
USOO8363833B1

(12) United States Patent (10) Patent No.: US 8,363,833 B1
Streicher et al. (45) Date of Patent: Jan. 29, 2013

(54) FPGA CONFIGURATION BITSTREAM 22. R 1858 E.
4 w rimberger

ENCRYPTION USING MODIFIEDKEY 7,299,203 B1 * 1 1/2007 Nelson 705/28
7,325, 141 B2 1/2008 Chow et al.

(75) Inventors: Keone Streicher, San Ramon, CA (US); 7,373,668 B1 5/2008 Trimberger
David Jefferson, Morgan Hill, CA (US); 7,606,362 B1 10/2009 Streicher et al.

8, 130,944 B2 * 3/2012 Stork et al. 380/28
t E. N. W SE GB 2002fO114455 A1 8, 2002 Asahi et al. artin Langhammer, Wiltshire (GB) 2002fO1991.1.0 A1 12/2002 Kean

2003/0020512 A1 1/2003 Mantey et al.
(73) Assignee: Altera Corporation, San Jose, CA (US) 2004/O186991 A1 9/2004 Kobayashi et al.

2005/O113070 A1 5/2005 Okabe
(*) Notice: Subject to any disclaimer, the term of this 2005/0289355 A1 12/2005 Kitariev et al.

patent is extended or adjusted under 35 OTHER PUBLICATIONS
U.S.C. 154(b) by 0 days.

Office Action from U.S. Appl. No. 1 1/042,019 dated Oct. 21, 2008.
(21) Appl. No.: 13/155,843 Office Action from U.S. Appl. No. 1 1/042.937 dated Nov. 28, 2008.

y x- - - 9 Office Action from U.S. Appl. No. 1 1/042,032 dated Jul. 2, 2008.
1-1. Office Action from U.S. Appl. No. 1 1/435,416 dated Sep. 19, 2007.

(22) Filed: Jun. 8, 2011 Office Action from U.S. Appl. No. 1 1/435,416 dated Mar. 26, 2008.

Related U.S. Application Data (Continued)

(60) Continuation of application No. 12/ 559,287, filed O Primary Examiner — William Powers
Sep. 14, 2009, which is a division of application No. of 2200 N (74) Attorney, Agent, or Firm Ropes & Gray LLP
7,606,362. (57) ABSTRACT

51) Int. Cl. 1rcuits, methods, and apparatus that prevent detection an Circui hod d app hat p d d
H04L 9/00 (2006.01) erasure of a configuration bitstream or other data for an FPGA

(52) U.S. Cl. ... 380/44 or other device. An exemplary embodiment of the present
(58) Field of Classification Search 380/44 invention masks a user key in order to prevent its detection. In

See application file for complete search history. a specific embodiment, the user key is masked by Software
that performs a function on it a first number of times. The

56 References Cited result 1S used to encrypt a CO urat1On b1tStream. The user (56) It i d ryp nfiguration bi Th

U.S. PATENT DOCUMENTS

4,598,170 A 7, 1986 Piosenka et al.
4,812,675 A 3/1989 Goetting
5,457,408 A 10/1995 Leung
5,784,566 A * 7/1998 Viavant et al. 709,229
6, 191,614 B1 2/2001 Schultz et al.
6.212,639 B1 4/2001 Erickson et al.
6,996,713 B1 2/2006 Trimberger
7,028,191 B2 4/2006 Michener et al.
7,197,647 B1 3/2007 Van Essen et al.

ESEAf

35
3.

ENCRY ON:
SOAR

CABN
Ef CE

key is also provided to an FPGA or other device, where the
function is performed a second number of times and the result
stored. When the device is configured, the result is retrieved,
the function is performed on it the first number of times less
the second number of times and then it is used to decrypt the
configuration bitstream. A further embodiment uses a one
time programmable fuse (OTP) array to prevent erasure or
modification.

23 Claims, 13 Drawing Sheets

KEY

U.S. Patent

204

Jan. 29, 2013

N

Afty

PROCESSENG

Sheet 1 of 13

------ s

i

E.E.E. Sis.

s: 8 st

--- IEEE
Sorris-is- 8 is ICICICICICICICICICII

1.

MegaRAM Biock

US 8,363,833 B1

s
s

8

206

U.S. Patent Jan. 29, 2013 Sheet 3 of 13 US 8,363,833 B1

4.
GENERAE CONGRAON

SREAf

RECEWE KEY r

s 430

ENCRY BESREA r

arraaraaraaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa £4

SORE ENCRYE BESREAy
N CNC GRAN ECE

450
S{RE KEY ON FA

68
CA: ENCRY ESREA

CNO (A

48

U.S. Patent Jan. 29, 2013 Sheet 4 of 13 US 8,363,833 B1

X-XXXX XXXX-X re-rrer SO

ERFOR, NOON X
ES ONE KEY

52

514
SERS O. ENCRY

3SAf

530
RECEWE SER KEY c

s 2.

