

(22) Date de dépôt/Filing Date: 2013/01/08
(41) Mise à la disp. pub./Open to Public Insp.: 2013/09/01
(45) Date de délivrance/Issue Date: 2018/02/13
(30) Priorité/Priority: 2012/03/01 (US13/409,771)

(51) Cl.Int./Int.Cl. *G06F 17/50* (2006.01),
G01N 3/00 (2006.01)
(72) Inventeurs/Inventors:
OLIVERIUS, MATTHEW, US;
MALLIKARJUNNAIAH, NAVEENA, US;
ESHGHI, MEL, US;
RAMACHANDRAN, CHANDRASHEKAR, US;
UDALI, VENKATA NARASIMHA RAVI, US
(73) Propriétaire/Owner:
THE BOEING COMPANY, US
(74) Agent: SMART & BIGGAR

(54) Titre : SYSTEME ET METHODE D'ANALYSE STRUCTURALE
(54) Title: SYSTEM AND METHOD FOR STRUCTURAL ANALYSIS

(57) Abrégé/Abstract:

A method of analyzing a structural component (250) may include the step of storing one or more of the following on a server (12): at least one material allowable (26) for a structural component (250), at least one load case (18, 20, 22) for the structural component (250), and at least one analysis template (28) having at least one analysis variable (104). The method may further include the step of providing, using an interface (50), at least one entry for the analysis variable (104). The method may further include performing, using a processor-based structural component analyzer (100), a strength analysis of the structural component (250) using the analysis template (28) and based on the load case (18, 20, 22) and the entry for the analysis variable (104). The method may further include determining, using the analyzer (100), a margin of safety (130) of the structural component (250) based on the material allowable (26).

ABSTRACT

A method of analyzing a structural component (250) may include the step of storing one or more of the following on a server (12): at least one material allowable (26) for a structural component (250), at least one load case (18, 20, 22) for the structural component (250), and at least one analysis template (28) having at least one analysis variable (104). The method may further include the step of providing, using an interface (50), at least one entry for the analysis variable (104). The method may further include performing, using a processor-based structural component analyzer (100), a strength analysis of the structural component (250) using the analysis template (28) and based on the load case (18, 20, 22) and the entry for the analysis variable (104). The method may further include determining, using the analyzer (100), a margin of safety (130) of the structural component (250) based on the material allowable (26).

SYSTEM AND METHOD FOR STRUCTURAL ANALYSIS

BACKGROUND

The present disclosure relates generally to structural design and, more particularly, to the strength analysis and optimization of a structural component.

Aircraft design typically includes developing a preliminary set of loads that the aircraft may be subjected to during service. Such loads may include static loads such as steady-state bending loads on a wing or a fuselage of the aircraft during cruise flight and other steady-state loads at other locations of the aircraft. The loads may also include fatigue loads such as the rapid loading and unloading of the wings that may occur when the aircraft encounters turbulence, the changing pressurization loads on the fuselage during each flight cycle, and other fluctuating or cyclic loading of the aircraft structure. During the design of the aircraft, the loads may be applied to a model of the aircraft structure during a strength analysis of the structure in order to size the structural components.

Conventional practices for aircraft design typically include manually performing the strength analysis. Unfortunately, manual performance of the strength analysis is a time-consuming process. For example, during the design process, the loads may be revised as the operating environment and the flight conditions (e.g., mass distribution, aerodynamics) of the aircraft become more refined. The strength analysis methods and material allowables used in analyzing the structural components may also be updated during the design process. Each revision in the loads, the analysis methods, and/or the material allowables may require an update of the strength analyses to determine if re-sizing of the structural components is necessary. As may be appreciated, manually updating the strength analysis for each structural component may significantly impact the design schedule. Furthermore, manually performing the strength analysis may lead to an over-designed structure that may not be weight-optimized.

The above-noted drawbacks associated with conventional design practices may be compounded for aircraft structures that are divided into individual subassemblies which may be detail-designed and manufactured by different suppliers. For example, the aircraft fuselage may be divided into several barrel sections. Each barrel section may be assigned to a different supplier for the detail design and manufacture of the barrel section. Although each barrel section may share common features such as the structure surrounding each passenger door, each supplier may have some unique aspects to their strength analysis methodology for analyzing local details and designing the passenger door surrounding structure. The differences in the analysis methodologies of the suppliers may lead to inconsistencies in the detail design of common features in the different barrel sections. Such inconsistencies may result in certain barrel sections being over-designed which may result in an overweight fuselage.

For complex structures such as commercial aircraft, the design process may involve hundreds of strength analysts analyzing thousands of different structural components. In conventional practice, each analyst may perform a strength analysis of several structural components using their own unique analysis methodologies or templates. The use of numerous analysis templates for analyzing thousands of structural components may result in significant inconsistencies in the analysis results such as significant inconsistencies in the margins of safety for substantially similar structural components. For a complex structure with large quantities of structural components, the cumulative effect of such inconsistencies may be a structure that may be unnecessarily overweight. In addition, verification and certification of the numerous strength analyses may be an extremely cumbersome and time-consuming process due to the differences between the different analysis templates used by the individual analysts.

As can be seen, there exists a need in the art for a system and method for reducing the amount of time required for performing the strength analysis of a structure. In addition, there exists a need in the art for a system and method for performing a strength analysis which minimizes the weight of the structure. Even further, there exists a need in the art for a system

and method for improving the consistency or repeatability of strength analysis methodologies for structures designed and manufactured by different suppliers. Preferably, such system and method may be performed in a cost-effective manner.

SUMMARY

The above-noted needs associated with strength analysis of a structure are specifically addressed by the present disclosure which provides a system and method of analyzing structural components on a controlled-access server using predefined and controlled strength analysis templates and material allowables. The system and method may allow multiple users to analyze structural components via the controlled-access server in a highly consistent manner by reducing the quantity of strength analysis templates to several highly-controlled templates. In addition, the system may generate a strength analysis output and an optimization output for each structural component. The analysis output and optimization output may be generated in an automated manner and in a standard format which may simplify the analysis verification process.

For example, the system may generate strength analysis results including margins of safety, corresponding failure modes, and related environment data and wherein the margins of safety are highly consistent and repeatable for each structural component of a structural assembly. In addition, the system may significantly reduce the amount of time required for analysis and optimization of the structural components. The strength analysis output and optimization output should be reviewed by a stress analyst and/or a design engineer for structural validity and design functionality. The user of the system is responsible and/or accountable for the analysis. Advantageously, the system may avoid overly-conservative configurations of the structural component and may instead provide a highly weight-optimized structural component and a highly weight-optimized structural assembly. The system may also reduce the time and expense associated with auditing and certifying the strength analysis reports by reducing the numerous different strength analysis templates used

in conventional design practices down to several highly-controlled analysis templates as implemented in the present system.

In an embodiment, the method may include the step of storing on a controlled-access server at least one material allowable, at least one load case for the structural component, and at least one analysis template having at least one analysis variable. The method may further include the step of providing at least one entry for the analysis variable using an interface to the server. The interface to the server may be displayed on or provided by a computer or other device that may be remotely located from and communicatively coupled to the server. The method may further include performing, using a processor-based structural component analyzer, a strength analysis of the structural component using the analysis template and based on the load case and the entry for the analysis variable. The method may additionally include determining, using the analyzer, a margin of safety of the structural component based on the material allowable. The analysis template may be unalterable using the interface such that for each entry for the analysis variable, the analyzer determines a consistent value for the margin of safety of the structural component.

In a further embodiment, disclosed is a method for analyzing and optimizing a structural component. The method may include storing on a controlled-access server a plurality of material allowables for the structural component, a plurality of load cases for the structural component, and a plurality of analysis templates each having at least one analysis variable. The method may additionally include the step of providing at least one entry for the analysis variable using the interface to the server. The method may further include performing, using a structural component analyzer, a strength analysis of the structural component using one or more of the analysis templates and based on at least one load case and at least one entry for the analysis variable.

The method may additionally include determining, using a structural component analyzer, a margin of safety of the structural component based on the material allowable. The method may further include selecting, using the interface, at least one design variable of the structural component for optimization thereof. At least one constraint of the structural

component may be entered into a structural component optimizer using the interface. The method may further include performing an optimization of the design variable by iteratively updating the design variable until the constraint is substantially satisfied, and determining, using the optimizer, an optimized geometry of the structural component based on the optimization of the design variable.

Also disclosed is a system for analyzing a structural component comprising a controlled-access server, an interface to the server, and a structural component analyzer. The server may be configured to store at least one of the following: at least one load case for the structural component, at least one material allowable, and at least one analysis template having at least one analysis variable. The interface may be configured to facilitate the providing of at least one entry for the analysis variable. The structural component analyzer may be configured to perform a strength analysis of the structural component using the analysis template based on the load case and the entry for the analysis variable. The structural component analyzer may determine a margin of safety of the structural component based on the material allowable. The analysis template may be unalterable using the interface such that for each entry for the analysis variable, the analyzer determines a consistent value for the margin of safety of the structural component.

In one embodiment, there is provided a method of analyzing a structural component. The method includes the steps of storing the following on a controlled-access server at least one load case, at least one material allowable, and an analysis template having at least one analysis variable, the analysis template comprising at least one of a static analysis template, a fatigue analysis template, and a damage tolerance analysis template. The method further includes the steps of executing the analysis template stored on the controlled-access server using an interface remote from the controlled-access server, providing, using the interface remote from the controlled-access server, at least one entry for the at least one analysis variable, and performing, using a processor-based analyzer, a strength analysis of the structural component using the analysis template based on the at least one load case and the at least one entry for the at least one analysis variable. The method further includes the steps of determining, using the processor-based analyzer, a margin of safety of the structural component based on the at least one material allowable, selecting, using the interface, at least one design variable of the structural component for optimization thereof, and entering, using the interface, at least one constraint of the structural

component into a processor-based optimizer. The method further includes the steps of performing, using the processor-based optimizer, an optimization of the at least one design variable by iteratively updating the at least one design variable until the at least one constraint is substantially satisfied, and determining, using the processor-based optimizer, an optimized geometry of the structural component based on the optimization of the at least one design variable, wherein the analysis template is stored on the controlled-access server for preventing alteration of the analysis template by a user accessing the analysis template via the interface.

The method may involve the step of determining a failure mode of the structural component corresponding to the margin of safety of the structural component.

The method may involve the step of determining at least one load condition and a related environment associated with the margin of safety of the structural component.

The step of providing an entry for the at least one analysis variable may involve selecting a geometry parameter of the structural component.

The method may involve the steps of storing a list of materials and corresponding material allowables on the controlled-access server, selecting, using the interface, at least one of the materials as an entry for the at least one analysis variable, and performing, using the processor-based optimizer, the strength analysis using the material allowable of the selected at least one material.

The method may involve the steps of storing a plurality of load cases on the controlled-access server, and selecting, using the interface, one of the plurality of load cases for the strength analysis.

When the analysis template comprises the static analysis template, the step of performing the strength analysis using the processor-based analyzer may involve performing a static analysis of the structural component using the static analysis template. When the analysis template comprises the fatigue analysis template and the damage tolerance analysis template, the step of performing the strength analysis using the processor-based analyzer may involve performing a fatigue analysis of the structural component using the fatigue analysis template and the damage tolerance analysis template.

The at least one design variable may comprise a geometry parameter of the structural component.

The geometry parameter may comprise a thickness of the structural component.

The at least one constraint may comprise a minimum value for the margin of safety of the structural component.

The method may involve the step of determining a failure mode of the optimized geometry and a margin of safety corresponding to the failure mode.

The method may involve the step of determining at least one load condition and a related environment associated with the margin of safety corresponding to the failure mode.

The optimization of the structural component may involve at least one of a static optimization and a fatigue optimization respectively based on a static analysis and a fatigue analysis of the structural component.

The step of determining an optimized geometry may involve determining a minimum thickness of at least one portion of the structural component.

The at least one load case may include a set of flight loads, a set of ground maneuvering loads, a set of landing loads, and a set of cabin pressurization loads.

In another embodiment, there is provided a method of analyzing a structural component. The method involves the steps of storing the following on a controlled-access server: at least one load case, at least one material allowable, and an analysis template having at least one analysis variable, the analysis template comprising at least one of a static analysis template, and fatigue analysis template, and a damage tolerance analysis template. The method further involves the steps of executing the analysis template stored on the controlled-access server using an interface remote from the controlled-access server, providing, using the interface remote from the controlled-access server, at least one entry for the at least one analysis variable, and performing, using a processor-based analyzer, a strength analysis of the structural component using the analysis template based on the at least one load case and the at least one entry for the at least one analysis variable. The method further involves the steps of determining, using the processor-

based analyzer, a margin of safety of the structural component based on the at least one material allowable, providing, using the interface, at least one design variable and at least one constraint of the structural component, performing, using a processor-based optimizer, an optimization of the at least one design variable by iteratively updating the at least one design variable until the at least one constraint is substantially satisfied, and determining, using the processor-based optimizer, an optimized geometry of the structural component based on the optimization of the at least one design variable, wherein the analysis template is stored on the controlled-access server for preventing alteration of the analysis template by a user accessing the analysis template via the interface.

In another embodiment, there is provided a processor-based system for analyzing a structural component. The system includes a processor-based optimizer, a controlled-access server configured to store the following at least one load case, at least one material allowable, and an analysis template having at least one analysis variable, the analysis template comprising at least one of a static analysis template, a fatigue analysis template, and a damage tolerance analysis template. The system further includes an interface remote from the controlled-access server, the interface being configured to execute the analysis template stored on the controlled-access server and facilitate a user to provide an entry for the at least one analysis variable, select, using the interface, at least one design variable of the structural component for optimization thereof, enter, using the interface, at least one constraint of the structural component into the processor-based optimizer, and a structural component analyzer configured to perform a strength analysis of the structural component using the analysis template based on the at least one load case and the at least one entry for the at least one analysis variable. The system further includes the structural component analyzer is configured to determine a margin of safety of the structural component based on the at least one material allowable, the processor-based optimizer is configured to perform, an optimization of the at least one design variable by iteratively updating the at least one design variable until the at least one constraint is substantially satisfied and to determine, an optimized geometry of the structural component based on the optimization of the at least one design variable, and wherein the analysis template is stored on the controlled-access server for preventing alteration of the analysis template by the user accessing the analysis template via the interface.

The entry may include a geometry parameter of the structural component.

The controlled-access server may be configured to store a plurality of load cases, and the interface may be configured to facilitate a selection of one of the load cases for the strength analysis.

The controlled-access server may be configured to store a listing of materials and corresponding material allowables, the interface may be configured to facilitate a selection of at least one of the materials as an entry for the at least one analysis variable.

The system may include a structural component optimizer, the interface may be configured to facilitate entry of the at least one design variable and the at least one constraint into the structural component optimizer, the structural component optimizer may be configured to iteratively update the at least one design variable until the at least one constraint is substantially satisfied, and the structural component optimizer may be configured to determine an optimized geometry of the structural component based on the optimization of the at least one design variable.

The system may include the at least one design variable comprises a thickness of the structural component, and the at least one constraint comprises a minimum value for the margin of safety.

The at least one load case may include a set of flight loads, a set of ground maneuvering loads, a set of landing loads, and a set of cabin pressurization loads.

