Abstract:

Gcグロブリンのβ-ガラクトシダーゼに用いることで、Gcグロブリンをβ-ガラクトシダーゼによって処理することによって得られるGcグロブリンガラクトシダーゼ脱糖体に変化を与えることができる。これらの変化は、Gcグロブリンの機能に影響を与えることが示唆される。
明 細 書
発明の名称 : 新規 G c グロプリンガラクトース脱糖体の製造方法
技術分野
[0001] 本発明は、血漿または血清に由来する G c グロプリンのガラクトース脱糖体を製造する方法および当該脱糖体を有効成分として含む医薬組成物に関する。

背景技術
[0002] 怪我をしたとき、動物は自然に治癒する能力を持っている。このとき、血清中の糖タンパク質である G c グロプリンは、炎症反応によって脱糖され、生体内で最終的に N—アセチルガラクトサミンを糖鎖構造に持つ G c M A F へと変換される。この G c M A F がマクロファージを活性化させる。すなわち、G c グロプリンは、G c M A F の前躯体として機能する（非特許文献 1）。

[0003] G c M A F は、マクロファージ活性化作用および/または抗血管新生機能を介して様々な腫瘍形成を抑制または遅延させ、また形成腫瘍に対しては増殖抑制作用を示すことが報告されている（非特許文献 2_1 1、特許文献 1）。

[0004] G c M A F が有する抗腫瘍効果が明らかになるに伴いその臨床応用が期待されるが、未だに治療薬として開発がなされていないのが現状である。

[0005] その理由のひとつには、原料となる規格化された G c グロプリンを集めることの難しさがあげられる。

[0006] ヒトG c グロプリンには、ガラクトース、シアル酸、マンノース、N—アセチルガラクトサミンの糖鎖が付いているとされるが、少なくとも (1 f, 1 s および 2) の 3 種類のサブタイプが存在している。そして、1 のタイプには糖が 3 つ、2 のタイプには糖が 2 つあるとされる。さらに、ヒト血清中には両親から 1 種類ずつの G c グロプリン種が含まれるので、これだけでも、ヒト個人に存在するタイプは、(1 f, 1 f)、(1 f, 1 s)、(1 f
・2)、(1s, 1s)、(1s, 2)、(2, 2)の6通り、さらに詳しく言えば(1f, 1f)、(1s, 1s)、(2, 2)のホモタイプと(1f, 1s)、(1f, 2)、(1s, 2)のヘテロタイプの亜種が存在する。

各サブセットについて、マクロファージ活性化に関連する糖鎖の構造が明らかにされている。1fの1タイプでは418と420番目にスレオニンが位置し、418または420番目のいずれかのスレオニンにN—アセチルガラクトサミンが結合しており、このN—アセチルガラクトサミンに対してさらにガラクトースおよびシアル酸の糖が結合している。1sの1タイプでは418と420番目にスレオニンが位置し、418または420番目のいずれかのスレオニンにN—アセチルガラクトサミンが結合しており、このN—アセチルガラクトサミンに対してさらにガラクトースおよびα—マンノースが結合している。2タイプでは418番目にスレオニンがみられ、この位置にN—アセチルガラクトサミンが結合し、さらにガラクトースが結合している（非特許文献12, 13）。

このうち、1f1fタイプのヒト血清Gcグロブリンの脱糖の反応においては明らかにされており、すなわち、生体内で炎症が起こると、Bリンパ球のβ-ガラクトシダーゼの活性化が起こり、これによって脱ガラクトースされたGcグロブリンが、さらにT細胞のシアルダーゼによって脱シアル酸され、N—アセチルガラクトサミン末端のみを持つGcMAFとなる。

上記のとおりヒト血清中には、少なくても3種類のGcグロブリンサブセットが含まれており、また全てのサブセットについてその脱糖反応の過程が明らかにされているわけではない。先に述べたGcMAFは1f, 1fのホモタイプのみを使って製造されるのみである。このため、集められた血清、血漿タンパク質、またはGcグロブリンを用いて、大量かつ容易に、すなわち規格化された方法によって、GcMAFを製造する技術は確立されておらず、当該分野においてはGcMAFを製造するための新たな手法が求められている。
先行技術文献

特許文献

特許文献1:特表2003-532682号公報

非特許文献

非特許文献12:Mohamad S. B.え、Anticancer Res
非特許文献13：Nagasaki H.ら、Anti Cancer Res. 24(5C), 3361-6, 2004.

発明の概要

発明が解決しようとする課題

本発明は、集められた血漿、血漿タンパク質、またはGcグロブリンより、容易に製造することができ、かつGcMAFとして利用可能なGcグロブリン誘導体を提供する。

課題を解決するための手段

本発明者らは、上記課題を解決すべく、観察検討した結果、Gcグロブリンのサブセットに関係なく、Gcグロブリンにβ-ガラクトシダーゼを作用させて得られるガラクトース脱糖体が、GcMAFとして利用可能であることで、あるいはin vivoまたはin vitroで活性化させることによって簡単にGcMAFへと変換できることを見出し、本発明を完成させるに至った。

すなわち、本発明は以下の特徴を有する。

1. 血漿または血清に由来するGcグロブリンとβ-ガラクトシダーゼを反応させて、該Gcグロブリンのガラクトース脱糖体を製造する方法。

2. Gcグロブリンが血漿または血清より分離または粗精製されたものである、[1]の方法。

4. [1]～[3]のいずれかの方法によって製造された、Gcグロブリンのガラクトース脱糖体。

以下の(i)～(iv)：

(i) [4]のGcグロブリンのガラクトース脱糖体；
(ii) 配列番号1で表されるアミノ酸配列を含み、かつ該配列番号1で表されるアミノ酸配列における418または420番目のいずれかのスレオニン
に、N-アセチルガラクトサミンが結合しており、このN-アセチルガラクトサミンに対してさらにシアル酸が結合している糖鎖構造を有する、Gcグロブリンのガラクトース脱糖体；
(iii) 配列番号2で表されるアミノ酸配列を含み、かつ該配列番号2で表されるアミノ酸配列における418または420番目のいずれかのスレオニンに、N-アセチルガラクトサミンが結合しており、このN-アセチルガラクトサミンに対してさらにα-マンノースが結合している糖鎖構造を有する、Gcグロブリンのガラクトース脱糖体；および
(iv) 配列番号3で表されるアミノ酸配列を含み、かつ該配列番号3で表されるアミノ酸配列における418番目のスレオニンに、N-アセチルガラクトサミンが結合しており、このN-アセチルガラクトサミンに対してさらにシアル酸が結合している糖鎖構造を有する、Gcグロブリンのガラクトース脱糖体。
(0020) [6] 以下の(i)～(iv)：
(i) [4] のGcグロブリンのガラクトース脱糖体；
(ii) 配列番号1で表されるアミノ酸配列を含み、かつ該配列番号1で表されるアミノ酸配列における418または420番目のいずれかのスレオニンに、N-アセチルガラクトサミンが結合しており、このN-アセチルガラクトサミンに対してさらにシアル酸が結合している糖鎖構造を有する、Gcグロブリンのガラクトース脱糖体；
(iii) 配列番号2で表されるアミノ酸配列を含み、かつ該配列番号2で表されるアミノ酸配列における418または420番目のいずれかのスレオニンに、N-アセチルガラクトサミンが結合しており、このN-アセチルガラクトサミンに対してさらにα-マンノースが結合している糖鎖構造を有する、Gcグロブリンのガラクトース脱糖体；および
(iv) 配列番号3で表されるアミノ酸配列を含み、かつ該配列番号3で表されるアミノ酸配列における418番目のスレオニンに、N-アセチルガラクトサミンが結合している糖鎖構造を有する、Gcグロブリンのガラクトース脱糖体。
トサミンが結合している糖鎖構造を有する、Gcグロブリンのガラクトース脱糖体、からなる群より選択される、または複数のGcグロブリンのガラクトース脱糖体、を含む、血管新生を阻害するための医薬組成物。

[0023] [7] 以下の (i) ～ (iv) :

(i) [4] のGcグロブリンのガラクトース脱糖体;
(ii) 配列番号1で表されるアミノ酸配列を含み、かつ該配列番号1で表されるアミノ酸配列における418または420番目のいずれかのスレオニンに、N－アセチルガラクトサミンが結合しており、このN－アセチルガラクトサミンに対してさらにシアル酸が結合している糖鎖構造を有する、Gcグロブリンのガラクトース脱糖体;
(iii) 配列番号2で表されるアミノ酸配列を含み、かつ該配列番号2で表されるアミノ酸配列における418または420番目のいずれかのスレオニンに、N－アセチルガラクトサミンが結合しており、このN－アセチルガラクトサミンに対してさらにα－マンノースが結合している糖鎖構造を有する、Gcグロブリンのガラクトース脱糖体;
(iv) 配列番号3で表されるアミノ酸配列を含み、かつ該配列番号3で表されるアミノ酸配列における418番目のスレオニンに、N－アセチルガラクトサミンが結合している糖鎖構造を有する、Gcグロブリンのガラクトース脱糖体、からなる群より選択される、または複数のGcグロブリンのガラクトース脱糖体、を含む、癌を治療するための医薬組成物。

[0022] [8] [5] ～ [7] のいずれかの医薬組成物であって、Gcグロブリンのガラクトース脱糖体が該医薬組成物を投与される被験体の血漿または血清に由来するGcグロブリンを材料として製造されたものである、上記医薬組成物。

[0023] [9] 癌を治療する方法であって、以下の (i) ～ (iv) :

(i) [4] のGcグロブリンのガラクトース脱糖体;
(i) 配列番号1で表されるアミノ酸配列を含み、かつ配列番号1で表されるアミノ酸配列における418または420番目のいずれかのスレオニンに、N-アセチルガラクトサミンが結合しており、このN-アセチルガラクトサミンに対してさらにシアル酸が結合している糖鎖構造を有する、Gcグロブリンのガラクトース脱糖体；

(ii) 配列番号2で表されるアミノ酸配列を含み、かつ配列番号2で表されるアミノ酸配列における418または420番目のいずれかのスレオニンに、N-アセチルガラクトサミンが結合しており、このN-アセチルガラクトサミンに対してさらにシアル酸が結合している糖鎖構造を有する、Gcグロブリンのガラクトース脱糖体；

