用于衬底的各向异性蚀刻的非晶蚀刻停止

摘要

描述了用于衬底中为电中性的元素注入衬底来形成非晶蚀刻停止层的方法。使用在衬底中电中性的元素防止在元素扩散到衬底中的其他区域时由该元素引起的电干扰。在晶体管或其它器件如悬臂的制造中，非晶蚀刻停止层可以用作硬掩模。
1. 一种方法，包括：
将凹槽蚀刻到衬底中，该凹槽具有底部；
将从包括周期表的第 I 列的碱金属和周期表的第 II 列的碱土金属的
组中选取的至少一种离子化学物质注入到凹槽的底部中，以形成非晶蚀刻
停止区，该离子化学物质在衬底中为电中性；和
用各向异性湿法蚀刻来蚀刻衬底。

2. 根据权利要求 1 的方法，其中离子化学物质在衬底中具有低溶解度。

3. 根据权利要求 2 的方法，其中离子化学物质具有大于 130pm 的离
子半径或小于 80pm 的离子半径。

4. 根据权利要求 1 的方法，其中衬底是具有垂直 [100] 晶面、水平
[110] 晶面和对角线 [111] 晶面的单晶，且其中用碱性各向异性湿法
蚀刻来蚀刻单晶，使得相对于 [100] 晶面形成沿着 [111] 晶面的面。

5. 根据权利要求 4 的方法，其中碱性各向异性湿法蚀刻溶液具有 10
或更高的 pH。

6. 根据权利要求 4 的方法，其中碱性各向异性湿法蚀刻不包括氧化
剂。

7. 根据权利要求 1 的方法，其中将元素注入到衬底中以形成非晶蚀
刻停止区的步骤包括在 5×10^{15} 原子/cm2 和 1×10^{17} 原子/cm2 范围内的元素剂
量。

8. 根据权利要求 1 的方法，其中将离子化学物质注入到衬底中以形成
非晶蚀刻停止区的步骤包括在 1KeV 和 20KeV 范围内的注入能量。

9. 根据权利要求 1 的方法，其中将凹槽蚀刻到衬底中的步骤包括各
向异性干法等离子体蚀刻。

10. 一种方法，包括：
将从包括周期表的第 I 列的碱金属和周期表的第 II 列的碱土金属的
组中选取的至少一种离子化学物质注入到衬底中，以形成非晶蚀刻停止区，
该离子化学物质在衬底中为电中性；和
在将所述至少一种离子化学物质注入到所述衬底中之后，将凹槽蚀刻
到衬底中；和
用各向异性湿法蚀刻来蚀刻衬底。

11. 根据权利要求 10 的方法，其中用离子化学物质注入凹槽的步骤包
括在 e^{15} 原子/cm3 和 $1 \times e^{16}$ 原子/cm3 范围内的离子化物质剂量。

12. 根据权利要求 10 的方法，其中用离子化物质注入凹槽的步骤括在 10keV 和 40keV 范围内的注入能量。

13. 一种方法，包括:

在具有垂直 [100] 晶面、水平 [110] 晶面和对角线 [111] 晶面的
单晶硅衬底上形成栅和在栅的两侧上形成一对侧壁间隔物；
在单晶硅衬底中沿着垂直 [100] 晶面用各向异性干法等离子体蚀刻
来蚀刻凹槽；

将硅注入到凹槽的底部中以形成非晶蚀刻停止；
沿着对角线 [111] 晶面用具有至少 10 的 pH 且没有氧化剂的各向异
性湿法蚀刻来蚀刻凹槽；和

用电子掺杂的硅锗材料填充凹槽以形成源/漏区。

14. 根据权利要求 13 的方法，还包括在侧壁间隔物下方的源/漏尖端
注入区。

15. 根据权利要求 13 的方法，还包括含有氧化物的浅沟槽隔离区且
其中各向异性湿法蚀刻不蚀刻浅沟槽隔离区或保护栅的硬掩模。

16. 根据权利要求 13 的方法，其中用电子掺杂的硅锗材料填充凹槽
在栅下方形成外延源/漏尖端延伸区。

17. 一种晶体管，包括:

结晶半导体衬底，具有多个垂直 [100] 晶面、多个水平 [110] 晶
面和多个对角线 [111] 晶面以及电介质的离子化物质形成的蚀刻停止区；
栅极，形成于结晶半导体衬底上方；
一对侧壁间隔物，在栅极的每一侧壁上都有一个；和
一对源/漏区，在每个侧壁间隔物的下方都有一个源/漏区，且其中
源/漏区由间隔物的底部和对角线 [111] 晶面限定。