The features, functions and advantages that have been discussed can be achieved independently in various embodiments of the present disclosure or may be combined in yet other embodiments, further details of which can be seen with reference to the following description and drawings below.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other features of the present disclosure will become more apparent upon reference to the drawings wherein like numbers refer to like parts throughout and wherein:

Figure 1 is a schematic illustration of an embodiment of a processor-based system for analyzing a structural component and including one or more interfaces communicatively coupled to a controlled-access server via a network;

Figure 2 is a flow chart including one or more operations that may be included in a methodology for analyzing the structural component;

Figure 3 is a block diagram of an embodiment of the system of Figure 1 and illustrating a structural component analyzer and a structural component optimizer;

Figure 4 is a block diagram of the structural component analyzer in an embodiment for performing a static analysis and a fatigue analysis of the structural component;

Figure 5 is a block diagram of the structural component optimizer including an optimization loop for determining an optimized geometry of the structural component;

Figure 6 is a perspective illustration of an aircraft that may include one or more structural components which may be analyzed using the system and methods disclosed herein;

Figure 7 is an illustration of an embodiment of the interface for providing at least one entry for one or more analysis variables of an analysis template for performing an analysis of one or more structural components for one or more aircraft configurations and further illustrating a structural assembly that may include one or more structural components that may be analyzed using the system and methods disclosed herein;

Figure 8 is a perspective illustration of an embodiment of a structural assembly and illustrating a structural component mounted to a panel of the structural assembly;

Figure 9 is an illustration of an embodiment of the interface for selecting at least one material as an entry for the analysis variable for performing the analysis of the structural component;

Figure 10 is an illustration of an embodiment of the interface for selecting at least one load case as an entry for the analysis variable;

Figure 11 is an illustration of an embodiment of the interface for selecting a configuration of the structural component as an entry for the analysis variable;

Figure 12 is an illustration of an embodiment of the interface for selecting a geometry parameter of the structural component as an entry for the analysis variable;

Figure 13 is a representative display of the interface for selecting a joint configuration of the structural component as an entry for the analysis variable;

Figure 14 is an illustration of graph plotting a summary of margins of safety of the structural component as a function of location;

Figure 15 is an illustration of a table listing the margins of safety of the structural component by location and a failure mode corresponding to each margin of safety;

Figure 16 is an illustration of an embodiment of the interface for selecting a design variable and a constraint for performing the optimization of the structural component; and

Figure 17 is a block diagram of an embodiment of a processor-based system for implementing one or more operations of the methodology for analyzing the structural component.

DETAILED DESCRIPTION

Referring now to the drawings wherein the showings are for purposes of illustrating preferred and various embodiments of the disclosure, shown in Figure 1 is a schematic illustration of a system 10 that may be used for analyzing and optimizing a structural component 250 (Figure 7) and/or a structural assembly 252 (Figure 7). The system 10 may include one or more controlled-access server(s) 12 upon which one or more analysis templates 28 (Figure 3) may be loaded. Each one of the analysis templates 28 may comprise an analysis methodology in the form of a structural analysis software program or source code for strength analysis and optimization of the structural component 250 or structural assembly 252. One or more load cases 18 (Figure 3) and a plurality of material allowables 26 (Figure 3) may also be loaded onto the server 12.

In Figure 1, the system 10 may include one or more devices such as computers for displaying an interface 50 to the server 12 such as a web interface. The interface 50 may allow one or more users to access the server 12 from any location via a network 16 such as an Internet, an intranet, a private network, or any one of a variety of other networks 16 or other connection means. In this manner, a user, such as a supplier to the manufacturer, may

submit data entries **106** (Figure 3) into the analysis templates **28** (Figure 3) for strength analysis **206** (Figure 4), optimization **162** (Figure 5), and detail design of a structural component **250** (Figure 7) or a structural assembly **252** (Figure 7) that the supplier may be supplying to the manufacturer. The system **10** may be configured to generate an analysis output **126** (Figure 3) and/or an optimization output **168** (Figure 3) listing one or more margins of safety **130** (Figure 14) of the structural component **250** or structural assembly **252**, the corresponding failure modes **132** (Figure 15), and/or other results as described in greater detail below.

Referring to Figure 1, the analysis templates **28**, the loads cases **18**, and the material allowables **26** may be unalterable by users of the system **10** which may improve the repeatability and consistency of the strength analysis process among different users as discussed below. In this regard, by maintaining the analysis templates **28** (e.g., the source code), the load cases **18**, and the material allowables **26** on the controlled-access server **12** (e.g., a web server), and by providing an interface **50** (e.g., a web interface) for one or more users (e.g., one or more suppliers) to execute the analysis templates **28** and the optimization process, the system **10** provides the technical effect of improving the repeatability and consistency of the strength analysis process. For example, by preventing alteration of the analysis templates **28** stored on the server **12**, each user advantageously uses the same or substantially similar analysis template **28** for analyzing a given structural component **250** and which may advantageously provide consistent analysis results among users. Such consistent analysis results may include substantially similar margins of safety **130** for a given structural component **250** analyzed by different users using a given load case **18** at a given environment (e.g., temperature). In this regard, preventing the alteration of the analysis templates **28** by storing the templates **28** on the controlled-access server **12** may also eliminate from a design schedule the time otherwise required for each user to develop and run their own analysis templates. In addition, the execution of the analysis templates **28** by different users may also result in a reduction in the weight of a structural assembly **252** comprised of one or more structural components **250**. In this regard, the system **10** disclosed herein may avoid

inconsistencies and unnecessary weight in structural components **250** which may otherwise occur if users analyze and optimize structural components **250** using their own unique analysis methods. In this regard, the system **10** and methods disclosed herein provide the further technical effect of reducing the amount of time required for auditing and/or verifying the individual strength analyses of each user.

Additionally, the system **10** provides the technical effect of reducing the amount of time required for refining the design of the structural component **250** (Figure 7) in response to changes to the load cases **18**, changes to the analysis templates **28** (i.e., the analysis methods), and/or changes to the material allowables **26**. In this regard, for updates to the analysis templates **28** that may occur as the operating environment and the vehicle configuration (e.g., structural assembly) becomes more refined during the design process, re-runs of the strength analyses of structural components **250** may be rapidly performed by users. For example, users may log into the server **12** via the interfaces **50** and may perform multiple re-runs of the strength analysis and weight optimization of one or more structural components **250** in a reduced amount of time compared to conventional (e.g., manual) strength analysis methods. Documentation of the strength analysis re-runs and weight optimization in the form of strength check notes **134** may also be rapidly generated using the system **10** described herein.

Referring to Figure **2** and with additional reference to Figures **3-16**, shown in Figure **2** is a flow chart of a method **200** including one or more operations that may be implemented for analyzing and/or optimizing a structural component **250** (Figure 7). Although the system **10** and method disclosed herein is described in the context of a structural component **250**, the system **10** and method may also be applied to the analysis and optimization of structural assemblies that may contain one or more structural components **250**. The structural component **250** or structural assembly **252** may represent the final component or assembly of an article. Alternatively, the structural component **250** or structural assembly **252** may comprise a subcomponent or a subassembly that may be assembled with other components or subassemblies to form a larger assembly such as an airframe of an aircraft such as the aircraft

500 illustrated in Figure 6. However, the system **10** and method disclosed herein may be implemented for analyzing and optimizing a structural component **250** or a structural assembly **252** for use in any industry or in any application, without limitation, and is not limited to analysis and optimization of structural components **250** or structural assemblies **252** for aircraft **500**.

In Figure 2, Step **202** of the method **200** may initially include storing a plurality of material allowables **26** (Figure 3) on the server **12** (Figure 3). The material allowables **26** may be developed by the manufacturer or provided by the manufacturer and may represent the mechanical properties of one or more materials from which the structural component **250** (Figure 7) may be fabricated. The material allowables **26** may include strength properties of each material in tension, compression, shear, and bearing. For example, the strength properties may include the ultimate tensile strength, yield tensile strength, ultimate shear strength, and other strength properties. Elastic or stiffness properties of the materials such as the modulus of elasticity (i.e., tensile modulus) and the shear modulus of the materials may also be loaded on the server **12** for performing the strength analysis. Additional material properties may also be stored on the server **12** for analyzing and/or optimizing the structural component **250**.

Step **202** of the method **200** of Figure 2 may further include loading a plurality of load cases **18** (Figure 3) on the server **12**. Each load case **18** may represent a set of internal loads which represent the forces and moments to which the structural component **250** (Figure 7) may be subjected when in service for different loading conditions. For example, in the case of an aircraft, the load cases **18** may include a set of flight loads, a set of ground maneuvering loads, a set of landing loads, a set of cabin pressurization loads, and other loads cases. The load cases **18** may be divided into static loads and fatigue loads, one of which may be selected by a user as an entry **106** (Figure 3) into the analysis template **28** for respectively performing a static analysis **108** (Figure 4), a fatigue analysis **116** (Figure 4), a static optimization **170**, and/or a fatigue optimization **172** of the structural component **250** as described below.

The load cases **18** (Figure 3) may be associated with an analysis model **36** (Figure 3) or a mathematical model of the structural component **250** (Figure 7) for simulating the response of the structural component **250** to the application of the loads. The analysis model **36** may comprise a finite element model or may alternatively be defined by a finite difference model, a finite volume model, or any other means for mathematically modeling the structural component **250** to be analyzed. The finite element model may be modeled with various elements such as bar elements, beam elements, plate elements, and other elements and which may be constrained in the appropriate manner to simulate the intended design of the structural component **250**.

Step **202** of the method **200** of Figure 2 may further include loading one or more analysis templates **28** (Figure 3) on the server **12** (Figure 3). For example, a static analysis template **30** (Figure 4), a fatigue analysis template **32** (Figure 4), and a damage tolerance analyses template **34** (Figure 4) may be loaded onto the server **12**. As indicated above, the analysis templates **28** may advantageously be under the control of the source (e.g., a manufacturer) and are unalterable or unchangeable by one or more users accessing the server **12** via one or more interfaces **50**. The static analysis template **30** may be selected by a user for performing a static analysis **108** (Figure 4) of the structural component **250**. The fatigue analysis template **32** and the damage tolerance analysis template **34** may be selected by a user for performing a fatigue analysis **116** (Figure 4) of the structural component **250**. As indicated above, each analysis template **28** includes the analysis methodology for analyzing a given configuration of the structural component **250**. Each analysis template **28** may include a plurality of analysis variables **104** (Figure 7) for which a user of the system **10** (Figure 1) may assign one or more entries **106** (Figure 7) via the interface **50** for performing a strength analysis on the structural component **250** as described in greater detail below.

Step **204** of the method **200** of Figure 2 may include providing at least one entry **106** (Figure 3) for one or more of the analysis variables **104** (Figure 7) using an interface **50** such as the representative interfaces **50** shown in Figures 7-17. Each entry **106** may comprise an analysis input **102** (Figure 3) for entry into the analyzer **100** (Figure 3) for performing a

strength analysis of the structural component **250** (Figure 7). In a non-limiting embodiment, the interface **50** may be configured to provide for entry of a geometry parameter **312** (Figure 3) of the structural component **250**, a joint configuration **324** (Figure 3) for attaching the structural component **250** to a structural assembly **252**, the selection of one of the load cases **18** (Figure 3), and/or the selection of one or more materials **24** (Figure 3) and corresponding material allowables **26** (Figure 3) for the structural component **250**. The step of providing an entry **106** for the analysis variable **104** may comprise a user selecting an item from a pull-down menu of choices on the interface **50** or by a user manually-entering a value for the entry **106** into an entry field (not shown) that may be provided with the interface **50**.

Referring to Figure 7, shown is an embodiment of a configuration selection **52** window of the interface **50** wherein a user of the system **10** may select a configuration of the structural component **250** for strength analysis. Selection of the configuration of the structural component **250** may trigger the loading of a corresponding analysis template **28** (Figure 3), a corresponding set of load cases **18** (Figure 3), and material allowables **26** (Figure 3) (i.e., material options) for the structural component **250**. As can be seen in Figure 7, the interface **50** may also present the user with the ability to select a model of the structural assembly **252** for which a strength analysis is desired. For example, the interface **50** may provide the user with the ability to select a model or configuration of an aircraft from a pull-down menu of different models or configurations of the aircraft **500** such that the correct or appropriate configuration of the structural component **250** may be analyzed. As shown in Figure 7, the interface **50** may also provide a graphic illustration of the structural assembly **252** and which may contain one or more of the structural components **250** to be analyzed. As was indicated earlier, the structural assembly **252** may comprise a portion of an aircraft such as the aircraft **500** illustrated in Figure 6.

As shown in Figure 7, the interface **50** may provide the user with the ability to select a given structural component **250** for analysis. For example, in the case of an aircraft as shown in Figure 6, a plurality of analysis templates **28** (Figure 3), load cases **18** (Figure 3), and material allowables **26** (Figure 3) may be loaded onto the server **12** (Figure 3) to

represent the different structural assemblies of the aircraft **500** which may include, for example, the different barrel sections (not shown) of the fuselage **502**, the horizontal stabilizer **510** and vertical stabilizer **512** of the empennage **508**, the wing **504**, the propulsion units **514**, and other structure. The interface **50** (Figure 7) may be configured to allow a user to select from among the different structural assemblies or structural components **250** of the aircraft **500** that may be loaded onto the server **12** for analysis. The structural assembly **252** shown in Figure 7 may comprise an assembly for a nose wheel well of an aircraft **500** (Figure 6). In the embodiment shown, the structural assembly **252** may include a pair of bulkheads **254** and a plurality of vertically oriented and horizontally-oriented beams **258** which may be fastened to a panel **256** of the nose wheel well. The system **10** and method of the present disclosure is described in the context of the analysis and optimization of one of the vertically-oriented beams **258** (Figure 8) of the nose wheel well.

Referring to Figure 8, shown is a portion of the structural assembly **252** of Figure 7 and illustrating one of the vertically-oriented beams **258** for strength analysis using the system **10** (Figure 7) and method disclosed herein. The beam **258** is illustrated as having an I-beam cross-sectional shape including a free flange **264** connected to an attach flange **262** by a web **260**. The beam **258** may be mounted to the panel **256** by means of a plurality of mechanical fasteners (not shown) for attaching the attach flange **262** to the panel **256**. One or more ends of the selected beam **258** may also be coupled to one of the horizontally-oriented beams by means of a plurality of fasteners. In the present disclosure, the system **10** may advantageously provide the user with the ability to enter data into a variety of analysis variables **104** of an analysis template **28** to define the geometry parameters **312** of a structural component **250** such as the beam **258** and to define the joint configuration **324** for attaching the structural component **250** to the structural assembly **252**. For example, the interface **50** provides the user with a means to define the geometry parameters **312** of the beam **258** and for defining the joint configuration **324** for attaching the beam **258** to the panel **256**. In addition, the interface **50** (Figure 7) provides the user with the ability to define the

beam **258** geometry by location **268** such as by station location, waterline location, or butt line location (not shown), or by other location-identifying means.

Referring to Figure 9, shown is an embodiment of a material selection **54** window of the interface **50** for selecting a material **24** (Figure 3) as an entry **106** (Figure 3) for the analysis variable **104** (Figure 3). As was indicated earlier, a listing of materials **24** and corresponding material allowables **26** may be preloaded onto the server **12** (Figure 3). A user may select one of the preloaded materials **24** (e.g., aluminum, titanium) from a pull-down menu. Selection of one of the materials may result in entry **106** of the corresponding material allowable **26** into the analysis template **28** (Figure 3). The interface **50** may include an option for selecting a specification of a material **24** such that a user may select a desired alloy and/or a desired heat treat of the material. For example, in the case of aluminum, a user may select from a pull-down menu listing **7075-T7351** aluminum and **7075-T651** aluminum. The interface **50** may provide the user with the option of selecting one or more materials for the beam **258** and the option of selecting the same or different materials for the panel **256** (Figure 8) or other structure to which the beam **258** may be attached.

The system **10** and method disclosed herein may be configured to facilitate manual entry by a user of one or more values for any of the analysis variables **104** or other aspect of the structural component **250**, without limitation, and is not limited to selection of values from a predefined set of choices such as in a pull-down menu. For example, the system **10** may be configured to facilitate entry by a user of one or more analysis input **102** values for a material allowable **26** of the structural component **250**, a geometry of the structural component **250** (e.g., height, thickness, configuration), or any other aspect of the structural component **250**. The system **10** may additionally include a screening capability wherein manual entries from a user may be screened to determine if such entries conform to the intent of a program design guide or conform to the intent of program requirements. In the event that an entry by a user fails to conform to a design guide or a program requirement, the system **10** may be configured to restrict or prevent the analysis and/or optimization of the structural component **250**. For example, a design guide may restrict the use of certain

materials for certain applications (e.g., locations) of a given structural component **250** in relation to an operating environment or structural environment of the structural component **250**. Entry of a given material into the system **10** by a user may result in the system **10** preventing analysis and/or optimization of the structural component **250** and may include the display of an error message (not shown) on the interface **50** indicating that the selected material is unauthorized for use in the given application.