ERFOR, NC 8: NA 532
WES ON KEY

S3.
SR RES IN FS M

ARRAY

SSC RREWE RES FRA
SE ARRAY

ERFOR, FNCON XA S5

SN RES 554
CRY CONGRAEN Mr.

3SREAf

US 8,363,833 B1 Sheet 5 of 13 Jan. 29, 2013 U.S. Patent

363,833 B1

s

ill

9 U.S. Patent

x
a.

*** ^g wººººº! ggwaan gog

U.S. Patent Jan. 29, 2013 Sheet 7 of 13 US 8,363,833 B1

arrarar arrara arraraaaaaaaaaaaaaaara 8O

RECEW SER KEY

82
ERFR, NCN ON KEY O

A ES

84
SE RES O ENCE

SER KEY

88
ERFOR FNCSN ON ENCE

SER KEY X VES

88
SE RES O ENCRY M

BSREAvi

83

83.
ERRii Fi NiC{N ON KEY

A S.

83
SE RES SE

E{\G CRC SS

FG, 8A

U.S. Patent Jan. 29, 2013 Sheet 8 of 13 US 8,363,833 B1

85

REWE SER KEY

852
ECODE SER KEY

85.
RM N CON A JES

N RES

358
SORE NO RES N.

SE ARRAY

3.
REREWE 2N RES FOW

firY

s 8

ERFORM NCCNX-A -
ES ON 2N RES

84.
SE 3R RES, O
ECRY 3 SREA

FG. 83

U.S. Patent Jan. 29, 2013 Sheet 9 of 13 US 8,363,833 B1

SOFWARE
XY

EXPANSON
A RNS

- 34 990

98 -98

KEY
ECODE - EXPANSION

X RNS

-94

KEY KEY
xxxx) DEPF EXPANSON: S -EXPANSON - c-KEY

ARONS 3 RBNS

Y944 - 946 Yr948 Yr 35

PGA 952

FG. 9

U.S. Patent Jan. 29, 2013 Sheet 11 of 13 US 8,363,833 B1

CONGRACN
SSREA ENRYSE CNF RAN AA

12- . 14. 1106 N. :

REMAINING "
CEN NC&N M

?
EAR XMXMX-MMXXX-XXXYYXXXX-XXXXX-X WRX RXXRX

(NOT USED)

2
{}

2.

> COMPARE
EXCE
WA.

N1130
1140

WA

FG,

U.S. Patent Jan. 29, 2013 Sheet 12 of 13 US 8,363,833 B1

RECEWE - EAER NCN:
EX-ECE WAE

22

RECEWE NCRYSE CONFGRAN.

RRA?. NCN N. 123

ENCRYPTED CONFIGURATION DATA To -
GENERA {

24
CC/AR } {
EXCECE WAE

MAC -

yes Nino

6 27
WA) NWA)

3SREAM 3SREA

FG 2

U.S. Patent Jan. 29, 2013 Sheet 13 of 13 US 8,363,833 B1

3. -34 -38

34- K 1322 1328- {C} 332

3. in pit Beck 2 ags: Sock

1320

3:

Cip

tast 8 sck
A.

FG. 3

US 8,363,833 B1
1.

FPGA CONFIGURATION BITSTREAM
ENCRYPTION USING MODIFIEDKEY

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of, and claims the benefit
of and priority to, U.S. patent application Ser. No. 12/559,
287, filed Sep. 14, 2009 (currently pending), which is a divi
sional of, and claims the benefit of and priority to, U.S. patent
application Ser. No. 11/042,019, filed Jan. 25, 2005 (now U.S.
Pat. No. 7,606,362), each of which is incorporated herein by
reference in its respective entirety.

BACKGROUND

The present invention relates to configuringfield program
mable gate arrays generally, and more particularly to protect
ing configuration bitstreams from detection or alteration.

Field programmable gate array devices are logic or mixed
signal devices that may be configured to provide a user
defined function. FPGAs are typically configured by receiv
ing data from a configuration device. This data may be
referred to as a configuration bitstream or program object file
(POF). This bitstream opens and closes switches formed on
an FPGA such that desired electrical connections are made.
Modern FPGAs contain hundreds of thousands of logic

gates, as well as processors, memories, dedicated analog
function blocks, and other circuits. This extensive circuitry
requires a correspondingly long configuration bitstream to
configure it. For example, 55 Megabits of configuration data
are now needed by some FPGAs.

