US008363833B1

a2 United States Patent 10) Patent No.: US 8,363,833 B1
Streicher et al. 45) Date of Patent: Jan. 29, 2013
(54) FPGA CONFIGURATION BITSTREAM ;%(7)2%355; g} 13@88; %rimgerger
278, rimberger
ENCRYPTION USING MODIFIED KEY 7,299,203 B1* 11/2007 Nelsonccccceevvrinennns 705/28
. 7,325,141 B2 1/2008 Chow et al.
(75) Inventors: Keone Streicher, San Ramon, CA (US); 7.373,668 Bl 5/2008 Trimberger
David Jefferson, Morgan Hill, CA (US); 7,606,362 Bl 10/2009 Streicher et al.
: . 8,130,944 B2* 3/2012 Storketal.cccoeooeveneeee. 380/28
JNlIl‘lu (.IO}I:ce’ Sllinnyvale’ \%AI (IhJiS), GB 2002/0114455 Al 8/2002 Asahi et al.
artin Langhammer, Wiltshire (GB) 2002/0199110 Al 12/2002 Kean
. 2003/0020512 Al 1/2003 Mantey et al.
(73) Assignee: Altera Corporation, San Jose, CA (US) 2004/0186991 Al 9/2004 Kobayashi et al.
2005/0113070 Al 5/2005 Okab_e
(*) Notice: Subject to any disclaimer, the term of this 2005/0289355 Al 12/2005 Kitariev et al.
patent is extended or adjusted under 35 OTHER PUBLICATIONS
U.S.C. 154(b) by O days.
Office Action from U.S. Appl. No. 11/042,019 dated Oct. 21, 2008.
(21) Appl. No.: 13/155,843 Office Action from U.S. Appl. No. 11/042,937 dated Nov. 28, 2008.
T ’ Office Action from U.S. Appl. No. 11/042,032 dated Jul. 2, 2008.
a1 Office Action from U.S. Appl. No. 11/435,416 dated Sep. 19, 2007.
(22) Filed: Jun. 8, 2011 Office Action from U.S. Appl. No. 11/435,416 dated Mar. 26, 2008.
Related U.S. Application Data (Continued)
(60) Continuation of applic.ation. No 12/ 559,287, ﬁled on Primary Examiner — William Powers
Sep. 14, 2009, which is a division of application No. .
11/042.019, filed on Jan. 25, 2005, now Pat. No, (/%) Attorney, Agent, or Firm — Ropes & Gray LLP
7,606,362. (57) ABSTRACT
51) Imt.Cl. ircuits, methods, and apparatus that prevent detection an
Circui hod d app hat p di i d
HO4L 9/00 (2006.01) erasure of a configuration bitstream or other data foran FPGA
(52) US.CL it 380/44 or other device. An exemplary embodiment of the present
(58) Field of Classification Search 380/44 inventionmasks auserkey inorderto prevent its detection. In
See application file for complete search history. a specific embodiment, the user key is masked by software
that performs a function on it a first number of times. The
56 References Cited result 1s used to encrypt a co uration bitstream. The user
(56) It i d ryp nfiguration bi Th

U.S. PATENT DOCUMENTS

key is also provided to an FPGA or other device, where the
function is performed a second number of times and the result
stored. When the device is configured, the result is retrieved,

4,598,170 A 7/1986 Piosenka et al. S . .
4,812,675 A 3/1989 Goetting the function is performed on it the first number of times less
5457408 A 10/1995 Leung the second number of times and then it is used to decrypt the
2{5‘1"2?2 gl * Z égg? ;’“}11"?;? ett ;’} ~~~~~~~~~~~~~~~~ 709/229 configuration bitstream. A further embodiment uses a one-
3) chultz ¢ . .
6212639 BI 4/2001 FErickson et al. tlme.prog:rammable fuse (OTP) array to prevent erasure or
6,996,713 Bl 2/2006 Trimberger modification.
7,028,191 B2 4/2006 Michener et al.
7,197,647 Bl 3/2007 Van Essen et al. 23 Claims, 13 Drawing Sheets
BITSTREAM KEY
!
i POF '_"'\‘
305 e 310
/f322 v 324
i
ENCRYPTION KEY j?g
SOFTWARE
ENCRYPTION | gy Ky
BITSTREAM | oo 351
CONFIGURATION Mo e
DEVICE 1 KEY
344
DECRYPTION
i "1 HARDWARE
i
332 k33{3
FPGA

:340

US 8,363,833 B1

Page 2
OTHER PUBLICATIONS &oe-UTF-8&proxystylesheet=xilinx, pp. 8-37 thru 8-44,
Hoflich, Wolfgang; “Using the XC4000 Readback Capability”; downloaded on Mar. 6, 2006.
Xilinx XAPP 015.000, http://xgoogle xilinx.com/

search?q=XAPP%20015.000&spell=1&filter=0&access=p
&output=xml_no__ dtd&ie=UTF-8&client=xilinx&site=EntireSite * cited by examiner

U.S. Patent Jan. 29, 2013 Sheet 1 of 13 US 8,363,833 B1
[1(30
f//m son 104 112
: :......‘« E P
——— ; j:g HEi?i?:ZSEiHEE}U:::
e 'l"‘ :

MegaRaM Block

10

NN EREN

L]
E]
L)