Referring to Figure 9, the interface **50** may additionally provide the user with the option of entering a desired mass density (not shown) for performing the strength analysis. As may be appreciated, the interface **50** may include any number of additional material selection **54** options and is not limited to selection of the material type (e.g., aluminum, titanium), material specification (e.g., heat treat specification), and mass density. Further in this regard, the interface **50** is not limited to selection of metallic materials but may provide a user with the ability to select composite materials and corresponding material allowables **26**. Additionally, it is contemplated that the interface **50** may be configured to allow a user to select a composite material system (e.g., fiber-reinforced polymer composite material) for analyzing a structural component **250** (Figure 7). For example, the interface **50** may be configured to provide the user with the ability to select a ply stackup (not shown) of a composite laminate (not shown) for use in a structural component **250**. The interface **50** may provide the user with the ability to select various parameters of the composite laminate such as ply orientation, ply quantity, individual ply thickness, the composition of the ply material and the matrix material, fiber volume fraction, and any one of a variety of additional parameters. In this regard, the system **10** and method disclosed herein is not limited to analysis and optimization of metallic structural components **250** but may include analysis and optimization of structural components **250** fabricated, in whole or in part, from composite materials such as fiber-reinforced polymer composite material.

Referring to Figure 10, shown is an embodiment of a load case selection **56** window of the interface **50** for selecting one or more load cases **18** as an entry **106** for one or more of the analysis variables **104** for static analysis **108** (Figure 4) and/or fatigue analysis **116**

(Figure 4) of a structural component 250 (Figure 7). As was indicated earlier, a set of load cases 18 may be loaded onto the server 12 (Figure 3) and may include static load cases 20 and fatigue load cases 22. A user may select one of the load cases 18 for analysis by the structural component analyzer 100 such as from a pull down menu. Alternatively, it is contemplated that the interface 50 may provide the user with the option of manually-entering the magnitude, direction, and location of the listening loads to be applied to the structural component 250 during analysis.

Referring to Figure 11, shown is an embodiment of a geometry selection 58 window of the interface 50 for selecting a geometry parameter 312 of the structural component 250 (Figure 7) as an entry 106 for one of the analysis variables 104 of one of the analysis templates 28 (Figure 3). In the embodiment shown, the geometry parameter 312 may comprise a configuration 300 of the structural component 250. For example, in Figure 11, a user may select from a first beam configuration 302, a second beam configuration 304, and a third beam configuration 306 to define the cross-sectional configuration 300 of the beam 258. The first beam configuration 302 may comprise the beam 258 being mounted directly to the panel 256. The second beam configuration 304 may comprise the beam 258 being mounted to the panel 256 with a padup 308 of reinforcing material located on a side of the panel 256 opposite the beam 258. The third beam configuration 306 may comprise the beam 258 and a plurality of straps 310 mounted to the panel 256. The interface 50 may provide the user with the option of selecting additional configuration 300 options for the beam 258. For example, the interface 50 may provide the user with the option of selecting the quantity of cross sections of the beam 258 to be analyzed and may include the ability to assign one of the first, second, and third beam configurations 302, 304, 306 to each location.

Referring to Figure 12, shown is an embodiment of a geometry selection 58 window of the interface 50 for selecting initial dimensions 314 (Figure 5) to be assigned to the different portions of the structural component 250. In the embodiment shown, the interface 50 may provide the user with the option of selecting a gauge or a thickness 318 of the web 260, a thickness 320 of the attach flange 262, and a thickness 320 of the free flange 264 of

the beam **258** (Figure 9). In addition, the interface **50** may provide the user with the option of selecting a height **316** of the beam **258**, a size of the fillet radii **322** at the intersection between the flanges **262**, **264** and the web **260**, and any one of a variety of other dimensions that may be associated with the beam **258**. For example, it is contemplated that the geometry selection **58** window of the interface **50** may provide the user with the option of selecting a length or a width of the beam **258**, or other geometry such as tapers, holes, or other features that may be associated with the beam **258**. The interface **50** may additionally provide the ability to specify the geometry of the structural assembly **252** to which the structural components **250** may be attached. For example, the interface **50** may provide the user with the option of selecting dimensions associated with the panel **256** thickness and the general configuration of the panel **256** such as stiffeners (not shown) that may be integrally formed with the panel **256**. As may be appreciated, depending on the configuration of the structural component **250** to be analyzed, any number of different geometric features may be specified by a user using the interface **50**.

Referring to Figure 13, shown is an embodiment of a joint configuration **324** selection **52** window of the interface **50** for specifying the attachment of the structural component **250** to the structural assembly **252** as one of the entries **106** (Figure 3) for the analysis variables **104** (Figure 3). In the embodiment shown, the interface **50** may provide the user with the option of selecting the arrangement of mechanical fasteners (not shown) for attaching the structural component **250** to the structural assembly **252**. For example, the interface **50** may provide the user with the option of selecting the fastener type **328** (e.g., rivet, bolt, Hi-lokTM) and the fastener specification **330** (e.g., diameter, material, head configuration). In addition, the interface **50** may provide the user with the option of selecting the fastener spacing **326**, the edge distance, and other fastener parameters. Although not shown, it is also contemplated that the interface **50** may be configured to allow a user to select an adhesive for bonding the structural component **250** to the structural assembly **252**. Such an arrangement may be provided for in a structural component **250** formed of composite material and/or metallic material.

In Figure 2, step 206 of the method 200 may include performing a strength analysis of the structural component 250 (Figure 7) using one or more of the analysis templates 28 (Figure 4). The above-described entries 106 (Figure 4) for the analysis variables 104 (Figure 4) may be submitted to the structural component analyzer 100 shown in Figure 4. Upon receiving the entries 106, the analyzer 100 may perform a static analysis 108 (Figure 4) of the structural component 250 using the static analysis template 30 (Figure 4) and a selected static load case 20 (Figure 4). Likewise, the analyzer 100 may perform a fatigue analysis 116 (Figure 4) of the structural component 250 based on the selected fatigue load case 22 (Figure 4) and using the fatigue analysis template 32 (Figure 4) and the damage tolerance analysis template 34 (Figure 4).

Figure 4 illustrates a block diagram of a processor 14 for performing a static analysis 108 and/or a fatigue analysis 116 of the structural component 250 using the structural component analyzer 100. Because the material allowables 26 (e.g., strength, stiffness) of a given material may vary with temperature, the analyzer 100 may perform a static analysis 108 of the structural component 250 at the different environments to which the structural component 250 may be subjected during service. For example, the environment may include two or more different temperatures that may be representative of the temperatures to which the structural component 250 may be subjected during service. The analyzer 100 may perform a static analysis 108 of the structural component 250 at a first temperature 110, at a second temperature 112, and a third temperature 114. In the example of an aircraft 500 (Figure 6), the first temperature 110 may comprise a room temperature (e.g., 70° F). The second temperature 112 may comprise a maximum operating temperature of the structural component 250 such as when the aircraft 500 is parked on an airport tarmac during summertime at a location where the temperature may reach 120° F or more. The third temperature 114 may comprise a minimum operating temperature of the structural component 250 such as when the aircraft 500 is at a cruising altitude of 35,000 feet where the temperature may reach -65° F or less.

In Figure 4, the analyzer 100 may perform a fatigue analysis 116 using the fatigue analysis template 32 and the damage tolerance analysis template 34. The fatigue analysis 116 may be based upon fatigue loads using a design service objective of the structural component 250 (Figure 7) comprising a predetermined quantity of fatigue cycles 124. For an aircraft, the fatigue cycles 124 may comprise a predetermined quantity of ground-air-ground cycles 124 (e.g., 44,000) for the structural component 250. In an embodiment, the interface 50 may be configured to provide the user with the option of adjusting the quantity of fatigue cycles 124 and other parameters that may be associated with the fatigue analysis 116. Based on the selected load case 18, the fatigue analysis template 32 may generate a stress 118 level for submitting to the damage tolerance analysis template 34 for calculating a minimum stress 120 (fmin) and a maximum stress 122 (fmax) associated with each cycle.

In Figure 2, step 208 of the method 200 may include determining a margin of safety 130 (Figure 4) of the structural component 250 (Figure 7) based on the material allowables 26 (Figure 4). In this regard, the analyzer 100 may generate an analysis output 126 (Figure 4) comprising at least one margin of safety 130 of the structural component 250 based on the static analysis 108 (Figure 4) and/or the fatigue analysis 116 (Figure 4) and based on the material allowables 26 of the structural component 250. The system 10 may be configured to generate a report that may include a summary 128 (Figure 4) of the margins of safety 130 of the structural component 250 based on the static analysis 108 and/or the fatigue analysis 116. The system 10 may further generate at least one analysis results data file 136 (Figure 4) associated with the summary 128 of the margin of safety 130.

Referring briefly to Figures 14-15, shown in Figure 14 is an embodiment of a report of the analysis output 126 which may comprise strength check notes 134 including a graph plotting the minimum margins of safety 130 of the structural component 250 (Figure 7) by location. Figure 15 is a textual representation of the analysis output 126 and including a tabular listing of the margins of safety 130 of the structural component 250 for each location and the related environment such as the temperature at which the structural component 250 was analyzed (e.g., 70° F). The tabular listing may further include an identification of the

failure mode **132** (e.g., bearing critical, shear critical, etc.) corresponding to each margin of safety **130** listed for the structural component **250**. Although not shown, the strength check notes **134** may further include a listing of critical loads acting on the structural component **250**, an indication of displacements of the structural component **250**, an indication of the stress distribution in the structural component **250**, and a variety of additional information.

In Figure 2, step **210** of the method **200** may include selecting at least one design variable **154** (Figure 5) of the structural component **250** (Figure 7) for optimization thereof. The design variable **154** may be entered by a user using the interface **50** (Figure 5). The design variable **154** may be used by the structural component optimizer **150** for performing the optimization of the structural component **250**. Shown in Figure 5 is a block diagram of the processor **14** for performing the optimization using the optimizer **150**. As indicated above, the optimizer **150** may be configured to optimize a geometry of the structural component **250** based on a predetermined objective such as minimizing weight of the structural component **250**. However, it is contemplated that the optimizer **150** may be configured to optimize the structural component **250** for other objectives such as for a desired level of stiffness, a maximum amount of deflection of the structural component **250**, or for any one of a variety of other objectives. The optimizer **150** may receive data from the analysis results data file **136** for performing the optimization.

Referring briefly to Figure 16, shown is an embodiment of an optimization input **152** window for submitting a design variable **154** according to step **210** Figure 2. The design variable **154** may comprise a geometry parameter **312** (Figure 12) such as a dimension **314** of the structural component **250**. For example, the design variable **154** may comprise a web thickness **318** of the beam **258** illustrated in Figure 8 having an initial dimension **314** (e.g., **0.150** inch). However, the design variable **154** may comprise any parameter, without limitation, for which optimization of the structural component **250** is desired. For example, the design variable **154** may comprise a thickness, a length, a width, or any other dimension associated with the structural component **250** (Figure 7) or with the structural assembly **252** (Figure 7) to which the component may be attached. In an embodiment, the design variable

154 may optionally comprise a parameter of the joint configuration **324** (Figure **13**) such as a fastener spacing **326** (Figure **13**), a fastener diameter, a fastener material, or any one of a variety of other parameters associated with the structural component **250**. In an embodiment, the interface **50** may provide the user with the capability of selecting a specific location of the structural component **250** where optimization is desired.

In Figure **2**, step **212** of the method **200** may include entering at least one constraint **156** (Figure **5**) for optimization of the structural component **250** (Figure **7**). The constraint **156** may comprise a strength constraint such as a minimum margin of safety **130** (Figure **5**) of the structural component **250** that must be satisfied during the optimization of the design variable **154**. The constraint **156** may include alternative parameters such as a manufacturing constraint. For example, in an embodiment, the constraint **156** may comprise a minimum thickness of a portion of the structural assembly **252**. With regard to the beam **258** illustrated in Figure **7**, the constraint **156** may comprise a minimum thickness (e.g., **0.080** inch) of the web **260** to maintain the web at a machinable thickness. However, the constraint **156** may include any one of a variety of other parameters and is not limited to those mentioned above.

In Figure **2**, step **214** of the method **200** may include performing an optimization of the structural component **250** (Figure **7**) by iteratively updating the design variable **154** (Figure **5**) until the constraint **156** (Figure **5**) is substantially satisfied. As shown in Figure **5**, the optimizer **150** may include an optimization loop **158** for performing a static optimization **170** or a fatigue optimization **172** based on the analysis results data file **136** of the strength analysis of the structural component **250**. The optimization loop **158** may include a decision block regarding whether the constraint **156** is substantially satisfied **160**. The optimizer **150** may be configured to iteratively update the design variable **154** (e.g., the web thickness **318**) by analysis **164** of the structural component **250** with an optimized geometry **174** using a suitable optimization program **162** such as Hyperstudy™ commercially available from Altair Corporation of Irvine, California. The optimization loop **158** may be configured to generate a temporary analysis data results file during each iteration of the design variable **154**.

In Figure 2, step 216 of the method 200 may include determining an optimized geometry 174 (Figure 5) of the structural component 250 (Figure 7) based on the optimization of the design variable 154 (Figure 5). In Figure 5, when the constraint 156 is substantially satisfied 160, the optimization loop 158 may output an optimization results data file 178 containing the optimized geometry 174 of the structural component 250. The optimizer 150 may generate an optimization output 168 for the static optimization 170 and fatigue optimization 172 of the structural component 250. The optimization output 168 may include a report that may indicate the initial value of the design variable 154 and the optimized geometry 174 (Figure 5) (e.g., a thickness dimension) of the design variable 154 and may further include a listing of critical margins of safety 130 and the associated failure modes 132 by location of the structural component 250.

In Figure 5, the optimized geometry 174 may be reviewed by a stress analyst, a design engineer, or other personnel for approval 180 and prior to updating a detailed computer aided design model (CAD) model 38 (Figure 3) of the structural component 250 (Figure 7). The detailed CAD model 38 of the structural component 250 may be owned or developed by the user and may be associated with the interface 50 for updating the geometry of the structural component 250. Upon generating an optimized geometry 174, the system 10 may perform an additional strength analysis of the structural component 250 and may generate one or more additional sets of analysis output 126 (Figure 3) and/or optimization output 168 (Figure 3) including a summary 128 (Figure 3) of the margins of safety 130 (Figure 3).

In a further embodiment, the system 10 (Figure 3) and method may include determining a damage tolerance limit of the structural component 250 (Figure 7) and a corresponding margin of safety (not shown). For example, the damage tolerance limit of the structural component 250 may be determined with regard to a minimum acceptable thickness of a portion of the structural component 250 at a given location. Determination of the damage tolerance limit may include entering a dimension of the structural component 250 as an entry 106 (Figure 4) for the analysis variable 104 (Figure 4). The dimension may

comprise an out-of-tolerance condition of the structural component **250** such as a condition wherein a thickness of a portion of the structural component **250** is below design tolerances as may occur during a manufacturing anomaly. The method **200** may include performing a strength analysis and an optimization of the structural component **250** using the analyser **100** (Figure 4) and the optimizer **150** (Figure 5) in order to determine the margin of safety **130** associated with the out-of-tolerance condition of the structural component **250**.

Referring to Figure 17, the above-described steps of the disclosed methodologies or any combination of the steps, in whole or in part, may be implemented in a computer-implemented process such as on a processor-based system **10** or other suitable computer system. The processor-based system **10** may perform computable readable program instructions **420**. The computable readable program instructions **420** may be provided to or loaded onto the processor-based system **10** in order to implement one or more of the above-described operations or steps. In a non-limiting example, the processor-based system **10** and/or the computable readable program instructions **420** may facilitate the strength analysis and/or the optimization of a structural component **250** (Figure 7) as described in greater detail below.