This configuration data represents an FPGA user design
that is the outcome of a huge investment in manpower and
research and development costs, often in the million dollar
range. To protect this investment, configuration bitstreams are
often encrypted. The encrypted bitstream is decrypted using a
key stored on the FPGA, and the FPGA is then configured.
When the FPGA is configured by a configuration device, the
bitstream that is susceptible to detection is encrypted and thus
protected.

Unfortunately, at least three problems remain even with
encryption. First, if the encryption key can be determined, for
example by examining an FPGA, the encrypted bitstream can
be copied and the protected device can be cloned. Second, if
the key can be erased or modified, then the protected device
can be reconfigured to perform a new function. This can be
particularly problematic if the device is performing an impor
tant function, such as a network security device. Third, if
there is no validity check, a rogue encrypted bitstream could
be used to configure an FPGA.

Thus, what is needed are circuits, methods, and apparatus
that modify an encryption key Such that the modified key used
to encrypt a configuration bitstream cannot readily be deter
mined. It is also desirable that embodiments further check the
validity of an encrypted configuration bitstream.

SUMMARY

Accordingly, embodiments of the present invention pro
vide circuits, methods, and apparatus that modify an encryp
tion key for use in encrypting and decrypting a configuration
bitstream. This modification helps prevent detection of the
modified key. These modified encryption keys may be used to
encryptand decrypt a configuration bitstream for an FPGA or
other programmable or configurable device, or it may be used
on any device to prevent detection, modification, or erasure of

10

15

25

30

35

40

45

50

55

60

65

2
configuration bitstreams or other types of information, for
example, device serial numbers or other identifying or secu
rity information. Various embodiments of the present inven
tion further check the validity of encrypted configuration
bitstreams.
One embodiment of the present invention alters, masks, or

modifies a first key to help prevent detection of both the first
key and the modified key. Specifically, in software, a function
is performed on the first key a first number of times and the
result is used to encrypt a configuration bitstream. This func
tion may include encryption Such as encryption consistent
with the Advanced Encryption Standard (AES), scrambling,
exclusive-ORing with a second key or other pattern to gener
ate a result. Alternately, other functions, which may be pres
ently known or later developed, can be used to alter, mask, or
modify the first key. The function is also implemented on an
integrated circuit such as an FPGA. The function is performed
a second number of times on the first key and the result is
stored. This result may be stored in a non-volatile memory,
Such as a fuse or one-time-programmable fuse array. When
the device is to be configured, the memory is read and the
function is performed the first number of times less the second
number, and the result is used to decrypt the configuration
bitstream.

Since neither the first key nor the modified key are stored
on the FPGA or other device, both the first key and modified
key are protected from discovery. Even if the stored key is
determined, since it is an modified version of the first key, the
first key is protected. Further, if the stored key is determined,
it is further modified before it can correctly decrypt a con
figuration bitstream, thus the modified key and encrypted
bitstream are protected.
The value of the second number may be fixed on the inte

grated circuit or provided the integrated circuit at the same
time as the first key is provided. The second number may be
stored in a memory, for example, a non-volatile memory. Such
as a fuse or one-time-programmable fuse array.

In another embodiment, the first key is provided to the
integrated circuit. A function is performed on it a first number
of times. The result is used to configure a decode logic circuit.
The first key is then provided to the integrated circuit a second
time where it is decoded by the newly configured decoder
circuit. The function is performed on the decoded first key a
first number of times, and the result is again stored in memory.
Upon configuration, the result is retrieved, the function per
formed a second number of times, and this result is used to
decrypt an encrypted configuration bitstream. The first key is
similarly decoded in the software that originally encrypts the
bitstream such that the bitstream may be properly decrypted.
A further embodiment of the present invention provides

circuits, methods, and apparatus that may be used to Verify the
validity of an encrypted configuration bitstream. An expected
value is included in a non-encrypted header section of the
bitstream. A function is performed on the encrypted configu
ration portion of the bitstream and a result generated. The
result is compared to the expected value and validity is deter
mined. Various embodiments of the present invention may
incorporate one or more of these and the other features
described herein.
A better understanding of the nature and advantages of the

present invention may be gained with reference to the follow
ing detailed description and the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a simplified block diagram of a programmable
logic device that may benefit by incorporating embodiments
of the present invention;

US 8,363,833 B1
3

FIG. 2 is a block diagram of an electronic system that may
benefit by incorporating embodiments of the present inven
tion;

FIGS. 3A and 3B illustrate circuits and software that may
benefit by incorporating embodiments of the present inven
tion;

FIG. 4 illustrates a method of configuring a field program
mable gate array that may be improved by incorporating
embodiments of the present invention:

FIG.5 illustrates a flow chart of a method of encrypting and
decrypting a configuration bitstream according to an embodi
ment of the present invention;

FIG. 6 illustrates circuits and software that incorporate an
embodiment of the present invention;

FIG. 7 illustrates further circuits and software that incor
porate an embodiment of the present invention;

FIGS. 8A and 8B illustrates a flowchart of a method of
encrypting and decrypting a configuration bitstream accord
ing to an embodiment of the present invention;

FIG. 9 illustrates further circuits and software that incor
porate an embodiment of the present invention;

FIG.10 illustrates further circuits and software that further
obfuscate a stored key in accordance with an embodiment of
the present invention;

FIG. 11 illustrates a method of verifying a configuration
bitstream according to an embodiment of the present inven
tion;

FIG. 12 illustrates a flowchart of a method of verifying a
configuration bitstream according to an embodiment of the
present invention; and

FIG. 13 illustrates a circuit that may be used as the function
block in FIG. 11.

DESCRIPTION OF EXEMPLARY
EMBODIMENTS

FIG. 1 is a simplified partial block diagram of an exemplary
high-density programmable logic device 100 wherein tech
niques according to the present invention can be utilized. PLD
100 includes a two-dimensional array of programmable logic
array blocks (or LABs) 102 that are interconnected by a
network of column and row interconnections of varying
length and speed. LABs 102 include multiple (e.g., 10) logic
elements (or LEs), an LE being a small unit of logic that
provides for efficient implementation of user defined logic
functions.
PLD 100 also includes a distributed memory structure

including RAM blocks of varying sizes provided throughout
the array. The RAM blocks include, for example, 512 bit
blocks 104, 4K blocks 106 and an M-Block 108 providing
512K bits of RAM. These memory blocks may also include
shift registers and FIFO buffers. PLD 100 further includes
digital signal processing (DSP) blocks 110 that can imple
ment, for example, multipliers with add or subtract features.

It is to be understood that PLD 100 is described herein for
illustrative purposes only and that the present invention can
be implemented in many different types of PLDs, FPGAs:
and the other types of digital integrated circuits.

While PLDs of the type shown in FIG. 1 provide many of
the resources required to implement system level Solutions,
the present invention can also benefit systems wherein a PLD
is one of several components. FIG. 2 shows a block diagram
of an exemplary digital system 200, within which the present
invention may be embodied. System 200 can be a pro
grammed digital computer system, digital signal processing
system, specialized digital Switching network, or other pro
cessing system. Moreover, Such systems may be designed for

10

15

25

30

35

40

45

50

55

60

65

4
a wide variety of applications such as telecommunications
systems, automotive systems, control systems, consumer
electronics, personal computers. Internet communications
and networking, and others. Further, system 200 may be
provided on a single board, on multiple boards, or within
multiple enclosures.

System 200 includes a processing unit 202, a memory unit
204 and an I/O unit 206 interconnected together by one or
more buses. According to this exemplary embodiment, a pro
grammable logic device (PLD) 208 is embedded in process
ing unit 202. PLD 208 may serve many different purposes
within the system in FIG. 2. PLD 208 can, for example, be a
logical building block of processing unit 202, Supporting its
internal and external operations. PLD 208 is programmed to
implement the logical functions necessary to carry on its
particular role in system operation. PLD 208 may be specially
coupled to memory 204 through connection 210 and to I/O
unit 206 through connection 212.

Processing unit 202 may direct data to an appropriate sys
tem component for processing or storage, execute a program
stored in memory 204 or receive and transmit datavia I/O unit
206, or other similar function. Processing unit 202 can be a
central processing unit (CPU), microprocessor, floating point
coprocessor, graphics coprocessor, hardware controller,
microcontroller, programmable logic device programmed for
use as a controller, network controller, and the like. Further
more, in many embodiments, there is often no need for a CPU.

For example, instead of a CPU, one or more PLD 208 can
control the logical operations of the system. In an embodi
ment, PLD 208 acts as a reconfigurable processor, which can
be reprogrammed as needed to handle a particular computing
task. Alternately, programmable logic device 208 may itself
include an embedded microprocessor. Memory unit 204 may
be a random access memory (RAM), read only memory
(ROM), fixed or flexible disk media, PC Card flash disk
memory, tape, or any other storage means, or any combina
tion of these storage means.

FIGS. 3A and 3B illustrate circuits and software that may
be improved by incorporating embodiments of the present
invention. These circuits and software may be used to provide
encrypted configuration information to field programmable
gate arrays. Specifically, FIG. 3A illustrates the loading of an
encrypted bitstream into a configuration device and a key into
a field programmable gate array, while FIG.3B illustrates the
loading of the encrypted bitstream from the configuration
device to the FPGA.

