hydrocarbon gases initially produced during reforming as well as during the dehydrocyclization of normal heptanes to aromatics. The latter of sulfur can be incorporated onto the catalyst composition during preparation of the porous solid carrier. For
example, in the preparation of an alumina carrier, the aluminum salt used as a starting material can be the sulfate form. Precipitation of alumina generally results in a material that is associated with the aluminum. An oxygen of sulfur can also be incorporated onto the catalyst carrier by contacting the previously prepared catalyst with suitable compounds containing oxyanions of sulfur, e.g., SO\textsubscript{3}2-, SO\textsubscript{4}2-, HSO\textsubscript{4}-, or HSO\textsubscript{3}-. The oxyanions of sulfur for purposes of the present invention can advantageously be present in the final catalyst in an amount from 0.05 to 2 weight percent and preferably from 0.1 to 1 weight percent.

The catalyst of the present invention preferably exists during the reforming process with the platinum and rhodium in the metallic state. Thus, even though the catalyst is contacted with sulfur, and the metals apparently converted to the sulfide form, prior to or during reforming in order to reduce the initial hydrocracking activity of the catalyst, the catalyst is stripped of sulfur during the initial period of reforming. Thus, the sulfur will have been stripped off, and the metals, platinum and rhodium, converted to the metallic state, in approximately the same length of time necessary to reduce the high hydrocracking activity. In order for the metals to exist in a sulfided form throughout the reforming process, sulfur would have to be continually added to the catalyst. But, sulfur addition throughout the reforming process is not satisfactory for the purposes of the present invention.

The catalyst can be promoted for reforming by the addition of halides, particularly fluoride or chloride. The halides apparently provide a limited amount of acidity to the catalyst which is beneficial to most reforming operations. A catalyst promoted with halide preferably contains from 0.1 to 3 weight percent total halide content. The halides can be incorporated onto the catalyst carrier at any suitable stage of catalyst manufacture, e.g., prior to or following incorporation of the platinum and rhodium. Some halide is often incorporated onto the catalyst when impregnating with the platinum; for example, impregnation with chloroplatinic acid normally results in chloride addition to the carrier. Additional halide may be incorporated onto the support simultaneously with incorporation of the metal if so desired. In general, the halides are combined with the catalyst carrier by contacting suitable compounds such as hydrogen fluoride, ammonium fluoride, hydrogen chloride, or ammonium chloride, either in the gaseous form or in a water soluble form, with the carrier. Preferably, the fluoride or chloride is incorporated onto the carrier from an aqueous solution containing the halide.

Generally the form in which the catalyst is prepared is controlled by the manipulative process to which it will be subjected. Thus, if the reforming process of the present invention is to be conducted in a fixed bed or moving bed process, the catalyst mixture will be formed into tablets, pellets, spheroidal particles, or extruded particles; whereas if a fluidized bed operation is desired, the catalyst will be provided in a finely divided form.

The feedstock to be employed in the reforming operation is a vacuum distillate or vacuum gas oil, for example, a naphtha fraction. Generally, the naphtha will boil in the range falling within the limits of from about 70° to 550° F. and preferably from 150° to 450° F. The feedstock can be, for example, either a straight-run naphtha or a thermally cracked or catalytically cracked naphtha or blends thereof. The feed should be essentially sulfur free, that is, the feed should preferably contain less than about 10 p.p.m. sulfur and more preferably less than 5 p.p.m., and still more preferably less than 1 p.p.m. The presence of sulfur in the feed decreases the activity of the catalyst as well as its stability.

In the case of a feedstock which is not already low in sulfur, acceptable levels can be reached by hydrogenating the feedstock in a pretreatment zone where the naphtha is contacted with a hydrogenation catalyst which is resistant to sulfur poisoning. A suitable catalyst for this hydrogenation process is, for example, an alumina-containing support and a molybdenum oxide and cobalt oxide. Hydrodesulfurization is ordinarily conducted at 700–850° F., at 200 to 2000 p.s.i.g., and at a liquid hourly space velocity of 1 to 5. The sulfur contained in the naphtha is converted to hydrogen sulfide which can be removed prior to reforming by suitable conventional processes.