The block diagram of Figure 7 illustrates the processor-based system **10** in a possibly advantageous embodiment that may be used to perform a static analysis **108** (Figure 4) and/or a fatigue analysis **116** (Figure 4) of the structural component **250** or to perform an optimization (Figure 5) of the structural component **250**. The processor-based system **10** may include a data communication path **402** (e.g., data link to communicatively couple one or more components to facilitate transfer of data between such components. In an embodiment, the communication path **402** may comprise one or more data buses or any other suitable communication path that facilitates the transfer of data between the components and devices of the processor-based system **10**.

In a non-limiting embodiment, the components may include one or more of a processor **14**, a memory device **400**, a non-volatile storage device **404**, a communications device **408**, a user interface **50** having an input/output device **406** and a display device **410**, a

structural component analyzer **100**, and a structural component optimizer **150**. The structural component analyzer **100** (Figure 4) may perform a strength analysis of the structural component **250**. The analyzer **100** may perform a static analysis **108** (Figure 4) of the structural component **250** and/or a fatigue analysis **116** (Figure 4) as described above. The analyzer **100** may receive an analysis results data file **136** (Figure 4) from the server **12**.

The analyzer **100** (Figure 4) may receive entries **106** (Figure 4) for the analysis variables **104** (Figure 4) from the interface **50** (Figure 4) via the input/output device **406** (Figure 17). Non-limiting examples of entries **106** for the analysis variables **104** include materials **24** (Figure 4) selection, the selection of a load case **18** (Figure 4) for performing the strength analysis, entry of one or more geometry parameters **312** (Figure 4) of the structural component **250**, and selection of a joint configuration **324** (Figure 4) of the structural component **250**. The analyzer **100** may perform a static analysis **108** (Figure 4) using the static analysis template **30** (Figure 4) and a fatigue analysis **116** (Figure 4) using the fatigue analysis template **32** and the damage tolerance analysis template **34**. As indicated above, the analyzer **100** may generate an analysis output **126** (Figure 4) which may include a summary **128** (Figure 4) of the margins of safety **130** (Figure 4) of the structural component **250**, strength check notes **134** (Figure 4), and an analysis results data file **136** (Figure 4), all of which may be outputted by the input/output device **406**. The strength check notes **134** may be generated as textual information which may be printed by a printer or displayed on a display device such as on the same computer having the interface **50**.

The structural component optimizer **150** (Figure 5) may receive the analysis results data file **136** (Figure 5) from the input/output device **406** of the interface **50**. The input/output device **406** (Figure 17) may be used to submit a selected design variable **154** (Figure 5) of the structural component **250** for optimization. For example, the input/output device **406** may be used to submit to the optimizer **150** a dimension **314** (Figure 5) such as a thickness of a portion of the structural component **250**. One or more constraints **156** (Figure 5) may also be submitted to the optimizer **150** using the input/output device **406** as described above. For example, the input/output may be used to provide a value for a minimum margin

of safety **130** of the structural component **250**. During optimization of the structural component **250**, the optimizer **150** may be configured to iteratively update the design variable **154** until the constraint **156** is substantially satisfied **160** as described above.

The optimizer **150** (Figure 5) may generate an optimization output **168** which may include results of a static optimization **170** (Figure 5) and results of a fatigue optimization **172** (Figure 5) of the structural component **250** (Figure 7). The optimization output **168** (Figure 5) for each one of the static and fatigue optimizations **170, 172** (Figure 5) may include a value for the optimized geometry **174** (Figure 5) and an optimization results data file **178** (Figure 5) which may be outputted by the input/output device **406** (Figure 17) of the interface **50** (Figure 17). The optimization output **168** may be displayed on the display device **410** of the interface **50**. Upon approval **180** of the optimized geometry **174** such as by a stress analyst, a design engineer, a manufacturing engineer, or other personnel, the optimized geometry **174** and the optimization results data file **178** may be provided to the structural component analyzer **100** for analysis. The structural component analyzer **100** may determine one or more margins of safety **130** of the structural component **250** based upon the optimized geometry **174**.

The system **10** (Figure 17) may include one or more of the input/output devices **406** (Figure 17) to facilitate the transfer of data between components that may be connected to the processor-based system **10**. The input/output device **406** may be communicatively coupled to the processor-based system **10**. The input/output device **406** may facilitate user-input via the interface **50** (Figure 17) by means of a peripheral device such as a keyboard, a mouse, a joystick, a touch screen and any other suitable device for inputting data from the interface **50** into the processor-based system **10**. The input/output device **406** may further include an output device for transferring data representative of the output of the processor-based system **10**. For example the input/output device **406** may comprise the display device **410** such as a computer monitor or a computer screen for displaying the analysis results and/or the optimization results **178** generated or processed by the processor-based system **10**. The

input/output device **406** may optionally include a printer or fax machine for printing a hardcopy of information processed by the processor-based system **10**.

In an embodiment, the processor-based system **10** may include one or more of the processors **14** for executing instructions of computable readable program instructions **420** that may be installed into the memory device **400**. Alternatively, the processor **14** may comprise a multi-processor core having two or more integrated processors cores. Even further, the processor **14** may comprise a main processor and one or more secondary processors integrated on a chip. The processor **14** may also comprise a many-processor system **10** having a plurality of similarly configured processors.

Referring still to Figure 17, the processor-based system **10** may further include one or more memory devices **400** which may comprise one or more of volatile or non-volatile storage devices **404**. However, the memory device **400** may comprise any hardware device for storing data. For example, the memory device **400** may comprise a random access memory or a cache of the interface **50** and/or integrated memory controller hub which may be included in the communication path **402**. The memory device **400** may be configured to permanently and/or temporarily store any one of a variety of different types of data, computer readable code or program instructions **420**, or any other type of information. The non-volatile storage device **404** may be provided in a variety of configurations including, but not limited to, a flash memory device, a hard drive, an optical disk, a hard disk, a magnetic tape or any other suitable embodiment for long-term storage. In addition, the non-volatile storage device **404** may comprise a removable device such as a removable hard drive.

Referring still to Figure 17, the processor-based system **10** may include one or more communications devices **408** to facilitate communication of the processor-based system **10** within a computer network and/or with other processor-based systems. Communication of the processor-based system **10** with a computer network or with other processor-based systems may be by wireless means and/or by hardwire connection. For example, the communications device **408** may comprise a network interface **50** controller to enable wireless or cable communication between the processor-based system **10** and a computer

network. The communications device may also comprise a modem and/or a network adapter or any one of a variety of alternative device for transmitting and receiving data.

One or more of the operations of the methodology described above for performing a strength analysis and an optimization of the structural component **250** may be performed by the processor **14** and/or by one or more of the analyzer **100** and the optimizer **150** using the computer readable program instructions **420**. The computer readable program instructions **420** may comprise program code of the analysis templates **28** (Figure 4) which may include computer usable program code and computer readable program code. The computer readable program instructions **420** may be read and executed by the processor **14**. The computer readable program instructions **420** may enable the processor **14** to perform one or more operations of the above-described embodiments associated with performing the strength analysis and optimization of the structural component **250**.

Referring still to Figure 17, the computer readable program instructions **420** may include operating instructions for the processor-based system **10** and may further include applications and programs. The computer readable program instructions **420** may be contained and/or loaded onto one or more of memory devices **400** and/or non-volatile storage devices **404** for execution by the processor **14** and/or by analyzer **100** and optimizer **150**. As indicated above, one or more of the memory devices **400** and/or non-volatile storage devices **404** may be communicatively coupled to one or more of the remaining components illustrated in Figure 17 through the communication path **402**.

The computer readable program instructions **420** may be contained on tangible or non-tangible computer readable media **414** and which may be loaded onto or transferred to the processor-based system **10** for execution by the processor **14**. The computer readable program instructions **420** and the computer readable media **414** comprise a computer program product **412**. In an embodiment, the computer readable media **418** may comprise computer readable storage media **416** and/or computer readable signal media **418**.

The computer readable storage media **416** may comprise a variety of different embodiments including, but not limited to, optical disks and magnetic disks that may be

loaded into a drive, a flash memory device or other storage device or hardware for transfer of data onto a storage device such as a hard drive. The computer readable storage media **416** may be non-removably installed on the processor-based system **10**. The computer readable storage media **416** may comprise any suitable storage media and may include, without limitation, a semiconductor system or a propagation medium. In this regard, the computer readable storage media **416** may comprise electronic media, magnetic media, optical media, electromagnetic media, and infrared media. For example, the computer readable storage media **416** may comprise magnetic tape, a computer diskette, random access memory and read-only memory. Non-limiting examples of embodiments of optical disks may include compact disks – read only memory, compact disk – read/write, and digital video disks.

The computer readable signal media **418** may contain the computer readable program instructions **420** and may be embodied in a variety of data signal configurations including, but not limited to, an electromagnetic signal and an optical signal. Such data signals may be transmitted by any suitable communications link including by wireless or hardwire means. For example, the hardwire means may comprise an optical fiber cable, a coaxial cable, a signal wire and any other suitable means for transmitting the data by wireless or by physical means.

Referring still to Figure **17**, the computer readable signal media **418** may facilitate the downloading of the computer readable program instructions **420** to the non-volatile storage or other suitable storage or memory device for use within processor-based system **10**. For example, the computer readable program instructions **420** contained within the computer readable storage media **416** may be downloaded to the processor-based system **10** over a computer network from a server or client computer of another system **10**.

Any one of a variety of different embodiments of the processor-based system **10** may be implemented using any hardware device or system **10** capable of executing the computer readable program instructions **420**. For example, the processor **14** may comprise a hardware unit configured for performing one or more particular functions wherein the computer

readable program instructions **420** for performing the functions may be pre-loaded into the memory device **400**.

In an embodiment, the processor **14** may comprise an application specific integrated circuit (ASIC), a programmable logic device, or any other hardware device configured to perform one or more specific functions or operations. For example, a programmable logic device may be temporarily or permanently programmed to perform one or more of the operations related to the methodology of analyzing the strength of the structural component **250** (Figure 7) or optimizing the structural component **250** (Figure 7) for a given objective such as minimizing weight. The programmable logic device may comprise a programmable logic array, programmable array logic, a field programmable logic array, and a field programmable gate array and any other suitable logic device, without limitation. In an embodiment, the computer readable program instructions **420** may be operated by the one or more processor **14** and/or by other devices including one or more hardware units in communication with the processor **14**. Certain portions of the computer readable program instructions **420** may be the processor **14** and other portions of the computer readable program instructions **420** may be run by the hardware units.

Advantageously, the various embodiments of the system **10** and methods described above may include the technical feature of executing the strength analysis templates **28** (Figure 1) on a controlled-access server **12** (Figure 1) with the technical effect of the repeatability and consistency of the strength analysis process while simultaneously reducing analysis time and reducing structural weight of a structural component **250** (Figure 7). For example, the various disclosed embodiment include the technical feature of preventing alteration of the static analysis templates **30**, the fatigue analysis templates **32**, and the damage tolerance analysis templates **34** by a user accessing the templates **28** via the interface **50**. The technical effect of preventing alteration of the templates on the server **12** and maintaining control of the templates **28** may include a reduction in the amount of time required to perform a strength analysis of a structural component **250** and a reduction in the amount of time required for auditing and/or certifying the strength analyses performed by users of the templates **28**. As indicated above, the system **10** provides the further technical effect of reducing the time required to refine the design of a structural component **250** in response to changes to the load cases **18** (Figure 1), changes to the analysis templates **28** (Figure 1), and/or changes to the material allowables **26** (Figure 1).

For example, the templates may be developed and controlled by a source (e.g., by a manufacturer) and may be tailored or configured for analysis and optimization of a given structural component **250** to be detail-designed, analyzed, and fabricated by a supplier (e.g., a user). By storing the templates **28** on the controlled-access server **12**, the templates **28** may advantageously be unalterable or unchangeable by users of the system **10**. Different users may execute the templates **28** on the server **12** using one or more interfaces **50** at one or more locations including locations that are remote from the server **12**. Each user may be responsible for the design and analysis of substantially similar structural components **250** which may be located at different areas of a structural assembly **250**. However, in the system **10** and method disclosed herein, each user may advantageously use the same or substantially similar analysis template **28** for a given structural component **250** which may eliminate from the design schedule the time otherwise required for each user to develop and run their own analysis templates. In this manner, the system **10** and methods disclosed herein may reduce the amount of time required to initiate and complete the strength analysis and detail design of a structural assembly **252**. The system **10** and methods may also reduce or eliminate the time required for auditing and/or certifying the individual strength analyses as may be conventionally performed by each supplier.

In addition, the system **10** and method may avoid inconsistent analysis results such as inconsistent margins of safety **130** for substantially similar structural components **250** designed and analyzed by different users using conventional methods. In this manner, the system **10** and method may thereby avoid overly-conservative configurations of the structural component **250** and may instead provide a weight-optimized configuration for the structural component **250**. The presently-disclosed embodiments also include the technical feature of storing multiple load cases **18** and multiple material allowables **26** on the server and allowing

a user to execute one or more analysis templates **28** using a large number of different load cases **18** in a reduced amount of time as compared to the time required for manual analysis using conventional methods. The technical effect of executing one or more templates **28** with a large number of load cases **18** is an improvement in the strength analysis and the weight optimization of a structural component **250**. In addition, the system **10** and methods disclosed herein provide the ability to rapidly generate documentation of such analyses in the form of strength check notes **134** (e.g. stress reports) for review purposes and/or for certification purposes.

Below are aspects, variants, instances, and examples of illustrations disclosed in the text and the figures above. In one aspect, a method is disclosed of analyzing a structural component **250**, comprising the steps of: storing the following on a controlled-access server **12**: at least one load case **18, 20, 22**; at least one material allowable **26**; and an analysis template **28** having at least one analysis variable **104**; providing, using an interface **50** to the server **12**, at least one entry for the analysis variable **104**; performing, using a processor-based analyzer **100**, a strength analysis of the structural component **250** using the analysis template **28** based on the load case **18, 20, 22** and the entry for the analysis variable **104**; and determining, using the analyzer **100**, a margin of safety **130** of the structural component **250** based on the material allowable **26**, the analysis template **28** being unalterable using the interface **50** such that for each entry for the analysis variable **104**, the analyzer **100** determines a consistent value for the margin of safety **130**.

In one variant, the method further includes the step of: determining a failure mode **132** of the structural component **250** corresponding to the margin of safety **130**. In another variant, the method further includes the step of: determining at least one load case **18, 20, 22** and a related environment associated with the margin of safety **130**. In yet another variant, the method includes wherein the step of providing an entry for the analysis variable **104** comprises: selecting a geometry parameter **312** of the structural component **250**. In one instance, the method further includes the steps of: storing a listing of materials **24** and corresponding material allowables **26** on the server **12**; selecting, using the interface **50**, at

least one of the materials **24** as an entry for the analysis variable **104**; and performing, using an optimizer **150**, the strength analysis using the material allowable **26** of a selected material.

In one instance, the method further includes the steps of: storing a plurality of load case **18, 20, 22** on the server **12**; and selecting, using the interface **50**, one of the load cases **18, 20, 22** for the strength analysis. In another instance, the method includes wherein the analysis template **28** comprise a static analysis template **30**, a fatigue analysis template **32**, and a damage tolerance analysis template **34**, the step of performing the strength analysis using the analyzer **100** comprises at least one of the following: performing a static analysis of the structural component **250** using the static analysis template **30**; and performing a fatigue analysis of the structural component **250** using the fatigue analysis template **28** and the damage tolerance analysis template **34**. In yet another instance, the method further includes the steps of: selecting, using the interface **50**, at least one design variable **154** of the structural component **250** for optimization thereof; entering, using the interface **50**, at least one constraint of the structural component **250** into a processor-based optimizer **150**; performing, using the optimizer **150**, an optimization of the design variable **154** by iteratively updating the design variable **154** until the constraint is substantially satisfied; and determining, using the optimizer **150**, an optimized geometry of the structural component **250** based on the optimization of the design variable **154**. In still another instance, the method includes wherein: the design variable **154** comprises a geometry parameter **312** of the structural component **250**.