FIG. 3A includes a software package 320 that further
includes encryption Software 322 and key storage and han
dling software 324, a configuration device for storing an
encrypted bitstream 332, and a field programmable gate array
including storage locations for key storage 342 and decryp
tion hardware 344. A bitstream is loaded into the encryption
software routine 322 via software interface 305. The encryp
tion software encrypts the bitstream and provides an
encrypted bitstream through interface 307 to the configura
tion device 330, where it is stored as an encrypted bitstream
332. Similarly, a key is provided by a user over interface 310
to key handling software 324 which provides the key over
interface 321 to the FPGA340. The key is stored in locations
342 for use by the decryption hardware 344.

FIG. 3B includes a configuration device that further
includes encrypted bitstream 332, and a field program gate
array 340 including key storage 342 decryption hardware 344
and a decrypted bitstream 346. At power up, during a fault
condition, or other appropriate time, the encrypted bitstream
332 is provided by the configuration device 330 over interface
350 to the decryption hardware 344 in the field programmable

US 8,363,833 B1
5

gate array 340. The decryption hardware 344 also receives the
key 342 stored on the field programmable gate array 340 and
provides a decrypted bitstream 346. The decrypted bitstream
346 is then used to configure the FPGA such that it provides
the desired logic function.

In typical applications, the activities illustrated in FIG. 3A
occur either at a location (for example, their factory) under
control of the field programmable gate array manufacturer
(vendor) or purchaser, while the activities illustrated in FIG.
3B occur once the field programmable gate array is incorpo
rated in an end product. Accordingly, since only the encrypted
bitstream is available for detection over interface 350 in FIG.
3B, the original un-encrypted bitstream is protected from
discovery.

FIG. 4 illustrates a method of configuring a field program
mable gate array that may be improved by incorporating
embodiments of the present invention. In act 410, a configu
ration bitstream is generated. The configuration bitstream
may be generated using design Software such as VHDL (Very
High Speed Integrated Circuit Hardware Description Lan
guage) or Verilog. In act 420, an encryption key is received,
for example from a user, database, look-up table or other
Source. Alternately, the Software program may generate its
own key, or Suggest a key to the user. In act 430, the key is used
to encrypt the configuration bitstream, and in act 440, the
encrypted bitstream is stored on a configuration device. This
configuration device may be a flash memory or other non
Volatile memory device, such as a memory with a self-con
tained battery backup. The configuration device may be an
integrated circuit, compact flash card, or other device. In act
450, the key is stored on a field programmable gate array or
other programmable or configurable device. The acts to this
point are typically performed at a location under the control of
the field programmable gate array vendor or purchaser Such
as an original equipment manufacturer (OEM).
The following acts typically occurat power up, after a fault

or error condition, or at other appropriate times while the
FPGA is in use in an electrical system. In act 460, the
encrypted bitstream is loaded from the configuration device
to the field programmable gate array. Inact 470, the encrypted
bitstream is decrypted in the FPGA and used to configure the
FPGA in act 480. This configuration act configures the FPGA
such that it performs the desired function.

FIG.5 illustrates a flow chart of a method of encrypting and
decrypting a configuration bitstream according to an embodi
ment of the present invention. The first to the three acts listed
typically occur in Software. These acts may occurata system
manufacturer location. Alternately, these may occur
remotely, for example over the Internet. In act 510, a user key
is received. This user key may be provided by a system
designer, and may be provided by Software, from a lookup
table, or other appropriate source. In act 512, a function is
performed “X” number of times on this key. This function
may for example be AES encryption. Alternately it may be
another function, such as scrambling. In act 514, the results
are used to encrypt a configuration bitstream. The encrypted
bitstream may then be stored in a memory, for example on a
configuration device.
The following three acts typically occur on an integrated

circuit such as an FPGA or other configurable device. These
acts may occur at a system manufacturer's location, or
remotely, for example, over the Internet or phone lines. In act
530, the user key is received. In a specific embodiment, the
user key is received via a JTAG port. In act 532, the function
is performed 'A' times on this key, and the result is stored, for
example, on the integrated circuit, in act 534. In a specific

10

15

25

30

35

40

45

50

55

60

65

6
embodiment, the result is stored in a fuse array, though other
nonvolatile type memories may be used. Alternately, Volatile
memories may be used.
The final three acts typically occurat device power up. At

this time, the device is typically in a system. In act 530, the
stored key is retrieved from the memory or fuse array. In act
552, the function is performed on the retrieved key “X-A’
number of times. This result is then used to decrypted the
encrypted configuration bitstream.