(iii) 配列番号3で表されるアミノ酸配列を含み、かつ配列番号3で表されるアミノ酸配列における418番目のスレオニンに、N-アセチルガラクトサミンが結合している糖鎖構造を有する、Gcグロブリンのガラクトース脱糖体、からなる群より選択される、一または複数のGcグロブリンのガラクトース脱糖体、を癌患者に投与することを含む、上記方法。

[0024] [10] Gcグロブリンのガラクトース脱糖体が、該ガラクトース脱糖体を投与される癌患者の血漿または血清に由来するGcグロブリンを材料として製造されたものである、[9]の方法。

[0025] [11] 癌患者における癌の治療に使用するための、以下の(i)～(iv)；

(i) [4]のGcグロブリンのガラクトース脱糖体；

(ii) 配列番号1で表されるアミノ酸配列を含み、かつ該配列番号1で表されるアミノ酸配列における418または420番目のいずれかのスレオニンに、N-アセチルガラクトサミンが結合しており、このN-アセチルガラクトサミンに対してさらにシアル酸が結合している糖鎖構造を有する、Gcグロブリンのガラクトース脱糖体；

(iii) 配列番号2で表されるアミノ酸配列を含み、かつ該配列番号2で表さ
れるアミノ酸配列における4 1 8 または4 2 0番目のいずれかのスレオニンに、N ー アセチルガラクトサミンが結合しており、このN ー アセチルガラクトサミンに対してさらにα ー マンノースが結合している糖鎖構造を有する、G c グロブリンのガラクトース脱糖体 ；および
（iv）配列番号3で表されるアミノ酸配列を含み、かつ該配列番号3で表されるアミノ酸配列における4 1 8番目のスレオニンに、N ー アセチルガラクトサミンが結合している糖鎖構造を有する、G c グロブリンのガラクトース脱糖体、
からなる群より選択される、または複数のG c グロブリンのガラクトース脱糖体。
[0026] [1 2] [1 1] のG c グロブリンのガラクトース脱糖体であって、該ガラクトース脱糖体が該ガラクトース脱糖体を投与される癌患者の血漿または血清に由来するG c グロブリンを材料として製造されたものである、上記G c グロブリンのガラクトース脱糖体。
[0027] [1 3] 配列番号2で表されるアミノ酸配列を含み、かつ該配列番号2で表されるアミノ酸配列における4 1 8または4 2 0番目のいずれかのスレオニンに、N ー アセチルガラクトサミンが結合しており、このN ー アセチルガラクトサミンに対してさらにα ー マンノースが結合している糖鎖構造を有する、G c グロブリンのガラクトース脱糖体 ；または
配列番号3で表されるアミノ酸配列を含み、かつ該配列番号3で表されるアミノ酸配列における4 1 8番目のスレオニンに、N ー アセチルガラクトサミンが結合している糖鎖構造を有する、G c グロブリンのガラクトース脱糖体。
[0028] 本明細書は本願の優先権の基礎である日本国特許出願2010-1 97485号の明細書および／または図面に記載される内容を包含する。
発明の効果
[0029] 本発明により、G c グロブリンのサブタイプに関係なく、容易に製造することができ、かつG c M A Fとして利用可能なG c グロブリンガラクトース
脱糖体を提供することができる。

図面の簡単な説明

[0030] 図1は、CBB染色した精製物（1f f GcX）のSDS—PAGE電気泳動像を示す。P：ポジティブコントロール（Gcタンパク質：シグマ社）、GcX：プレGcMAF精製物（1f f GcX）、M：マーカー

[図2]図2は、ヒト抗Gcグロブリン抗体を用いたプレGcMAF精製物（1f f GcX）のウエスタンプロットの結果を示す。一次抗体：抗ヒトGcグロブリン（10、000倍希釈、1時間室温にて反応させた）。二次抗体：抗ウサギHRP-lgG（10、000倍希釈、1時間室温にて反応させた）。感光30秒。P：ポジティブコントロール（Gcタンパク質：シグマ社）、GcX：プレGcMAF精製物（1f f GcX）、M：マーカー

[図3-1]図3—1は、PNAレクチンを用いたプレGcMAF精製物（1f f GcX）のウエスタンプロットの結果を示す。一次抗体：PNAレクチン（10、000倍希釈、1時間室温にて反応させた）。二次抗体：ストレプトアビシン（10、000倍希釈、1時間室温にて反応させた）。感光1分間。Gc：Gcグロブリン；GcX：プレGcMAF精製物（1f f GcX）。

[図3-2]図3—2は、HPAレクチンを用いたプレGcMAF精製物（1f f GcX）のウエスタンプロットの結果を示す。一次抗体：HPAレクチン（10、000倍希釈、1時間室温にて反応させた）。二次抗体：ストレプトアビシン（10、000倍希釈、1時間室温にて反応させた）。感光1分間。MAF：精製GcMAF；GcX：プレGcMAF精製物（1f f GcX）。

[図4-1]図4—1は、プレGcMAF精製物（1f f GcX）のマクロファージ貪食活性化能を示す特性図である。

[図4-2]図4—2は、腹腔非付着細胞との予備培養を行ったプレGcMAF精製物（1f f GcX）のマクロファージ貪食活性化能を示す特性図である。
図4-3 図4-3は、原料である1f1fタイプのGcグロブリン（1f1f
Gc）のマクロファージ摂食活性化能を示す特性図である。図中、"印は実
験2の結果を示す。

図5-1 図5-1は、プレGcMAF精製物（1s1sGcX）のマクロファ
ージ摂食活性化能を示す特性図である。図中、"印は実験2の結果を示す。

図5-2 図5-2は、原料である1s1sタイプのGcグロブリン（1s1s
Gc）のマクロファージ摂食活性化能を示す特性図である。図中、"印は実
験2の結果を示す。

図6-1 図6-1は、プレGcMAF精製物（22GcX）のマクロファージ
摂食活性化能を示す特性図である。図中、"印は実験2の結果を示す。

図6-2 図6-2は、原料である22タイプのGcグロブリン（22Gc）の
マクロファージ摂食活性化能を示す特性図である。図中、"印は実験2の結
果を示す。

図7 図7は、プレGcMAF精製物（1f1fGcX）による抗癌効果を示
す特性図である。数値およびエラーバーはn=3-4で行った実験のmean±SEMを
示す。図中、黒は2mm以上の大きさまで成長した腫瘍の数を示し、白は2mm未
満の大きさの腫瘍の数を示す。また、図中のアスタリスク（"）および（" *
"）はBonferroniの多重比較検定により、無処置群に対する有意な減少（p<0
.05）および（p<0.01）をそれぞれ示す。

図8 図8は、各プレGcMAF精製物（22GcX、1s1sGcX、1f
1fGcX）による抗癌効果を示す特性図である。数値およびエラーバーはn=
3-4で行った実験のmean±SEMを示す。図中、黒は2mm以上の大きさまで成長
した腫瘍の数を示し、白は2mm未満の大きさの腫瘍の数を示す。また、図中の
アスタリスク（"**"）はBonferroniの多重比較検定により、無処置群に対
する有意な減少（p<0.001）を示す。

図9 図9は、1fサブタイプのGcグロブリンのアミノ酸配列（配列番号1
）を示す。

図10 図10は、1sサブタイプのGcグロブリンのアミノ酸配列（配列番
号 2）を示す。
[図11] 図 11 は、2 サブタイプの Gc グロブリンのアミノ酸配列（配列番号 3）を示す。
発明を実施するための形態

[0031] 本発明は、Gc タイプに関係なく、簡単につくれ、かつ、Gc MAF とし
て利用可能な、あるいは簡単に Gc MAF に変換する機能を持つ Gc グロブ
リンのガラクトース脱糖体（プレ Gc MAF）の製造方法に関する。

[0032] 本発明方法は、血漿または血清に由来する Gc グロブリンと β ガラクト
シダーゼを反応させる工程を含む。

[0033] 本発明において利用できる Gc グロブリンは、血漿、好ましくは血清に由
来する。Gc グロブリンは血清中に 300 ～ 500 m g / l 程度含有される、
血清タンパク中で 20 番目が多いタンパク質とされる。したがって、血漿ま
たは血清を利用することによって、効率的かつ大量に Gc グロブリンを得
ることができる。

[0034] Gc グロブリンは、血漿または血清中に含まれる形態であっても良いし、
あるいは粗精製物の形態であっても、単離された形態であっても良い。「婚
精製物の形態」とは、実質的に純粋な Gc グロブリンとされたものではなく
、不純物を含んだ状態をいう。ここで「実質的に純粋」とは、95%以上、
好ましくは 99% 以上の純度を意味する。また、「単離された形態」とは、
95% 以上、好ましくは 99% 以上の純度を意味する。好ましくは、単離さ
れた形態である。

[0035] 血漿または血清より Gc グロブリンを単離・精製する方法は、タンパク質
精製に通常用いられる公知の方法、例えば、硫酸塩析、有機溶媒（エタノール、
メタノール、アセトン等）による沈殿分離、イオン交換クロマトグラフ
ィー、等電位クロマトグラフィー、ゲルろ過クロマトグラフィー、疏水性クロ
マトグラフィー、吸着カラムクロマトグラフィー、基質または抗体などを
利用したアフィニティークロマトグラフィー、逆相カラムクロマトグラフィ
ーなどのクロマトグラフィー、精密ろ過、限外ろ過、逆浸透ろ過等の濾過処

理など、を1つまたは複数を適宜組み合わせて用いて精製することができる。好ましくは、アクチン結合カラム、25—ヒドロキシビタミンD₃結合カラム、抗Gcグロブリン抗体結合カラムなどのアフィニティカラムに血漿または血清をアプレイシ特異的にGcグロブリンを結合させて、別のタンパク質を適当な洗浄液で遊離させ、その後、適当な溶出液でGcグロブリンを溶出する。また、25—ヒドロキシビタミンD₃結合樹脂によるバッチ式で行うこともできる。樹脂にGcグロブリンを吸着させ、洗浄後、酢酸緩衝液あるいはガニンジン液などで溶出させる。溶出液は、セントリコンなどを使用して緩衝液を置換、濃縮することができる。なお、25—ヒドロキシビタミンD₃は、25位が水酸化されているビタミンD₃であって、Gcグロブリンに対する特異的結合力が極めて高く、これを用いることによって血漿または血清中のGcグロブリンを高い純度で分離、精製することができる。また、血漿よりGcグロブリンを透析する方法が公知であり（例えば、特2005-508892）、本発明においては当該方法を利用することもできる。