In one example, the method includes wherein: the geometry parameter **312** comprises a thickness of the structural component **250**. In another example, the method includes wherein: the constraint includes a minimum value for the margin of safety **130**. In another example, the method further includes the step of: determining a failure mode **132** of the optimized geometry and a margin of safety **130** corresponding to the failure mode **132**. In yet another example, the method further includes the step of: determining at least one load condition and a related environment associated with the margin of safety **130**. In yet another example, the method of includes wherein: the optimization of the structural component **250**

includes at least one of a static optimization **170** and a fatigue optimization **172** respectively based on a static analysis and a fatigue analysis of the structural component **250**. In still another example, the method includes wherein the step of determining an optimized geometry includes: determining a minimum thickness of at least one portion of the structural component **250**.

In one aspect, a method is disclosed of analyzing a structural component **250**, including the steps of: storing the following on a controlled-access server **12**: at least one load case **18, 20, 22**; at least one material allowable **26**; and an analysis template **28** having at least one analysis variable **104**; providing, using an interface **50** to the server **12**, at least one entry for the analysis variable **104**; performing, using a processor-based analyzer **100**, a strength analysis of the structural component **250** using the analysis template **28** based on the load case **18, 20, 22** and the entry for the analysis variable **104**; determining, using the analyzer **100**, a margin of safety **130** of the structural component **250** based on the material allowable **26**; providing, using the interface **50**, a design variable **154** and a constraint of the structural component **250**; performing, using a processor-based optimizer **150**, an optimization of the design variable **154** by iteratively updating the design variable **154** until the constraint is substantially satisfied; and determining, using the optimizer **150**, an optimized geometry of the structural component **250** based on the optimization of the design variable **154**, the analysis template **28** being unalterable using the interface **50** such that for each entry for the analysis variable **104**, the analyzer **100** determines a consistent value for the margin of safety **130**.

In another aspect, a processor-based system is disclosed for analyzing a structural component **250**, including: a controlled-access server **12** configured to store the following: at least one load case **18, 20, 22**; at least one material allowable **26**; and an analysis template **28** having at least one analysis variable **104**; an interface **50** to the server **12**, the interface **50** being configured to facilitate a user providing an entry for the analysis variable **104**; and a structural component analyzer **100** configured to perform a strength analysis of the structural component **250** using the analysis template **28** based on the load case **18, 20, 22** and the entry

for the analysis variable **104**; the structural component analyzer **100** being configured to determine a margin of safety **130** of the structural component **250** based on the material allowable **26**; the analysis template **28** being unalterable using the interface **50** such that for each entry for the analysis variable **104**, the analyzer **100** determines a consistent value for 5 the margin of safety **130**.

In one variant, the system includes wherein: the entry comprises a geometry parameter **312** of the structural component **250**. In another variant, the system includes wherein: the server **12** is configured to store a plurality of the load cases **18, 20, 22**; and the interface **50** being configured to facilitate a selection of one of the load cases **18, 20, 22** for 10 the strength analysis. In yet another variant, the system includes wherein the server **12** is configured to store a listing of materials **24** and corresponding material allowables **26**; and the interface **50** being configured to facilitate a selection of at least one of the materials **24** as an entry for the analysis variable **104**. In still another variant, the system further includes: a structural component optimizer **150**; the interface **50** being configured to facilitate entry of at 15 least one design variable **154** and at least one constraint into the optimizer **150**; the structural component optimizer **150** being configured to iteratively update the design variable **154** until the constraint is substantially satisfied; and the structural component optimizer **150** being configured to determine an optimized geometry of the structural component **250** based on the optimization of the design variable **154**. In one example, the system includes wherein: at 20 least one design variable **154** comprises a thickness of the structural component **250**; and at least one constraint comprises a minimum value for the margin of safety **130**.

Additional modifications and improvements of the present disclosure may be apparent to those of ordinary skill in the art. Thus, the particular combination of parts described and illustrated herein is intended to represent only certain embodiments and is not 25 intended to serve as limitations of alternative embodiments as construed in accordance with the accompanying claims.

EMBODIMENTS IN WHICH AN EXCLUSIVE PROPERTY OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:

1. A method of analyzing a structural component, comprising the steps of:

storing the following on a controlled-access server:

5 at least one load case;

at least one material allowable; and

an analysis template having at least one analysis variable, the analysis template comprising at least one of a static analysis template, a fatigue analysis template, and a damage tolerance analysis template;

10 executing the analysis template stored on the controlled-access server using an interface remote from the controlled-access server;

providing, using the interface remote from the controlled-access server, at least one entry for the at least one analysis variable;

performing, using a processor-based analyzer, a strength analysis of the structural component using the analysis template based on the at least one load case and the at least one entry for the at least one analysis variable;

determining, using the processor-based analyzer, a margin of safety of the structural component based on the at least one material allowable;

selecting, using the interface, at least one design variable of the structural component for optimization thereof;

entering, using the interface, at least one constraint of the structural component

entering, using the interface, at least one constraint of the structural component into a processor-based optimizer;

performing, using the processor-based optimizer, an optimization of the at least one design variable by iteratively updating the at least one design variable until the at least one constraint is substantially satisfied; and

5 determining, using the processor-based optimizer, an optimized geometry of the structural component based on the optimization of the at least one design variable;

wherein the analysis template is stored on the controlled-access server for preventing alteration of the analysis template by a user accessing the analysis template via the interface.

2. The method of claim 1 further comprising the step of determining a failure mode of the
10 structural component corresponding to the margin of safety of the structural component.

3. The method of claim 2 further comprising the step of determining at least one load condition and a related environment associated with the margin of safety of the structural component.

4. The method of claim 1 wherein the step of providing an entry for the at least one analysis
15 variable comprises selecting a geometry parameter of the structural component.

5. The method of claim 1 further comprising the steps of:

storing a list of materials and corresponding material allowables on the controlled-access server;

selecting, using the interface, at least one of the materials as an entry for the at
20 least one analysis variable; and

performing, using the processor-based optimizer, the strength analysis using the material allowable of the selected at least one material.

6. The method of claim 1 further comprising the steps of:

storing a plurality of load cases on the controlled-access server; and

selecting, using the interface, one of the plurality of load cases for the strength analysis.

7. The method of claim 1, wherein the step of performing the strength analysis using the processor-based analyzer comprises at least one of the following:

5 when the analysis template comprises the static analysis template, performing a static analysis of the structural component using the static analysis template; and

when the analysis template comprises the fatigue analysis template and the damage tolerance analysis template, performing a fatigue analysis of the structural component using the fatigue analysis template and the damage tolerance analysis template.

- 10 8. The method of claim 1 wherein the at least one design variable comprises a geometry parameter of the structural component.

9. The method of claim 8 wherein the geometry parameter comprises a thickness of the structural component.

- 15 10. The method of claim 1 wherein the at least one constraint comprises a minimum value for the margin of safety of the structural component.

11. The method of claim 1 further comprising the step of determining a failure mode of the optimized geometry and a margin of safety corresponding to the failure mode.

- 20 12. The method of claim 11 further comprising the step of determining at least one load condition and a related environment associated with the margin of safety corresponding to the failure mode.

13. The method of claim 1 wherein the optimization of the structural component comprises at least one of a static optimization and a fatigue optimization respectively based on a static analysis and a fatigue analysis of the structural component.

14. The method of claim 1 wherein the step of determining an optimized geometry comprises determining a minimum thickness of at least one portion of the structural component.
15. The method of claim 1 wherein the at least one load case includes a set of flight loads, a set of ground maneuvering loads, a set of landing loads, and a set of cabin pressurization loads.
5
16. A method of analyzing a structural component, comprising the steps of:
 - storing the following on a controlled-access server:
 - at least one load case;
 - at least one material allowable; and
 - 10 an analysis template having at least one analysis variable, the analysis template comprising at least one of a static analysis template, and fatigue analysis template, and a damage tolerance analysis template;
 - executing the analysis template stored on the controlled-access server using an interface remote from the controlled-access server;
 - 15 providing, using the interface remote from the controlled-access server, at least one entry for the at least one analysis variable;
 - performing, using a processor-based analyzer, a strength analysis of the structural component using the analysis template based on the at least one load case and the at least one entry for the at least one analysis variable;
 - 20 determining, using the processor-based analyzer, a margin of safety of the structural component based on the at least one material allowable;
 - providing, using the interface, at least one design variable and at least one constraint of the structural component;

performing, using a processor-based optimizer, an optimization of the at least one design variable by iteratively updating the at least one design variable until the at least one constraint is substantially satisfied; and

5 determining, using the processor-based optimizer, an optimized geometry of the structural component based on the optimization of the at least one design variable;

wherein the analysis template is stored on the controlled-access server for preventing alteration of the analysis template by a user accessing the analysis template via the interface.

17. A processor-based system for analyzing a structural component, comprising:

10 a processor-based optimizer;

a controlled-access server configured to store the following:

at least one load case;

at least one material allowable; and

15 an analysis template having at least one analysis variable, the analysis template comprising at least one of a static analysis template, a fatigue analysis template, and a damage tolerance analysis template;

an interface remote from the controlled-access server, the interface being configured to execute the analysis template stored on the controlled-access server and facilitate a user to:

20 provide an entry for the at least one analysis variable;

select, using the interface, at least one design variable of the structural component for optimization thereof; and

enter, using the interface, at least one constraint of the structural component into the processor-based optimizer; and

a structural component analyzer configured to perform a strength analysis of the structural component using the analysis template based on the at least one load case and the at least one entry for the at least one analysis variable, wherein the structural component analyzer is configured to determine a margin of safety of the structural component based on the at least one material allowable;

5 wherein the processor-based optimizer is configured to perform an optimization of the at least one design variable by iteratively updating the at least one design variable until the at least one constraint is substantially satisfied, and to determine an optimized geometry of the structural component based on the optimization of the at least one design variable; and

10 wherein the analysis template is stored on the controlled-access server for preventing alteration of the analysis template by the user accessing the analysis template via the interface.

18. The system of claim 17 wherein the entry comprises a geometry parameter of the
15 structural component.

19. The system of claim 17 wherein:

the controlled-access server is configured to store a plurality of load cases; and

the interface is configured to facilitate a selection of one of the load cases for the strength analysis.

20 20. The system of claim 17 wherein:

the controlled-access server is configured to store a listing of materials and corresponding material allowables; and

the interface is configured to facilitate a selection of at least one of the materials as an entry for the at least one analysis variable.

25 21. The system of claim 17 further comprising a structural component optimizer, wherein:

the interface is configured to facilitate entry of the at least one design variable and the at least one constraint into the structural component optimizer;

the structural component optimizer is configured to iteratively update the at least one design variable until the at least one constraint is substantially satisfied; and

5 the structural component optimizer is configured to determine an optimized geometry of the structural component based on the optimization of the at least one design variable.

22. The system of claim 17 wherein:

the at least one design variable comprises a thickness of the structural component;
10 and

the at least one constraint comprises a minimum value for the margin of safety.

23. The system of claim 17 wherein the at least one load case includes a set of flight loads, a set of ground maneuvering loads, a set of landing loads, and a set of cabin pressurization loads.

15

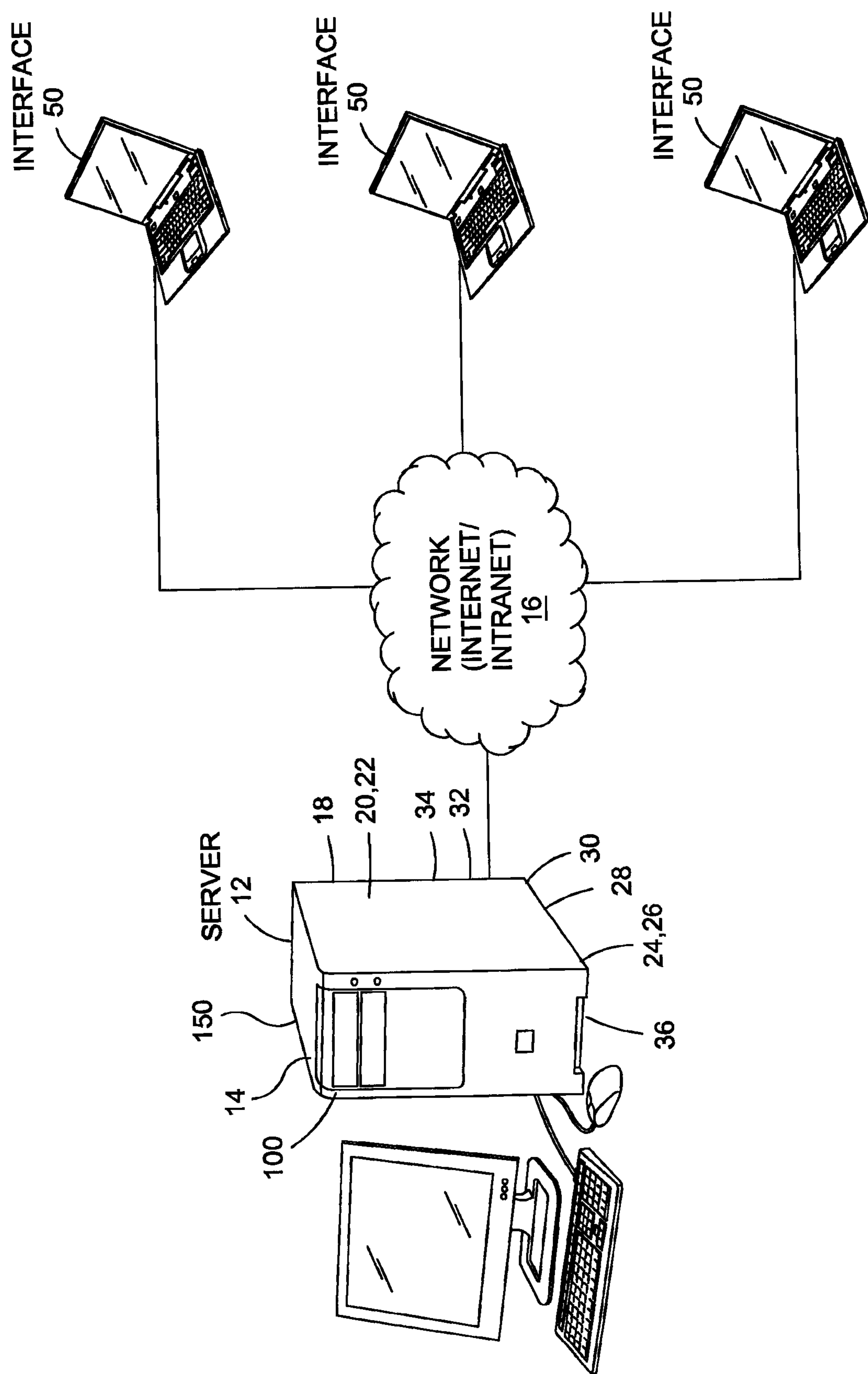


FIG. 1

2/16

200

STORING THE FOLLOWING ON A SERVER:

- AT LEAST ONE LOAD CASE
- AT LEAST ONE MATERIAL ALLOWABLE
- AT LEAST ONE ANALYSIS TEMPLATE HAVING AT LEAST ONE ANALYSIS VARIABLE

~ 202

PROVIDING, USING AN INTERFACE TO THE SERVER, AT LEAST ONE ENTRY FOR THE ANALYSIS VARIABLE

~ 204

PERFORMING, USING AN ANALYZER, A STRENGTH ANALYSIS OF THE STRUCTURAL COMPONENT USING THE ANALYSIS TEMPLATE BASED ON THE LOAD CASE AND THE ENTRY FOR THE ANALYSIS VARIABLE