The reforming conditions will depend in large measure on the feed used, whether highly aromatic, paraffinic, or naphthenic and upon the desired octane rating of the product. The temperature in the reforming operation will generally be within the range of about 600° to 1100° F. and preferably about 700° to 1050° F. The pressure in the reforming reaction zone can be atmospheric, or super-atmospheric; however, the pressure will in general be within the range from about 25 to 1000 p.s.i.g. and preferably from about 50 to 750 p.s.i.g. The temperature and pressure can be correlated with the liquid hourly space velocity (LHSV) to favor any particularly desirable reforming reaction as, for example, aromatization or isomerization or dehydrogenation. In general, the liquid hourly space velocity will be from 0.1 to 10 and preferably from 1 to 5.

Reforming generally results in the production of hydrogen. Thus excess hydrogen need not necessarily be added to the reforming system. However, it is usually preferred to introduce excess hydrogen at some stage during the operation as, for example, during startup. The hydrogen can be introduced into the feed prior to contact with the catalyst or can be contacted simultaneously with the introduction of the feed to the reaction zone. Generally, the hydrogen is recirculated over the catalyst prior to contact or the feed with the catalyst. The presence of hydrogen serves to reduce the formation of coke which tends to poison the catalyst. Moreover, the presence of hydrogen can be used to favor certain reforming reactions. Hydrogen is preferably introduced into the reforming reactor at a rate varying from about 0.5 to about 20 moles of hydrogen per mole of feed. The hydrogen can be in admixture with light gaseous hydrocarbons. Excess hydrogen removed after separation from the products will generally be purified and recycled to the reaction zone.

After a period of operation when the catalyst becomes deactivated by the presence of carbonaceous deposits, the catalyst can be reactivated or regenerated by passing an oxygen-containing gas, as much as air, into contact with the catalyst at an elevated temperature in order to burn carbonaceous deposits from the catalyst. The method of regenerating the catalyst will depend on whether there is a fixed bed, moving bed, or fluidized bed operation. Regeneration methods and conditions are well known in the art.

The process of the present invention will be more readily understood by reference to the following examples.

EXAMPLE 1

A conventional, rhenium-free catalyst comprising 0.7 weight percent platinum on alumina was tested and compared for cyclohexane dehydrogenation activity with a series of catalysts comprising various rhenium levels on the aforementioned platinum-alumina composition.

The platinum-alumina catalyst was prepared by impregnating alumina with chloroplatinic acid. The platinum-rhenium-alumina catalysts were prepared by impregnating previously impregnated platinum-alumina catalysts with aqueous solutions containing perhenic acid in sufficient concentrations to provide the desired level of rhenium on the finished catalysts. This was accomplished by heating the catalysts for 12 hours at 170° F. and then for 3 hours at 400° F. The catalysts impregnated with platinum or platinum and rhenium were subjected to a hydrogen atmosphere at a rate of 0.9 liters H\textsubscript{2} per minute.
The cyclohexane dehydrogenation runs were conducted at a temperature of 485°F, a pressure of one atmosphere, and a hydrogen to hydrocarbon (cyclohexene) ratio of 10. The hydrogen rate to the reactor was 6.9 liters H₂ per minute per gram catalyst. Cyclohexane was contacted with the catalyst at a rate of 0.17 liter liquid hydrocarbon per hour per gram of catalyst. Cyclohexane dehydrogenation rates, measured in terms of millimoles benzene produced per gram of catalyst per hour, were determined for the different catalysts having different rhodium contents and pre-reduced at different temperatures. The results are presented in Table 1.