LABs beo oo
FTYTYITTyTTd

L]
®

200

206

f—{ TARs .
— uegzula
e o B 1 bt i
OEs o L;‘\Ba T ABs
e
Ot bt LABS **’. !
(X W ‘
««««« S
e ol
AAAAA m. AAAAA m
iBEs LAEs L TRRS PN
f 1l
DSP
Biock
2?*\2\“ !/2638
PROCESSING
LINIT PLD
mmmmmmmmmmmmmmmmmmmm i
204 ; 213/7 /"'J

MEMORY

US 8,363,833 B1

Sheet 2 of 13

Jan. 29, 2013

U.S. Patent

d4e 9l
mwm;J
VOdd | obg
ENICNCRI
O3LdAMOE0 @mmJ 7eg
t _ioss J
TavmadvH 1)]
NOILdAMDAa T 03
B FOIATC
AR] PPY InouvanosENeD
i
zpe./

YL o
@me
Vi
mmm;J PARS
!
TuYAMOMYH L
NOLLARDEal |) 4043 %
Py
= ADIARG
)| NOLLYENDIINGD
Dy AR Zye
% 0e A
LZE 20 -
WYIH1SLIg
AL 4031 No L dAHDNG
JHYMLAOS
- Az NOILAAXONT
0t]]
A 278
e & 508
ACd
AT WY LS LIS

U.S. Patent Jan. 29, 2013 Sheet 3 of 13 US 8,363,833 B1

410

GENERATE CONFIGURATION .,

BITSTREAM

i 450

RECEIVE KEY e’
i 430

ENCRYPT BITSTREAM —
'E” 440

STORE ENCRYPTED BITSTREAM .

N CONFIGURATION DEVICE

¥ 450

STORE KEY ON FPGA N

I

480

LOAD ENCRYPTED BITSTREAM J

ONTO FPGA

' 470

DECRYPT ENCRYPTED BITSTREAM -
J’ 480

CONFIGURE FPGA ./

FiG. 4

U.S. Patent

Jan. 29, 2013 Sheet 4 of 13

RECEWE USER KEY

US 8,363,833 B1

510
S

et

k4

PERFORM FUNCTION X
TIMES ON KEY

¥

USE RESULT TO ENCRYPT
BITSTREAM

¥

RECEIVE USER KEY

¥

PERFORM FUNCTION A
TIMES ON KEY

!

STORE RESULT IN FUSE
ARRAY

!

RETRIEVE RESULT FROM
FUSE ARRAY

!

PERFORM FUNCTION X-A
TIMES ON RESULT

v

USE ZND RESULT TO
DECRYPT CONFIGURATION
BITSTREAM

FIG. 5

US 8,363,833 B1

Sheet 5 0of 13

Jan. 29, 2013

U.S. Patent

S0 pasng SHUNGS Y
- hinap o1 posn oo 51 Aoy Mmﬁ&ﬁum - cmmmmwnwxm ¥
Qmm }WVW;U &@vm ﬁv\m &Wﬂm \;mwm
SIOUIRInSa BIGUIRISG
asiAep o) Aay
JBS0 SU JB4SURE
B+¥ =X
404 3
A
; mi 1dA1ous o) pasy nam_mw%xw gl M@mewwm FUVAALIOS
AZHG 83

;
0y9 /

mmw\\

azs -

US 8,363,833 B1

Sheet 6 of 13

Jan. 29, 2013

U.S. Patent

064
A

Gl

/

L B L —

s #3d pasn) mwgmawﬁ

IGAIOBR OF PBsNy s 51 ASM DOjUIBISS - 53Y FOIAB(

me.i AIHD :SMMW %3 Aoy asn g gmwmw&xm YOl

BIGLUBISEB(] \ﬁ BIGUIBIDG
mwmhi\\ 084 .\\ a91A8D 03
Zasn4 pue Asy
1SN S845UR
g+¥ =X
404 \Awmm%.w/x/ ipsry Ag usso
; mm.w; idfisus o3 pasn ao@mmwmwg\ Ko hmmm FHYMLIOS
AZM-O Ao

vl S/

119 J

024

U.S. Patent Jan. 29, 2013 Sheet 7 of 13 US 8,363,833 B1

810
RECEIVE USER KEY o
812
PERFORM FUNCTION ON KEY S
ATIMES
ki
814
USE RESULT TO ENCODE -
USER KEY
818
PERFORM FUNCTION ON ENCODED L/
USER KEY X TIMES
4
818
USE RESULT TO ENCRYPT j
BITSTREAM
830
RECEIVE USER KEY j
v
8372
PERFORM FUNCTION ON KEY -y
ATIMES
834
USE RESULT TO SET)
DECODING CIRCUIT FUSES

FiG. 8A

U.S. Patent Jan. 29, 2013 Sheet 8 of 13 US 8,363,833 B1

850
RECEIVE USER KEY M
i 852
DECODE USER KEY _
854
PERFORM FUNCTION A TIMES J
ON RESULT
856
STORE 2ND RESULT IN |
FUSE ARRAY
| 870
RETRIEVE 2ND RESULT FROM -
MEMORY
i
PERFORM FUNCTION X-A .
TIMES ON 2ND RESULT
874
USE 3RD RESULT TO .
DECRYPT BITSTREAM