~ 206

DETERMINING, USING THE ANALYZER, A MARGIN OF SAFETY OF THE STRUCTURAL COMPONENT BASED ON THE MATERIAL ALLOWABLE

~ 208

SELECTING, USING THE INTERFACE, AT LEAST ONE DESIGN VARIABLE OF THE STRUCTURAL COMPONENT FOR OPTIMIZATION THEREOF

~ 210

ENTERING, USING THE INTERFACE, AT LEAST ONE CONSTRAINT FOR OPTIMIZATION OF THE STRUCTURAL COMPONENT

~ 212

PERFORMING, USING THE OPTIMIZER, AN OPTIMIZATION OF THE STRUCTURAL COMPONENT BY ITERATIVELY UPDATING THE DESIGN VARIABLE UNTIL THE CONSTRAINT IS SUBSTANTIALLY SATISFIED

~ 214

DETERMINING, USING THE OPTIMIZER, AN OPTIMIZED GEOMETRY OF THE STRUCTURAL COMPONENT BASED ON THE OPTIMIZATION OF THE DESIGN VARIABLE

~ 216

FIG. 2

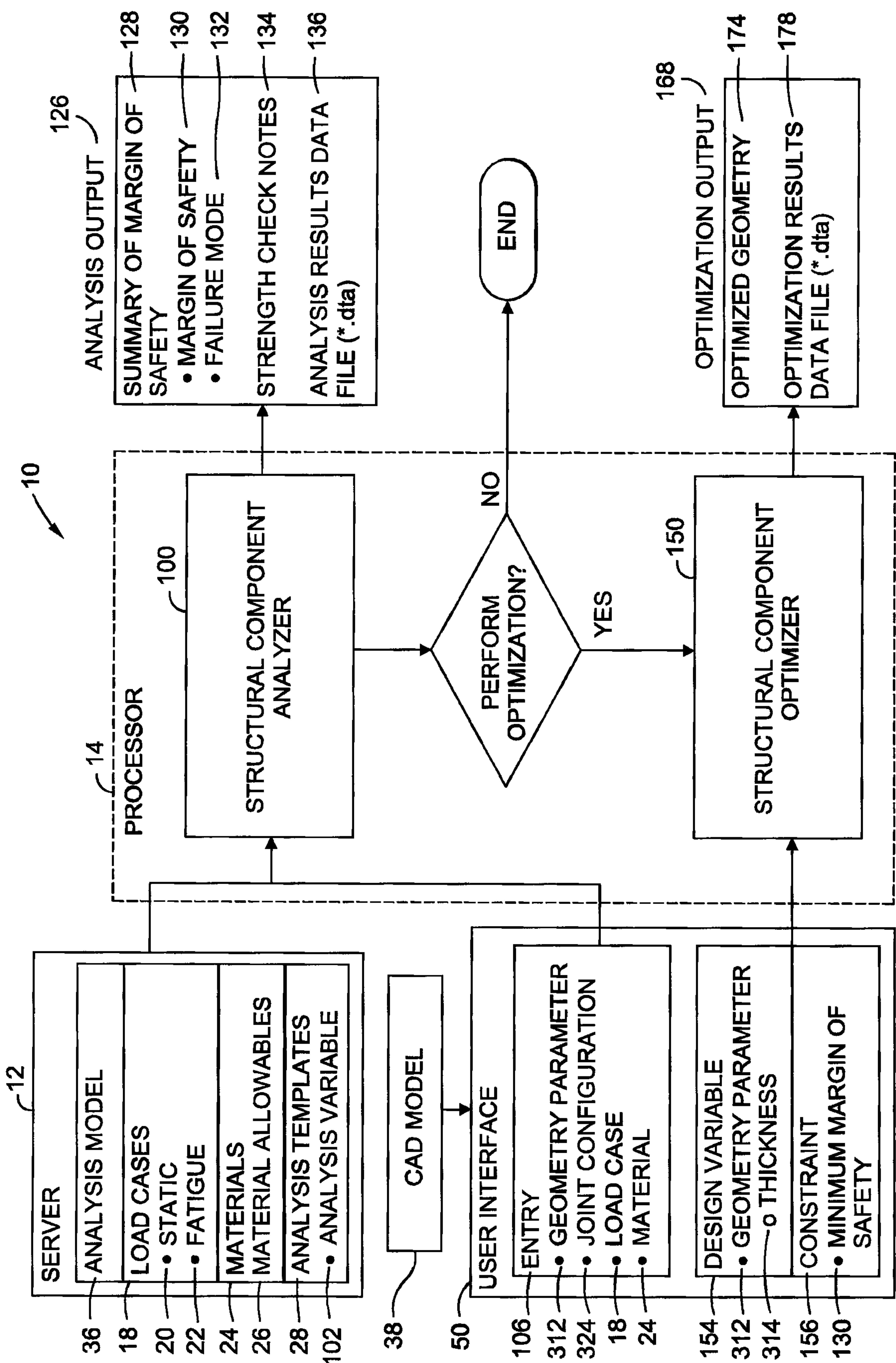
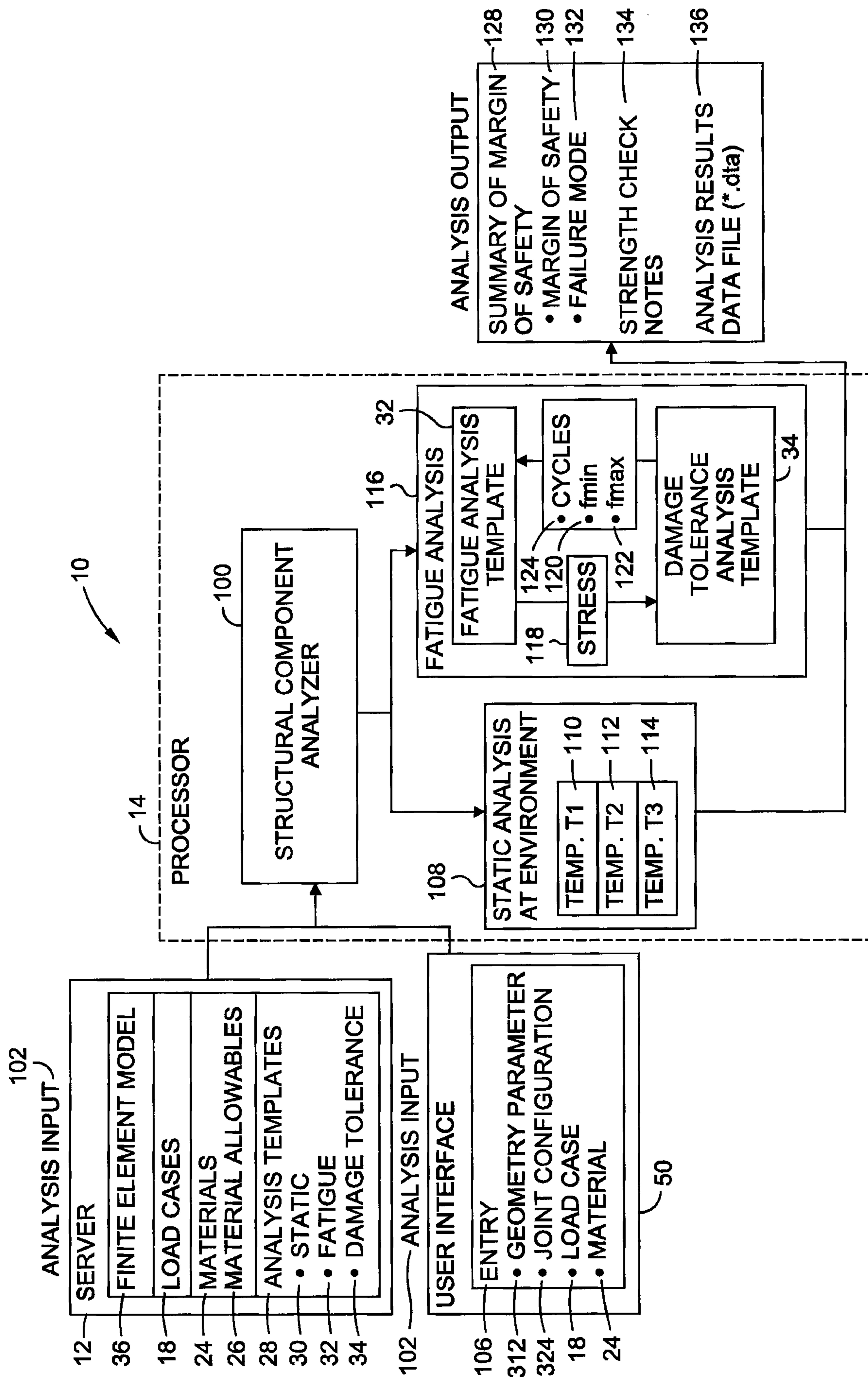



FIG. 3

FIG. 4

5/16

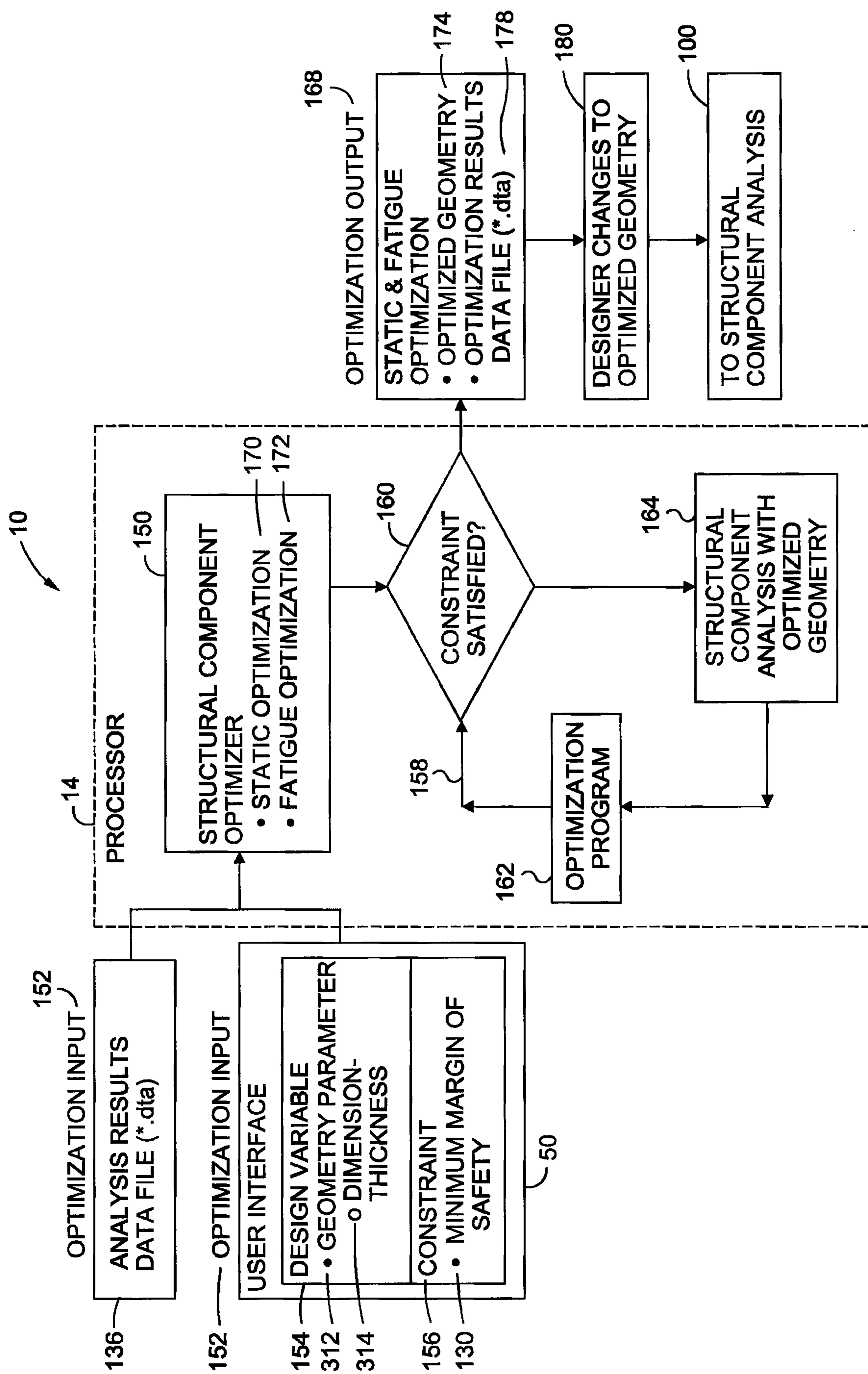
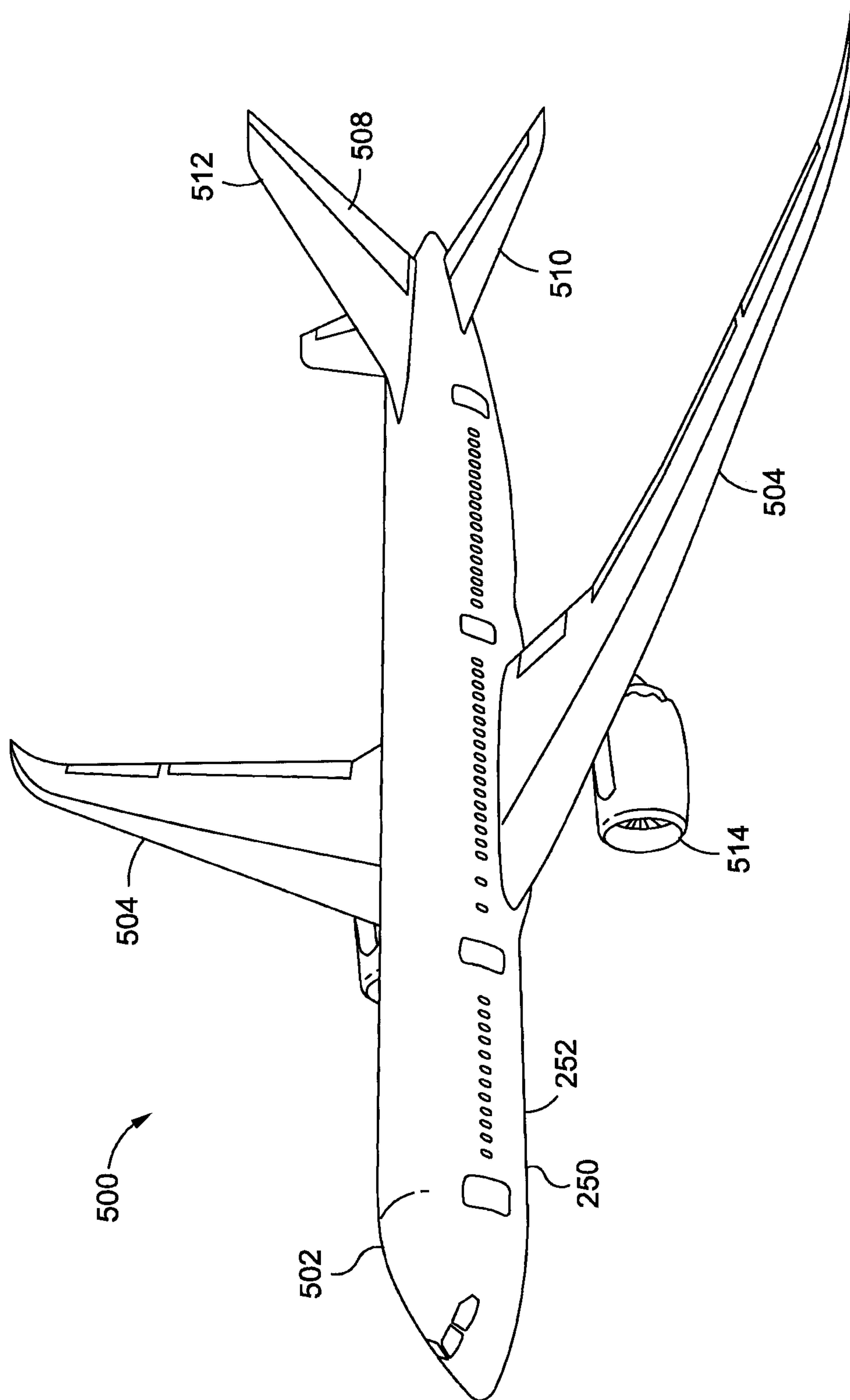