TABLE 1—CYCLOHEXANE DEHYDROGENATION RATES

<table>
<thead>
<tr>
<th>Hydrogen pre-reduction Temp., °F</th>
<th>Wt. percent Re on alumina carrier containing 0.7 wt. percent of platinum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.2</td>
</tr>
<tr>
<td>800</td>
<td>0.3</td>
</tr>
<tr>
<td>1,000</td>
<td>0.4</td>
</tr>
<tr>
<td>2,000</td>
<td>0.6</td>
</tr>
<tr>
<td>3,000</td>
<td>0.7</td>
</tr>
<tr>
<td>4,000</td>
<td>1.0</td>
</tr>
</tbody>
</table>

The catalysts containing platinum and rhodium were in all instances more active for the dehydrogenation of cyclohexane than the catalyst containing only platinum. Thus, for example, the catalyst containing 0.7 weight percent rhodium and 0.7 weight percent platinum and pre-reduced at 1000°F had a cyclohexane dehydrogenation rate of 34 as compared to the cyclohexane dehydrogenation rate of 37 for the platinum catalyst pre-reduced at 1000°F and containing no rhodium. Furthermore, it is noted that the dehydrogenation rate for the catalyst containing only platinum falls off more rapidly with increasing pre-reduction temperature than the catalysts containing rhodium in addition to platinum. For example, the catalyst containing only platinum and pre-reduced at 1000°F had a dehydrogenation rate of 37 whereas the same catalyst pre-reduced at a temperature of 1600°F had a dehydrogenation rate of only 15, a decrease of more than half. The catalyst containing 0.2 weight percent rhodium in addition to platinum, and pre-reduced at 1000°F, however, had a dehydrogenation rate of 48 compared to a dehydrogenation rate of 35 for the same catalyst pre-reduced at a temperature of 1600°F. This is a decrease of less than one-third, and indicates that the platinum-rhenium catalysts are more stable than platinum catalysts containing no rhodium.

EXAMPLE 2

A catalyst containing 0.7 weight percent platinum and 0.7 weight percent rhodium on an alumina carrier was compared with a catalyst containing 0.7 weight percent platinum in an accelerated reforming process. Catalysts were prepared and dried as described in Example 1, and then heated in hydrogen for about 5 or hour at 450°F, and about 1½ hours at 700°F. The hydrogen flow rate in all instances was 4.0 milliliters H₂ per minute per gram catalyst.

The feed used in the reforming operation was a hydro-refined, catalytically cracked naphtha having an initial boiling point of 151°F, an end point of 428°F, and a 50% boiling point of 585°F. The feed was preheated to 600°F. The reaction zone temperatures were maintained at a pressure of 300 p.s.i.g., a liquid hourly space velocity of 3, and a temperature sufficient to produce a C₅+ product with an octane rating (F–1 clear) of 100. Thus, the temperature in the reaction zone, as measured by the average catalyst bed temperature, was changed with time in order to maintain a product hav
to the reaction zone at a mole ratio of hydrogen to n-heptane of 6. The n-heptane feed was contacted with the catalyst at a ratio of about 0 milliliters n-heptane per hour per gram of catalyst. The n-heptane feed was sulfur-free when used with catalyst A; however, sulfur (200 p.p.m.) was present in the feed used with catalyst B. The results of the dehydrocyclization runs are presented in Table II.

Table II

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfur in feed, p.p.m.</td>
<td>0</td>
<td>200</td>
</tr>
<tr>
<td>Mole fraction product of hydrogen</td>
<td>8.3</td>
<td>0.5</td>
</tr>
</tbody>
</table>

As can be seen from the above data, subjecting the catalyst containing platinum and rhenium to sulfur, has a deleterious effect upon the catalyst selectively.