FiG. 88

U.S. Patent Jan. 29, 2013 Sheet 9 of 13 US 8,363,833 B1

SOFTWARE
KEY
USER |__ .| EXPANSION
KEY ARGUNDS
l‘“S}’SZ gk_g«m 800
916 918 920
d }r f’ {"
KEY
st DECODE Lo EXPANSION [—» Q-KEY
X ROUNDS
(-3340
KEY KEY
PECUDEL L Expansion i FUSE L lexpansion [axey
AROUNDS ! B ROUNDS

i‘**94;2 ngm LQ% kgg;g K%Q

N
952 FPGA

FIG. 9

US 8,363,833 B1

Sheet 10 of 13

Jan. 29, 2013

U.S. Patent

0L "Old
A ovGL geil 19112 PO ce0L vods

3 2 3 gl B B

SANNCY 8 AT SANNOX v

- AVHHY AA
amww AZDAD meMMM&Xw w»ﬁ@MMmmD 3504 2 IYISNH4E0 anmwmmxm
AAVAALAOS
g+¥=X
SONMOH X
- NOISNVAX 3 m>mmwx:
o001 ABHD AT
9Lk Pidl 20t

U.S. Patent Jan. 29, 2013 Sheet 11 of 13 US 8,363,833 B1

CONFIGURATION

BITSTREAM . ENCRYPTED CONFIGURATION DATA
] N
1102 104 | 1102
w |
k4
REMAINING 1110
PORTION FUNCTION |/
OF
HEADER
(NOT USED)
¥
1120
QUTPUT L/
1122
L/
> COMPARE |
EXPECTED
VALUE
1Kﬁ:@f}
1140
VALID

FiG. 11

U.S. Patent Jan. 29, 2013 Sheet 12 of 13 US 8,363,833 B1

1210
RECEIVE HEADER INCLUDING -
EXPECTED VALUE
l 1220

RECEIVE ENCRYPTED CONFIGURATION ./

l

PEREORM FUNCTION ON 33()
ENCRYPTED CONFIGURATION DATA TO
GENERATE OUTPUT
l 1240
COMPARE OUTPUT TO -
EXPECTED VALUE
1250
MATCH? |
YEs no
1260 1270
VALID L/ INVALID |t
BITSTREAM BITSTREAM

FiG. 12

U.S. Patent Jan. 29, 2013 Sheet 13 of 13 US 8,363,833 B1

~ 1306

1302 {—‘?304
[Plaintext 1 | Plaintext 2 .o

‘ Flaintext n

1314 1322 1326 P 1332
¥ $
2471 input Block 1 input Biock 2 Input Block n
N
Cipii(ﬂﬂﬂ Gipi"kﬂnﬁ Cgp}%&ﬂc ﬁggﬁ
- ¥
310 | Qutput Block 1 Quiput Block 2 Qutput Block n

1320/} M
k\m@ ?

input Block MAL

1340

{:EP}‘E(BHC

Quiput Block
MAC

FIG. 13

US 8,363,833 Bl

1
FPGA CONFIGURATION BITSTREAM
ENCRYPTION USING MODIFIED KEY

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of, and claims the benefit
of and priority to, U.S. patent application Ser. No. 12/559,
287, filed Sep. 14, 2009 (currently pending), which is a divi-
sional of, and claims the benefit of and priority to, U.S. patent
application Ser. No. 11/042,019, filed Jan. 25, 2005 (now U.S.
Pat. No. 7,606,362), each of which is incorporated herein by
reference in its respective entirety.

BACKGROUND

The present invention relates to configuring field program-
mable gate arrays generally, and more particularly to protect-
ing configuration bitstreams from detection or alteration.

Field programmable gate array devices are logic or mixed
signal devices that may be configured to provide a user-
defined function. FPGAs are typically configured by receiv-
ing data from a configuration device. This data may be
referred to as a configuration bitstream or program object file
(POF). This bitstream opens and closes switches formed on
an FPGA such that desired electrical connections are made.

Modern FPGAs contain hundreds of thousands of logic
gates, as well as processors, memories, dedicated analog
function blocks, and other circuits. This extensive circuitry
requires a correspondingly long configuration bitstream to
configure it. For example, 55 Megabits of configuration data
are now needed by some FPGAs.

This configuration data represents an FPGA user design
that is the outcome of a huge investment in manpower and
research and development costs, often in the million dollar
range. To protect this investment, configuration bitstreams are
often encrypted. The encrypted bitstream is decrypted using a
key stored on the FPGA, and the FPGA is then configured.
When the FPGA is configured by a configuration device, the
bitstream that is susceptible to detection is encrypted and thus
protected.

Unfortunately, at least three problems remain even with
encryption. First, if the encryption key can be determined, for
example by examining an FPGA, the encrypted bitstream can
be copied and the protected device can be cloned. Second, if
the key can be erased or modified, then the protected device
can be reconfigured to perform a new function. This can be
particularly problematic if the device is performing an impor-
tant function, such as a network security device. Third, if
there is no validity check, a rogue encrypted bitstream could
be used to configure an FPGA.

Thus, what is needed are circuits, methods, and apparatus
that modify an encryption key such that the modified key used
to encrypt a configuration bitstream cannot readily be deter-
mined. It is also desirable that embodiments further check the
validity of an encrypted configuration bitstream.