また、本発明において利用できるGcグロブリンには、遺伝子組換え技術（例えば、特表平11—511962）を用いて人工的に製造されたGcグロブリン、すなわちGcグロブリンをコードする核酸を用いて適切な宿主細胞で組み換え的に発現させて得られるものも含まれる。Gcグロブリンのアミノ酸配列は公知であり、GenBank等のデータベースに登録されており、これらの配列情報を利用してすることができる。

本発明において利用できるβ_1ガラクトシダーゼは、いずれの生物由来のものであってもよく、あるいはβ_1ガラクトシダーゼをコードする核酸を用いて適切な宿主細胞で組み換え的に発現させて得られる組換え酵素でもよい。β_1ガラクトシダーゼは、粗精製形態、精製形態、固定化形態などの任意の形態を採ることが可能である。粗精製形態には、例えば細胞培養からの処理物（例えば、抽出物、凍結乾燥物など）が含まれる。また、市販のβ_1—ガラクトシダーゼ（例えばGrade III from Bovine L
iver (SIGMA) を利用することもできる。固定化形態とは、適当な固相に固定された状態を意味する。このような固相の材料としては、例えば、セルロース、ニトロセルロースなどのセルロース誘導体、セファロース、アガロース、金属、ガラス、セラミック、樹脂など（これらに限定されない）が挙げられる。固相の形状および材質は特に限定されるものではない。

[0038] 脱糖反応は、20 ~ 60℃、好ましくは35 ~ 42℃、より好ましくは37.5℃にて、0.5 ~ 5時間、好ましくは、0.5 ~ 2時間、Gcグロプリンにβ−ガラクトシダーゼを作用させることにより行う。反応pHは、pH5 ~ pH11、好ましくは中性域とする。脱糖反応のステップは、パッチ方式で行っても良いし、連続方式で行っても良い。

[0039] Gcグロプリンにおけるいずれのサブタイプにおいても、糖鎖の中心であるN−アセチルガラクトサミンにガラクトースが0−グリコシド結合してい共通の構造を有する。したがって、いずれのGcグロプリンサブタイプを用いたとしても、β−ガラクトシダーゼを作用させることによって、ガラクトース脱糖体を誘導することができる。以下、本発明において、当該ガラクトース脱糖体を「プレーGcMAF」と記載する。したがって、「プレーGcMAF」には、1fサブタイプに由来する−(SA)−GaINAc糖鎖構造を有するものの、1sサブタイプに由来する−(α−MAN)−GaINAc糖鎖構造を有するもの、および1または2サブタイプに由来する_GaINAc糖鎖構造を有するものが、材料として用いた血漿または血清中に含まれるサブタイプに応じて任意の組み合わせて含まれ得る。

[0040] 本発明において、プレーGcMAFは、Gcグロプリンサブタイプの種類に応じて、以下の構造を有する。

[0041] 1fサブタイプのGcグロプリンに由来するプレーGcMAFは、配列番号1で表されるアミノ酸配列を含み、かつ配列番号1で表されるアミノ酸配列における418または420番目のいずれかのスレオニンに、N−アセチルガラクトサミンが結合しており、このN−アセチルガラクトサミンに対してさらにシアル酸が結合している糖鎖構造を有する。
[0042] 1 つサブタイプのGcグロブリンに由来するブレGcMAFは、配列番号
2 で表されるアミノ酸配列を含み、かつ配列番号2 で表されるアミノ酸配列
における4 18 または4 20 番目のいずれかのスレオニンに、N—アセチルガラクトサミンが結合しており、このN—アセチルガラクトサミンに対して
さらにα—マンノースが結合している糖鎖構造を有する。

[0043] 2 サブタイプのGcグロブリンに由来するブレGcMAFは、配列番号3
で表されるアミノ酸配列を含み、かつ配列番号3 で表されるアミノ酸配列に
おける4 18 番目のスレオニンに、N—アセチルガラクトサミンが結合して
いる糖鎖構造を有する。

[0044] 本明細書において、配列番号1、2 および3 で表されるアミノ酸配列には
それぞれ、各アミノ酸配列に、1 〜数個のアミノ酸の欠失、置換、付加または
挿入を有し、かつGcグロブリンタンパク質の活性・機能を有するタンパク
質をコードするアミノ酸配列も含まれる。ただし、ここで各アミノ酸配列
において上記糖鎖構造を有する4 18 または4 20 番目のスレオニンは保存
されている。Gcグロブリンタンパク質の活性・機能」としては公知のもの
が挙げられ、ビタミンD3 と結合して、ビタミンD3 を目的の組織に運ぶキヤ
リアーランパク質としての機能や、細胞の分裂、形態変化および運動などの
調節に関するアクチンの重合を調節する機能（F—アクチンの脱重合促進とG
アクチンの再重合の阻止作用など）や、上記のとおりGcMAF へと変換さ
れマクロファージを活性化する機能などが挙げられる。各機能の検出および
測定方法は、公知の手法により行うことができる。「1 から数個」との範囲は
特には限定されないが、例えば、1 から10 個、より好ましくは1 から7 個、
さらに好ましくは1 から5 個、特に好ましくは1 から3 個、あるいは1 個ま
たは2 個である。

[0045] また、本明細書において、配列番号1、2 および3 で表されるアミノ酸配
列にはそれぞれ、各アミノ酸配列とBLAST（Basic Local
Alignment Search Tool at the National Center for Biological Information）
（米国国立生物学情報センターの基本ローカルアライメント検索ツール）等（例えば、デフォルトすなわち初期設定のパラメータ）を用いて計算したときに、90%、95%、99%、またはそれ以上の同一性を有するアミノ酸配列を含み、好ましくは当該アミノ酸配列からなり、かつGcグロプリンタンパク質の活性・機能を有するタンパク質をコードするアミノ酸配列も含まれる。ただし、ここで各アミノ酸配列において上記糖鎖構造を有する418または420番目のスレオニンは保存されている。

ここで、同一性」とは、2つのアミノ酸配列にギャップを導入して、またはギャップを導入しないで整列させた場合の、最適なアライメントにおいて、オーバーラップする全アミノ酸基に対する同一アミノ酸および類似アミノ酸残基の割合を意味する。同一性は、当業者に周知の方法、配列解析ソフトウェア等（例えばBLAST、FASTAなどの公知のアルゴリズム）を使用して求めることができる。

プレGcMAFは、材料中に複数のGcグロプリンサブタイプが含まれていたとしても、一律に一種類の酵素（βガラクトシダーゼ）のみを用いて製造することができ、サブタイプに応じて酵素の種類を変える必要がないために、迅速かつ大量に、また一方で患者に対して個別的に、プレGcMAFを製造することができる。

製造されたプレGcMAFは、さらなる精製工程に供しても良い。当該精製工程においては、プレGcMAFがGcグロプリンと同じ性質を持つことから、上記Gcグロプリンの精製に用いられる方法を適宜用いて行うことができる。

下記実施例にて詳しくするように、本発明のプレGcMAFは材料として用いるGcグロプリンサブタイプの種類に応じて、マクロファージを活性化する作用が相違する。ここで「マクロファージを活性化する作用」とは、マクロファージの食食能（特にFcレセプターを介する食食能）や活性酸素産生能および抗原提示作用を高める作用を意味する。なお、本明細書において、マクロファージの食食能をマクロファージの食食能」と記載する場合
合があるが、これらの用語は相互互換的に用いることができる。1つサブタイプのGcグロブリンに由来するプレGcMAFそれ自体では、GcMAFと異なりマクロファージを活性化する作用を有していない。1つサブタイプのGcグロブリンに由来するプレGcMAF、リンパ球、特にTリンパ球と接触させることによって、GcMAFへと変換されマクロファージを活性化する作用を得ることができる。実際、1つサブタイプのGcグロブリンに由来するプレGcMAFをリンパ球と接触させることによって、上清中にマクロファージを活性化する作用が得られる。あるいは、1つサブタイプのGcグロブリンに由来するプレGcMAFは患者生体内へ投与されることによって、患者生体内のリンパ球と接触して、GcMAFへと変換されマクロファージを活性化する作用を得ることができる。一方、1つサブタイプのGcグロブリンに由来するプレGcMAFおよび2サブタイプのGcグロブリンに由来するプレGcMAFでは、それ自体単独でマクロファージを活性化する作用を有し、その作用はリンパ球と接触させても保持される。

このようにして作製されたプレGcMAFは様々な疾患・障害を治療および予防するための医薬組成物の有効成分として利用することができる。

当該医薬組成物に含まれるプレGcMAFは、血漿または血清を材料として製造される。また、当該医薬組成物を投与される被験体と同一のGcグロブリンサブセットを含む血漿または血清を材料として製造することができる。さらに好ましくは、当該医薬組成物に含まれるプレGcMAFは、当該医薬組成物を投与される被験体自身の血漿または血清を材料として製造されたものである。被験体自身の血漿または血清を材料として利用することによって、製造されたプレGcMAFや当該血漿または血清に含まれるタンパク質および／またはその誘導体を、ウィルス感染症伝播、不規則抗体の産生、発熱・アナフィラキシーなどの問題を生じることなく、被験体に投与することができる。本発明において、「被験体」はヒトおよび非ヒト哺乳動物が含まれるが、好ましくはヒトである。

また、当該医薬組成物に含まれるプレGcMAFは、上記リンパ球等また
は当該細胞の培養液と接触させていても良し、上記リンパ球等または当該細胞の培養液と接触させることによって活性化された状態（すなわち、GcMAFへと変換された状態）であっても良い。

[0053]当該医薬組成物を用いて治療し得る疾患・障害としては、例えば、マクロファージの活性化や血管新生の阻害によって治療し得ることが公知である、または治療し得る可能性がある疾患や障害が挙げられ、創傷治癒、アレルギー疾患、自己免疫疾患、治療薬による副作用、癌、癌以外の血管新生疾患などが挙げられるが、これらに限定されない。癌」としては、黑色腫、転移、腺癌、肉腫、胸腺腫、リンパ腫、肺癌腫、結腸腫、腎臓腫瘍、非霍奇金リンパ腫、霍奇金リンパ腫、白血病、子宮腫、胸部腫瘍、前立腺腫、第性腫瘍、卵巣腫瘍、脾臓腫瘍、脳腫瘍、精巣腫瘍、骨腫瘍、筋腫瘍、胎盤の腫瘍、胃性腫瘍など（これらに限定されない）が挙げられる。