18. 根据权利要求 17 的结构，其中所述一对源/漏区在所述的一对侧
壁间隔物下方延伸达到所述一对侧壁间隔物中的一个的宽度的距离。

19. 根据权利要求 17 的结构，其中所述一对源/漏区在栅电极下方延
伸达到在栅电极宽度的 10% 和 20% 范围内的距离。
用于衬底的各向异性蚀刻的非晶蚀刻停止

技术领域

本发明涉及蚀刻用在集成电路中的衬底的领域，且尤其涉及各向异性湿法蚀刻以及使用非晶蚀刻停止区的领域。

背景技术

在蚀刻其上已经形成了结构的衬底中发现的问题是微负载。微负载是在单个衬底上不同区域中不同密度结构对这些不同区域中的蚀刻几何形状的影响。在具有不同结构密度的区域中的不同蚀刻几何形状的实例在图 1 中示出。区域 1 是具有形成于衬底 120 上的相对高密度的结构 110 的区域。用于图 1 中的实例的结构 110 是具有侧壁间隔物 140 的晶体管栅 130。在该实例中，蚀刻衬底以形成随后用掺杂的材料回填的凹槽，从而形成源/漏区。区域 2 是具有形成于衬底 120 上的相对低密度的结构 110 的区域。可以是晶体管栅 130 的源/漏区的蚀刻区域 150 在区域 1 和 2 中具有不同的蚀刻几何形状。在相对稠密区域 1 中的蚀刻区域 150 对侧壁间隔物和晶体管栅的底切比区域 2 中的蚀刻区域 150 的底切面积更小，并且也倾向于具有比区域 2 中的蚀刻区域 150 小的深度。例如，如图 1 中所示，在区域 1 中的底切区域 160 只底切侧壁间隔物 140，但是区域 2 中的底切区 170 底切了侧壁间隔物 140 和晶体管栅 130。由于微负载导致在衬底上形成与在相同衬底上的其它器件相比具有不相容结构的器件，因此微负载是影响集成电路性能的明显问题。

在过去已通过在衬底上形成虚拟结构来处理微负载，以使在衬底上的结构密度在衬底上处处相等。由于虚拟结构在衬底上占用可更好地利用的空间并且由于在结构之间的大空间是为特定器件要求所需要的，因此虚拟结构不理想。

在过去已通过在衬底内部形成蚀刻停止以控制蚀刻深度来处理微负载。现有技术已经通过用外来元素如硼（B）、磷（P）和砷（As）掺杂衬底来在衬底中形成蚀刻停止。该蚀刻停止有助于控制各向异性湿法蚀刻的深度。通过使用具有各向异性湿法蚀刻的蚀刻停止，可以控制被蚀刻区域的深度以及被蚀刻区域的宽度（底切）。使用元素如硼、磷和砷的缺点在于它们会从蚀刻停止区扩散到它们可以引起对形成于衬底中或衬底
上的器件的电干扰的区域中。

双间隔物工艺已经用于抵抗由微负载引起的横向底切效果。在该方法中，由首先在栅电极的任一侧上形成窄的侧壁间隔物来控制横向底切。然后用各向异性干法蚀刻来蚀刻孔并然后用感兴趣的材料填充该孔。然后形成另一个侧壁间隔物，并用外来元素注入间隔物之间的衬底。但是，该方法要求很多步骤，而且不能完全地防止由于微负载导致的不相容底切的问题，而且当底切用于结构如源/漏尖端扩展区域时不能使用该方法。

发明内容

根据本发明的第一方面，提供了一种方法，包括：
将凹槽蚀刻到衬底中，该凹槽具有底部；
将从包括策重元素、周期表的第 I 列的碱金属和周期表的第 II 列的碱土金属的组中选取的至少一种离子化物质注入到凹槽的底部中，以形成非晶蚀刻停止区，该离子化物质在衬底中为电中性；和
用各向异性湿法蚀刻来蚀刻衬底。

根据本发明的第二方面，提供了一种方法，包括：
将从包括策重元素、周期表的第 I 列的碱金属和周期表的第 II 列的碱土金属的组中选取的至少一种离子化物质注入到衬底中，以形成非晶蚀刻停止区，该离子化物质在衬底中为电中性；
在将所述至少一种离子化物质注入到所述衬底中之后，将凹槽蚀刻到衬底中；和
用各向异性湿法蚀刻来蚀刻衬底。