SUMMARY

Accordingly, embodiments of the present invention pro-
vide circuits, methods, and apparatus that modify an encryp-
tion key for use in encrypting and decrypting a configuration
bitstream. This modification helps prevent detection of the
modified key. These modified encryption keys may be used to
encrypt and decrypt a configuration bitstream for an FPGA or
other programmable or configurable device, or it may be used
on any device to prevent detection, modification, or erasure of

20

25

30

35

40

45

50

55

60

65

2

configuration bitstreams or other types of information, for
example, device serial numbers or other identifying or secu-
rity information. Various embodiments of the present inven-
tion further check the validity of encrypted configuration
bitstreams.

One embodiment of the present invention alters, masks, or
modifies a first key to help prevent detection of both the first
key and the modified key. Specifically, in software, a function
is performed on the first key a first number of times and the
result is used to encrypt a configuration bitstream. This func-
tion may include encryption such as encryption consistent
with the Advanced Encryption Standard (AES), scrambling,
exclusive-ORing with a second key or other pattern to gener-
ate a result. Alternately, other functions, which may be pres-
ently known or later developed, can be used to alter, mask, or
modify the first key. The function is also implemented on an
integrated circuit such as an FPGA. The function is performed
a second number of times on the first key and the result is
stored. This result may be stored in a non-volatile memory,
such as a fuse or one-time-programmable fuse array. When
the device is to be configured, the memory is read and the
function is performed the first number of times less the second
number, and the result is used to decrypt the configuration
bitstream.

Since neither the first key nor the modified key are stored
on the FPGA or other device, both the first key and modified
key are protected from discovery. Even if the stored key is
determined, since it is an modified version of the first key, the
first key is protected. Further, if the stored key is determined,
it is further modified before it can correctly decrypt a con-
figuration bitstream, thus the modified key and encrypted
bitstream are protected.

The value of the second number may be fixed on the inte-
grated circuit or provided the integrated circuit at the same
time as the first key is provided. The second number may be
stored in a memory, for example, a non-volatile memory, such
as a fuse or one-time-programmable fuse array.

In another embodiment, the first key is provided to the
integrated circuit. A function is performed on it a first number
oftimes. The result is used to configure a decode logic circuit.
The firstkey is then provided to the integrated circuit a second
time where it is decoded by the newly configured decoder
circuit. The function is performed on the decoded first key a
first number of times, and the result is again stored in memory.
Upon configuration, the result is retrieved, the function per-
formed a second number of times, and this result is used to
decrypt an encrypted configuration bitstream. The first key is
similarly decoded in the software that originally encrypts the
bitstream such that the bitstream may be properly decrypted.

A further embodiment of the present invention provides
circuits, methods, and apparatus that may be used to verify the
validity of an encrypted configuration bitstream. An expected
value is included in a non-encrypted header section of the
bitstream. A function is performed on the encrypted configu-
ration portion of the bitstream and a result generated. The
result is compared to the expected value and validity is deter-
mined. Various embodiments of the present invention may
incorporate one or more of these and the other features
described herein.

A better understanding of the nature and advantages of the
present invention may be gained with reference to the follow-
ing detailed description and the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a simplified block diagram of a programmable
logic device that may benefit by incorporating embodiments
of the present invention;

US 8,363,833 Bl

3

FIG. 2 is a block diagram of an electronic system that may
benefit by incorporating embodiments of the present inven-
tion;

FIGS. 3A and 3B illustrate circuits and software that may
benefit by incorporating embodiments of the present inven-
tion;

FIG. 4 illustrates a method of configuring a field program-
mable gate array that may be improved by incorporating
embodiments of the present invention;

FIG. 5 illustrates a flow chart of a method of encrypting and
decrypting a configuration bitstream according to an embodi-
ment of the present invention;

FIG. 6 illustrates circuits and software that incorporate an
embodiment of the present invention;

FIG. 7 illustrates further circuits and software that incor-
porate an embodiment of the present invention;

FIGS. 8A and 8B illustrates a flowchart of a method of
encrypting and decrypting a configuration bitstream accord-
ing to an embodiment of the present invention;

FIG. 9 illustrates further circuits and software that incor-
porate an embodiment of the present invention;

FIG. 10 illustrates further circuits and software that further
obfuscate a stored key in accordance with an embodiment of
the present invention;

FIG. 11 illustrates a method of verifying a configuration
bitstream according to an embodiment of the present inven-
tion;

FIG. 12 illustrates a flowchart of a method of verifying a
configuration bitstream according to an embodiment of the
present invention; and

FIG. 13 illustrates a circuit that may be used as the function
block in FIG. 11.

DESCRIPTION OF EXEMPLARY
EMBODIMENTS

FIG.11s asimplified partial block diagram of an exemplary
high-density programmable logic device 100 wherein tech-
niques according to the present invention can be utilized. PL.D
100 includes a two-dimensional array of programmable logic
array blocks (or LABs) 102 that are interconnected by a
network of column and row interconnections of varying
length and speed. LABs 102 include multiple (e.g., 10) logic
elements (or LEs), an LE being a small unit of logic that
provides for efficient implementation of user defined logic
functions.

PLD 100 also includes a distributed memory structure
including RAM blocks of varying sizes provided throughout
the array. The RAM blocks include, for example, 512 bit
blocks 104, 4K blocks 106 and an M-Block 108 providing
512K bits of RAM. These memory blocks may also include
shift registers and FIFO buffers. PLD 100 further includes
digital signal processing (DSP) blocks 110 that can imple-
ment, for example, multipliers with add or subtract features.