In this particular example, a function is performed “X”
times on the key in software and 'X' times on the integrated
circuit Such that the same modified key is generated for use in
encryption and decryption. In other embodiments, more than
one of function may be used to modify the key. For example,
a first function may be used a first number of times, while a
second function may be used a second number of times. So
long as the same functions are used in both software and
hardware, the same modified key is generated and used to the
first to encrypt the key in software and then decrypted the
configuration bitstream on the configurable device.

FIG. 6 illustrates circuits and software that incorporate an
embodiment of the present invention. This figure includes
acts that are performed in software 610 and on an FPGA or
other integrated circuit 650. Again, a user key 620 is provided.
This user key may be chosen by the user as indicated, or it may
be provided by software, lookup tables, or other appropriate
sources. The key is operated on by a function 630. In this
example, a key expansion consistent with the AES standard is
run for “X” rounds. In other embodiments, other functions
may be used, for example, other encryption standards or
methods of scrambling and may be used. In 640, the modified
key, the resulting Q-key is available and used to encrypt the
configuration bitstream. As before, the result may be stored in
a memory, Such as a configuration device.
The user key is provided to the FPGA where it is operated

on a number of times 660. Again, in this particular example,
'A' rounds of AES key expansion are performed. The result
is stored in a memory, such as a fuse or one-time program
mable fuse array 670. Upon power up, or whenever the device
is to be configured, the result is retrieved from the memory
670 and undergoes “B” more rounds of key expansion, where
B=X-A. The result is the modified or Q-key, which may be
used to decrypted the configuration bitstream.

In this particular example, two circuits 660 and 680 are
implied for the key expansion. In practical circuits, one AES
circuit is used for both functions. Moreover, this AES circuit
may be used as part of a message authentication circuit, as
discussed below.

In this example, the values of 'A' and “B” are predeter
mined and designed or programmed as part of the device.
Alternately, one or both of these values may be provided from
an external Source.

In this example, neither the user key 620 nor the modified
or Q-Key 690 are stored on the FPGA 650. Accordingly, even
if the key fused in memory 670 is determined, the user key
620 cannot be determined. Further, since the stored key is
further encrypted to form the Q-Key 690, the modified or
Q-Key 690 is also protected from discovery. Thus, even an
attacker who determines the identity of the fused key 670
cannot easily determine the contents of an encrypted configu
ration bitstream.

FIG. 7 illustrates further circuits and software that incor
porate an embodiment of the present invention. In this
example, the value of 'A' is provided with the user key 720 to
the FPGA or other device 750 by the software 710. In other
embodiments, the value of A may come from another source.
The value of a may be programmed into a second fuse array

US 8,363,833 B1
7

765. In other embodiments, the value of 'A' is not perma
nently stored, but is used on the integrated circuit 750 until the
scrambled key is stored in the memory 770.

FIGS. 8A and 8B illustrates a flowchart of a method of
encrypting and decrypting a configuration bitstream accord
ing to an embodiment of the present invention. In this
example, the first five acts are performed in software. These
acts may occur at a system manufacturer's location, or
remotely, for example, via the Internet. In act 810, a user key
is received. As before, this user key may be provided by a user,
Software, lookup table, or other appropriate source. In act
812, a function is performed on the key 'A' number of times.
In act 814, this result is used to encode the user key. To the
user key is encoded and the function is performed on the
encoded user key 'X' times in act 816. In act 818, the result
is used to encrypt a configuration bitstream, or other data
pattern needing protection.
The following three acts are performed on an FPGA or

other integrated circuit. In act 830, the user key is received.
The function is performed 'A' times on the key in act 832, and
the result, or a portion of the result, is stored on the integrated
circuit in act 834. For example, the result or a portion of the
result may be used to program fuses in a fuse array or one
time programmable fuse array, or other nonvolatile or volatile
memory.

In FIG. 8B, the first four acts are also performed on the
integrated circuit. Again these acts may be performed at the
system manufacturer's location before the integrated circuit
is deployed. In act 850, the user key is once again received by
the configurable or other integrated circuit. In act 852, the
user key is encoded using encoder circuits under the control
of the results generated in act 832. In act 854, the function is
performed 'A' times on this result. This new, second result is
stored as a scrambled key in memory, again Such as a fuse
array.
At power up or other configuration time, the scrambled key

is retrieved from memory, in act 870. The function is per
formed “X-A times to generate a key to may be used to
decrypt the bitstream in act 874.