根据本发明的第三方面，提供了一种方法，包括：
在具有垂直 [100] 晶面、水平 [110] 晶面和对角线 [111] 晶面的单晶硅衬底上方形成栅和在栅的两侧上形成一对侧壁间隔物；
在单晶硅衬底中沿着垂直 [100] 晶面用各向异性干法等离子体蚀刻来蚀刻凹槽；
将硅注入到凹槽的底部中以形成非晶蚀刻停止；
沿着对角线 [111] 晶面用具有至少接近 10 的 pH 且没有氧化剂的各向异性湿法蚀刻来蚀刻凹槽；和
用电子掺杂的硅锗材料填充凹槽以形成源/漏区。
根据本发明的第四方面，提供了一种方法，包括：
提供具有晶格的衬底；和
用从包括贵金属元素、周期表的第 I 列的碱金属和周期表的第 II 列的碱土金属的组中选取的至少一种在衬底中为电中性的离子化物质断裂衬底中的晶格，以形成蚀刻终止区。

根据本发明的第五方面，提供了一种结构，包括：
非晶蚀刻终止区，含有从包括贵金属元素、周期表的第 I 列的碱金属和周期表的第 II 列的碱土金属的组中选取的至少一种在凹槽的平坦底部中的衬底中为电中性的元素，其中非晶蚀刻终止区用作掩模以保护衬底表面。

根据本发明的第六方面，提供了一种晶体管，包括：
结晶半导体衬底，具有多个垂直 [100] 晶面、多个水平 [110] 晶面和多个对角线 [111] 晶面以及电中性的离子化物质形成的蚀刻终止区；
栅极，形成于结晶半导体衬底上方；
一对侧壁间隔物，在栅极的每一边壁上都有一个；和
一对源/漏区，在每个侧壁间隔物的下方都有一个源/漏区，其中源/漏区由间隔物的底部和对角线 [111] 晶面限定。

附图说明
图 1 是示出在现有技术的蚀刻之后的微负载的衬底的例图。
图 2a-2j 为例了形成具有源/漏注入区并使用非晶注入区作为蚀刻停止的晶体管。
图 3a-3g 为例了形成没有源/漏注入区的晶体管并使用非晶注入区作为蚀刻停止的可选实施例。
图 4a-4d 为例了形成悬臂的方法。

具体实施方式
这里描述的是使用通过注入在衬底中为电中性的元素形成的非晶蚀刻停止层的方法和器件。在以下的描述中，列举出很多具体细节。然而本领域技术人员将理解这些具体细节对于实施本发明的实施例不是必要
的。虽然描述了本发明的某些示范性实施例并示于附图中，但是应当理解，这种实施例仅仅示例性的而不限制当前发明，且本发明不限于示出和描述的具体结构和设置，这是由于本领域技术人员可作出修改。在其它情况下，为了不必要的使得本发明的实施例含糊不清，没有特别详细地列举出公知的半导体制造工艺、技术、材料、设备等。

描述了通过用在衬底中为电中性的元素注入衬底的形成非晶蚀刻停止层的方法。在它们扩散到衬底中的其它区域中的情况下，在衬底中为电中性的元素的使用防止了元素的电干扰。非晶蚀刻停止层可用在晶体管的制造中或用作硬掩模以形成其它器件，如悬臂。

在一个实施例中，非晶蚀刻停止区域可形成于衬底中以制造晶体管。衬底 200 提供于图 2a 中。该衬底 200 可以是单晶或多晶半导体材料，如硅或锗。在图 2a 中，示例出单晶硅衬底 200 在 y 平面中具有[100]晶向，在 x 平面中具有[110]晶向，且在 x 和 y 平面的对角线平面中具有[111]晶向。衬底 200 根据形成的是 PMOS 或 NMOS 晶体管而含有 p 型和 n 型阱。在图 2a 中示例的衬底的区域可以是掺杂有 p 型掺杂剂如硼或镓的 p 型，或可选地是掺杂有 n 型掺杂剂如磷或砷的 n 型阱。栅电介质 205 形成于衬底 200 上。栅电介质 205 可以是如氧化层的材料。栅电极 210 形成于栅电介质 205 上方。栅电极 210 可以通过多晶硅层的覆盖沉积和随后将多晶硅层图案化成为栅电极 210 来形成。隔离区 215 形成于衬底 200 中，以将 n 型阱与 p 型阱分离，并因此隔离相邻的晶体管。场隔离区 215 例如是通过将沟槽蚀刻到衬底 200 中以及随后用沉积的氧化物来填充沟槽和平坦化来形成的浅沟槽隔离（STI）区。