FIG. 5

6/16



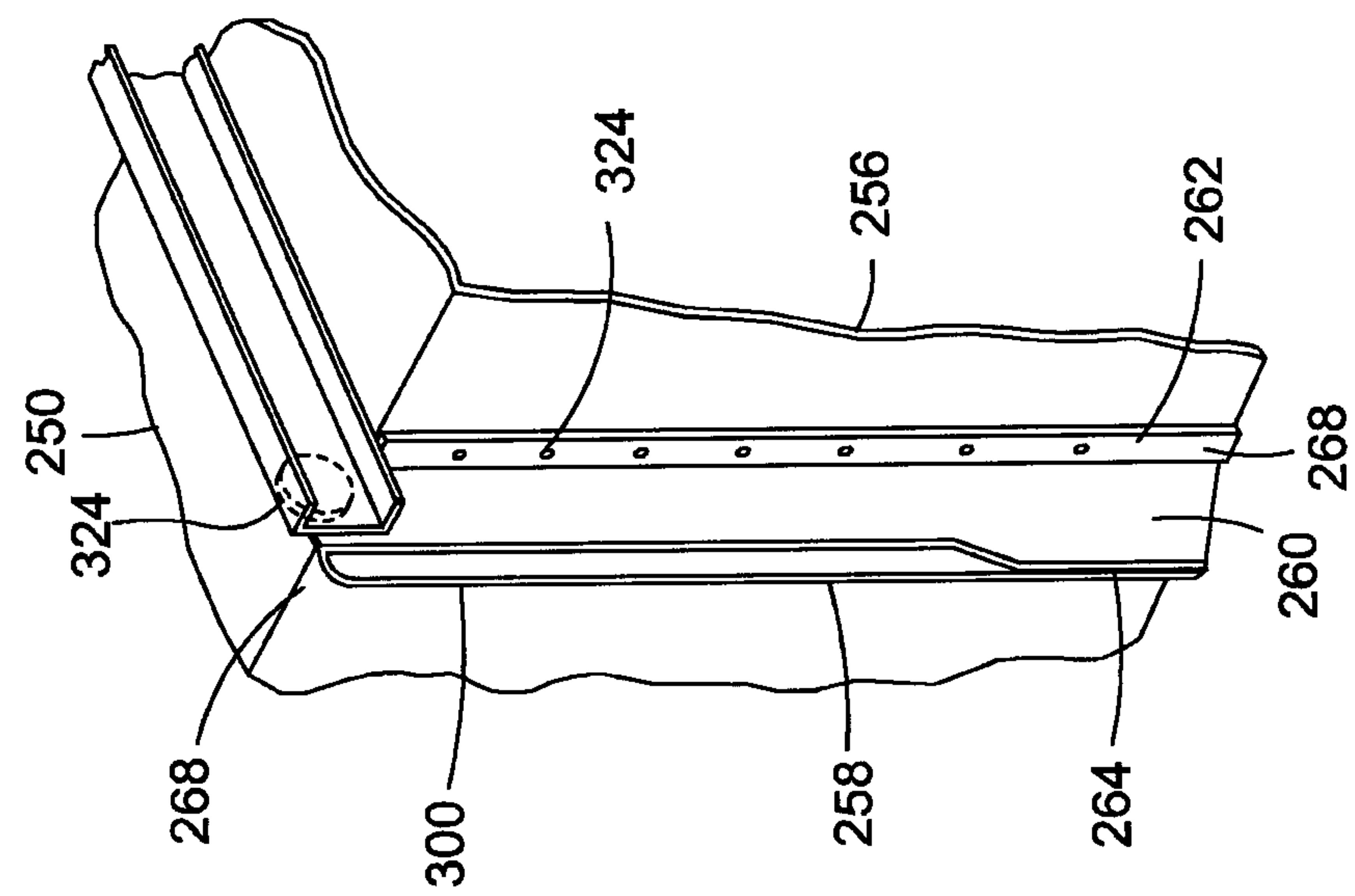
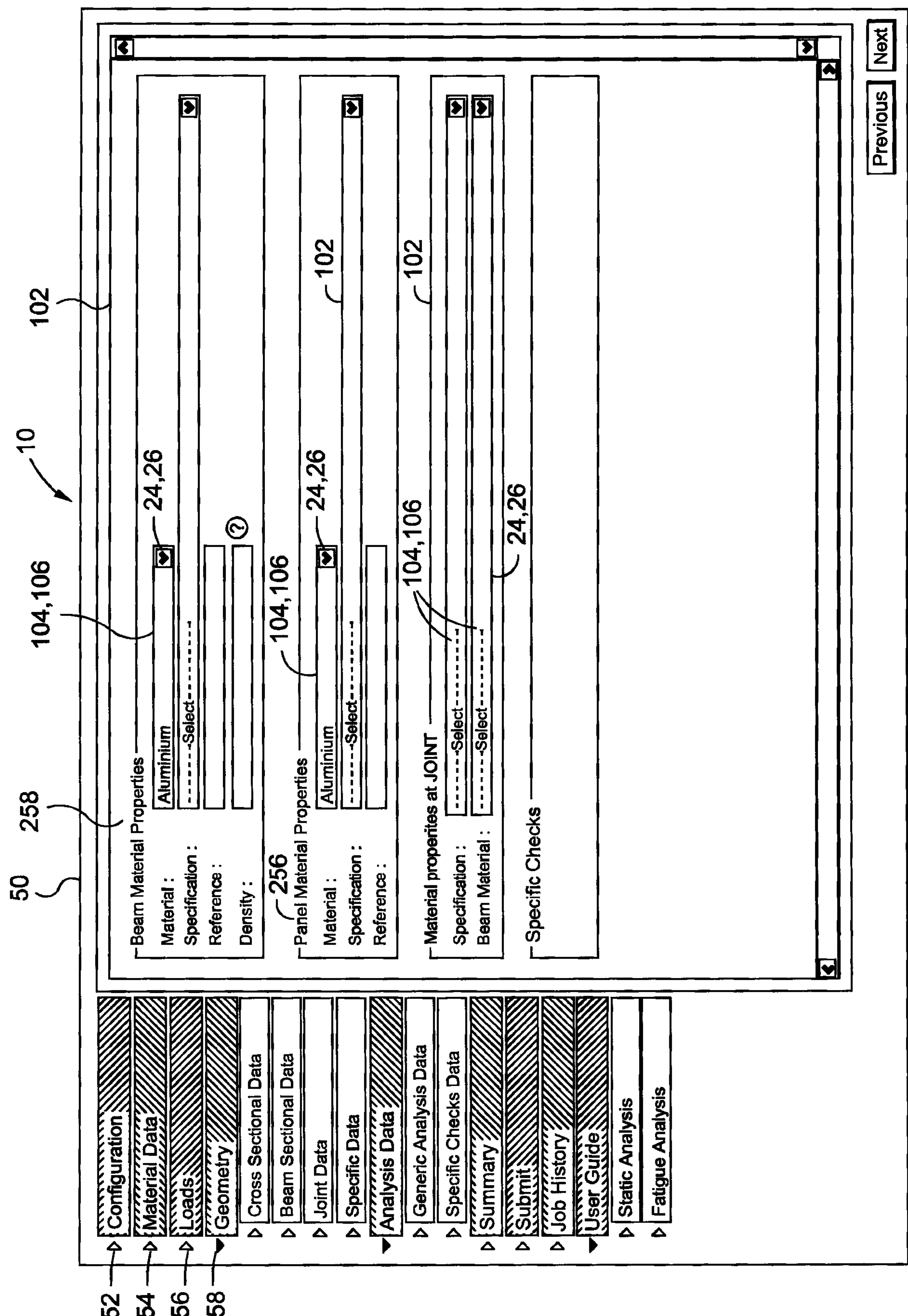


FIG. 6



7 FIG.

8/16

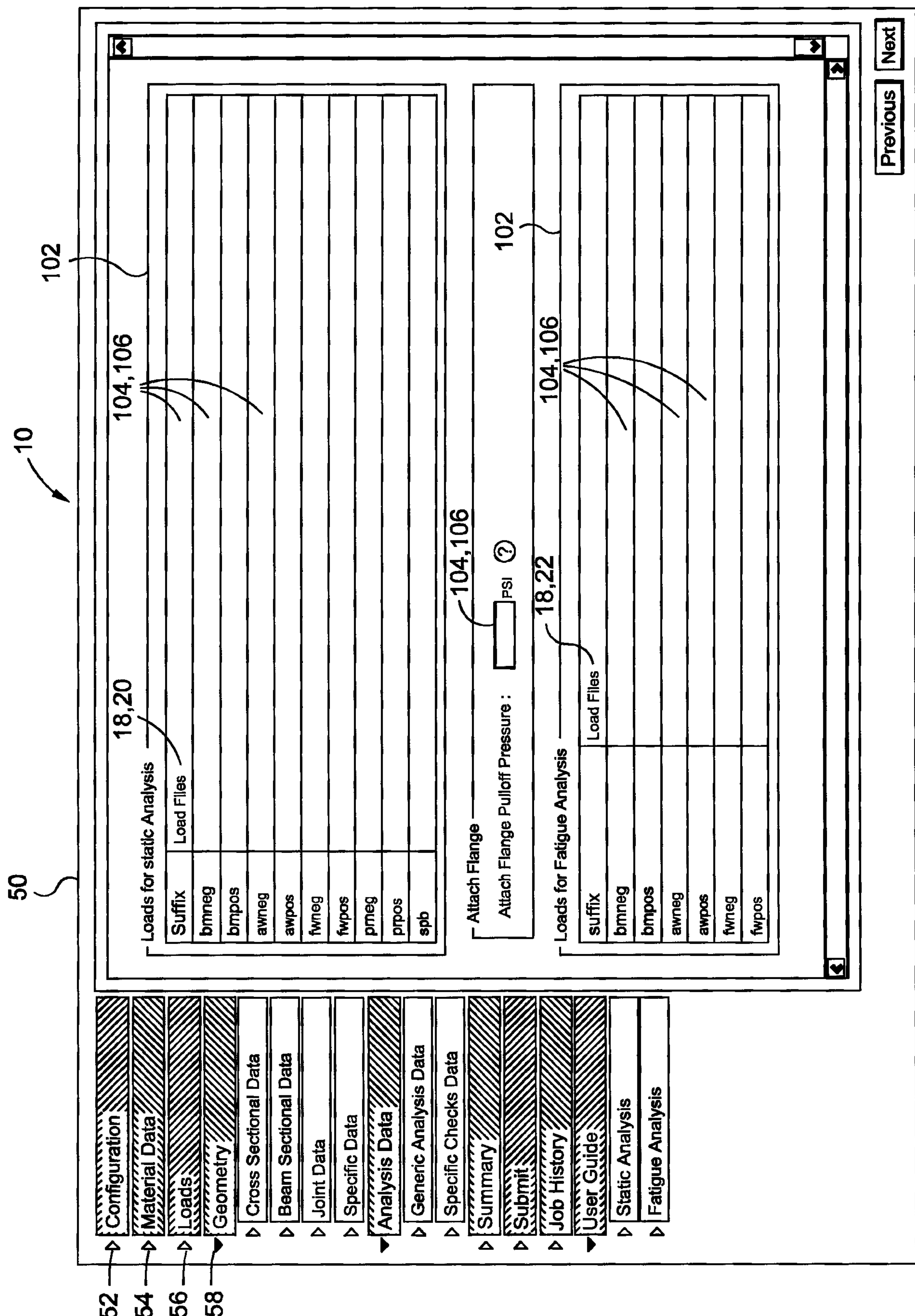
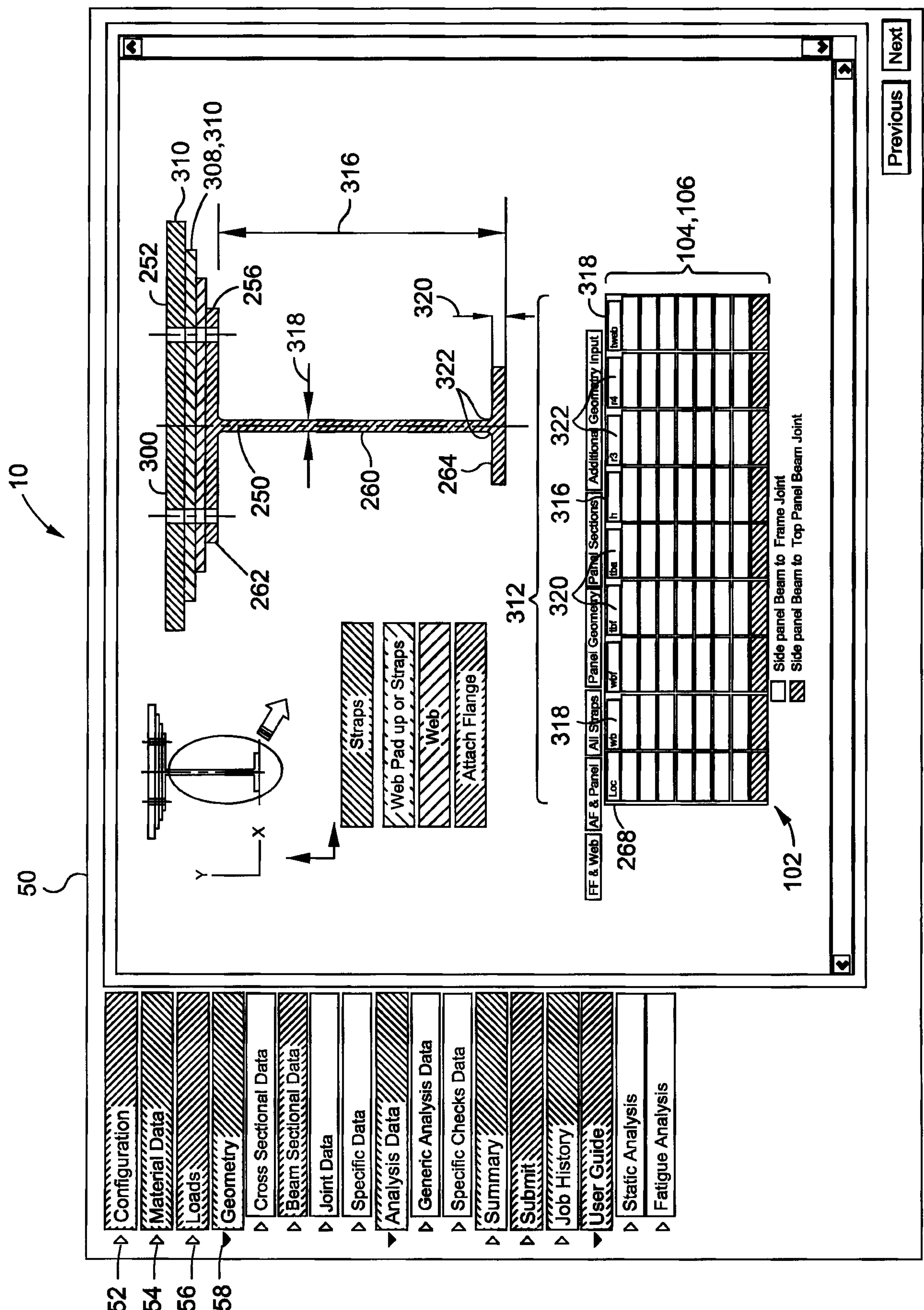