FIG. 9 illustrates further circuits and software that incor
porate an embodiment of the present invention. This figure
includes software 900 and a configurable device such as a
FPGA or other integrated circuit 940. A user key 912 under
goes 'A' rounds of key expansion 914 and is used to config
ure an encoder 916. The user key is encoded and the results
undergo “X” rounds of key expansion 918. The result is a
Q-Key 920 in software that may be used to encrypt a configu
ration bitstream. Again, this encrypted configuration bit
stream may be stored in a memory Such as a configuration
device.
The user key is also provided to the FPGA 940. Decode

logic 942 initially does not transform the user key 912. The
user key undergoes 'A' rounds of key expansion 944. The
result, a portion of the result, or an encoded version is stored
in a volatile or nonvolatile memory 952, again such as a fuse
array.
The userkey 912 is again provided to the FPGA940, where

it is encoded by encoder logic 942. The result undergoes “A”
rounds of key expansion 944, and the result is stored in a
volatile or nonvolatile memory 946.

At power up, or when the device is to be configured, the
scrambled key is retrieved from memory 946, were it under
goes “B” rounds of key expansion 948 where B=X-A. The
result is the modified or Q-Key 950, which may be used to
decrypt a configuration bitstream received from memory or
configuration device.

5

10

15

25

30

35

40

45

50

55

60

65

8
FIG. 10 illustrates further circuits and software that obfus

cate a stored key in accordance with an embodiment of the
present invention. This figure includes software 1000 and a
configurable integrated circuit such as an FPGA, or other type
of integrated circuit 1030. The user key 1012 undergoes “X”
rounds of key expansion 1014, resulting in a modified or
Q-Key 1016 that may be used to encrypt a configuration
bitstream.
The user key 1012 is provided to the integrated circuit

1030, were it undergoes 'A' rounds of key expansion 1032.
The key is obfuscated by obfuscation circuits 1034, and the
obfuscated key is stored in a memory such as a fuse array
1036.
At power up, the obfuscated key is retrieved, and de-ob

fuscated by circuit 1038. This result undergoes “B” rounds of
key expansion 1040, where B=X-A, resulting in the modified
or Q-Key 1042. The modified or Q-Key 1042 may be used to
decrypt an encrypted configuration bitstream.

If the key is ever determined, a new configuration bitstream
could be encrypted using this key, and the device prepro
grammed to perform a new function. This could be particu
larly undesirable, for example, if the integrated circuit was
operating as a network security device. Accordingly, it is
desirable to have a method of authenticating a configuration
bitstream, that is, it is desirable to have a method of verifying
the validity of a configuration bitstream.

FIG. 11 illustrates a method of verifying a configuration
bitstream according to an embodiment of the present inven
tion. This configuration bitstream includes a header portion
and configuration data. The configuration data is encrypted,
while the header portion is not encrypted. Under some cir
cumstances, portions of the header may be well-known, or
able to be determined. If the header were encoded, this infor
mation could lead to discovery of the modified key. Accord
ingly, the header is not encrypted. The header portion
includes an expected value 1106 and a remainder 1104. In this
example, the portion of the header that is not the expected
value 1106 is not used.
The encrypted configuration data is received by a function

block 1110, which performs a function on it. The output 1120
is provided to a comparison circuit 1130. The comparison
circuit compares the expected value 1106 to the output online
1122 and makes a determination of validity 1140.

FIG. 12 illustrates a flowchart of a method of verifying a
configuration bitstream according to an embodiment of the
present invention. In act 1210, aheader including an expected
value is received. In act 1220, encrypted configuration data is
received. The header and encrypted configuration data form
an encrypted configuration bitstream.

In act 1230, a function is performed on the encrypted
configuration data by a function block in order to generate an
output. This output is compared to an expected value in act
1240. Inact 1250, it is determined whether the expected value
received as part of the header matches the output provided by
the function block. If there is a match, the bitstream is valid
1260. If there is not a match, the bitstream is invalid 1270.

FIG.13 illustrates a circuit that may be used as the function
block in FIG. 11. The received configuration data is broken up
into plain text portions 1302, 1304, and 1306. The concatena
tion of these portions result in reassembling the configuration
data. The first portion of the configuration data 1302 is
encrypted using an encryption key 1312, thus generating an
output on line 1314. The output on line 1314 is exclusive
ORed with the second portion of the configuration data 1304
by exclusive-OR circuit 1322. The result online 1324 passes
through a number of similar blocks until reaches a final stage.
At this point, the cumulative result online 1326 is exclusive

US 8,363,833 B1
9

ORed with configuration data 1306 by exclusive-OR circuit
1322. The output is encrypted by encryption block 1330 and
the result is provided to a final encryption stage 1340. Encryp
tion block 1340 provides an output that may be compared to
an expected value that is provided as part of a configuration
bitstream header.