图 2c 示例了将凹槽 235 蚀刻到衬底中的实施例。通过本领域技术人员公知的常规工艺蚀刻凹槽 235 之前形成侧壁间隔物 240。然后蚀刻衬底以形成凹槽 235。可通过使用化合物如气态的 Cl₂、SF₆ 或 HBr 的各向异性
性等离子体蚀刻蚀刻凹槽 235，该气态的化合物将蚀刻源/漏端注人区域 225 和衬底 200。凹槽 235 可具有接近 40nm 和 1000nm 范围内的宽度，和在接近 40nm 和 200nm 范围内的深度。

然后可将离子化物质 245 注入到在图 2d 中示例的衬底 200 中的凹槽 235 的底部中，以形成非晶蚀刻停止区 250。在注入离子化物质 245 之前，在栅电极 310 上方形成硬掩模 325，以在注入期间保护栅电极。通过用注入工艺断裂衬底 200 的键来形成非晶蚀刻停止区 250。将衬底 200 的键断裂至它们对于湿法各向异性蚀刻剂产生蚀刻停止区的程度。在断裂衬底 200 的键中包括的参数包括离子化物质 245 的加速能量、离子半径和质量。对于不从衬底 200 的表面反射的注入的几乎所有低能量条件都将断裂衬底 200 的键，并形成非晶区如非晶蚀刻停止区 250。可以以接近 5×10^1 原子/cm2 和 1×10^2 原子/cm2 之间的剂量，和接近 1KeV 和 20KeV 范围的注入能量将离子化物质 245 注入到凹槽 235 的底部中，以在非晶蚀刻停止区 250 中形成接近 1×10^1 原子/cm2 浓度的离子化物质 245。注入能量可取决于被注入的离子化物质 245，且在一个实施例中，注入能量尽可能地低，以避免对衬底 200 的不必要的损伤。离子化物质 245 可注入到接近 50nm 的深度或可沉积到凹槽 235 的底部表面上。

离子化物质 245 是在衬底中为电中性的元素，以便在其扩散到衬底中时，不会电干扰在衬底 200 中或上的器件。在一个实施例中，在衬底 200 中为电中性的离子化物质 245 可以是与形成衬底的元素相同的元素。在该实施例中，注入到硅衬底 200 中的元素可以是硅，或可选地，注入到硅衬底 200 中的元素可以是硅。在可选实施例中，在衬底中为电中性的离子化物质 245 可以是衬底 200 中具有低溶解度的元素，并由此不取代在衬底的晶格中的原子。在硅中为电中性的元素是具有大于硅的共价半径尺寸 1.2 倍的离子半径的元素，和具有小于硅的共价半径尺寸的 0.7 倍的离子半径的元素。硅的共价半径接近 111 微米 (pm)，因此在硅中为电中性的元素是具有离子半径大于 130pm 的元素和离子半径小于 80pm 的元素。具有这些特定离子半径的元素不取代硅晶格中的原子，并在硅中具有非常低的溶解度，由此使得这种元素在硅中为电中性。对于硅衬底符合离子半径标准的离子化物质 245 例如包括氧、氮、氟重元素 (Ne、Ar、Kr 等) 和周期表中第 I 列（H、Li、Na、K、Rb、Cs、Fr）的碱金属和周期表的第 II 列的碱土金属（Be、Mg、Ca、Sr、Ba、Ra）。离子
物质 245 可以是一种类型的元素或是元素组合。