[0054]本発明の医薬組成物は、経口投与または非経口投与（例えば、静脈内投与、動脈内投与、注射による局所投与、腹腔または胸腔への投与、皮下投与、筋肉内投与、皮下投与、経皮吸収または直腸内投与など）によって投与することができる。

[0055]また、本発明の医薬組成物は、投与経路に応じて適当な剤形とすることができる。具体的には注射剤、懸濁剤、乳化剤、軟膏剤、クリーム剤、錠剤、カプセル剤、顆粒剤、散剤、丸剤、細粒剤、トローチ錠、直腸投与剤、油脂性噴霧剤、水溶性噴霧剤等の各種製剤形態に調製することができる。

[0056]これらの各種製剤は、通常用いられている賦形剤、増量剤、結合剤、浸潤剤、崩壊剤、表面活性剤、滑沢剤、分散剤、緩衝剤、保存剤、溶解補助剤、
防腐剤、着色料、香味剤、および安定化剤などを用いて常法により製造することができる。

[0057] 賦形剤としては、例えば、乳糖、果糖、ブドウ糖、コーヌスターチ、ソルビットおよび結晶セルロース、滅菌水、エタノール、グリセロール、生理食塩水、緩衝液などが、崩壊剤としては、例えば澱粉、アルギニ酸ナトリウム、ゼラチン、炭酸カルシウム、クエン酸カルシウム、デキストリン、炭酸マグネシウムおよび合成ケイ酸マグネシウムなどが、結合剤としては、例えばメチルセルロースまたはその塩、エチルセルロース、アラビアゴム、ゼラチン、ヒドロキシプロピルセルロースおよびポリビニルビロリドンなどが、滑沢剤としては、タルク、ステアリン酸マグネシウム、ポリエチレングリコールおよび硬化植物油などが、安定化剤としては、例えばアルギニン、ヒステジン、リジン、メチオニンなどのアミノ酸、ヒト血清アルブミン、ゼラチン、デキストラシン40、メチルセルロース、亜硫酸ナトリウム、メタ亜硫酸ナトリウムなどが、その他の添加剤としては、シロップ、ワセリン、グリセリカン、アセトノール、プロピレングリコール、クエン酸、塩化ナトリウム、亜硝酸ソーダおよびリン酸ナトリウムなどがそれぞれ挙げられる。

[0058] また本発明の医薬組成物は、通常用いられている手法、例えば除菌フィルターを通す等によって、無菌的に作製することができる。

[0059] 本発明の医薬組成物の投与量は、患者の年齢、体重、疾患の重篤度などの要因によって変化し得るが、プレGcMAFを、1回の投与につき体重1kgあたり0.4〜4000ng、好ましくは20〜2000ngの範囲から適宜選択される量を投与することができる。

[0060] 本発明の医薬組成物の効果は、in vivoの系であれば、当該医薬組成物の投与前後における疾患部位の観察、増悪、治癒などを評価することによって行うことができる。たとえば、創傷治癒効果については、医薬組成物の投与前後における創傷サイズおよび/またはケロイド形成を評価することによって行うことができる。本発明の医薬組成物の投与によって、創傷サイズおよび/またはケロイド形成が縮小していることが確認できる。また当該
医薬組成物の抗腫瘍効果については、医薬組成物の投与前後における皮膚塊の測定、X線などを用いた一般的な腫瘍サイズおよび/またはケロイド形成を評価することによって行うことができる。本発明の医薬組成物の投与によって、皮膚塊や腫瘍サイズおよび/またはケロイド形成が縮小していることが確認できる。さらに、糖尿病性網膜症においては、医薬組成物の投与前後における網膜病巣を診断・評価することによって行うことができる。本発明の医薬組成物の投与によって、網膜病巣の改善、進行の欠如などが確認できる。なお、本発明の医薬組成物の効果の確認は、GcMAF投与による効果確認において、通常用いられている方法によって行うことができる。

一方、in vitroの系では、プレGcMAFの効果は、マクロファージの活性化作用によって評価することができる。一般的に、GcMAFによるマクロファージの活性化作用は、マウス腹腔細胞を取り出し、無血清培地で予備培養を行い、付着細胞と非付着細胞に分け、その付着細胞にGcMAFを加えて3時間培養した細胞で食事活性を調べることによって確認することができる（Nagasawa H.ら, (2004) 上掲）。上記のとおり、1sサブタイプまたは2サブタイプのGcグロブリンに由来するプレGcMAFの場合は、プレGcMAF自体がマクロファージの活性化作用を有するために、上記の手法を用いてプレGcMAFの効果を評価することができる。一方、1fサブタイプのGcグロブリンに由来するプレGcMAFの場合は、プレGcMAF自体がマクロファージの活性化作用を有さないために、上記の手法を用いて評価することはできない。そこで、非付着細胞にプレGcMAFを加え2時間培養した後、当該培養液を付着細胞に加えて3時間培養した細胞で食事活性を調べることによって確認することができる。

本発明は、さらに本発明の医薬組成物を用いた上記疾患・障害の治療および予防方法を包含する。

本発明におけるプレGcMAFは、血清のGcグロブリンからガラクトースのみを外したGcグロブリンである。1sサブタイプまたは2サブタイプに由来する場合には、GcMAFと同様に利用することができ、1fサブタイプ
イブに由来するものであっても生体内環境では効率よく簡単にGcMAFへと変換しGcMAFと同様に利用することができる。このため、GcMAF同様、プレGcMAFを患者に投与することによって、マクロファージの活性化作用や血管新生阻害作用、さらに患者の抵抗性や修復力の増強が期待できる。

以下に実施例を示して本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものでない。

実施例

実施例1：精製Gcグロブリンを原料としたプレGcMAFの合成と分取（1）血清からのGcグロブリンの回収
1）f 1 fサブタイプのGcグロブリンを有するヒトより採血した血液20mlを、室温で30分静置後、4℃、10分間遠心分離（3000rpm）し、血清10.3mlを得た。

血清3.5mlにSTE緩衝液（pH7.4，Tris·HCl 6.05g，EDTA·2NA 0.56g，NaCl 8.77g，SDW 1000ml，Triton-100 1ml）を3.5ml加えて全量を7.0mlとし、これを準備した25(OH)VD3（徳島大学大学院ソシオテクノサイエンス研究部の坂研究室で合成）を結合したアフィニティカラム（10mm×80mm）に0.4ml/minで流した。さらに、STE緩衝液を90分間流した後、6Mのグアジン塩酸塩を2.0ml/minで流して、溶出したタンパク質含有溶液約20mlを回収した。回収液は、片側をクリップで留めた透析膜に注入して、反対側もクリップで留め、浮きをつけて5mLリン酸緩衝液（リン酸ナトリウム緩衝液（SPB））4L中に浮かべて透析を行った。透析開始から90分後、180分後、さらに270分後に透析液を交換した。3回目は一夜透析とした。

透析後、液を集めて、準備したヒトロキシバパタイトカラム（Bio-Rad Bio-ScaleTM Mini CHT Type III, 40μM Cartridge, Catalog#732_4332, L
0 T N O. B 0 1 2 4 0 9 B）に0.2 ml/minで流した。その後、5 mM リン酸緩衝液（SPB）を2.0 ml/minで流して洗浄し、ベー スラインが落ち着いたところで、200 mM リン酸緩衝液（SPB，pH 7.0）にないでグラジェントを行い、Gc グロプロリン含有溶液としてほぼ9 mlを回収した。これを、準備したcent ricon（MILLIPO RE，Lot NO. R0DA20931，30000 MVCO）に入れ、回収用チャップを付けて、アングルローターを取り付けた遠心器で10分間、遠心分離（3900G）して、精製Gc グロプロリン742.6 7 μ 9 / 3 0 0 μ Iを得た。

なお、1 s 1 s または22のサブタイプのGc グロプロリンを有するヒトか らも、上記と同様の方法を用いて、精製Gc グロプロリンを得ることができた。

(1) Gc グロプロリンからのプレGc MAF の合成と濃縮

精製Gc グロプロリンの25 μ g に、10 m U / μ I のβ—ガラクトシダーゼ（Grade III from Bovine Liver，SIG MA，Lot NO. 54H7025，G1875）25 μ I を加え、さらには100 mM SPB（pH 7.0）165 μ I を加えて全量200 μ I とした、37.5℃で1時間インキュベーションした。反応液を25（0 H）V D3 結合ビーズ（徳島大学大学院ソシオテクノサイエンス研究部の堀研究室で合成）1.0 g を加えた2.0 mlのエツベンチューブに移し、4℃にて1時間振とうした後、4℃、2分間遠心分離（13,000 rpm）し、上澄み液を除いた。沈殿物にSTE緩衝液0.5 mlを加えて60秒間振とうして、4℃、2分間遠心分離（13,000 rpm）し上澄み液を除いた。この操作を3回繰り返した。次に、溶出液として0.4 mlの6 M グアニジン塩酸塩を加え60秒間振とうし、2分間遠心分離（13,000 rpm）した。これを3回繰り返し、液をあわせてプレGc MAF 含有抽出液とし た。

得られたプレGc MAF 含有抽出液を、準備したmicrocon（M I
LLIPORE, Lot NO. R9DN95311, 10000 M
VCO) に入れ、回収用チャップを付けて、4 ℃にて 10 分間、遠心分離 (13,500 rpm) して、10 mM SPB で緩衝液置換を行い、20 分
後、のプレGcMAF精製物 (1 f 1 f GcX) を得て、以下の実施例に用い
た。

0071 実施例 2：プレGcMAF精製物 (1 f 1 f GcX) の物性検査

(1) プレGcMAF精製物 (1 f 1 f GcX) の SDS-PAGE (CB
B 染色) によるタンパク質の可視化、ヒト抗Gc グロブリンを用いたウエス
タンプロットおよび HPLC 解析

ビシンコンニ酸 (BCA) タンパク質測定キット (PIERCE, Re
agent A [Lot NO. HH106101, PROD # 2
3223], Reagent B [Lot NO. CE49183,
PROD # 23224]) でプレGcMAF精製物 (1 f 1 f GcX)
のタンパク質濃度を測定したところ、17. 1 μg/20 μl となった。

0072 また、SDS-PAGE のクマシープリリアントプルー (CBB) 染色像
でタンパク質の可視化を行ったところ、分子量 56 kDa 付近に 1 本の濃い
バンドがみられた (図 1)。