It is to be understood that PLD 100 is described herein for
illustrative purposes only and that the present invention can
be implemented in many different types of PLDs, FPGAs;
and the other types of digital integrated circuits.

While PLDs of the type shown in FIG. 1 provide many of
the resources required to implement system level solutions,
the present invention can also benefit systems wherein a PL.D
is one of several components. FIG. 2 shows a block diagram
of'an exemplary digital system 200, within which the present
invention may be embodied. System 200 can be a pro-
grammed digital computer system, digital signal processing
system, specialized digital switching network, or other pro-
cessing system. Moreover, such systems may be designed for

20

25

30

35

40

45

50

55

60

65

4

a wide variety of applications such as telecommunications
systems, automotive systems, control systems, consumer
electronics, personal computers. Internet communications
and networking, and others. Further, system 200 may be
provided on a single board, on multiple boards, or within
multiple enclosures.

System 200 includes a processing unit 202, a memory unit
204 and an 1/O unit 206 interconnected together by one or
more buses. According to this exemplary embodiment, a pro-
grammable logic device (PLD) 208 is embedded in process-
ing unit 202. PLLD 208 may serve many different purposes
within the system in FIG. 2. PLD 208 can, for example, be a
logical building block of processing unit 202, supporting its
internal and external operations. PL.D 208 is programmed to
implement the logical functions necessary to carry on its
particular role in system operation. PLD 208 may be specially
coupled to memory 204 through connection 210 and to /O
unit 206 through connection 212.

Processing unit 202 may direct data to an appropriate sys-
tem component for processing or storage, execute a program
stored in memory 204 or receive and transmit data via /O unit
206, or other similar function. Processing unit 202 can be a
central processing unit (CPU), microprocessor, floating point
coprocessor, graphics coprocessor, hardware controller,
microcontroller, programmable logic device programmed for
use as a controller, network controller, and the like. Further-
more, in many embodiments, there is often no need fora CPU.

For example, instead of a CPU, one or more PLD 208 can
control the logical operations of the system. In an embodi-
ment, PLD 208 acts as a reconfigurable processor, which can
be reprogrammed as needed to handle a particular computing
task. Alternately, programmable logic device 208 may itself
include an embedded microprocessor. Memory unit 204 may
be a random access memory (RAM), read only memory
(ROM), fixed or flexible disk media, PC Card flash disk
memory, tape, or any other storage means, or any combina-
tion of these storage means.

FIGS. 3A and 3B illustrate circuits and software that may
be improved by incorporating embodiments of the present
invention. These circuits and software may be used to provide
encrypted configuration information to field programmable
gate arrays. Specifically, FIG. 3A illustrates the loading of an
encrypted bitstream into a configuration device and a key into
a field programmable gate array, while FIG. 3B illustrates the
loading of the encrypted bitstream from the configuration
device to the FPGA.

FIG. 3A includes a software package 320 that further
includes encryption software 322 and key storage and han-
dling software 324, a configuration device for storing an
encrypted bitstream 332, and a field programmable gate array
including storage locations for key storage 342 and decryp-
tion hardware 344. A bitstream is loaded into the encryption
software routine 322 via software interface 305. The encryp-
tion software encrypts the bitstream and provides an
encrypted bitstream through interface 307 to the configura-
tion device 330, where it is stored as an encrypted bitstream
332. Similarly, a key is provided by a user over interface 310
to key handling software 324 which provides the key over
interface 321 to the FPGA 340. The key is stored in locations
342 for use by the decryption hardware 344.

FIG. 3B includes a configuration device that further
includes encrypted bitstream 332, and a field program gate
array 340 including key storage 342 decryption hardware 344
and a decrypted bitstream 346. At power up, during a fault
condition, or other appropriate time, the encrypted bitstream
332 is provided by the configuration device 330 over interface
350 to the decryption hardware 344 in the field programmable

US 8,363,833 Bl

5

gate array 340. The decryption hardware 344 also receives the
key 342 stored on the field programmable gate array 340 and
provides a decrypted bitstream 346. The decrypted bitstream
346 is then used to configure the FPGA such that it provides
the desired logic function.

In typical applications, the activities illustrated in FIG. 3A
occur either at a location (for example, their factory) under
control of the field programmable gate array manufacturer
(vendor) or purchaser, while the activities illustrated in FIG.
3B occur once the field programmable gate array is incorpo-
rated in an end product. Accordingly, since only the encrypted
bitstream is available for detection over interface 350 in FIG.
3B, the original un-encrypted bitstream is protected from
discovery.

FIG. 4 illustrates a method of configuring a field program-
mable gate array that may be improved by incorporating
embodiments of the present invention. In act 410, a configu-
ration bitstream is generated. The configuration bitstream
may be generated using design software such as VHDL (Very
High Speed Integrated Circuit Hardware Description Lan-
guage) or Verilog. In act 420, an encryption key is received,
for example from a user, database, look-up table or other
source. Alternately, the software program may generate its
ownkey, or suggest akey to the user. In act 430, the key is used
to encrypt the configuration bitstream, and in act 440, the
encrypted bitstream is stored on a configuration device. This
configuration device may be a flash memory or other non-
volatile memory device, such as a memory with a self-con-
tained battery backup. The configuration device may be an
integrated circuit, compact flash card, or other device. In act
450, the key is stored on a field programmable gate array or
other programmable or configurable device. The acts to this
point are typically performed at a location under the control of
the field programmable gate array vendor or purchaser such
as an original equipment manufacturer (OEM).