图 2e 和 2f 例示了可选施例，其中代替如图 2c 中示例的第一蚀刻凹槽 235 和随后如图 2d 中示例的用离子化物质 245 注入凹槽 235 的底部，在将凹槽 235 蚀刻到衬底 200 中之前将离子化物质 245 注入到衬底 200 中。在图 2e 中，可将离子化物质 245 注入到衬底 200 中以形成非晶蚀刻停止区 250。可以以 1 x 10^{17} 原子/cm^2 和 1 x 10^{18} 原子/cm^2 之间的剂量，和在接近 10Kev 和 40Kev 范围内的注入能量将离子化物质 245 注入到衬底 200 中。注入能量可以取决于被注入的杂质材料 245，且注入能量可以尽可能地低以避免对衬底 200 的损伤。可将离子化物质 245 注入至稍超出凹槽 235 深度的深度以形成图 2e 的非晶蚀刻停止区 250。如上关于图 2c 和 2d 所述，离子化物质 245 是在衬底 200 中为电中性的材料，且可以是上述的特定元素中的任一种。如图 2f 中所示例的，然后通过使用化合物如 Cl_2、SF_6 或 Br_2 的各向异性等离子体蚀刻，穿过非晶蚀刻停止区 250 的上部部分在衬底 200 中蚀刻凹槽 235。非晶蚀刻停止区 250 不用作各向异性等离子体蚀刻蚀刻蚀刻，但是将作各向异性湿法蚀刻的蚀刻停止，这是由于其用作模板保护衬底表面，如以下将描述的。凹槽 235 可以具有接近 40nm 和 1000nm 范围内的宽度，和接近 40nm 和 200nm 范围内的深度。

在图 2g 中，用各向异性湿法蚀刻来蚀刻衬底 200，以形成沿着 [111] 晶面具有陡峭斜面 265 的蚀刻底切区 260。各向异性湿法蚀刻在非晶蚀刻停止区 250 上停止蚀刻，使使凹槽的底部是平坦的。侧壁间隔物 240、源 / 漏尖端注入区 225 和 STI 隔离区 215 不通过各向异性湿法蚀刻来蚀刻。各向异性湿法蚀刻可以是 PH 接近 10 或更高的碱性湿法蚀刻。湿法蚀刻可以由含碱如 KOH（氢氧化钾）、NaOH（氢氧化钠）、NH_3·OH（氨氧化氨）或 TMAH（氨氧化四甲基氢）的水溶液配制而成。例如，重量百分比为 30 % 的 NH_3·OH 溶液可与水混合，以形成具有体积百分比在接近 10 % - 100 % 范围内的 NH_3·OH 浓度、或尤其重量百分比在接近 3 % - 30 % 范围内的 NH_3·OH 浓度的各向异性蚀刻溶液 270。为了控制各向异性湿法蚀刻的速度，可在接近室温下进行该蚀刻。为了增加蚀刻速度，可提高温度。进行各向异性湿法蚀刻的温度接近 15 °C 和 80 °C 之间，尤其接近 24 °C。蚀刻速度可以在接近 10nm/分钟和 100nm/分钟的范围内。在蚀刻溶液中不包括氧化剂，这是由于其会氧化衬底 200 并停止各向异性蚀刻，以使沿着 [111] 晶面不会产生陡峭面 260。可以蚀刻衬底 200 达接近 1 分钟和 10 分钟范围内
的时间。蚀刻的时间越长，就会获得越多的横向底切。横向蚀刻底切区 260 的距离可以是侧壁间隔物 240 的宽度，如图 2g 中所示。因此，底切区的宽度在接近 5nm - 100nm 的范围内，且尤其在接近 10nm - 30nm 的范围内。

在图 3a-3g 中示例的可选实施例中，可形成使用非晶蚀刻停止区制造的晶体管，而没有源/漏注入区，以使各向异性湿法蚀刻的底切区在晶体管的侧壁间隔物下方形成陡峭的蚀刻几何形状。衬底 300 提供于图 3a 中。衬底 300 可以是单晶或多半导体材料如硅或锗。在图 3a 中，示例出单晶衬底 200 在 y 平面内具有 [100] 晶向，在 x 平面内具有 [110] 晶向，和在 x 和 y 平面的对角线平面内具有 [111] 晶向。衬底 300 可根据形成的是 PMOS 还是 NMOS 晶体管而含有 p 型阱和 n 型阱。图 3a 中示例的衬底的区域可以是掺杂有 p 型掺杂剂如硅或镓的 p 型，或可选地可以是掺杂有 n 型掺杂剂如磷或砷的 n 型阱。栅电介质 305 形成于衬底 300 上。栅电介质 305 可以是例如氮化偶层的材料。栅电极 310 形成于栅电介质 305 上方。栅电极 310 可以通过覆盖沉积多晶硅层和随后将多晶硅层图案化成栅电极 310 来形成。隔离区 315 形成于衬底 300 中，以将 n 型阱与 p 型阱分离，并因此隔离相邻的晶体管。场隔离区 315 例如可以
是通过将沟槽蚀刻到衬底 300 中以及随后用沉积氧化物填充沟槽来形成的浅沟槽隔离（SIT）区。