0073 このバンドは、ヒト抗Gc グロブリン抗体を用いたウエスタンプロットに
おいて陽性反応を示したことから、Gc グロブリン誘導体であることが確認
された (図 2)。

0074 また、プレGcMAF精製物 (1 f 1 f GcX) のタンパク質バンドが単
一バンドであったことから、HPLC によるタンパク質分析 (280 nm)
を行ったところ、保持時間 12. 554 min のシグマ社製のGc グロブリ
ンピークに一致した。

0075 (11) プレGcMAF精製物 (1 f 1 f GcX) の糖鎖構造を調べるため、目的
バンド (分子量 56 kDa 付近の濃いバンド) の PNA レクチンを用いたっ
エスタンプロッティングを行った結果、精製 Gc グロブリンは PNA レクチンで染まったが、プレ Gc MAF 精製物 (1f1 f GcX) は PNA レクチンでは染まらなかった（図 3-1）。また、目的バンドの HPA レクチンを用いたウエスタンプロッティングを行った結果、精製 Gc MAF（徳島大学大学院ソシオテクノサイエンス研究部の堀研究室で合成）は HPA レクチンで染まったが、プレ Gc MAF 精製物 (1f1 f GcX) の分子量 56kDa 付近のバンドは HPA レクチンでは染まらなかった（図 3-2）。

以上の結果より、Gc グロブリンは Gal-（SA）- GalNAc 糖鎖構造、また、Gc MAF は GalNAc 糖鎖構造であるが、プレ Gc MAF 精製物 (1f1 f GcX) の糖鎖構造はいずれにも属さないことが明らかとなった。

実施例 3-1：プレ Gc MAF 精製物 (1f1 f GcX) によるマクロファージ貪食活性への影響（in vitro）

プレ Gc MAF 精製物のマクロファージの貪食活性に及ぼす影響は以下的手順で評価した。

＜実験 1＞

8 週齢の ICR マウス（雌）の腹腔に PBS 10 ml を注入して腹腔内混合細胞を採取し、4℃、1,000 rpm で 15 分間遠心した。集めた細胞を RPMI 1640 培地で 1.0 X 10^6 細胞/ml に調節し、カバーラスを施したプレートに 5.0 x 10^5 細胞/穴 11 になるように 500 ml
Iずつ播種した。当該細胞にRPMI培地を500 µl加えて、37.5℃で1時間予備培養して、マクロファージをカバーグラスに定着させた。その後、上清を除き、付着したマクロファージ層を洗浄して、新しいRPMI培地を加えて37℃で15時間培養した。

この準備したマクロファージ層に、それぞれ10 ngのプレGcMAF精製物、10 ngの精製GcMAF（徳島大学大学院智慧学部の池研究室で合成）、または1 µgのLPS（シグマ社）を加えて、37℃、3時間培養した。続いて、マクロファージに、1gGをクートした0.5%SRBCを加えて90分間貪食させた後、マクロファージを固定、ギムザ染色した。その後、顕鏡して貪食されたSRBCをカウントして貪食指数（ingestion index）を算出し、マクロファージの貪食活性を評価した。

実験2</exp>

実験1の予備培養時の上清を回収し、回収した上清液約1mlに10 ngのプレGcMAF精製物を加えて、37℃、1時間培養した。その後、培養物を遠心分離して培地に含まれる非付着細胞を除き、この処理液を実験1と同様に準備したマクロファージ層に培養液として加えて、37℃、3時間培養した。続いて、マクロファージに、1gGをクートした0.5%SRBCを加えて90分間貪食させた後、細胞を固定、ギムザ染色した。その後、顕鏡した後、貪食されたSRBCをカウントして貪食指数（ingestion index）を算出し、マクロファージの貪食活性を評価した。

なお、「コントロール」としてはマウス腹腔から抽出した腹腔液の上清（上記実験1の予備培養時の上清に該当）を用いた。

プレGcMAF精製物（1f1fGcX）を用い、実験1の結果を図4_1に、実験2の結果を図4_2に示す。

実験1において、貪食指数の平均（n=3）は、コントロール群に対してGcMAF投与群では上昇したが、プレGcMAF精製物（1f1fGcX）投与群においては変化がなかった（図4_1）。コントロール群に対する有意差検定（t-test）を行った結果、GcMAF投与群はp=0.0040（p<0.01
LPS投与群はp=0.0017（p<0.01）と、それぞれ有意差が見られたが、プレGcMAF精製物（1f1fGcX）投与群はp=0.1595で有意差は見られなかった。

実験2において、マクロファージの平均貪食指数（n=3）はコントロール群に対して、腹腔非付着細胞との予備培養を行ったプレGcMAF精製物（1f1fGcX）の投与群は上昇した（図4—2）。コントロール群に対する有意差検定（ttest）を行った結果、プレGcMAF精製物（1f1fGcX）の投与群はp=0.023で有意差がみられた。プレGcMAF精製物（1f1fGcX）はマクロファージの貪食活性に直接的な影響を及ぼさないが、腹腔非付着細胞との予備培養を行ったときにはマクロファージの貪食活性を上昇させた。

なお、原料である1f1fタイプのGcグルブリンは、実験1および2のいずれにおいても、マクロファージ貪食活性を上昇させなかった（図4—3）。

以上の結果より、プレGcMAF精製物（1f1fGcX）は腹腔非付着細胞と共存することによって、すなわち、生体内環境において、GcMAF様のマクロファージ貪食活性化能を示すことが明らかとなった。

実施例3—2：プレGcMAF精製物（1s1sGcX）によるマクロファージの貪食活性への影響（invitro）

1s1sのサブタイプのGcグルブリンに由来するプレGcMAF精製物を、実施例1と同様の方法で作製し（以下、「プレGcMAF精製物（1s1sGcX）」と記載）、実施例3—1の実験1、実験2と同様の手順で、プレGcMAF精製物（1s1sGcX）がマクロファージの貪食活性に及ぼす影響を調べた。

結果を図5—1、ならびに図5—2に示す。

図5—1に示すとおり、実験1の結果、マクロファージの平均貪食指数（n=4）は、コントロール群に対してGcMAF投与群およびプレGcMAF精製物（1s1sGcX）投与群において上昇した。コントロール群に対する各群の有意差検定（ttest）を行った結果、GcMAF投与群はp=0.023
8 (p<0.05) 、プレGcMAF精製物 (1s1sGcX) 投与群は p=0.0463 (p<0.05) と、それぞれ有意差が見られた。また、実験2において、マクロファージの平均食食数 (n=4) はコントロール群に対してプレGcMAF精製物 (1s1sGcX) 投与群 (isisGcX) において上昇した。コントロール群に対する有意差検定 (t-test) を行った結果、プレGcMAF精製物 (1s1sGcX) 投与群 (isisGcX) は ρ=0.0319 (ρ<0.05) と、それぞれ有意差が見られた。

一方、図5-2に示すとおり、原料であるis1sタイプのGcグロブリンは、実験1および2のいずれにおいても、食食活性の上昇を示さなかった。

以上の結果より、プレGcMAF精製物 (isisGcX) はGcMAF様のマクロファージ食食活性化能を示すことが明らかとなった。また、プレGcMAF精製物 (isisGcX) のGcMAF様のマクロファージ食食活性化能は、胸腔非付着細胞と共存させることによって、すなわち、生体内環境においても低下しないことが明らかとなった。

実施例3-3:プレGcMAF精製物 (22GcX) によるマクロファージの食食活性への影響 (in vitro)

22のサブタイプのGcグロブリンに由来するプレGcMAF精製物を、実施例1と同様の方法で作製し（以下、「プレGcMAF精製物 (22GcX) 」と記載）、実施例3-1の実験1、実験2と同様の手順で、プレGcMAF精製物 (22GcX) がマクロファージの食食活性に及ぼす影響を調べた。

結果を図6-1、ならび図6-2に示す。

図6-1に示すとおり、実験1の結果、マクロファージの平均食食指数 (n=4) は、コントロール群に対してGcMAF投与群およびプレGcMAF精製物 (22GcX) 投与群において上昇した。コントロール群に対する各群の有意差検定 (t-test) を行った結果、GcMAF投与群は p=0.0214 (p<0.05) 、プレGcMAF精製物 (22GcX) 投与群は p=0.0319 (p<0.05) と、それぞれ有意差が見られた。また、実験2において、マクロファージ
の平均貪食数（n=4）はコントロール*群に対してプレGcMAF精製物（22GcX）投与群（22GcX*）において上昇した。コントロール*群に対する有意差検定（t-test）を行った結果、プレGcMAF精製物（22GcX）投与群（22GcX*）はp=0.0254（p<0.05）と有意差がみられた。

一方、図6—2に示すとおり、原料である22タイプのGcグロブリンは、実験1および2のいずれにおいても、貪食活性能の上昇を示さなかった。

以上の結果より、プレGcMAF精製物（22GcX）はGcMAF様のマクロファージ貪食活性化能を示すことが明らかとなった。また、プレGcMAF精製物（22GcX）のGcMAF様のマクロファージ貪食活性化能は、腹腔内付着細胞と共存させることによって、すなわち、生体内環境においても低下しないことが明らかとなった。

実施例4:プレGcMAF精製物（1f1fGcX）の血管新生阻害活性（in vivo）

プレGcMAF精製物がGcMAFと同様に血管新生阻害活性を示すかについて、鴨胚頸尿膜法（CAM法）によるin vivo血管新生阻害活性を調べた。

<実験>

孵卵0日目の鴨受精卵を孵卵器で37.6℃、4日間培養し、気室上部部と鴨卵側部の卵殻の2ケ所に維で穴をあけ、鴨卵部の穴から約4mmの卵白を吸引除去した。次いで気室上部の穴にシリコンスポイトをあてて吸引し、卵殻膜から卵黄のう胞を剥離した後、鴨卵側部の穴をオプサイトでシールした。次に、気室上部の穴の卵殻を一部除去して卵殻膜を露出させ、気室上部にステンレス製のキャップをかぶせて39℃で24時間培養した。培養後、滅菌尿膜（CAM）が2〜3mmになっていることを確認してシリコンリングをCAMの中心に置き、精製GcMAF（徳島大学大学院ソシオテクノサイエンス研究部の頑研究室で合成）およびプレGcMAF精製物（1f1fGcX）を投与して39℃で1日、次いで39.5℃で1日間培養した。培養後、卵殻を取り除いてイントラリボス約1mlをCAMに注
入し、C A M上に成長した毛細血管の数や大きさを目視にて判定し、阻害が
見られた鶏卵数を実験に使用した全体数で割り、血管新生阻害率を算出した。