The following acts typically occur at power up, after a fault
or error condition, or at other appropriate times while the
FPGA is in use in an electrical system. In act 460, the
encrypted bitstream is loaded from the configuration device
to the field programmable gate array. In act 470, the encrypted
bitstream is decrypted in the FPGA and used to configure the
FPGA in act 480. This configuration act configures the FPGA
such that it performs the desired function.

FIG. 5 illustrates a flow chart of a method of encrypting and
decrypting a configuration bitstream according to an embodi-
ment of the present invention. The first to the three acts listed
typically occur in software. These acts may occur at a system
manufacturer location. Alternately, these may occur
remotely, for example over the Internet. In act 510, a user key
is received. This user key may be provided by a system
designer, and may be provided by software, from a lookup
table, or other appropriate source. In act 512, a function is
performed “X” number of times on this key. This function
may for example be AES encryption. Alternately it may be
another function, such as scrambling. In act 514, the results
are used to encrypt a configuration bitstream. The encrypted
bitstream may then be stored in a memory, for example on a
configuration device.

The following three acts typically occur on an integrated
circuit such as an FPGA or other configurable device. These
acts may occur at a system manufacturer’s location, or
remotely, for example, over the Internet or phone lines. In act
530, the user key is received. In a specific embodiment, the
user key is received via a JTAG port. In act 532, the function
is performed “A” times on this key, and the result is stored, for
example, on the integrated circuit, in act 534. In a specific

20

25

30

35

40

45

50

55

60

65

6

embodiment, the result is stored in a fuse array, though other
nonvolatile type memories may be used. Alternately, volatile
memories may be used.

The final three acts typically occur at device power up. At
this time, the device is typically in a system. In act 530, the
stored key is retrieved from the memory or fuse array. In act
552, the function is performed on the retrieved key “X-A”
number of times. This result is then used to decrypted the
encrypted configuration bitstream.

In this particular example, a function is performed “X”
times on the key in software and “X” times on the integrated
circuit such that the same modified key is generated for use in
encryption and decryption. In other embodiments, more than
one of function may be used to modify the key. For example,
a first function may be used a first number of times, while a
second function may be used a second number of times. So
long as the same functions are used in both software and
hardware, the same modified key is generated and used to the
first to encrypt the key in software and then decrypted the
configuration bitstream on the configurable device.

FIG. 6 illustrates circuits and software that incorporate an
embodiment of the present invention. This figure includes
acts that are performed in software 610 and on an FPGA or
other integrated circuit 650. Again, a user key 620 is provided.
This user key may be chosen by the user as indicated, or it may
be provided by software, lookup tables, or other appropriate
sources. The key is operated on by a function 630. In this
example, a key expansion consistent with the AES standard is
run for “X” rounds. In other embodiments, other functions
may be used, for example, other encryption standards or
methods of scrambling and may be used. In 640, the modified
key, the resulting Q-key is available and used to encrypt the
configuration bitstream. As before, the result may be stored in
a memory, such as a configuration device.

The user key is provided to the FPGA where it is operated
on a number of times 660. Again, in this particular example,
“A” rounds of AES key expansion are performed. The result
is stored in a memory, such as a fuse or one-time program-
mable fuse array 670. Upon power up, or whenever the device
is to be configured, the result is retrieved from the memory
670 and undergoes “B” more rounds of key expansion, where
B=X-A. The result is the modified or Q-key, which may be
used to decrypted the configuration bitstream.

In this particular example, two circuits 660 and 680 are
implied for the key expansion. In practical circuits, one AES
circuit is used for both functions. Moreover, this AES circuit
may be used as part of a message authentication circuit, as
discussed below.

In this example, the values of “A” and “B” are predeter-
mined and designed or programmed as part of the device.
Alternately, one or both of these values may be provided from
an external source.

In this example, neither the user key 620 nor the modified
or Q-Key 690 are stored on the FPGA 650. Accordingly, even
if the key fused in memory 670 is determined, the user key
620 cannot be determined. Further, since the stored key is
further encrypted to form the Q-Key 690, the modified or
Q-Key 690 is also protected from discovery. Thus, even an
attacker who determines the identity of the fused key 670
cannot easily determine the contents of an encrypted configu-
ration bitstream.

FIG. 7 illustrates further circuits and software that incor-
porate an embodiment of the present invention. In this
example, the value of “A” is provided with the user key 720 to
the FPGA or other device 750 by the software 710. In other
embodiments, the value of A may come from another source.
The value of a may be programmed into a second fuse array

US 8,363,833 Bl

7

765. In other embodiments, the value of “A” is not perma-
nently stored, but is used on the integrated circuit 750 until the
scrambled key is stored in the memory 770.

FIGS. 8A and 8B illustrates a flowchart of a method of
encrypting and decrypting a configuration bitstream accord-
ing to an embodiment of the present invention. In this
example, the first five acts are performed in software. These
acts may occur at a system manufacturer’s location, or
remotely, for example, via the Internet. In act 810, a user key
is received. As before, this user key may be provided by a user,
software, lookup table, or other appropriate source. In act
812, a function is performed on the key “A” number of times.
In act 814, this result is used to encode the user key. To the
user key is encoded and the function is performed on the
encoded user key “X” times in act 816. In act 818, the result
is used to encrypt a configuration bitstream, or other data
pattern needing protection.