如图 3b 中所示例的，通过本领域技术人员公知的常规方法将一对侧壁间隔物 320 形成于栅电极 310 的任一侧上。另外，硬掩模 325 可以形成于栅电极 310 上。图 3c 示例出在用注入材料 335 注入衬底 300 之前将凹槽 330 蚀刻到衬底 300 中的实施例。凹槽 330 可以通过使用化合物如气态的 Cl₂、SF₆ 或 HBr 的各向异性等离子蚀刻来蚀刻。凹槽 330 可以具有在接近 40nm 和 1000nm 范围内的宽度，和在接近 40nm 和 200nm 范围内的深度。

然后可将离子化物质 335 注入到衬底 300 中的凹槽 330 的底部中，如图 3d 中所示例的，以形成非晶蚀刻停止区 340。非晶蚀刻停止区 340 通过用注入工艺断裂衬底 300 的键来形成。将衬底 300 的键断裂至它可以产生用于湿法各向异性蚀刻剂的蚀刻停止区的程度。在断裂衬底 300 的键中包括的参数包括离子化物质 335 的加速能量、离子半径和质量。对于不从衬底 300 的表面反射的注入的几乎所有低能量条件都可断裂衬底 300 的键，并形成非晶区如非晶蚀刻停止区 340。以接近 5 × 10⁴ 原子/cm²和 1 × 10⁴ 原子/cm² 之间的剂量，和在接近 1KeV 和 20KeV 范围内的注入能量可以将离子化物质 335 注入到凹槽 330 的底部中，以在非晶蚀刻停止区 340 内形成接近 1 × 10⁹ 原子/cm² 浓度的离子化物质 335。注入能量取决于被注入的离子化物质 335，并在一个实施例中，注入能量尽可能地低，以避免对衬底 300 的不必要的损伤。离子化物质 335 可注入至达接近 50nm 的深度，或可沉积到凹槽 330 的底部表面上。

离子化物质 335 是一种在衬底中为电中性的元素，以使在其扩散到衬底中时不会电干扰在衬底 300 中或上的器件。在一个实施例中，在衬底 300 中为电中性的离子化物质 335 可以是与形成衬底的元素相同的元素。在该实施例中，注入到硅衬底 300 中的元素是硅，或可选地，注入到锗衬底 300 中的元素是锗。在可选实施例中，在衬底中为电中性的离子化物质 335 可以是在衬底 300 中具有低溶解度的元素，并由此可以不取代在衬底晶格中的原子。在硅中为电中性的元素是具有大于硅的共价半径尺寸 1.2 倍的离子半径的元素，和具有小于硅的共价半径尺寸的 0.7 倍的离子半径的元素。硅的共价半径接近 111 微微米（pm），因此在硅中为电中性的元素是具有离子半径大于 130pm 的元素和离子半径小于 80pm
的元素。具有这些特定离子半径的元素不取代在硅晶格中的原子并在硅中具有非常低的溶解度，由此使得这种元素在硅中为电中性。符合硅衬底的离子半径标准的离子化物质 335 例如包括氧、氮、萤石元 (Ne、Ar、Kr 等) 和周期表中第 I 列 (H、Li、Na、K、Rb、Cs、Fr) 的碱金属和周期表的第 II 列的醇土金属 (Be、Mg、Ca、Sr、Ba、Ra)。离子化物质 335 可以是一种类型的元素或是元素组合。在可选实施例中，可以在蚀刻凹槽 330 之前，将离子化物质 335 注入到衬底 300 中，如上面关于图 2c 和 2f 所示例的那样。