[01 00] < 結果 >

100 ng Gc M A F の i η v i o血管新生阻害率は20%であり
、ポジティブコントロールの T X-1934 (徳島大学大学院ソシオテクノ
サイエンス研究部の塩研究室で合成)（阻害率30%）と比較してやや弱い
阻害活性を示した。

[01 01] 一方、同じ用量（100 ng）のプレGc M A F精製物（1f f G c X
）の阻害率は23%、10 ngのプレGc M A F精製物（1f f G c X
）では31%であり（コントロール群との間に有意差を示す（p < 0.05）
）, T X-1934（阻害率25%）よりもやや強い阻害活性を示した。

[01 02] この結果より、プレGc M A F精製物（1f f G c X）はGc M A Fに
比えてやや強い血管新生阻害活性を有することが示された。

[01 03] 実施例 5-1: 血清からのプレGc M A Fの簡易合成とその物性検査

血清から直接、プレGc M A F精製物の合成が可能か否かを調べるため、
準備した血清50 μ l (1f f サブタイプを有するヒトに由来する) に1
75 μ lの1 00 m M SP Bおよび10 m U/μ lのβ-ガラクトシダー
iz (Grade III from Bovine Liver, SIG
MA, Lot NO. 54 H 7025, G 1875) 25 μ lを加えて
37.5°Cにて1時間インキュベートした。得られた反応物を準備した25
(O H) V D 3結合ビーズ（徳島大学大学院ソシオテクノサイエンス研究部の
塩研究室で合成）1.0 gを入れた20 m lのエチベンチューブに移し、
4°Cにて1時間振とうした。4°Cにて2分間、遠心分離（13,000 r p
m）しご澄み液を除いた後、沈殿物をSTE緩衝液0.5 m lを用いて60
秒間振とうして洗浄し、さらに4°Cにて2分間遠心分離（13,000 r p
m）しご澄み液を除いた。この操作を3回繰り返した後、0.5 m lの5.
0 M 酢酸緩衝液を加え60秒間振盪し、Gc グロブリン誘導体を溶出し、
2分間遠心分離（13, 000 rpm）し、溶出液を取り出す。この操作を3回繰り返し、溶出液をあわせて、microcon（MILLIPORE, LOT NO. R9DN95311, 10000 M VCO）を用いて10mM SPB緩衝液で置換し、プレGcMAFの粗精製物（2）21.64μg/29μlを得た。

プレGcMAFの粗精製物（2）のSDS—PAGE（CBB染色）によるタンパク質の可視化では、計3つのバンドが見られた。ヒト抗Gcグロブリンを用いたウェスタンプロットを行った結果、Gcグロブリンに相当する、最も濃いバンド（分子量56kDa付近）のみに陽性反応が認められた。その他の2つバンドは陽性反応を示さなかった。

CBB染色の結果よりWindows用汎用画像処理パッケージWinroofを用いて目的バンドの染色濃度を1.0としたとき、それぞれのバンドの染色濃度・バンド面積を測定し、目的バンド値/全バンド値×100%を目的バンドの純度として求めた結果を表1に示す。目的バンドの純度は66.11%であった。

[表1]

<table>
<thead>
<tr>
<th>項目番号</th>
<th>濃度</th>
<th>面積</th>
<th>濃度×面積</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0000</td>
<td>18096.48</td>
<td>18096.48</td>
</tr>
<tr>
<td>2</td>
<td>0.6084</td>
<td>14264.01</td>
<td>8678.22</td>
</tr>
<tr>
<td>3</td>
<td>0.3152</td>
<td>1904.48</td>
<td>600.29</td>
</tr>
</tbody>
</table>

目的バンドの純度=18096.48/(18096.48+8678.22+600.29)

血清から簡易法により得られた粗精製物（2）にはプレGcMAFが含まれるが、夾雑物として血清由来のタンパク質も含まれる。

実施例5—2：プレGcMAF粗精製物（2）のPNAレクチン、HPAレクチンを用いたウェスタンプロッティング

陽性反応を示すバンドでのPNAレクチン、HPAレクチンを用いたウェスタンプロットを行なった結果、上記実施例2と同様に、GcグロブリンおよびGcMAFに該当する染色バンドが見られなかった。
また、1s1sサブタイプまたは22サブタイプを有するヒトの血清から
簡易法により得られた粗精製物を用いて、同様にウエスタンブロットテ
イニングを行った結果、1s1sサブタイプについてはGcグロプリンおよび
GcMAFに該当する染色バンドが見られなかった。22のサブタイプでは
PNAレクチンを用いたウエスタンブロットを行なった結果、Gcグロプリン
に該当する染色バンドが見られなかった。

この結果は、1s1sサブタイプまたは22サブタイプを有するヒトの血
清から簡易法により得られた粗精製物にパンブレGcMAFが含まれることを
示唆する。

実施例6:パンブレGcMAF製造例とその物性検査

I. 血清からのパンブレGcMAF合成とパンブレGcMAFの精製

準備した血清1. Oml（1f1fサブタイプを有するヒトに由来する）
にSTE緩衝液1. Omlおよび10mU/μlのβ-ガラクトシダーゼ（
GradeⅢfromBovineLiver,SIGMA,
LotNO.54H7025,G1875）150从1加えて37
℃にて1時間インキュベートした。

II. 反応液に10mlのSTE緩衝液を加えて、準備した25(OH)VD3
結合ビーズ（徳島大学大学院ソシオテクノサイエンス研究部の堀研究室で合
成）のアフィニティカラム（10mmX80mm）に0.4ml/minで
流した。さらに、STE緩衝液を5分間流した後、6Mのグァニジンを加え
たSTE緩衝液（pH7.4）を2. Oml/minで流して、溶出してく
るGcグロプリン誘導体約25mlを回収した。回収液は、片側をクリッ
プで留めた透析膜に移して、反対側もクリップで留め、浮きをつけて5mm
リン酸緩衝液（SPB）4Lの中に浮かべて透析を行った。透析開始から9
0分後、180分後および270分後に透析液を変えて、3回目は一夜透析
とする。

III. ヒドロキシアパタイトカラム処理での二次精製とその物性検査

試薬などの混入物を除くため、透析後の液を集め、準備したヒドロキシア
パタイトカラム（BioRad Bio-ScaleTM Mini CH T Type III, 40μM Cartridge, Catalog #732-4332, Lot NO. B012409 B）に0.2 m l / m lでサンプルを流した。その後、5mM SPB緩衝液を2.0 m 1/ minで流して洗浄し、ベースラインが落ち着いたところで、200m M SPB緩衝液（pH 7.4）につないでグラジェントを行った。Gcグロブリンのほぼ9mlを回収した。これを、準備したcentricon（MILLIPORE, Lot NO. R0DA20931, 3000 M VCO）にサンプルを入れ、回収用チャップを付けて、アングルローターを取り付けた遠心器で10分間、遠心分離（3990G）して、200μ lの最終精製物を得た。このタンパク質濃度はBCA法で200.6μ g / 200μ lであった。

[0113] 最終精製物はSDSーPAGE（CBB染色）によるタンパク質の可視化で単一のバンドであることが確認できた。ヒト抗グロブリンによるウエスタンプロットでそのバンドは陽性反応を示した。

[0114] 実施例7：LLC（Lewis lung carcinoma eel is）肺転移マウスにおけるプレGcMAF精製物（1f1fGcX）の腫瘍生の制御

5週齢のC57BL/6マウスを最低7日間飼育させたのち、2x10⁵個のLLCを尾静脈から注入した。7日後のマウスを無処置群（対照群）と陽性対照群（GcMAFの4ng / kg /日投与）および治療群（プレGcMAF精製物（1千1千G0先）の0.04μ g / kg /日および0.4从g / kg /日投与の2群）の4群に無作為に分けた。薬剤は10日間i. p. 投与した後、11日目にマウスを屠殺し、肺に形成された腫瘍結節の数（全数および2mm未満と2mm以上の大きさの数）を集計し、プレGcMAF精製物による腫瘍生の抑制効果を調べた。

[0115] 結果を図7に示す。

[0116] 各群（n = 3または4）での肺に形成された腫瘍結節の数（平均値土SE
M）は、対照群に対して治療群（上記実施例1で製造したプレG c M A F精製物（1 f 1 f G c X）を投与された2群）において大きく減少した。当該腫瘍結節数の減少について、Bonferroniの多重比較検定を行った結果、治療群は対照群に対して有意差を示した（" p < 0 . 0 5 "）。したがって、プレG c M A F精製物（1 f 1 f G c X）を0 . 0 4 μ g / k gまたは0 . 4 μ g / k gで投与することによって、有意な抗がん活性を示すことが明らかとなった。

[01 17] さらに、図7に示すとおり、治療群においては2 m m以上の大きさまで成長した腫瘍結節の数が、プレG c M A F精製物（1 f 1 f G c X）の用量に依存して減少しており、プレG c M A F精製物（1 f 1 f G c X）投与により、腫瘍結節の成長が抑制されることが観察された。通常、腫瘍は3 m m3（腫瘍径約2 m m）以上の大きさまで成長すると、腫瘍中心部の酸素濃度が低下するため血管新生が誘導される。治療群で観察される腫瘍結節の成長抑制は、プレG c M A F精製物（1 f 1 f G c X）が腫瘍組織での血管新生を抑制し、腫瘍の生育を阻害することを示唆する。また、治療群においては、2 m m未満の腫瘍結節数の減少が観察されたが、これは血管から肺組織に一次着床した癌細胞が、着床した腫瘍からさらに二次転移することが抑制されていることを示唆する。

[01 18] 実施例8 : LLC（L e w i s l u n g c a r c i n o m a e e l l i s）肺転移マウスにおけるタイプ別のプレG c M A F精製物による腫瘍生育の制御

5週齢のC57BL/6マウスを最低7日間飼育させたのち、2 x 10^5個のLLCを尾静脈から注入した。7日後にマウスを、無処置群（対照群）および治療群（1 f 1 f G c X、1 s 1 s G c Xまたは22G c X投与群、各々0 . 4 μ g / k gの10日間i . p . 投与（各プレG c M A F精製物は上記実施例1、3_2、3_3で製造したもの））の4群に無作為に分けた。薬剤は10日間i . p . 投与した後、11日日にマウスを屠殺し、肺に形成された腫瘍結節の数（全数および2 m m未満と2 m m以上の大きさの数）
を集計し、各プレGcMAF精製物の投与による腫瘍育成の抑制効果を調べた。