The following three acts are performed on an FPGA or
other integrated circuit. In act 830, the user key is received.
The function is performed “A” times on the key in act 832, and
the result, or a portion of the result, is stored on the integrated
circuit in act 834. For example, the result or a portion of the
result may be used to program fuses in a fuse array or one-
time programmable fuse array, or other nonvolatile or volatile
memory.

In FIG. 8B, the first four acts are also performed on the
integrated circuit. Again these acts may be performed at the
system manufacturer’s location before the integrated circuit
is deployed. In act 850, the user key is once again received by
the configurable or other integrated circuit. In act 852, the
user key is encoded using encoder circuits under the control
of' the results generated in act 832. In act 854, the function is
performed “A” times on this result. This new, second result is
stored as a scrambled key in memory, again such as a fuse
array.

Atpower up or other configuration time, the scrambled key
is retrieved from memory, in act 870. The function is per-
formed “X-A” times to generate a key to may be used to
decrypt the bitstream in act 874.

FIG. 9 illustrates further circuits and software that incor-
porate an embodiment of the present invention. This figure
includes software 900 and a configurable device such as a
FPGA or other integrated circuit 940. A user key 912 under-
goes “A” rounds of key expansion 914 and is used to config-
ure an encoder 916. The user key is encoded and the results
undergo “X” rounds of key expansion 918. The result is a
Q-Key 920 in software that may be used to encrypt a configu-
ration bitstream. Again, this encrypted configuration bit-
stream may be stored in a memory such as a configuration
device.

The user key is also provided to the FPGA 940. Decode
logic 942 initially does not transform the user key 912. The
user key undergoes “A” rounds of key expansion 944. The
result, a portion of the result, or an encoded version is stored
in a volatile or nonvolatile memory 952, again such as a fuse
array.

The userkey 912 is again provided to the FPGA 940, where
it is encoded by encoder logic 942. The result undergoes “A”
rounds of key expansion 944, and the result is stored in a
volatile or nonvolatile memory 946.

At power up, or when the device is to be configured, the
scrambled key is retrieved from memory 946, were it under-
goes “B” rounds of key expansion 948 where B=X-A. The
result is the modified or Q-Key 950, which may be used to
decrypt a configuration bitstream received from memory or
configuration device.

20

25

30

35

40

45

50

55

60

65

8

FIG. 10 illustrates further circuits and software that obfus-
cate a stored key in accordance with an embodiment of the
present invention. This figure includes software 1000 and a
configurable integrated circuit such as an FPGA, or other type
of integrated circuit 1030. The user key 1012 undergoes “X”
rounds of key expansion 1014, resulting in a modified or
Q-Key 1016 that may be used to encrypt a configuration
bitstream.

The user key 1012 is provided to the integrated circuit
1030, were it undergoes “A” rounds of key expansion 1032.
The key is obfuscated by obfuscation circuits 1034, and the
obfuscated key is stored in a memory such as a fuse array
1036.

At power up, the obfuscated key is retrieved, and de-ob-
fuscated by circuit 1038. This result undergoes “B” rounds of
key expansion 1040, where B=X-A, resulting in the modified
or Q-Key 1042. The modified or Q-Key 1042 may be used to
decrypt an encrypted configuration bitstream.

Ifthe key is ever determined, a new configuration bitstream
could be encrypted using this key, and the device prepro-
grammed to perform a new function. This could be particu-
larly undesirable, for example, if the integrated circuit was
operating as a network security device. Accordingly, it is
desirable to have a method of authenticating a configuration
bitstream, that is, it is desirable to have a method of veritying
the validity of a configuration bitstream.

FIG. 11 illustrates a method of verifying a configuration
bitstream according to an embodiment of the present inven-
tion. This configuration bitstream includes a header portion
and configuration data. The configuration data is encrypted,
while the header portion is not encrypted. Under some cir-
cumstances, portions of the header may be well-known, or
able to be determined. If the header were encoded, this infor-
mation could lead to discovery of the modified key. Accord-
ingly, the header is not encrypted. The header portion
includes an expected value 1106 and a remainder 1104. In this
example, the portion of the header that is not the expected
value 1106 is not used.

The encrypted configuration data is received by a function
block 1110, which performs a function on it. The output 1120
is provided to a comparison circuit 1130. The comparison
circuit compares the expected value 1106 to the output on line
1122 and makes a determination of validity 1140.

FIG. 12 illustrates a flowchart of a method of verifying a
configuration bitstream according to an embodiment of the
present invention. In act 1210, a header including an expected
value is received. In act 1220, encrypted configuration data is
received. The header and encrypted configuration data form
an encrypted configuration bitstream.

In act 1230, a function is performed on the encrypted
configuration data by a function block in order to generate an
output. This output is compared to an expected value in act
1240. In act 1250, it is determined whether the expected value
received as part of the header matches the output provided by
the function block. If there is a match, the bitstream is valid
1260. If there is not a match, the bitstream is invalid 1270.