In this particular example, the encryption functions 1310,
1320, 1330, and 1340 are shown as separate circuits. In prac
tical integrated circuits, these will be one circuit. Further, this
circuit can be shared with the key modification circuits such
as 660 in FIG. 6. The encryption key 1312 can be the same key
as the modified key 690 also in FIG. 6. Alternately, different
functions, circuits, and keys can be used for this function.
The above description of exemplary embodiments of the

invention has been presented for the purposes of illustration
and description. It is not intended to be exhaustive or to limit
the invention to the precise form described, and many modi
fications and variations are possible in light of the teaching
above. The embodiments were chosen and described in order
to best explain the principles of the invention and its practical
applications to thereby enable others skilled in the art to best
utilize the invention in various embodiments and with various
modifications as are Suited to the particular use contemplated.

What is claimed is:
1. A method of decrypting data on an integrated circuit, the

method comprising:
receiving a data encryption key and a data encryption func

tion from an external device;
retrieving a count value from a memory of the integrated

circuit;
applying the data encryption function to the data encryp

tion key for a number of times equal to the count value to
produce a modified data encryption key:

removing the count value from the memory after producing
the modified data encryption key; and

decrypting databased on the modified data encryption key.
2. The method of claim 1, wherein the receiving, retrieving,

applying, and removing steps each occur prior to configura
tion of the integrated circuit for operational use.

3. The method of claim 1, further comprising:
receiving encrypted configuration data; and
decrypting the encrypted configuration data using the

modified data encryption key.
4. The method of claim 1, wherein:
the data encryption function comprises a first Sub-function

and a second Sub-function; and
the count value comprises a first Sub-count value and a

second Sub-count value corresponding to the first Sub
function and second Sub-function, respectively.

5. The method of claim 1, wherein the integrated circuit is
a field programmable gate array (FPGA).

6. The method of claim 1, wherein the count value is not
recoverable from the modified data encryption key.

7. The method of claim 1, further comprising receiving
encrypted data, wherein the encrypted data comprises an
encrypted portion and an unencrypted header; and

Verifying a decryption of the encrypted databased on the
header.

8. The method of claim 1, wherein the data encryption
function is based on the Advanced Encryption Standard
(AES).

9. The method of claim 1, wherein the count value is an
integer value greater than one.

5

10

15

25

30

35

40

45

50

55

60

65

10
10. An integrated circuit comprising:
interface circuitry configured to receive a data encryption

key and a data encryption function from an external
device;

read circuitry configured to read a count value from a
memory storage location of the integrated circuit;

encryption circuitry configured to:
apply the data encryption function to the data encryption

key for a number of times equal to the count value to
produce a modified data encryption key; and

remove the count value from the memory after produc
ing the modified data encryption key.

11. The integrated circuit of claim 10, wherein:
the interface circuitry is further configured to receive

encrypted configuration data; and
the encryption circuitry is further configured to decrypt the

encrypted configuration data using the modified data
encryption key.

12. The integrated circuit of claim 10, wherein the inte
grated circuit is a field programmable gate array (FPGA).

13. The integrated circuit of claim 10, wherein the count
value is not recoverable from the modified data encryption
key.

14. The integrated circuit of claim 10, wherein:
the interface circuitry is further configured to receive

encrypted data, the encrypted data comprising an
encrypted portion and an unencrypted header, and

the encryption circuitry is further configured to verify a
decryption of the encrypted databased on the header.

15. The integrated circuit of claim 10, wherein the data
encryption function is based on the Advanced Encryption
Standard (AES).

16. The integrated circuit of claim 10, wherein the count
value is an integer value greater than one.

17. A method of decrypting data on an integrated circuit,
the method comprising:

receiving a data encryption key from an external device;
retrieving a count value and a data encryption function

from memory of the integrated circuit;
applying the data encryption function to the data encryp

tion key for a number of times equal to the count value to
produce a modified data encryption key:

removing the count value from the memory storage loca
tion after producing the modified data encryption key:
and

decrypting databased on the modified data encryption key.
18. The method of claim 17, wherein the receiving, retriev

ing, applying, and removing steps each occur prior to con
figuration of the integrated circuit for operational use.

19. The method of claim 17, further comprising:
receiving encrypted configuration data; and
decrypting the encrypted configuration data using the

modified data encryption key.
20. The method of claim 17, wherein:
the data encryption function comprises a first Sub-function

and a second Sub-function; and
the count value comprises a first Sub-count value and a

second Sub-count value corresponding to the first Sub
function and second Sub-function, respectively.

21. The method of claim 17, wherein the integrated circuit
is a field programmable gate array (FPGA).

22. The method of claim 17, wherein the count value is not
recoverable from the modified data encryption key.

23. The method of claim 17, wherein the count value is an
integer value greater than one.

k k k k k