在图 3e 中，用各向异性湿法蚀刻来蚀刻衬底 300 以形成沿着 [111] 晶面具有陡峭斜面 350 的蚀刻切底区 345。由于在各向异性湿法蚀刻中不存在氧化剂，因此产生陡峭的斜面 350。各向异性湿法蚀刻在非晶蚀刻停止区 340 上停止蚀刻，以使沟槽的底部是平坦的。非晶蚀刻停止区 340 用作掩模，以保护衬底表面。侧壁间隔物 320 和 STI 隔离区 315 不被各向异性湿法蚀刻所蚀刻。各向异性湿法蚀刻可以是具有 pH 接近 10 或更高的碱性湿法蚀刻。湿法蚀刻可以由含碱如 KOH (氢氧化钾)、NaOH (氢氧化钠)、NH₄OH (氢氧化氨) 或 TMAH (氢氧化四甲基氢) 的水溶液配制而成。例如，重量百分比为 30% 的 NH₄OH 溶液可与水混合，以形成具有体积百分比在接近 10% - 100% 范围内的 NH₄OH 浓度。各向异性湿法蚀刻溶液 270。为了控制各向异性湿法蚀刻的速度，可在接近室温下进行该蚀刻。为了增加蚀刻速度，可提高温度。进行各向异性湿法蚀刻的温度接近 15℃和 80℃之间，尤其接近 24℃。蚀刻速度可以在接近 10nm/分钟和 100nm/分钟的范围内。可以蚀刻衬底 300 达足以在侧壁间隔物 320 下方形成底切区 345 的时间，但是没有长到蚀刻到栅电介质 305 的下方。在一个实施例中，蚀刻时间在接近 1 分钟和 10 分钟的范围内。蚀刻的时间越长，就会获得越大的横切底切。横向蚀刻底切区 345 的距离可以是侧壁间隔物 320 的宽度，如图 3e 中所示例的。因此，底切区的宽度在接近 5nm-100nm 的范围内，更尤其在接近 10nm-30nm 的范围内。

在图 3f 中，凹槽 330 和底切区 345 用掺杂的半导体回填材料 355 来回填充。在回填填充工艺期间，衬底 300 可以达到接近 600℃和 650℃范围内的温度。通过这些温度，非晶蚀刻停止区 340 可以再结晶。在离子化物质 335 是与衬底 300 相同元素的实施例中，非晶蚀刻停止区 340 的
再结晶将使得该区域不能与衬底 300 的其它区域区分开，如图 3g 中所示例的那样。图 3g 显示了具有源/漏区 360 和通过在由上述蚀刻工艺形成的区域中沉积掺杂的半导体回填充材料 355 形成的源/漏尖端区 365 的晶体管。源/漏尖端区 365 具有尖角并且恰好沿着侧壁间隔物 320 的底部边缘形成。该几何形状提供最大掺杂的源/漏尖端区域刚好直到栅电介质 305 和栅电介质 310，并会引起比具有圆形边缘的源/漏区更好的器件性能。

在另一实施例中，非晶蚀刻停止区可用作正的的被特征的内衬，其中非晶蚀刻停止区是浅的且在衬底表面附近。如图 4a-4d 中示例的，可以使用非晶蚀刻停止层作为内衬和在单晶衬底上的湿法各向异性蚀刻来形成悬臂。衬底可以是单晶或多晶半导体材料如硅或锗。在一个具体实施例中，半导体材料是单晶硅衬底。在图 4a 中，提供单晶硅衬底 400，单晶硅衬底 400 在 y 平面内具有 [100] 晶向，在 x 平面内具有 [110] 晶向，和在 x 和 y 平面的对角线平面内具有 [111] 晶向。图示化的光致抗蚀剂掩模 410 形成于衬底 400 上。可通过对光致抗蚀剂显影来图示化光致抗蚀剂掩模。示例出了衬底 400 和光致抗蚀剂掩模 410 的顶视图和相同衬底 400 和光致抗蚀剂掩模 410 沿着虚线 I - I 的截面图。如在顶视图中所示例的，光致抗蚀剂掩模 410 具有正方形的“U-形”图案。光致抗蚀剂掩模 410 可以是例如氧化硅或氮化硅的材料。光致抗蚀剂掩模 410 的厚度应当足够厚以阻挡由注入到衬底 400 中的离子化物质 420 穿透衬底 400。光致抗蚀剂掩模 410 的厚度取决于注入能量，但是通常光致抗蚀剂掩模 410 可以具有小于接近 10nm 的厚度。在图 4b 中，用离子化物质 420 注入单晶硅衬底 400 以形成非晶硅 430。离子化物质 420 可以是与形成衬底的元素相同的元素。在一个实施例中，注入到硅衬底 400 中的元素是硅，和在另一实施例中，注入到锗衬底 400 中的元素是锗。在可选实施例中，注入到衬底中以形成非晶硅区的元素可以在衬底中为电中性的元素。在衬底中为电中性的元素可以是在衬底中电中性元素的那些元素，并由此其不取代在衬底的晶格中的原子。在硅中为电中性的元素是具有大于硅的共价半径尺寸的 1.2 倍的离子半径的元素，和具有小于硅的共价半径尺寸的 0.7 倍的离子半径的元素。硅的共价半径接近 111 微微米（pm），因此在硅中为电中性的元素是具有离子半径大于 130pm 的元素和离子半径小于 80pm 的元素。具有这些特定离子半径的离子化物质
420 不取代硅晶格中的原子，并在硅中具有非常低的溶解度，由此使得这种元素在硅中为电中性，对于硅衬底符合离子半径标准的离子化物质，例如包括氧、氮、重金属元素（Ne、Ar、Kr等）、周期表第Ⅰ列（H、Li、Na、K、Rb、Cs、Fr）的碱金属和周期表的第Ⅱ列的碱土金属（Be、Mg、Ca、Sr、Ba、Ra）。离子化物质 420 可以是一种类型的元素或是元素组合。以 1×10^{15} 原子/cm2 和 1×10^{16} 原子/cm2 之间的剂量，在接近 1KeV 和 20KeV 范围内更尤其是接近 5KeV 的注入能量将离子化物质 420 注入到衬底 400 中，以在衬底 400 中形成接近 1×10^{16} 原子/cm2 浓度的离子化物质 420。注入能量可以取决于被注入的离子化物质 420，且注入能量尽可能地低，以避免对衬底 400 的损伤。离子化物质 420 可以注入至接近零纳米（只在衬底表面上）和 50nm 范围内的深度。