[0119] 結果を図8に示す。各群（n = 3 〜 4）の肺に形成された平均腫瘍結節数のSEMとして示す。

[0120] 治療群の平均腫瘍結節数は無処置群に対して大きく減少する傾向を示し、
治療群の対照群に対するBonferroniの多重比較検定を行った結果、
プレGcMAF精製物（1f1fGcX）、プレGcMAF精製物（1s1sGcX）およびプレGcMAF精製物（22GcX）は有意な腫瘍結節数の減少を示した（* * p < 0.001）。これは上記実施例1〜3と
3に示した、各プレGcMAF精製物のマクロファージ活性化能の結果と同様の傾向を示す。

[0121] また、2mm以上の腫瘍結節に目を向けると、プレGcMAF精製物では
肺がん無処置群より少なく、プレGcMAF精製物（1f1fGcX）およびプレGcMAF精製物（1s1sGcX）では個数0であり、プレGcMAF精製物（22GcX）では個数1となった。これらの結果は、これらの
プレGcMAF精製物（1f1fGcX、1s1sGcX、22GcX）が腫瘍組織での血管新生を抑制し、腫瘍の生育を阻害することを示唆する。

産業上の利用可能性

[0122] 本発明により、Gcグロブリンのサブタイプに関係なく、容易に製造する
ことができ、かつGcMAFとして利用可能なGcグロブリンガラクトース
脱糖体を提供することができる。このため、GcMAF同様、Gcグロブリ
ンガラクトース脱糖体を患者に投与することによって、マクロファージの活
性化作用や血管新生阻害作用、さらに患者の抵抗性や修復力の増強など様々
な疾患や障害を治療又は予防するために利用することができる。

[0123] 本公報で引用した全ての刊行物、特許および特許出願をそのまま参考と
して本公報にとり入れるものとする。
請求の範囲

[請求項1] 血漿または血清に由来するGcグロブリンとβ_ガラクトシダーゼを反応させて、該Gcグロブリンのガラクトース脱糖体を製造する方法。

[請求項2] Gcグロブリンが血漿または血清より単離または粗精製されたものである、請求項1記載の方法。

[請求項3] さらに、製造されたガラクトース脱糖体をリンパ球またはリンパ球の培養上清と接触させるステップを含む、請求項1または2記載の方法。

[請求項4] 請求項1～3のいずれか1項記載の方法によって製造された、Gcグロブリンのガラクトース脱糖体。

[請求項5] 以下の (i)～(iv) ：

(i) 請求項4記載のGcグロブリンのガラクトース脱糖体；

(ii) 配列番号1で表されるアミノ酸配列を含み、かつ該配列番号1で表されるアミノ酸配列における418または420番目のいずれかのスレオニンに、N―アセチルガラクトサミンが結合しており、このN―アセチルガラクトサミンに対してさらにシアル酸が結合している糖鎖構造を有する、Gcグロブリンのガラクトース脱糖体；

(iii) 配列番号2で表されるアミノ酸配列を含み、かつ該配列番号2で表されるアミノ酸配列における418または420番目のいずれかのスレオニンに、N―アセチルガラクトサミンが結合しており、このN―アセチルガラクトサミンに対してさらにα―マンノースが結合している糖鎖構造を有する、Gcグロブリンのガラクトース脱糖体；および

(iv) 配列番号3で表されるアミノ酸配列を含み、かつ該配列番号3で表されるアミノ酸配列における418番目のスレオニンに、N―アセチルガラクトサミンが結合している糖鎖構造を有する、Gcグロブリンのガラクトース脱糖体。
からなる群より選択される、または複数のGcグロブリンのガラクトース脱糖体、を含む、マクロファージを活性化するための医薬組成物。

[請求項6]
以下の(i)～(iv):
(i) 請求項4記載のGcグロブリンのガラクトース脱糖体；
(ii) 配列番号1で表されるアミノ酸配列を含み、かつ該配列番号1で表されるアミノ酸配列における418または420番目のいずれかのスレオニンに、N－アセチルガラクトサミンが結合しており、このN－アセチルガラクトサミンに対してさらにシアル酸が結合している糖鎖構造を有する、Gcグロブリンのガラクトース脱糖体；
(iii) 配列番号2で表されるアミノ酸配列を含み、かつ該配列番号2で表されるアミノ酸配列における418または420番目のいずれかのスレオニンに、N－アセチルガラクトサミンが結合しており、このN－アセチルガラクトサミンに対してさらにα－マンノースが結合している糖鎖構造を有する、Gcグロブリンのガラクトース脱糖体；および
(iv) 配列番号3で表されるアミノ酸配列を含み、かつ該配列番号3で表されるアミノ酸配列における418番目のスレオニンに、N－アセチルガラクトサミンが結合している糖鎖構造を有する、Gcグロブリンのガラクトース脱糖体、からなる群より選択される、または複数のGcグロブリンのガラクトース脱糖体、を含む、血管新生を阻害するための医薬組成物。

[請求項7]
以下の(i)～(iv):
(i) 請求項4記載のGcグロブリンのガラクトース脱糖体；
(ii) 配列番号1で表されるアミノ酸配列を含み、かつ該配列番号1で表されるアミノ酸配列における418または420番目のいずれかのスレオニンに、N－アセチルガラクトサミンが結合しており、このN－アセチルガラクトサミンに対してさらにシアル酸が結合している
糖鎖構造を有する、Gcグロブリンのガラクトース脱糖体；
(iii) 配列番号2で表されるアミノ酸配列を含み、かつ該配列番号2で表されるアミノ酸配列における418または420番目のいずれかのスレオニンに、N－アセチルガラクトサミンが結合しており、このN－アセチルガラクトサミンに対してさらにα－マンノースが結合している糖鎖構造を有する、Gcグロブリンのガラクトース脱糖体；
および
(iv) 配列番号3で表されるアミノ酸配列を含み、かつ該配列番号3で表されるアミノ酸配列における418番目のスレオニンに、N－アセチルガラクトサミンが結合している糖鎖構造を有する、Gcグロブリンのガラクトース脱糖体、からなる群より選択される、または複数のGcグロブリンのガラクトース脱糖体、を含む、癌を治療するための医薬組成物。

[請求項8] 請求項5～7のいずれか1項記載の医薬組成物であって、Gcグロブリンのガラクトース脱糖体が該医薬組成物を投与される被験体の血漿または血清に由来するGcグロブリンを材料として製造されたものである、上記医薬組成物。

[請求項9] 癌を治療する方法であって、以下の(i)～(iv)：
(i) 請求項4記載のGcグロブリンのガラクトース脱糖体；
(ii) 配列番号1で表されるアミノ酸配列を含み、かつ該配列番号1で表されるアミノ酸配列における418または420番目のいずれかのスレオニンに、N－アセチルガラクトサミンが結合しており、このN－アセチルガラクトサミンに対してさらにシアル酸が結合している糖鎖構造を有する、Gcグロブリンのガラクトース脱糖体；
(iii) 配列番号2で表されるアミノ酸配列を含み、かつ該配列番号2で表されるアミノ酸配列における418または420番目のいずれかのスレオニンに、N－アセチルガラクトサミンが結合しており、このN－アセチルガラクトサミンに対してさらにα－マンノースが結合
ている糖鎖構造を有する、GCグロブリンのガラクトース脱糖体；
および
(iv) 配列番号3で表されるアミノ酸配列を含み、かつ該配列番号3
de表されるアミノ酸配列における418番目のスレオニンに、N→ア
セチルガラクトサミンが結合している糖鎖構造を有する、GCグロブ
リンのガラクトース脱糖体。
からなる群より選択される、または複数のGCグロブリンのガラク
トース脱糖体、を癌患者に投与することを含む、上記方法。
[請求項10] GCグロブリンのガラクトース脱糖体が、該ガラクトース脱糖体を
投与される癌患者の血漿または血清に由来するGCグロブリンを材料
として製造されたものである、請求項9記載の方法。
[請求項11] 癌患者における癌の治療に使用するための、以下の（i）～（iv）
:（i）請求項4記載のGCグロブリンのガラクトース脱糖体；
(ii) 配列番号1で表されるアミノ酸配列を含み、かつ該配列番号1
de表されるアミノ酸配列における418または420番目のいずれか
のスレオニンに、N→アセチルガラクトサミンが結合しており、この
N→アセチルガラクトサミンに対してさらにシアル酸が結合している
糖鎖構造を有する、GCグロブリンのガラクトース脱糖体；
(iii) 配列番号2で表されるアミノ酸配列を含み、かつ該配列番号2
de表されるアミノ酸配列における418または420番目のいずれか
のスレオニンに、N→アセチルガラクトサミンが結合しており、こ
のN→アセチルガラクトサミンに対してさらにα-マンノースが結合
している糖鎖構造を有する、GCグロブリンのガラクトース脱糖体；
および
(iv) 配列番号3で表されるアミノ酸配列を含み、かつ該配列番号3
de表されるアミノ酸配列における418番目のスレオニンに、N→ア
セチルガラクトサミンが結合している糖鎖構造を有する、GCグロブ
リンのガラクトース脱糖体、
からなる群より選択される、一または複数のＧｃグロブリンのガラクトース脱糖体。

[請求項12] 請求項11記載のＧｃグロブリンのガラクトース脱糖体であって、
該ガラクトース脱糖体が該ガラクトース脱糖体を投与される癌患者の
血漿または血清に由来するＧｃグロブリンを材料として製造されたものである、上記Ｇｃグロブリンのガラクトース脱糖体。

[請求項13] 配列番号2で表されるアミノ酸配列を含み、かつ該配列番号2で表されるアミノ酸配列における418または420番目のいずれかのスレオニンに、Ｎ—アセチルガラクトサミンが結合しており、このＮ—アセチルガラクトサミンに対してさらにα—マンノースが結合している糖鎖構造を有する、Ｇｃグロブリンのガラクトース脱糖体；または

配列番号3で表されるアミノ酸配列を含み、かつ該配列番号3で表されるアミノ酸配列における418番目のスレオニンに、Ｎ—アセチルガラクトサミンが結合している糖鎖構造を有する、Ｇｃグロブリンのガラクトース脱糖体。
GC1 allele