FIG. 13 illustrates a circuit that may be used as the function
block in FIG. 11. The received configuration data is broken up
into plain text portions 1302, 1304, and 1306. The concatena-
tion of these portions result in reassembling the configuration
data. The first portion of the configuration data 1302 is
encrypted using an encryption key 1312, thus generating an
output on line 1314. The output on line 1314 is exclusive-
ORed with the second portion of the configuration data 1304
by exclusive-OR circuit 1322. The result on line 1324 passes
through a number of similar blocks until reaches a final stage.
At this point, the cumulative result on line 1326 is exclusive-

US 8,363,833 Bl

9

ORed with configuration data 1306 by exclusive-OR circuit
1322. The output is encrypted by encryption block 1330 and
the result is provided to a final encryption stage 1340. Encryp-
tion block 1340 provides an output that may be compared to
an expected value that is provided as part of a configuration
bitstream header.

In this particular example, the encryption functions 1310,
1320, 1330, and 1340 are shown as separate circuits. In prac-
tical integrated circuits, these will be one circuit. Further, this
circuit can be shared with the key modification circuits such
as 660 in FIG. 6. The encryptionkey 1312 can be the same key
as the modified key 690 also in FIG. 6. Alternately, different
functions, circuits, and keys can be used for this function.

The above description of exemplary embodiments of the
invention has been presented for the purposes of illustration
and description. It is not intended to be exhaustive or to limit
the invention to the precise form described, and many modi-
fications and variations are possible in light of the teaching
above. The embodiments were chosen and described in order
to best explain the principles of the invention and its practical
applications to thereby enable others skilled in the art to best
utilize the invention in various embodiments and with various
modifications as are suited to the particular use contemplated.

What is claimed is:

1. A method of decrypting data on an integrated circuit, the
method comprising:

receiving a data encryption key and a data encryption func-

tion from an external device;

retrieving a count value from a memory of the integrated

circuit;

applying the data encryption function to the data encryp-

tion key for a number of times equal to the count value to
produce a modified data encryption key;

removing the count value from the memory after producing

the modified data encryption key; and

decrypting data based on the modified data encryption key.

2. The method of claim 1, wherein the receiving, retrieving,
applying, and removing steps each occur prior to configura-
tion of the integrated circuit for operational use.

3. The method of claim 1, further comprising:

receiving encrypted configuration data; and

decrypting the encrypted configuration data using the

modified data encryption key.

4. The method of claim 1, wherein:

the data encryption function comprises a first sub-function

and a second sub-function; and

the count value comprises a first sub-count value and a

second sub-count value corresponding to the first sub-
function and second sub-function, respectively.

5. The method of claim 1, wherein the integrated circuit is
a field programmable gate array (FPGA).

6. The method of claim 1, wherein the count value is not
recoverable from the modified data encryption key.

7. The method of claim 1, further comprising receiving
encrypted data, wherein the encrypted data comprises an
encrypted portion and an unencrypted header; and

verifying a decryption of the encrypted data based on the

header.

8. The method of claim 1, wherein the data encryption
function is based on the Advanced Encryption Standard
(AES).

9. The method of claim 1, wherein the count value is an
integer value greater than one.

5

20

25

30

35

40

45

50

55

65

10

10. An integrated circuit comprising:
interface circuitry configured to receive a data encryption
key and a data encryption function from an external
device;
read circuitry configured to read a count value from a
memory storage location of the integrated circuit;
encryption circuitry configured to:
apply the data encryption function to the data encryption
key for a number of times equal to the count value to
produce a modified data encryption key; and
remove the count value from the memory after produc-
ing the modified data encryption key.
11. The integrated circuit of claim 10, wherein:
the interface circuitry is further configured to receive
encrypted configuration data; and
the encryption circuitry is further configured to decrypt the
encrypted configuration data using the modified data
encryption key.
12. The integrated circuit of claim 10, wherein the inte-
grated circuit is a field programmable gate array (FPGA).
13. The integrated circuit of claim 10, wherein the count
value is not recoverable from the modified data encryption
key.
14. The integrated circuit of claim 10, wherein:
the interface circuitry is further configured to receive
encrypted data, the encrypted data comprising an
encrypted portion and an unencrypted header; and
the encryption circuitry is further configured to verify a
decryption of the encrypted data based on the header.
15. The integrated circuit of claim 10, wherein the data
encryption function is based on the Advanced Encryption
Standard (AES).
16. The integrated circuit of claim 10, wherein the count
value is an integer value greater than one.
17. A method of decrypting data on an integrated circuit,
the method comprising:
receiving a data encryption key from an external device;
retrieving a count value and a data encryption function
from memory of the integrated circuit;
applying the data encryption function to the data encryp-
tion key for a number of times equal to the count value to
produce a modified data encryption key;
removing the count value from the memory storage loca-
tion after producing the modified data encryption key;
and
decrypting data based on the modified data encryption key.
18. The method of claim 17, wherein the receiving, retriev-
ing, applying, and removing steps each occur prior to con-
figuration of the integrated circuit for operational use.
19. The method of claim 17, further comprising:
receiving encrypted configuration data; and
decrypting the encrypted configuration data using the
modified data encryption key.
20. The method of claim 17, wherein:
the data encryption function comprises a first sub-function
and a second sub-function; and
the count value comprises a first sub-count value and a
second sub-count value corresponding to the first sub-
function and second sub-function, respectively.
21. The method of claim 17, wherein the integrated circuit
is a field programmable gate array (FPGA).
22. The method of claim 17, wherein the count value is not
recoverable from the modified data encryption key.
23. The method of claim 17, wherein the count value is an
integer value greater than one.

#* #* #* #* #*