然后如图 4c 中所示例的除去光致抗蚀剂掩模 410，以暴露出单晶硅衬底 400 的非注入区。在将光致抗蚀剂除去之前衬底 400 的非注入区表现出光致抗蚀剂掩模 410 的“U 形”区域，且二者具有相同的尺寸。在图 4d 中，用各向异性湿法蚀刻溶液来蚀刻单晶硅衬底 400，且非晶区 430 用作硬掩模。各向异性湿法蚀刻溶液可以是 pH 大于大约 10 的碱性湿法蚀刻。各向异性湿法蚀刻溶液可以形成有碱如 KOH（氢氧化钾）、NaOH（氢氧化钠）、NH$_4$OH（氢氧化氨）或 TMAH（氢氧化四甲基氨）。例如，体积百分比为 30% 的 NH$_4$OH 溶液可与水混合，以形成具有体积百分比在接近 10%~100% 范围内的 NH$_4$OH 浓度、或其重量百分比在接近 3%~30% 范围内的 NH$_4$OH 浓度的各向异性湿法蚀刻溶液。为了控制各向异性湿法蚀刻的速度，可在接近室温下进行该蚀刻，为了增加蚀刻速度，可以提高各向异性湿法蚀刻溶液的浓度。进行各向异性湿法蚀刻溶液的温度接近 15℃和 80℃之间，尤其接近 24℃。蚀刻速度可以在接近 10nm/分钟和 100nm/分钟的范围内。可以蚀刻衬底 400 达接近 1 分钟和 10 分钟范围内的时间。蚀刻的时间越长，凹槽 450 的尺寸越大。在各向异性湿法蚀刻溶液中不包括氧化剂，这是由于如果氧化了衬底 400，则蚀刻会停止并且不会产生沿着 [111] 晶面的陡峭面 460。对于如硅的衬底尤其是这样。各向异性湿法蚀刻溶液会沿着 [111] 对角晶面 460 和沿着 [100] 垂直晶面蚀刻，以形成悬臂 475。在最终的形成中，可以将悬臂 475 成形为类似于在凹槽 450 上方向外突出的起跳板。由于通过各向异性湿法蚀刻形成了悬臂 475 的核心的非晶区 430 的横向底切，所以形成了悬臂 475。由于沿着单晶硅
衬底 400 的水平（110）晶面的各向异性湿法蚀刻溶液的几何形状，形成了凹槽 450 的平坦部分 470。使用非晶区 430 形成的正方形“掩模”导致形成了凹槽 450 的平坦部分 470。凹槽 450 可以具有接近 1:1 和 1:5 范围内的纵横比。悬臂 450 可以用作施压部件或 accelerometer。

由此，已经描述了本发明的几个实施例。然而，本领域技术人员应该认识到，本发明不限于描述的实施例，而是可通过在以下附属的权利要求的范围和精神内的修改和变化来实施。
图 3E

图 3F
图 3G
图 4B
图 4D