Example 4

A catalyst comprising approximately 0.6 weight percent platinum and 0.46 weight percent rhenium was prepared by impregnating a previously impregnated platinum-alumina support with an aqueous solution containing perhexic acid. The catalyst was dried overnight in nitrogen at 300°F and then heated for 200 hours in air at 700°F and 400 hours in air at 900°F. Thereafter the catalyst comprising alumina impregnated with platinum and rhenium was subjected for one-half hour to a hydrogen atmosphere at 700°F to reduce the metals. The catalyst was used in a reforming process using the feed described in Example 2. Different levels of sulfur were introduced into the feed during the process. The reforming conditions included a pressure of 500 p.s.i., an LHSV of 2, and a hydrogen to hydrocarbon mole ratio of about 8.

The feed initially contained less than 0.1 p.p.m. sulfur. The F-1 clear octane rating of the product produced during reforming was 97 with the average catalyst temperature being 920°F. 50 p.p.m. sulfur was introduced into the feed. The product octane number dropped to 91 and the average catalyst temperature increased to 929°F. On the addition of 500 p.p.m. sulfur to the feed, the product octane number dropped to 86 and the average catalyst temperature increased to 935°F. The C5+ liquid volume yield remained approximately the same in all instances, i.e. at about 84 to 85 volume percent. The results are tabulated in Table III.

Table III

<table>
<thead>
<tr>
<th>Sulfur in feed, p.p.m.</th>
<th>Average catalyst temperature, °F</th>
<th>Product F-1 clear octane number</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>929</td>
<td>97</td>
</tr>
<tr>
<td>50</td>
<td>929</td>
<td>91</td>
</tr>
<tr>
<td>500</td>
<td>935</td>
<td>84</td>
</tr>
</tbody>
</table>

The detrimental effect of the presence of sulfur in the feed is readily apparent. The presence of sulfur in the feed decreases the endothermic reforming reactions which produce high octane gasoline. Thus, the catalyst temperature increases and the octane number decreases.

Example 5

A catalyst comprising 0.66 weight percent platinum and 0.22 weight percent rhenium was prepared by coimpregnating an alumina support with platinum as chloroplatinic acid and rhenium as perhexinic acid. The catalyst was dried and then reduced in hydrogen.

The catalyst was used to reform the hydrorefined catalytically cracked naphtha described in Example 2. The reaction conditions included a pressure of 500 p.s.i., an LHSV of 3, and a hydrogen to hydrocarbon mole ratio of 5.3. The temperature was controlled throughout the reforming process to produce a 100 F-1 clear octane number product. The feed initially contained less than 0.1 p.p.m. sulfur. The starting temperature of the reforming process was about 890°F. During the first 845 hours of operation, the catalyst exhibited a low fouling rate; for example, from about 200 hours to 845 hours, the fouling rate was about 0.024° F per hour. After approximately 845 hours of operation, 10 p.p.m. sulfur were added to the feed. The temperature required to make 100 F-1 clear octane gasoline increased 20 degrees, that is, the catalyst became 20 degrees less active as a result of sulfur addition. After the removal of sulfur, the catalyst regained a small amount of activity but did not return to the activity which it exhibited prior to the addition of sulfur to the feed. The fouling rate of the catalyst after having seen sulfur was 0.045° F per hour. Thus, it can be seen that even a small amount of sulfur in the feed, for example, 100 p.p.m. has detrimental effects on the catalyst.

The foregoing disclosure of this invention is not to be considered as limiting since many variations can be made by those skilled in the art without departing from the scope or spirit of the appended claims.

1. A process for reforming a naphtha fraction containing less than about 10 p.p.m. sulfur which comprises subjecting said fraction to contact at reforming conditions and in the presence of hydrogen with a catalyst comprising an alumina support having disposed thereon in intimate admixture 0.01 to 3 weight percent platinum and 0.01 to 5 weight percent rhenium.

2. The process of claim 1 wherein said catalyst is promoted with from 0.1 to 3 weight percent total halide selected from chloride and fluoride.

3. The process of claim 1 wherein said catalyst contains from 0.2 to 1 weight percent platinum and from 0.1 to 2 weight percent rhenium.

4. The process of claim 1 wherein said catalyst initially contains from 0.05 to 2 weight percent of an oxanion of sulfur.