FIG. 8


୭୮

10/16

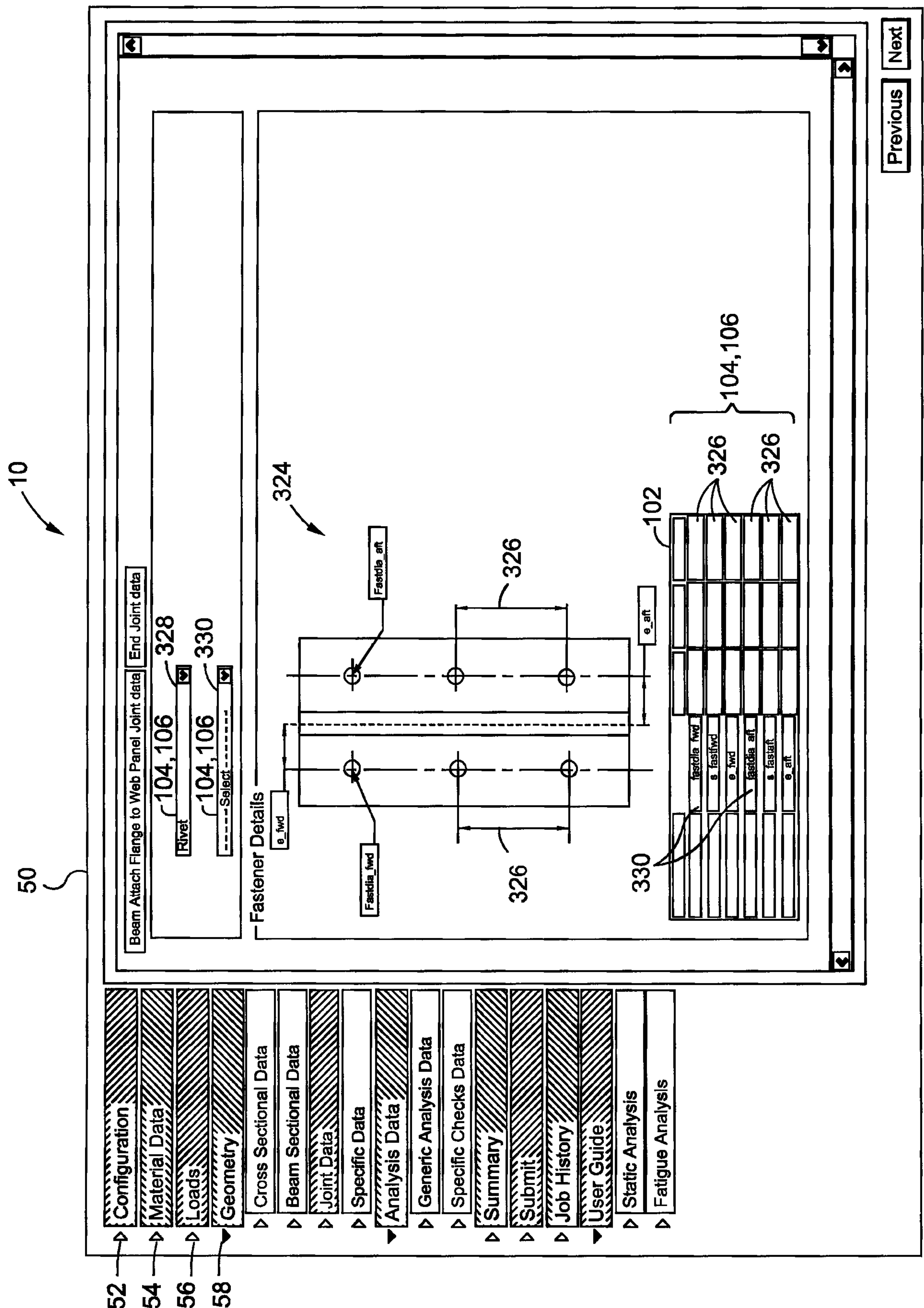


FIG. 10

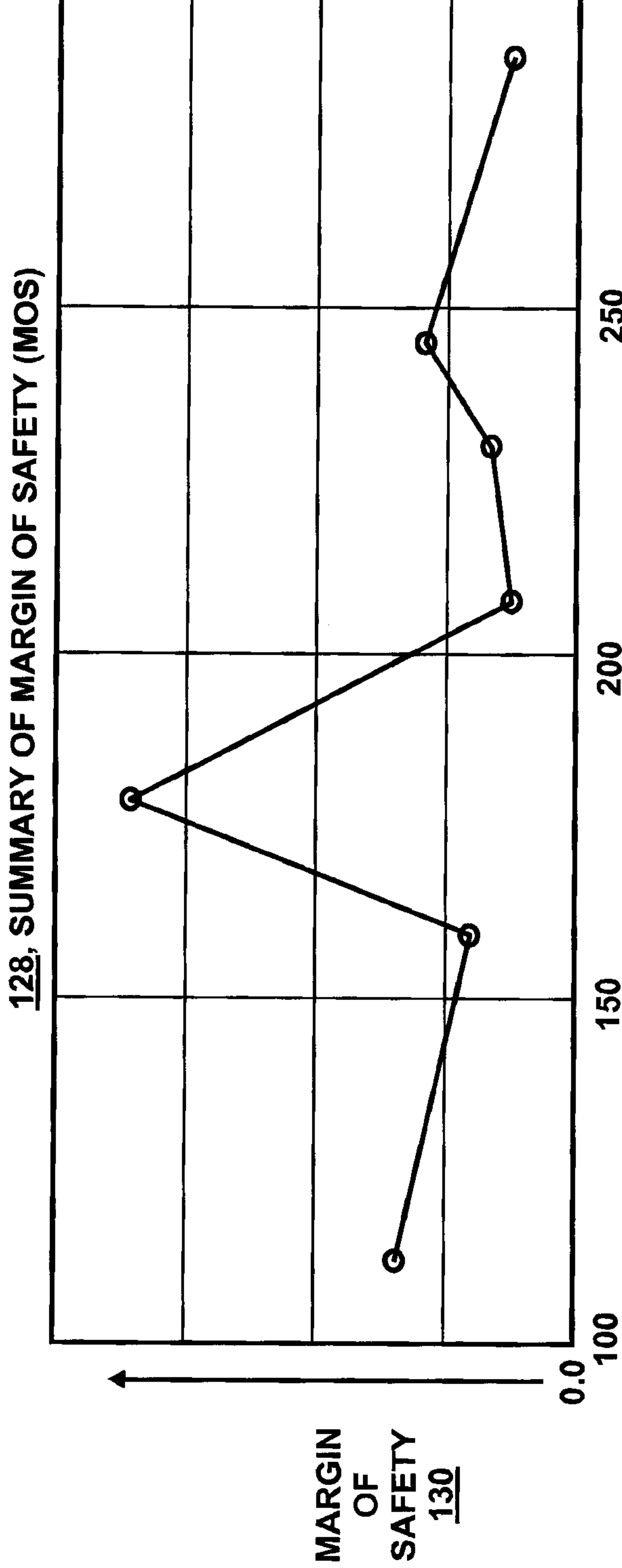
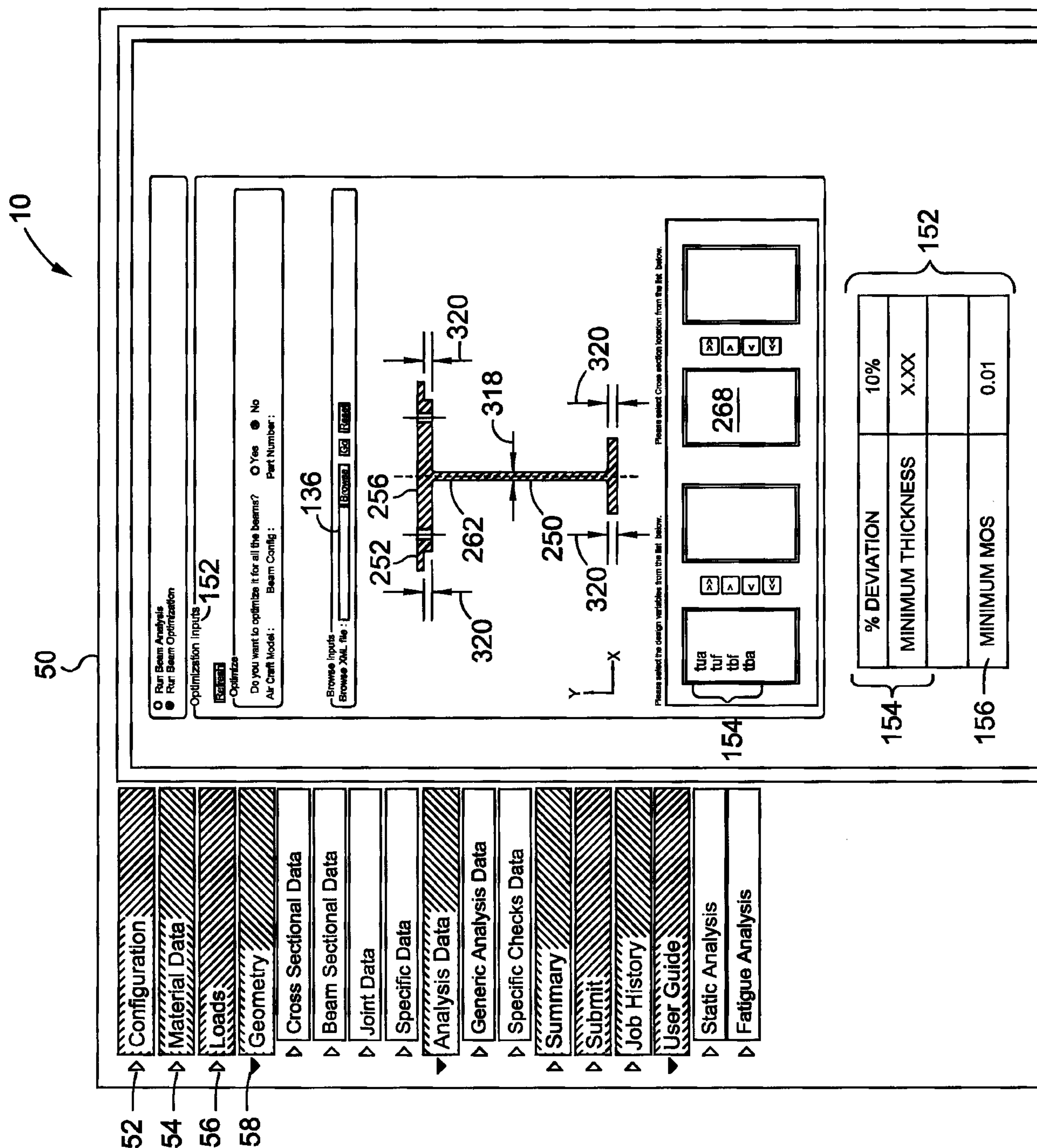

卷之三

FIG. 12

3
T
FIG. E


FIG. 14

268 130 258 132 18

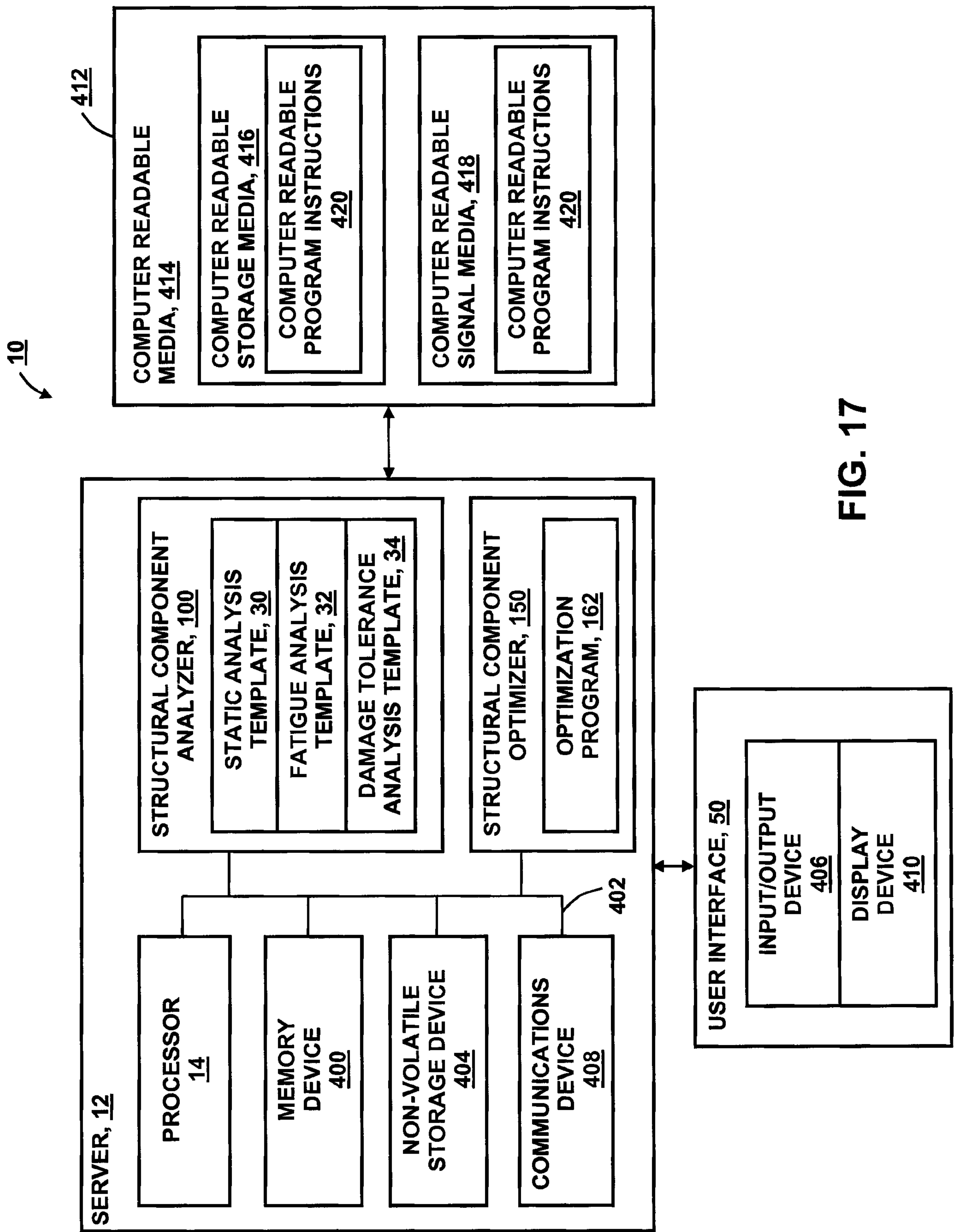

LOCATION	CRITICAL MS	COMPONENT	FAILURE MODE	LOAD CASE	ENVIRONMENT
120.9	X.XX	BEAM	BUCKLING	L0004	70°F
160.3	X.XX	BEAM	BUCKLING	L0004	70°F
208.4	X.XX	BEAM	BUCKLING	L0004	70°F
236.6	X.XX	BEAM	BUCKLING	L0004	70°F
287.2	X.XX	BEAM	BUCKLING	L0004	70°F
287.3	X.XX	FASTENER	SHEAR/TENSION	L0004	70°F

FIG. 15

15/16

FIG. 16

16/16

50

10

102

52 → Configuration

54 → Material Data

56 → Loads

58 → Geometry

▷ Cross Sectional Data

▷ Beam Sectional Data

▷ Joint Data

▷ Specific Data

▼ Analysis Data

▷ Generic Analysis Data

▷ Specific Checks Data

▷ Summary

▷ Submit

▷ Job History

▼ User Guide

▷ Static Analysis

▷ Fatigue Analysis

18,20

104,106

Loads for static Analysis

Suffix	Load Files
bmneg	
bmpos	
awneg	
awpos	
fwneg	
fwpos	
pmeg	
ppos	
spb	

104,106

Attach Flange

Attach Flange Pulloff Pressure : PSI

102

18,22

104,106

Loads for Fatigue Analysis

suffix	Load Files
bmneg	
bmpos	
awneg	
awpos	
fwneg	
fwpos	

Previous

Next