NH2-
LERGRDYKENKVCVEFSHGLG 20
KEDFTSLSLVLYSRKFPSGT 40
FEQVSQLKEVVSLETACEA 60
EGADPDCYDTRTSALSAKSC 80
ESNSPPFVHPGTAECCTKEG 100
LERKLCMAALKHQPEFPTY 120
VEPTNDEICEAFRKPDKPKEYA 140
NQFMWEYSTNYBAPLSLLV 160
SYTKYLSMVGSCTSAAPT 180
VCFLKERQLKLHSLLTLTLS 200
NRVCSQYAAEGKSRLSNL 220
IKLAQKVPTADLEDVLPLAE 240
DITNILSKCSSASEDCMAK 260
ELPEHTVKLCDNLSKNSKF 280
EDCCQEKTMADVCTYFMP 300
AAQLPELPDVRLPTNKDVCD 320
PGNTKVMKYTFELSRRHSL 340
PEVFLSAKLERLKLSLGEC 360
DVEDSTTCAFNAKGPLLKEL 380
SSFIDKQSELADYSENTTF 400
EYKKLAEIKLAKLPEATPT 420
ELAKLVNKRRDFSANCCSIN 440
SPPLYCSEIDAEKLNIL 458
-COOH
GC*1S allele
NH2-
LERGRDYEKNVCKEFSHGLG 20
KEDFTSLSLVLYSRKFPSCFT 40
FEQVSQLVKKEVSLTEACCA 60
EGAPDCYDTRTSLSAKSCY 80
ESNSPPVPVHPGTAACCCTKEG 100
LERKLCMAALKHPGEFPTY 120
VEPTNDCEICEARKDPIKEYARY 140
NQFMYWEYSTNYQAPLSLLV 160
SYTKSYLMVSCYSCCTSAASP 180
VCFLKERLQLKHLSLLTTLK 200
NRVCWSYAAYGKSSRLSNL 220
IKLAQKVPATLEDVLPLAE 240
DITNPSKCCSESASEDCMAK 260
ELPEHTVKLCDLSTKNKSF 280
EDCCQEKAMDFVFVCTYPFMP 300
AAQLPELDPVRLPTNKVDVCD 320
PGNTKVMKYTFELSRTHL 340
PEVFLSKVLEPLKSLGEC 360
DVEDSTTCTFNKGGPGLKKE 380
SSFIDKQGELCADYSENTFT 400
EYKKKLAERLKAKLPEATPT 420
ELAKLYNRSDKFNASNCCSIN 440
SAPLYCDEIDAELKNI 458
-COOH
[図11]

GC*2 allele

NH2-
LERGRDYEKNVCKEFSHGL 20
KEDFTSLSLVLYSRKPPSGET 40
FBQYSQLVKVVVSLTEACCA 60
BGADPDCYDTRTSALSASKC 80
ESNSPPFVHPGTAECCTKEG 100
LERKLCMAALKHPSEQFPTY 120
VEPTNDEICEAFRKPKEYA 140
NQFWMEYSTNYQAPLSSLV 160
SYTKSLYSMVGSCCTASAPT 180
VCFLKERQLKHLSSLTLTS 200
NRVCSQYAAYGEEKRSLSNL 220
IKLAQKVPTADLDVPLAE 240
DITNILSKCCESAAEDCMAK 260
QLPHTVKLCDNLSTKNSKF 280
EDCCQETADMVFVCYFMP 300
AAQLPELPDVELPTNKDVCD 320
PGNTKVMDKYTFELSRRTHL 340
PEVFLSKVLEPTKLSLGEC 360
DVEDSTTCFNAGPLLKDL 380
SSFDKGNELCADYSENTFT 400
EYKKKLAERLKAKLPDATPK 420
ELAKLVMRSDFASNCCSIN 440
SPPLYCINSEINAELKNIL 458
-COOH
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

C12P 1/02 (2006.01), A 61K 38/16 (2006.01), A 61P 35/00 (2006.01), C 07K 1/47 (2006.01)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

C 12 P 21/02, A 61 K 38 /16, A 61 P 35 /00, C 07 K 1/47

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Jitsuyo Shihan Koho 1922-1996
Kokai Jitsuyo Shihan Koho 1971-2011
Toroku Jitsuyo Shihan Koho 1994-2011

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

CA/B1 CS1 S/MDLINE (STN), WPI, JSTplus, JMEDplus, JST 758 dredame, DDBJ, GeneSeq

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>JP 06 503716 A (Nobuto YAMAMOTO), 28 April 1994 (28.04.1994), claims: page 4, lower right column, line 24 to page 5, upper left column, line 8 to 11; example 1</td>
<td>1-13</td>
</tr>
<tr>
<td>X</td>
<td>JP 06 510908 A (Nobuto YAMAMOTO), 8 December 1994 (08.12.1994), claims: page 5, upper left column, line 9 to 11; example 1</td>
<td>1-13</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:

A** document defining the general state of the art which is not considered to be of particular relevance

E earlier application or patent but published on or after the international filing date

L** document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another invention or other special reason (as specified)

O** document relating to an oral disclosure, use, exhibition or other means of publication to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

& document member of the same patent family

Date of the actual completion of the international search 29 September 2011 (29.09.11)

Date of mailing of the international search report 11 October 2011 (11.10.11)

Authorized officer

Facsimile No.

Telephone No.

Form PCT/ISA/210 (second sheet) (July 2009)
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

Form PCT/ISA/210 (continuation of second sheet) (July 2009)
JP 06- 503716 A 1994. 04. 28
us 5177002 A
us 5326749 A
us 5177001 A
EP 0546096 A
EP 0607186 A
WO 1992/ 004459 Al
WO 1993/ 007288 Al
DE 69128535 T
DE 69128535 D
DE 69220375 C
DE 69220375 T
CA 2092720 A
ES 2111002 T
AT 0161580 T
AU 8654191 A
AU 2594692 A
CA 2119773 C
CA 2092720 Al

JP 06- 510908 A 1994. 12. 08
US 5177001 A
US 5177002 A
US 5326749 A
EP 0607186 A
EP 0546096 A
WO 1993/ 007288 Al
WO 1992/ 004459 Al
DE 69220375 T
DE 69220375 C
DE 69128535 T
DE 69128535 D
AU 2594692 A
CA 2119773 C
ES 2111002 T
AT 0161580 T
AU 8654191 A
CA 2092720 A
CA 2092720 Al

US 2006/ 0014143 Al 2006. 01. 19 (Family: none)
国際調査報告

A. 発明の属する分野の分類（国際特許分類（IPC））

| IntCl. | C12P21/02 (2006. 01) i, A61K38/16 (2006. 01) i, A61P35/00 (2006. 01) i, C07K14/47 (2006. 01) i |

B. 調査を行った分野

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）

- CA/BIOSIS/MEDLINE (STN), WPI, JSTPlus/JIEDPlus/JST7580 (jDreamll), GenBank/EMBL/DBJ/GeneSeq

C. 関連すると認められる文献

<table>
<thead>
<tr>
<th>引用文献のカテゴリ *</th>
<th>引用文献名及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求項の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>JP 06-5037 16 A (山本 信人) 1994. 04. 28. 請求の範囲、第4頁右下欄第24行～第5頁左上欄第4行、第5頁左上欄第81行、実施例1</td>
<td>1 - 13</td>
</tr>
<tr>
<td>X</td>
<td>JP 06-5 10008 A (山本 信人) 1994. 12. 08. 請求の範囲、第5頁左上欄第91行、実施例1</td>
<td>1 - 13</td>
</tr>
<tr>
<td>P, X</td>
<td>UTO, Yoshihiro et al., Effect of the Go-derived Macrophage-activating Factor Precursor (preGcMAF) on Phagocytosis</td>
<td>1 - 13</td>
</tr>
</tbody>
</table>

* 引用文献のカテゴリ

- I A 特に関連のある文献ではなく、一般的な技術水準を示すもの
- I E 国際出願日以前の出願であるが、国際出願日後に公表されたもの
- I F 優先権主張に関連する文献又は他の文献の発行日若しくは他の特別な理由を理由に引用する文献（理由を付す）
- I B 口頭による開示、使用、展示等に言及する文献
- I P 国際出願日以前で、かつ優先権の主張の基礎となる出願の日以後に公表された文献

国際調査を完了した日

29. 09. 2011

国際調査報告の発送日

11. 10. 2011

特許庁審査庁（権限のある職員）

小倉 新

電話番号 03－3581－1101 内線 3448
国際調査報告

国際出願番号 PCT/JP2011/070048

C (続き) 関連すると認められる文献

<table>
<thead>
<tr>
<th>引用文献名及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する求釣項の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 2006/00 14143 Al (YAMAMOTO, Nobuto) 2006. 01. 19</td>
<td>1 - 13</td>
</tr>
<tr>
<td>YAMAMOTO, Nobuto and KUMASHIRO, Ryunosuke, Converson ion of vitamin D3 binding protein (group-specific component) to a macrophage act ivating factor by the stepwise action of beta-galactosidase of B cells and sia l dase of T cells, J. Immunol., 1993, Vol. 151, No. 5, p. 2794-2802</td>
<td>1 - 13</td>
</tr>
</tbody>
</table>

様式 PCT/ISA/210（第2ページの続き）（2009年7月）
<table>
<thead>
<tr>
<th>国際調査報告</th>
<th>パテントファミリーに関する情報</th>
<th>国際出願番号 PCT / JP 2011/ 070048</th>
</tr>
</thead>
<tbody>
<tr>
<td>JP 06-5037 16 A</td>
<td>1994. 04. 28</td>
<td>US 5177002 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5326749 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 517700 1 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0546096 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0607 186 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>wo 1992/004459 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>wo 1993/007288 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69128535 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69128535 D</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69220375 C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69220375 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2092720 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2111002 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 0161580 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 8654 191 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2594692 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2119773 C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2092720 AI</td>
</tr>
<tr>
<td>JP 06-5 10908 A</td>
<td>1994. 12. 08</td>
<td>US 517700 1 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5177002 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5326749 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0607 186 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0546096 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>wo 1993/007288 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>wo 1992/004459 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69220375 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69220375 C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69128535 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69128535 D</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2594692 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2119773 C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2111002 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 0161580 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 8654 191 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2092720 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2092720 AI</td>
</tr>
<tr>
<td>us 2006/00 14143 AI</td>
<td>2006. 01. 19</td>
<td>ファミリーなし</td>
</tr>
</tbody>
</table>

様式 PCT / ISA / 210 (パテントファミリー用別紙) (2009年7月)