5. A process for reforming a naphtha fraction containing less than about 10 p.p.m. sulfur which comprises subjecting said fraction to contact at reforming conditions and in the presence of hydrogen with a catalyst comprising an alumina support having disposed thereon in intimate admixture 0.01 to 3 weight percent platinum and 0.01 to 5 weight percent rhenium and excluding more than about 10 p.p.m. sulfur from the feed throughout the on-stream period of contact of said catalyst with the feed, except during the initial startup period with said catalyst which is substantially free of sulfur.

6. In a reforming process comprising contacting a naphtha feedstock containing less than about 10 p.p.m. sulfur at reforming conditions and in the presence of hydrogen with a reforming catalyst, comprising a dehydrogenation promoting metal component distributed throughout a porous solid catalyst carrier, and recovering a C5+ gasoline fraction of improved octane rating, the improvement which comprises using as the catalyst an alumina-containing carrier containing from 0.01 to 3 weight percent platinum promoted with an effective amount, less than 5 weight percent, of rhenium sufficient to measurably increase the stability of said catalyst when sulfur is excluded from the feedstock.

7. A process for reforming a naphtha fraction containing less than about 10 p.p.m. sulfur which comprises subjecting said fraction to contact at reforming conditions, including a temperature in the range from 700 to 1050°F and a pressure from 50 to 700 p.s.i. and in the presence of at least 0.5 mole of hydrogen per mole of feed, with a catalyst comprising an alumina support having disposed thereon in intimate admixture from 0.2 to 1.0 weight percent platinum and at least 0.2 weight percent...
rhenium, the weight ratio of rhenium to platinum not exceeding 1.0.

References Cited

UNITED STATES PATENTS

<table>
<thead>
<tr>
<th>Patent Number</th>
<th>Date</th>
<th>Inventor(s)</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,939,847</td>
<td>6/1960</td>
<td>Smith et al.</td>
<td>252—439</td>
</tr>
<tr>
<td>2,952,611</td>
<td>9/1960</td>
<td>Haxton et al.</td>
<td>208—65</td>
</tr>
<tr>
<td>2,974,111</td>
<td>3/1961</td>
<td>Nixon</td>
<td>252—439</td>
</tr>
<tr>
<td>3,011,967</td>
<td>12/1961</td>
<td>Schmitkons et al.</td>
<td>208—139</td>
</tr>
<tr>
<td>3,224,962</td>
<td>12/1965</td>
<td>Baldwin</td>
<td>208—139</td>
</tr>
<tr>
<td>3,296,118</td>
<td>1/1967</td>
<td>Czajkowski et al.</td>
<td>208—138</td>
</tr>
<tr>
<td>3,330,761</td>
<td>7/1967</td>
<td>Capsuto et al.</td>
<td>208—139</td>
</tr>
<tr>
<td>3,236,765</td>
<td>2/1966</td>
<td>Erbelding</td>
<td>208—254</td>
</tr>
</tbody>
</table>

References Cited

OTHER REFERENCES

DELBERT E. GANTZ, Primary Examiner.

HERBERT LEVINE, Assistant Examiner.

U.S. Cl. X.R.

208—138; 252—466, 472
UNITED STATES PATENT OFFICE
CERTIFICATE OF CORRECTION

Patent No. 3,415,737

December 10, 1968

Harris E. Kluksdahl

It is certified that error appears in the above identified patent and that said Letters Patent are hereby corrected as shown below:

Column 1, line 16, "0.1" should read -- 0.01 --. Column 10, line 69, "20 p.s.i.g." should read -- 250 psig --. Column 11, line 3, "0 milliliters" should read -- 80 milliliters --. Column 12, line 19, "100 p.p.m." should read -- 10 ppm --.

Signed and sealed this 7th day of April 1970.

(SEAL)

Attest:

Edward M. Fletcher, Jr.
Attesting Officer

WILLIAM E. SCHUYLER, JR.
Commissioner of Patents